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ABSTRACT

An analysis is presented for the transfer
functions of a particular pulse-width modulator
and power switch subsystem that has been widely
used in practical switching-mode d-c regulator
systems. The switch and filter are in a 'buck"
configuration, and the switch is driven by a con-
stant-frequency variable duty-ratio push-pull
magnetic modulator employing square-loop cores.
The two transfer functions considered are that
with modulator control signal as input and that
with line voltage as input. For a-c signals, the
corresponding describing functions (DF) are
derived. It is shown that current-source drive to
the modulator extends the control DF frequency
response over that with voltage drive, and that
complete cancellation of the effects of line
variations can be obtained at d-c but not for a-c.
Experimental confirmation of the analytical
results for the control DF are presented.

1. INTRODUCTION

In switching mode d-c regulators and ampli-
fiers, a control signal modulates the duty ratio
of a switch associated with a line voltage and a
low-pass filter. This subsystem of modulator and
power stage is usually part of an overall feed-
back loop, as shown schematically in Fig. 1, whose
regulation and stability depend upon two proper-
ties of the subsystem: the control signal to
output voltage transfer function and the line
voltage to output voltage transfer function. The
d-c transfer functions are easily understood and
analyzed, but analysis of the a-c transfer func-
tions presents considerable difficulties because,
since the subsystem effectively contains an A-to-D
and a D-to-A converter, it is inherently non-
linear. For many practical systems the problem of
absence of quantitative understanding of the a-c
transfer functions is merely avoided by introduc-
tion of a sufficiently low-frequency dominant
pole in the overall feedback loop to ensure sta-
bility. The result is poorer system performance
than might otherwise be obtained.

This paper presents an analysis for the
transfer functions of a particular modulator and
power stage subsystem. However, before intro-
duction of the particular subsystem, a more
detailed discussion of the nature of the gen-
eralized subsystem of Fig. 1 will be given in
order to establish the specific definitions of
the analysis goals.

If the line voltage Vl(t) has a constant
d-c value Vg and the control signal is a con-
stant d-c voltage V. » the modulator delivers a
digital switch drive that turns the switch on and
off with a constant duty ratio D and a constant
repetition, or switching, frequency fg - The
output voltage vo(t) contains a constant d-c
component V, , and also harmonics of the switch-
ing frequency fs‘

If again the line voltage is constant at V
but the control signal consists of a d-c voltage
Vo plus a sinusoidal component Gc at frequency
f, where ¥ is expressed in phasor form, the
duty ratio and perhaps also the switching fre-
quency change at the frequency £, and the
resulting output voltage contains, in addition to
the d-c component V, and harmonics of fg, a
phasor component 60 at the control frequency f
and components at higher harmonics of f and also
sidebands at sum and difference frequencies of the
harmonics of f_ and f. A statement of the
complete controi signal to output voltage trans—
fer function is therefore very complicated, and
any attempt to determine the stability of the
overall feedback loop is even more so. What one
would like is to ignore all components of the
output voltage other than those at d-c and the
control frequency; the remaining components, at
least for control frequencies much lower than the
switching frequency are in fact purposely made
small by inclusion of the low-pass filter. The
relation between a sinusoidal input signal and the
resulting output voltage component at the same
frequency w=2mf, where both are expressed in
phasor form, is known as the describing function,
so the control signal to output voltage describing

function Fo is defined as
Go

F (jw) = = 1)
c Ve

under conditions of constant line voltage
VQ(t) = VQ.

A similar discussion may be made for the con-
dition in which the control signal is constant but
the line voltage consists of a d-c voltage Vg
plus a sinusoidal component vy in phasor form
at frequency w= 27f. Output voltage components
at frequencies other than f are ignored, and the
line voltage to output voltage describing function
is defined as
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F, (Gw) (2)
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L

under conditions of constant control signal
vc(t) = Vc'

It may be noted that neither describing
function may be linear in that its value may
depend upon the amplitude of the relevant
sinusoidal input signal. It is therefore
convenient to define the linearized describing
function as the limit of the describing func-
tion as the amplitude of the input signal
becomes vanishingly small. The usefulness of the
linearized describing functions is that the
actual nonlinear subsystem of Fig. 1 can be
approximately modeled by a '"black box" charac-
terized by linear transfer functions., As a
result, the large body of linear system theory
can be invoked to investigate the performance and
stability of the complete regulator or amplifier.
It must be remembered, however, that because of
the approximations implicit in the linearized
describing function representation, a stability
criterion, as obtained for example from a Nyquist
plot, constitutes a necessary but perhaps not
sufficient condition for stability.

There are many ways in which the power stage
and modulator of Fig. 1 can be implemented in
practical systems. For example, the power stage
may be implemented by a switch and LC filter in
the familiar buck, boost, or buck-boost configura-
tion. The modulator of necessity samples the
control signal to produce the digital switch
drive; the sampling may be uniform, natural, or
any of various integrating types, and the result-
ing digital switch drive may be constant on-time,
constant off-time, or constant on-plus-off time
(constant, or clocked, frequency).

The purpose of this paper is to present
analytical expressions for the linearized control
signal to output voltage and line voltage to out-
put voltage describing functions for a particular
modulator and power stage subsystem that has been
widely used in practical switching-mode d~-c
regulator systems.

