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Describing Multimedia Content using

Attention-based Encoder–Decoder Networks
Kyunghyun Cho◦, Aaron Courville◦ and Yoshua Bengio◦⋆

Abstract—Whereas deep neural networks were first mostly
used for classification tasks, they are rapidly expanding in the
realm of structured output problems, where the observed target
is composed of multiple random variables that have a rich joint
distribution, given the input. We focus in this paper on the case
where the input also has a rich structure and the input and output
structures are somehow related. We describe systems that learn
to attend to different places in the input, for each element of the
output, for a variety of tasks: machine translation, image caption
generation, video clip description and speech recognition. All
these systems are based on a shared set of building blocks: gated
recurrent neural networks and convolutional neural networks,
along with trained attention mechanisms. We report on exper-
imental results with these systems, showing impressively good
performance and the advantage of the attention mechanism.

I. INTRODUCTION

IN this paper we focus on the application of deep learning

to structured output problems where the task is to map the

input to an output that possesses its own structure. The task is

therefore not only to map the input to the correct output (e.g.

the classification task in object recognition), but also to model

the structure within the output sequence.

A classic example of a structured output problem is ma-

chine translation: to automatically translate a sentence from

the source language to the target language. To accomplish

this task, not only does the system need to be concerned

with capturing the semantic content of the source language

sentence, but also with forming a coherent and grammatical

sentence in the target language. In other words, given an input

source sentence, we cannot choose the elements of the output

(i.e. the individual words) independently: they have a complex

joint distribution.

Structured output problems represent a large and important

class of problems that include classic tasks such as speech

recognition and many natural language processing problems

(e.g. text summarization and paraphrase generation). As the

range of capabilities of deep learning systems increases, less

established forms of structured output problems, such as image

caption generation and video description generation ([1] and

references therein,) are being considered.

One important aspect of virtually all structured output tasks

is that the structure of the output is imtimately related to the

structure of the input. A central challenge to these tasks is

therefore the problem of alignment. At its most fundamental,

the problem of alignment is the problem of how to relate sub-

elements of the input to sub-elements of the output. Consider

again our example of machine translation. In order to translate
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the source sentence into the target language we need to first

decompose the source sentence into its constituent semantic

parts. Then we need to map these semantic parts to their

counterparts in the target language. Finally, we need to use

these semantic parts to compose the sentence following the

grammatical regularities of the target language. Each word or

phrase of the target sentence can be aligned to a word or phrase

in the source language.

In the case of image caption generation, it is often appro-

priate for the output sentence to accurately describe the spatial

relationships between elements of the scene represented in the

image. For this, we need to align the output words to spatial

regions of the source image.

In this paper we focus on a general approach to the

alignment problem known as the soft attention mechanism.

Broadly, attention mechanisms are components of prediction

systems that allow the system to sequentially focus on different

subsets of the input. The selection of the subset is typically

conditioned on the state of the system which is itself a function

of the previously attended subsets.

Attention mechanisms are employed for two purposes. The

first is to reduce the computational burden of processing high

dimensional inputs by selecting to only process subsets of the

input. The second is to allow the system to focus on distinct

aspects of the input and thus improve its ability to extract the

most relevant information for each piece of the output, thus

yielding improvements in the quality of the generated outputs.

As the name suggests, soft attention mechanisms avoid

a hard selection of which subsets of the input to attend

and instead uses a soft weighting of the different subsets.

Since all subset are processed, these mechanisms offer no

computation advantage. Instead, the advantage brought by

the soft-weighting is that it is readily amenable to efficient

learning via gradient backpropagation.

In this paper, we present a review of the recent work

in applying the soft attention to structured output tasks and

spectulate about the future course of this line of research. The

soft-attention mechanism is part of a growing litterature on

more flexible deep learning architectures that embed a certain

amount of distributed decision making.

II. BACKGROUND:

RECURRENT AND CONVOLUTIONAL NEURAL NETWORKS

A. Recurrent Neural Network

A recurrent neural network (RNN) is a neural network

specialized at handling a variable-length input sequence x =
(x1, . . . ,xT ) and optionally a corresponding variable-length
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output sequence y = (y1, . . . ,yT ), using an internal hidden

state h. The RNN sequentially reads each symbol xt of

the input sequence and updates its internal hidden state ht

according to

ht = φθ (ht−1,xt) , (1)

where φθ is a nonlinear activation function parametrized by

a set of parameters θ. When the target sequence is given, the

RNN can be trained to sequentially make a prediction ŷt of

the actual output yt at each time step t:

ŷt = gθ (ht,xt) , (2)

where gθ may be an arbitrary, parametric function that is

learned jointly as a part of the whole network.

The recurrent activation function φ in Eq. (1) may be as

simple as an affine transformation followed by an element-

wise logistic function such that

ht = tanh (Uht−1 +Wxt) ,

where U and W are the learned weight matrices.1

It has recently become more common to use more sophisti-

cated recurrent activation functions, such as a long short-term

memory (LSTM, [2]) or a gated recurrent unit (GRU, [3], [4]),

to reduce the issue of vanishing gradient [5], [6]. Both LSTM

and GRU avoid the vanishing gradient by introducing gating

units that adaptively control the flow of information across

time steps.

The activation of a GRU, for instance, is defined by

ht = ut ⊙ h̃t + (1− ut)⊙ ht−1,

where ⊙ is an element-wise multiplication, and the update

gates ut are

gt = σ (Uuht−1 +Wuxt) .