2, QUALITATIVE OPERATION OF A MAGNETIC
MODULATOR AND POWER STAGE

The particular implementation of the modula-
tor and power stage subsystem to be considered is
shown in Fig. 2, in which the waveforms are those
for steady-state, or d-c, operation in which the
line voltage is constant at Vy and the control
signal is a constant voltage V.. For analysis
purposes all diodes and the power switch are
assumed ideal. The switch and filter are in a
buck configuration, and the switch is driven by a
constant frequency variable duty-ratio push-pull
magnetic modulator employing square-loop cores.
The control windings are shown driven by a
Thevenin equivalent source voltage V. and resis-
tance R., and the gate windings are driven from
a square-wave clock oscillator of frequency
fS/Z. The principle of operation is well-known
and need be only briefly summarized. The volt-
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seconds stored in one core by the control winding
during a period Tg=1/f; are recovered through
the gate winding during an interval T of the
following period, during which interval the gate
winding supports the clock voltage V,, there is

no drive to the inverting switching amplifier, and
the power switch is closed. The interval T is
determined by the volt-seconds stored and by the
gate voltage V At the end of the interval T
the core saturates and the voltage V appears
across the resistance R and is then applied to
the inverting switching amplifier so that the power
switch is opened for the remainder of the period
Tg. The diodes and the square-wave clock voltage
ensure that the cores perform these functions
alternately and without interaction between the
control and gate windings. The battery Vg 1s
included as an analytical convenience to cancel

the steering clock voltage, so that, for zero
source resistance R., the voltage applied to the
active control winding is V.. Because of the
push-pull nature of the modulator, the power switch
repetition rate (the switching frequency f ) is
twice the frequency of the square-wave clock oscil-
lator.

The subsystem may be classed as a buck power
stage driven by a constant-frequency, or clocked,
uniformly sampling integrating modulator: the con-
trol winding voltage is integrated over a period
Ts, and is sampled uniformly at intervals T, to
determine the duty ratic D=T/Tg of the power
switch drive for the following period Tg. Quan-
titatively, again for steady-state or d-c condi-
tions and for zero source instance R¢, the volt-
seconds Ay stored by the control winding voltage
V. over a period Ty are Mg = V.Tg, and the
same volt-seconds are then recovered under the gate

voltage V_ to determine the following interval
g
T, so that
T V.
D=T-='V— (3)
s g

When the switch is closed, the voltage v(t)
at the filter input is equal to the line voltage
Vyp , and if the conditions of operation of the
power stage are constrained (as is usual) so that
the inductor current never falls to zero, the
diode clamps the voltage at the input of the filter
to zero when the switch is open. It follows that
the d-c component V of the switched voltage v(t)
at the filter input is simply equal to the time-
average of Vg and zero, namely

V= DVQ 4)

Since the d-c component of v(t)
the filter, the final result is

is unaffected by

Vo =V-= DVQ (5)

v (6)

Equation (6) represents the basic d-c opera-
tion of the modulator and power-stage subsystem,
and contains both the control signal to output and
line voltage to output transfer functions. For
constant line voltage, the d-c output voltage is



proportional to the d-c control voltage, so the
control to output transfer function is a constant.
It may be seen that the possibility exists of mak-
ing the line voltage to output transfer function
zero: all that is required is to make V, propor-
tional to Vy, which is easily achieved at least
to first order approximation by making the ampli-
tude of the clock oscillator output proportional
to the line voltage.

Equation (6) also contains the two transfer
functions with respect to incremental changes of
sufficiently low frequency, that is, the two des-
cribing functions already introduced. Thus
Fo=Vg/V, and F, =0 for sufficiently low fre-
quency variations. However, because of the
integration function of the modulator and the
delay function inherent in the digital switch
drive, at higher frequencies the output voltage
ceases to follow the control signal and also can-
cellation of the line voltage variations ceases to
be complete. The principal objective of the fol-
lowing analysis is the derivation of the two
linearized describing functions F (jw) and
Fg(jw) as functions of frequency, and to deter-
mine how these functions depend upon the resistance
R of the control signal source and on appropriate

c
parameters of the magnetic cores.

The problem of determination of the comntrol
signal to output voltage describing function can
be formulated as follows. Let the line voltage be
constant at Vp , and let the control signal be a
d-c plus a sinusoidal a-c voltage given by

v (t) = V +v_ sin(wt-06) (7)
c c ¢

where t=0 1is taken at the start of one of the
switching periods T This waveform is shown in
Fig. 3(a). The duty ratio D, for the kth period
Tgs is determined by the stored volt-seconds Ap_q
at the beginning of that period. It will be

shown that the "samples" A,_; are points on a
sine wave given by

Ak—l = AO + A sin[(k—l)(Zﬂw/ws)— 8—¢m] (8)

This sine wave and the uniform samples are shown
in Fig. 3(b). The waveform v(t) at the input to
the filter is as shown in Fig. 3(c): it is a
square wave of constant amplitude V, and con-
stant repetition rate fg, but of varying duty
ratio. The interval T, during which the power
switch is closed is determined by the time taken
to recover the stored volt-seconds Ag_1 under
the constant gate voltage Vg’ so T = Ak—l/vg
and the kth duty ratio D 1Is

b = Ak~1

k VT

g's

(9

Shown in Fig. 3(d) are the d--c component V and
the component at the control frequency w of the
waveform v(t). It will be shown that with neg-
lect of all other components, the voltage at the
filter input is given by

v(t) = V+ v sin(wt—6—¢m—¢d) (10)

The component of the output voltage at the control

frequency is merely the filter input voltage at
that frequency modified by the filter character-
istic, so that the control signal to output
voltage describing function can be separated into
two factors

Fc(jw) = Fé(jw) F(jw) (11)
where F(jw) is the linear filter characteristic,
and F;(jw) 1is the describing function from the

control signal to the filter input voltage. Hence-
forth, this describing function will be referred
to as the control DF. From Eqs. (7) and (10), the
control DF F(l(jw) is given by
- +
P L
c v,

(12)

It remains to determine the magnitude v/vC and
the phase lag ¢ +®; of the control DF as func-
tions of frequency and the various circuit
parameters.

The problem of determination of the line
voltage to output voltage describing function is
formulated in a similar manner. Let the control
signal be a constant voltage V., and let the line
voltage be a d-c plus a sinusoidal a-c voltage
given by

vl(t) =V +v, sin(wt-06) (13)

3 L

where t=0 is again taken at the start of one of
the switching periods T;. This waveform is shown
in Fig. 4(a). Also, let the gate voltage be pro-
portional to the line voltage by a factor B, so
that

vg(t) =BVQ(E) =B[VQ+ stin(wt—e)] (14)
and the desired complete cancellation in the out-
put of d-c line variations is achieved. Since the
control signal is constant, the stored volt-seconds
at the sampling instants are constant at a value
Ly, as shown in Fig. 4(b). The waveform v(t) at
the input to the filter is shown in Fig. 4(c):
when the power switch is closed, v(t) is equal to
the line voltage wvy(t). If the duty cycle were
constant at a value D, v(t) would contain a com-
ponent of amplitude Dvy at the frequency u;
however, because the gate voltage is proportional
to the line voltage, the constant stored volt-
seconds A are recovered over an interval T
that varies with wv_(t) and hence with vl(t), s0
that Dy 1s not constant but varies in such a way
that the component of wv(t) at the frequency w
has an amplitude smaller than Dvyp. It will be
shown that, with neglect of all other sinusvidal
components, the voltage at the filter input is
given by

vit) = V+ v sin(wt—¢ﬂ) (15)
as shown in Fig. 4(d). Again, the line voltage to

output voltage describing function can be separated
into two factors

F,(Jw) = Fy(jw) F(jw) (16)

where F{(jw) is the describing function from the
line voltage to the filter input voltage.
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Henceforth, this describing function will be
referred to as the line DF. From Eqs. (13) and
(15) the line DF Fi(jw) is given by

-id,

R (17)

1 0 =
Fl(Jw) N vy
and it remains to determine the magnitude v/vg
and the phase lag ¢g of the line DF as functions
of frequency and the various circuit parameters.

The procedure outlined above for determina-
tion of the control and line DF's will now be
traced in detail.

3. THE CONTROL DESCRIBING FUNCTION

To obtain an analytical expression for the
control DF, the first step is to find the stored
volt-seconds Ap_; at the sampling instants
£ = (k-1)Tg. The case of zero source resistance
R.=0 will be treated first, since it is parti-
cularly simple and affords a useful reference for
the general case.

If Rp=0, the control signal voltage
v (t) = V. + Vcsin(wt—e) is applied directly
across the control winding. The core starts at,
say, negative saturation, and the volt-seconds
Ay _q stored during the period (k—Z)TS <t < (k-1)Tg
are given by
(k-1)T4

Ak—l = [Vc+ vcsin(wt—e)]dt (18)
(k-2)T,

The result is

sin(mTw/w )
=VT +v T
c's

I sin[(k—l)(Zﬂw/ws)

M1
(ﬂw/ws)

-9~ (Ww/ws)] (19)

which is of the form given in Eq. (8) in which

AO = VCTs (20)
sin(Tw/w )
A=y T 1)
c’s
(mw/w )
s
¢m = Ww/ws 22)

It may be observed that the properties of the
cores have not entered into this result, except
that the B-H loop has been assumed sufficiently
square that the qualitative operation is main-
tained.

In the general case where the control source
resistance is not zero, the voltage applied
across the control winding is less than the con-
trol voltage by the drop in R,. Since this drop
is dependent upon the current in the control
winding, the properties of the core that relate
current to voltage must now enter into the result.
The model used to represent the properties of the
cores is shown in Fig. 5. This is a B-H square-
loop characteristic transformed to a A-I or
volt~second--magnetizing current characteristic
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as seen by either the control or gate winding,
which for simplicity are taken to have equal
turns. Two principal second-~order features are
included in the model, First, the zero-flux mag-
netizing current I, increases over its static
value Iy in proportion to the winding voltage
dA/dt, or

I -1, - 144

m 0 R dt 23

where R has the nature of a resistance. This
assumed linear relation between excess magnetiz-
ing current and voltage is an approximate repre-
sentation of the well-known "loop widening
effect". Second, the unsaturated part of the
core characteristic is not vertical but repre-
sents a noninfinite inductance L. The two core-
dependent quantities that affect the modulator
properties are R and T = L/R, where the resis-
tance R 1is a function of the core material,
geometry, and number of turns, and the time con-
stant T 1is a property of the core material only.

During any period T4, the voltage across the
control winding is dA/dt, and so the current
through R, is I= [vc(t)—-dA/dt]/RC. This is
also the total magnetizing current of the core
I=I,+A/L. Hence

/
v (t) - dh g LT+
¢ !

dt " cim 24

==

After substitution for vc(t) and I, the dif-
ferential equation for A is

d
E%'+ r $'= (l—r)VC— rRIO+ (l—r)vcsin(wt-e) (25)
where Rc
Y = R (26)

c

The solution for A(t) may be obtained and then,
for the period T, between t=(k-2)Tg and
t=(k-1)Tg , the volt-seconds stored are given by

Ay = Me=(-DT_] - Ale=(-2)T_ ] (27)

where A[t=(k-2)Tg] = -Ag, the negative saturation
value from which A starts at the beginning of
each period Tg. It may be noted that if R.>0,
then r—~>0 and Eq. (25) reduces directly to Eq.
(18) already obtained for the zero source resis-
tance case.

After considerable algebraic manipulation,
Ag-1 obtained from Egs. (25) and (27) may be ex-
pressed in the already mentioned form

Ak—l= AO-+A sin[(k—l)(an/ws)—6—¢m] (28)
where
Ay = 1‘; [(1-0)V_~rR(I /L) ]1T, (29)



— Vi 7
l+e of & 2 sin2 L
1—e_u l—e_u o Wy
— (1-r)v Ts
(A
o Wy (30)
amw) fow ) |
tan|—1} + (e —l)cosec )— ———J
w T
[} =tan—l S
m uw o 27w
Eb +(e -1)cosec m )
s /.1 |(31)
in which
Ts Rc Ts
CETT T RR T (32)

[

As a partial check, it may be seen that these
rather formidable expressions reduce to those of
Egs. (20) through (22) for R,>0. The complexity
of these expressions occurs because in each period
T; the stored volt-seconds start from -A., and
A-1 1s a transient solution of the differential
equation Eq. (25). Also, neither the voltage nor
current at the control winding is purely sinusoidal
when R, # 0, even though the control voltage is
sinusoidal.

wWith Ap_q given by Eq. (28), D, 1is given
by Eq. (9) as

D =D+ d sin[(k-1) (2m/ws)—e—¢m] (33)

where

D = Ay/V, T (34)

is the d-c duty ratio and

d = )\/VgTS (35)

may be identified as the amplitude of the a-c duty
ratio., Note that 0<D<1l, and d<D. With D
given by Eq. (33), the complete waveform of the
voltage v(t) at the filter input, shown in Fig.
3(c), is known. It remains to find the d-c and
fundamental a-c component at the frequency w,
shown in Fig. 3(d), which may be done by express-
ing v(t) as a Fourier series. The actual pro-
cedure depends upon the nature of the relationship
between the switching frequency f; and the con-
trol frequency f. If

Folw N
T TwT? (36)

where N and M are positive integers, so that

P is a rational number including zero and the
integers, then f and f_, are said to be commen-
surate. It follows, with Tg = 1/f; and T=1/f,
that

MTS = NT (37

or N periods of the control frequency contain M
periods of the switching frequency. That is, the

waveform v(t) in Fig. 3(c) 1is repetitive with
period MT_ =NT, and this is the shortest inter-
val over which v(t) can be integrated to obtain
its Fourier series expansion. Figure 3 (and also
Fig. 4) shows the waveform for the particular
values M= 10, N =1, If f and f; are not
commensurate, so that P 1is an irrational number,
the waveform v(t) 1is not periodic, and recourse
must be taken to a double integration to obtain
the Fourier components. Only the commensurate
case will be treated here, since this is simpler
and the results are the same as for the incommen-
surate case (1).

A convenient form for the Fourier series
expansion of the voltage v(t) at the filter
input is

v(t) = K+ ! IR |sin(owr+ X)) (38)
n=1
where 21N
1
KO = E'IT-N J v(t) d(wt) (39)
0
2TN
_ 3 -jnwt
Kn N v(t) e d(wt) (40)
0

The integration interval 27N covers N periods
of f and M periods of fg. Since only the

d-c and the w component of v(t) are required,
as shown in Fig. 3(d), only the n=1 term in

Eq. (38) is needed and the result can be expressed
as

v(t) = V+ v sin(wt—6—¢m—¢d) (41)
where 27N
V= ﬁ j v(t) d(ut) (42)
0
v = |1<1| (43)
e+¢m+¢d=_ﬁl (44)
in which 21N
K, = fT—N J v(t) e 9% qeur) (45)
0

The form for v(t) to be used in Egs. (42)
and (45) is that shown in Fig. 3(c), and expressed

by

v(t) = Vy, (1T <e<(-1)T 4T,

k=1,2,+-"M (46)

]

v(t) 0, (k—l)TS+T <t<kTS

k
Equation (42) then becomes

VQ M (k—l)wTS+wTk
= 5o 2 d(wt) (47)
k=1
(k-l)wTs

which leads simply to the d-c value
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V=DV (48)

L

Equation (45) becomes

v (k—l)wTs+wTk )
2 ~jwt

e=mw e

k

.

d{(wt) (49)

Il e~

1
(k—l)wTS
which, with D = Tk/Ts’ leads to

__VQ M -ijS(k—l) —ijS(k—l+D) —ijS(Dk-D)
Kl-;ﬁi 2 e - e e
k=1

(50)

Consider the last exponential in Eq. (50). With
D substituted from Eq. (33), this factor is
e—]mTS(Dk—D)

—j2ﬂ(w/ws)d sin[(k—l)(ZﬂN/ws)—6-¢m] (51)

= e

Since the amplitude v of the w component
in the filter input voltage v(t) 1is proportional
to Kj and since the a-c duty ratio amplitude d
is proportional to the amplitude v, of the a-c
control signal, Eq. (51) shows that v is a non-
linear function of v,. Although the analysis
can be continued in general [a Bessel function
results (1)], a linearization restriction will be
imposed here. The requirement is that the expon-
ent of Eq. (51) should be sufficiently small that
the exponential may be approximated by the first
two terms of its series expansion:

-juT (D, -D)
e

= l-j[Zﬂ(w/ws)d sin[(k—l)(an/wS)—e—¢m] (52)

This makes v proportional to v., so that the
control DF is linearized (independent of control
signal a-c amplitude). The restriction required
to validate the approximation of Fig. (52) is

Zﬂ(w/ws)d << 1 (53)

Since d<D <1, this restriction is not very severe
for control frequency w less than the switching
frequency wg. Further algebraic manipulation of
Eq. (50), with the linearizing approximation of

Eq. (52) included, eventually leads to

VK —jZD(nw/ms)
K, = |- 1l-e
1 (mrw/w ) ©
s __=192,3) *
w
s
—j[ZD(ﬂw/ws)+6+¢m]
+ 1dV e
2 EL.# l—l 3 ...
w 2’ ’2’
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+ [dV, e

£

-j[2D(ﬂw/mS)+6+¢m](
1-e

23 (6+¢ 7
m
w 1,3,
U'z)lazy
s

(54)

The significance of the contributions to this
result is as follows. The term in the first
square bracket is independent of d, so it exists
in the absence of an a-c control signal; it repre-
sents the switching frequency and its harmonics.
The term in the second square bracket is propor-
tional to d, and represents the ww component
that results directly from the a~c control signal.
The term in the third square bracket, also propor—-
tional to d, represents the combination of the w
component that results directly from the a-c con-
trol signal and the appropriate sideband of the
switching frequency. For example, for w/wg=1/2,
the combination is of the direct component

w = (l/Z)wS and the sideband wg~w= (l/Z)wS. It
is seen that the amplitude of the w component
for w/wgy=1/2,1,3/2,--- can be as great as twice
the amplitude for neighboring frequencies, the
actual amplitude depending upon the phase 6 of
the control signal with respect to the switching
frequency.

Since the components of Ky for w/wg
=1,2,3,--+ are present even in the absence of an
a-c control signal, the term in the first square
bracket in Eq. (54) is excluded from the DF repre-
sentation. The remaining two terms may be
combined into a single term in the following
manner:

25 (6+¢ )

m

K, = dv, e 1-ke (55)

—J[2n(ﬂw/ws)+6+¢m]
1 2
where k=1 for the "special case" frequencies
w/wg = 1/2,1,3/2,-++, and k=0 otherwise. The
magnitude and phase of the w component of the
filter input voltage wv(t) are then obtained from
Eqs. (43), (44), and (55) as

25 (644 )

v = dvV,{1-ke

L

23(6+0 )
94=2D(w/w ) ~ [l-ke n (57)

The results may now be assembled as follows.
The d-c control transfer function is obtained from
Eqs. (48), (34), and (29) as

(56)

VK l—e—a
V= V; _—E;—-) [(l—r)VC— rR(IO—AS/L)] (58)
where Rc
T = R (59
(o4
TS RC TS
T TER T (60)

It is convenient to normalize the a-c control DF



Fé(jw) to its zero-frequency value F.(j0), and
to define the resulting normalized control signal
to filter input voltage DF as Hé, which is ob-
tained from Eq. (12) with insertion of Egs. (56),
(57), (35), and (30) as

F'(jw) -j[2D(mw/w )+ ] 25(6+0 )
B S = A e M ke "
c FC(]O)
where
v -0
AN _ % l-e R
FO0) =5~ 57 wmr (62)
g c
and
2
1+ ( ) ( ) sin Eﬂ
A= s (63)
2_2
o
27w uwz) -;
tan(——)+—(e -1l)cosec|f——] - {——
W w mw l i
s s
¢ =tan oW - ™ 2T
n ( 4—(ea—l)cosec( )
w_ !
Sy S i].
(64)
with

0, w/w +#1/2,1,3/2,
K = s (65)
1, w/ws =1/2,1,3/2,

Equation (61) shows that a polar plot of the
a-c¢ control DF Hé is a trajectory traced out by
a phasor of length A and angle —[2D(Ww/ws)+¢m],
but that at the special-case frequencies w/w_ =
1/2,1,3/2,+++(k=1) the total phasor is the sum
of the first phasor with k=0 and a second
phasor of equal magnitude but with an angle that
depends upon the phase 0 of the control a-c
signal with respect to the switching frequency.
The second phasor describes a circle, centered on
the end of the first phasor, as B+¢, varies
from O tom. A qualitative sketch of such a polar
plot of H{ is shown in Fig. 6. At the frequen-
cies w/wg = 1/2,1,3/2,..- the total phasor has
an amplitude that varies from zero to 2A, and a
phase angle that varies up to +w/2 from
-[2D(mw/wg)+¢, ], depending upon 6.

Separate magnitude and phase plots of the
a-c control DF H{ vs. frequency are shown in
Figs. 7 and 8, with o as a parameter. From
Eq. (61),

|Hé|[w/ws#l/2,l,3/2,---] = A (66)
&[w/ws#l/Z,l,B/Z, ceel= —[2D(mu/ws)+¢m] (67)
IHé[ (w/w =1/2,1,3/2,*+]=2A sin(B+¢ ) (68)

[Ii[w/w; 1/2,1,3/2,++ -] = -[2D(nw/w )+ ]

-[(B+dp)-m/21  (69)

For o = 0, that is, for voltage-driven control
signal with R.=0, the magnitude and phase fac-
tors A and ¢, due to the magnetic modulator

reduce to
sin(mw/w )
A = —0 5 (70)
(Tw/w_)
S
¢m = ﬂw/ws (71)

In Fig. 7, magnitude plots are given for a = 0,
1.5, and 10. The frequency dependence stems
entirely from the modulator. In Fig. 8, phase
plots are given for o =0 and 1.5, with the
d-c duty ratio D=0.5. The total phase lag is
made up of the two components shown, 2D(mw/uwg)
due to the power stage, and ¢ due to the
modulator.

The zero to double-amplitude possibility
expressed by Eq. (68) is represented in Fig. 7
by "spikes" superimposed upon the amplitude A
at the special-case frequencies w/wg= 1/2,1,
3/2,-4- The spike extends 6 db above and «db
below the corresponding amplitude A. To avoid
cluttering the picture, only a few of these
spikes are shown in Fig. 7, but they are present
at w/wS =1/2,1,3/2,--+ for all values of «.
The *71/2 additional phase lag expressed by Eq.
(69) is similarly represented in Fig. 8 by *m/2
spikes superimposed upon the phase lag
[2D(mw/wy)+d,] at the special-case frequencies
w/w -—1/2 1, 3/2 -+, [The #m/2 range is given
by Eq. (69) for O <O+ <m; for w< (6+¢m) <2m,
the additional lag w 1is cancelled by the sign
reversal of the amplitude factor given by Eq.
(68).] Again, only a few of the spikes are shown
in Fig. 8.

The most important feature of the results
displayed in the control signal DF plots of Figs.
7 and 8 is that the performance of the modulator
and power stage subsystem is improved if the
modulator is driven from a current source rather
than from a voltage source. The performance is
improved in the sense that the frequency response
of the control DF is extended: the magnitude
decay and the phase lag at a given frequency are
both less for a > 0 than for o =0 . Extended
frequency response translates directly into
improved gain and phase margins when the subsystem
is inside a feedback loop. The improvement is
quite substantial: at w/wg = 0.8, for example,
the phase lag for o = 1.5 is less by about /2
than that for o = 0, but the magnitude increase
is only about 3.5 db. The degree of improvement
in the frequency response is, however, limited by
the maximum value of o given by Eq. (60) with
R.>® for a current-source control signal:

T

==
“nax ~ T (72)

3.1 Experimental Results
Experimental results for the control signal
DF H! were obtained on a circuit embodying the

principle illustrated in Fig. 2. Each core was a
Magnetics Inc. 51056-2H, Type 48 Alloy. The
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control and gate windings each consisted of 500
turns of No. 26 wire. The clock square-wave was
obtained from an Exact 301 Function Generator at
1 kHz, so the switching frequency was fg=2 kHz
with T, =0.5 msec. The peak value of the gate
square wave was V_ = 14 v, Since the modulated
square-wave voltage v(t) at the filter input is
the same as that at the modulator output (except
for a scale factor and phase reversal) the power

stage was omitted, and replaced by a Schmitt trig-

ger to sharpen the modulator output waveform,
which is soft because of the soft saturation
characteristic of the cores. The control d-c and

a-c signals were obtained from a low ocutput imped-

ance amplifier, either directly for voltage drive

VC(RC=O), or via a common-emitter transistor stage

for current drive I.= Vc/Rc (Re==). A Hewlett~-

Packard 302A Wave Analyzer was used to measure the

magnitude of the control-signal frequency compon-—
ent in the Schmitt trigger modulated square-wave
output waveform v(t) . In the BFO mode, the wave
analyzer provides a signal at the frequency to
which the voltmeter is tuned, so this signal was
used to supply the control signal a-c component.

The experimental results for lHé| obtained
in this way are shown In Fig. 9. The solid line
is the theoretical result for a = 0 taken from
Fig. 7 and it is seen that the corresponding ex-
perimental points for voltage drive (RC=0, a=0)
agree quite closely with the theoretical curve.
The experimental points for current drive

(R.=®,0=0p,yx) also lie on a curve of the expected

shape, and are well fitted by the theoretical
curve for o = 0.95. Hence from Eq. (72),

s 0.5
o 0.95

= 0,53 msec (73)

To verify the presence of the "'spikes" in the

]Hé| plot, the a-c control signal must be syn-
chronized with the switching frequency. 1In the
experimental set-up described, this can be done
very simply for w/wg=1/2 by use of the sine-
wave output of the Exact Function Generator,

which is available simultaneously with the square-

wave output at the same frequency used for the
clock, which is ws/2. The sine-wave output at
w=lus/2 was applied as the a-c control signal
through a phase-shifting network, and the ampli-
tude of the control signal was adjusted, for each
value of phase angle, to the (constant) value
previously used for the measurements at other
frequencies. Measurements were made for voltage
drive, and are shown in Fig. 10. The results

agree well with the theoretical curve, also shown,

expressed by Eq. (68) with A and ¢, given by
Eqs. (70) and (71) for w/wg=1/2:

B! | lw/w=1/2] = 5 sta(e+m/2) (74)

The measurements shown in Figs. 9 and 10 were all
taken at a d-c duty ratio D = 0.9. Since the
302A Wave Analyzer makes only magnitude measure-
ments, experimental verification of the theoreti-
cal phase relations of Fig. 8 was not obtained.
However, the agreement between the theoretical
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and the experimental magnitude relations is suf-
ficiently good to inspire confidence in the
theoretical expression for the control signal DF.

Experimental measurements were also made of
the d-c control transfer characteristic. From
Eqs. (34) and (29), the theoretical relation
between the d-c duty ratio D and the control
signal is

1 l-e
D = —_— [(l—r)VC-rR(IO—As/L)] (75)

\ o
g

For voltage drive V. with R.=0, r=0 and o=0,
S0

VC
=0 - VvV (76)
a=0 Vg

D

For current drive I_.= Vc/Rc with R =», r=1
and a=0y, , SO

it )

_ 1-e "R
oo T T v A/ an
m m g

D

Experimental measurements of D|a=0 vs. V and
D|a;am vs, I, are shown in Figs. 11 and 12. The
duty ratio was determined by direct observation
of the Schmitt trigger output waveform v(t) on
an oscilloscope. The D|a=0 transfer character-
istic is linear over essentially the entire range
0<D<1,but the D|g=qy characteristic becomes
nonlinear at both ends of the range. This is
because the actual cores do not have the sharp
saturation characteristic assumed in the model of
Fig. 5. However, a substantial part of the range
is linear with a slope of 1/0.54 ma. The meas-
ured slope of the D|g=0 characteristic is 1/12 v
and from Eqs. (76) and (77) the value of R can
be obtained from
o
le g = A2V . 9y (78)

o 0.54 ma
m

With the previously determined value op = 0.95,
the result is R=34k.

As described above, the performance of the
cores in the modulator permits experimental
determination of the core second-order parameters
R and T. However, the first-order core param-
eters A and Ig can also be obtained. An
independent measurement showed that the total
volt-seconds supportable by the core with 500
turns was 2Ag = 3.9 v-msec, so that A =1.95
v-msec. This converts to Bg =9.1 kgauss, com-
pared with the manufacturer's nominal value of
11.6 kgauss. The value of Iy can be obtained
from the intercept of the D|q= characteristic
with the current axis, from Fig. 12 and Eq. (77)
as

IO - AS/L = 0.72 ma (79)

The nonsaturated inductance L= R=0.53 msec
x 34k = 18h,so A /L=1.95/18=0.11 ma and



Ip 0.72+0.11 = 0.83 ma. This converts to
Hg 0.12 oersted, compared with the manufacturer's
nominal value of 0.1 oersted.

It may be observed that the measured slope of
the Dlu=0 characteristic in Fig. 11, 1/12 v,
does not agree with the value 1/V, predicted by
Eq. (76) when Vg= 14 v . This is because the
voltage that actually appears across the gate wind-
ing is less than V_, by a diode drop of about
0.6v, and by the drop in the load resistance R
due to the core magnetizing current., Although
the magnetizing current changes during the inter-
val Tg that the core is resetting (because of
the finite inductance L), an approximate average
value is Im==IO+-(1/R)dA/dt . If the gate winding
voltage is assumed to be the measured value
dA/dt=12v, I = 0.83+12/34 = 1.18 ma. The value
of R, wused in the experimental set-up was
Rg= 1.35k, so the effective gate winding voltage
is 14-0.6~(1.18x1.35) = 14-0.6-1.6 = 11.8v, in
satisfactory agreement with the observed 12v.
This effective value of V should, of course,
also be employed in the glu; characteristic
of Eq. (77). The discrepancy in the offset of
the D|a=0 characteristic observed in Fig. 11
occurs because the effective control winding
voltage is less than V., by a diode drop of about
0.6v.

4, THE LINE DESCRIBING FUNCTION

As for the control DF, the analytic deriva-
tion of the line DF is in two parts. In the first
part an expression for the kth duty ratio D is
obtained, and in the second part the coefficient
K7 of the ® component in the filter input volt-
age waveform v(t) 1is obtained by Fourier analy-
sis.

A qualitative description of the signal con-
ditions has been given in Section 2 with reference
to Fig. 4. The line voltage has a d-c plus a
sinusoidal component given by Eq. (13), and the
gate voltage is proportional to the line voltage
as in Eq. (14). The control signal is constant

at AO‘ These volt-seconds are recovered under
the action of the gate voltage vg(t) to deter-
mine Tk by
(k—l)TS+Tk
vg(t) dt = AO (80)
(k—l)Ts
The duty ratio Dk is then given by
(k-l)+Dk
B [V+ v sin(wt—e)]d(t/TS)
(k-1)
= AO = DBV (81)

where the second equality is obtained by recogni-
tion that Dy = D, the d-c duty ratio, when
vg=0. Evaluation of the integral in Eq. (81)
leads to a transcendental relation for . How-
ever, a closed-form solution can be obtained as

Dk= D+ d sin[(k—l)(Zﬂw/ws)—6+Dﬂm/ws] (82)
where
sin(Dmw/w )
d=-p—-—=-
(Dﬂw/ws)
v, /V
« L7

1+ (vl/Vl)sin[(k—l)(wa/ws)—e+Dﬂw/ws] (83)
under the restriction

2m(w/w)d << 1 (84)

Equation (82) corresponds to Eq. (33) obtained

for control signal variations. Also, the restric-
tion of Eq. (84) is the same as that required in
the control signal analysis, Eq. (53). It may be
noted that the restriction does not involve

VQ/VQ, and so Eq. (82) is valid even for large
fractional line voltage variations. However, d
is independent of k, and so the Dy points lie
on a sine wave, only if VQ,/V2 << 1.

The expression for the Fourier coefficient

K; of the w component in the filter input wave-
form v(t) is established in the same way as for
control signal variation in Egqs. (38) through
(49), the only difference being that wv(t) =
VQ-Fstin(wt—e) instead of Vy during the switch
on—times Ty . Hence, for line variations, the
equation for K; corresponding to Eq. (49) is

jv
_ %
Kl - wTs ™
M (k—1)+Dk ]
. ~-jwt
x 7 (1+ (v, /V))sin(we-6)]Je > d(t/T )
1 Gy

(85)

Again, commensurate frequencies are assumed such
that w/ws = N/M where N and M are integers.
Evaluation of the integral subject to the restric-
tion of Eq. (84) permits K; to be expressed as
a linear function of Dy, which can then be sub-
stituted by Eq. (82). Evaluation of the k sum-
mations then leads to three groups of terms, as
in the control variations case. The harmonics of
the switching frequency, present even in the
absence of line variations, are irrelevant, and
the sideband combinations can be neglected since
it is unlikely that line variations synchronous
with the switching frequency would exist. The
remaining term that results directly from the a-c
line component is

—jZD(ﬂw/ws)
eje l-e

- j2D(ﬂw/wS) (86)

—i8

The a-c line DF is then F}(jw) =K1/(VQE 4 ), and
it is convenient to normalize F](jw) to its
infinite-frequency value F'(j®), and to define
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the resulting normalized line to filter input
voltage DF as Hj, which is

Fi(jw) L —jZD(Ww/ws)
H! = =1-== (87)
2 Fi(jw) jZD(ﬂw/wS)
where
Fj(j=) = D (88)

A}

The magnitude and phase of the a-c line DF Hy

are given by

sin(ZDﬂw/ws) 2
t = -
IHQI o L 2Dﬂw/ws +

sinz(Dﬂw/w ) 2
= (89)

DTw/w
s

. 2
-1 2 sin (Dﬂw/ws)

g = @bra/a)) - sin(2bma/w)

(90)

Since the d-c duty ratio D always appears as a
multiplier of w, a single plot of |Hi may be
made as a function of 2Dw/w_, as shown in Fig.
13. As anticipated, IHQ[ is zero at zero fre-
quency when the line change applied to the power
switch is exactly compensated by the change of
duty ratio resulting from the corresponding
change in gate voltage. However, as the fre-
quency of the line variations increases, the
increasing phase delay through the modulator pre-
vents complete compensation; ultimately, for
frequencies such that 2Dw/w_. is greater than
about 2, there is essentiaily no compensation
and the line variations appear unmodified in the
filter input voltage. Since in a practical
application the phase /Hi is of little concern,
a plot of {HQ is not ‘given; however, it can be
seen from Eq.  (90) that Zﬂi = m/2 at zero fre-
quency, and ultimately for high frequencies
decreases to zero.

For frequencies sufficiently low that
(2Dm/ws) << 2/m, Eqs. (89) and (90) reduce to

LN i 2Dw
Iy | =5 . (91
Wy =2 - tan—l(%——zzw) (92)
s

5. CONCLUSIONS

A particular pulse-width modulator and power
switch subsystem that has been widely used in
practical switching-mode d-c regulators has been
analyzed., The subsystem may be classed as a buck
power stage driven by a clocked uniformly sampl-
ing integrating modulator employing square-loop
cores, whose principle of operation is illus-
trated in Fig. 2.

The analysis leads to an expression for the
describing function F( (jw) that relates a
sinusoidal control signal at frequency @ at the
modulator input to the resulting source frequency
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component of the filter input voltage. The over-
all describing function from the ceutrol signal to
the output voltage is then F.(jw) = Fé(jw) F(iw),
where F(jw) 1is the filter linear transfer func-
tion. When the control input is voltage driven
(zerc source resistance) normal operation is inde-
pendent of core parameters and the normalized
control DF Hé = Fé(jw)/Fé(jO) is of the form
sin(mw/wg) / (Tw/wg) . However, the frequency res-
ponse is extended when the control signal is
driven from a nonzero resistance source as
expressed by Eq. (61) and shown in Figs. 7 and 8.
Extension of the frequency response is quantita-~
tively related to two second-order core parameters,
the "loop widening" resistance R and the non-
saturated inductance L. The theoretical results
are confirmed in Fig. 9 by experimental measure-
ments made on a practical circuit. The complete
knowledge of the control DF thus obtained is
valuable in optimizing the design of feedback
regulators in which this particular subsystem is
used.

Analysis is also presented that leads to an
expression for the describing function Fi(jm)
that relates a sinusoidal line voltage variation
at frequency w to the resulting source-frequency
component of the filter input veltage. The over-
all describing function from the line voltage to
the output voltage is then Fy(jw) = Fj(jw)/F(jw).
When the modulator gate voltage is made propor-
tional to the line voltage, the normalized line
DF Hi = Fi(jw)/F'(jm) is zero for zero-frequency
variations but increases with frequency, as shown
by Eq. (87) and in Fig. 13. Thus, even though
complete cancellation of line variations can be
obtained at zero-frequency, line "feedthrough"
occurs at higher frequencies, and the analytical
results derived here can be used to determine the
overall line sensitivity of the output voltage in
a complete feedback regulator system.
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