The candidate hidden state h̃t is computed by

h̃t = tanh (Uht−1 +W (rt ⊙ xt)) ,

where the reset gates rt are computed by

rt = σ (Urht−1 +Wrxt) .

All the use cases of the RNN in the remaining of this paper

use either the GRU or LSTM.

B. RNN-LM: Recurrent Neural Network Language Modeling

In the task of language modeling, we let a model learn

the probability distribution over natural language sentences. In

other words, given a model, we can compute the probability of

a sentence s = (w1, w2, . . . , wT ) consisting of multiple words,

i.e., p(w1, w2, . . . , wT ), where the sentence is T words long.

This task of language modeling is equivalent to the task

of predicting the next word. This is clear by rewriting the

sentence probability into

p(w1, w2, . . . , wT ) =

T
∏

t=1

p(wt | w<t), (3)

1 We omit biases to make the equations less cluttered.

where w<t = (w1, . . . , wt−1). Each conditional probability

on the right-hand side corresponds to the predictive prob-

ability of the next word wt given all the preceding words

(w1, . . . , wt−1).

A recurrent neural network (RNN) can, thus, be readily used

for language modeling by letting it predict the next symbol at

each time step t (RNN-LM, [7]). In other words, the RNN

predicts the probability over the next word by

p(wt+1 = w|w≤t) = gwθ (ht,wt) , (4)

where gwθ returns the probability of the word w out of all

possible words. The internal hidden state ht summarizes all

the preceding symbols w≤t = (w1, . . . , wt).
We can generate an exact sentence sample from an RNN-

LM by iteratively sampling from the next word distribution

p(wt+1|w≤t) in Eq. (4). Instead of stochastic sampling, it is

possible to approximately find a sentence sample that maxi-

mizes the probability p(s) using, for instance, beam search [8],

[9].

The RNN-LM described here can be extended to learn a

conditional language model. In conditional language mod-

eling, the task is to model the distribution over sentences

given an additional input, or context. The context may be

anything from an image and a video clip to a sentence in

another language. Examples of textual outputs associated with

these inputs by the conditional RNN-LM include respectively

an image caption, a video description and a translation. In

these cases, the transition function of the RNN will take as an

additional input the context c such that

ht = φθ (ht−1,xt, c) . (5)

Note the c at the end of the r.h.s. of the equation.

This conditional language model based on RNNs will be at

the center of later sections.

C. Deep Convolutional Network

A convolutional neural network (CNN) is a special type

of a more general feedforward neural network, or multilayer

perceptron, that has been specifically designed to work well

with two-dimensional images [10]. The CNN often consists

of multiple convolutional layers followed by a few fully-

connected layers.

At each convolutional layer, the input image of width ni,

height nj and c color channels (x ∈ R
ni×ny×c) is first

convolved with a set of local filters f ∈ R
n′

i×n′

y×c×d. For

each location/pixel (i, j) of x, we get

zi,j =

n′

i
∑

i′=1

n′

j
∑

j′=1

f
(

f⊤i′,j′xi+i′,j+j′
)

, (6)

where fi′,j′ ∈ R
c×d, xi+i′,j+j′ ∈ R

c and zi,j ∈ R
d. f is an

element-wise nonlinear activation function.

The convolution in Eq. (6) is followed by local max-pooling:

hi,j = max
i′ ∈ {ri, . . . , (r + 1)i− 1} ,
j′ ∈ {rj, . . . , (r + 1)j − 1}

zi′,j′ , (7)
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for all i ∈ {1, . . . , ni/r} and j ∈ {1, . . . , nj/r}. r is the size

of the neighborhood.

The pooling operation has two desirable properties. First,

it reduces the dimensionality of a high-dimensional output

of the convolutional layer. Furthermore, this spatial max-

pooling summarizes the activation of the neighbouring feature

activations, leading to the (local) translation invariance.

After a small number of convolutional layers, the final

feature map from the last convolutional layer is flattened to

form a vector representation h of the input image. This vector

h is further fed through a small number of fully-connected

nonlinear layers until the output.

Recently, the CNNs have been found to be excellent at

the task of large-scale object recognition. For instance, the

annual ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) has a classification track where more than a mil-

lion annotated images with 1,000 classes are provided as a

training set. In this challenge, the CNN-based entries have

been dominant since 2012 [11], [12], [13], [14].

D. Transfer Learning with Deep Convolutional Network

Once a deep CNN is trained on a large training set such that

the one provided as a part of the ILVRC challenge, we can

use any intermediate representation, such as the feature map

from any convolutional layer or the vector representation from

any subsequent fully-connected layers, of the whole network

for tasks other than the original classification.

It has been observed that the use of these intermediate

representation from the deep CNN as an image descriptor sig-

nificantly boosts subsequent tasks such as object localization,

object detection, fine-grained recognition, attribute detection

and image retrieval (see, e.g., [15], [16].) Furthermore, more

non-trivial tasks, such as image caption generation [17], [18],

[19], [20], [21], have been found to benefit from using the im-

age descriptors from a pre-trained deep CNN. In later sections,

we will discuss in more detail how image representations from

a pre-trained deep CNN can be used in these non-trivial tasks

such as image caption generation [22] and video description

generation [23].

III. ATTENTION-BASED MULTIMEDIA DESCRIPTION

Multimedia description generation is a general task in

which a model generates a natural language description of a

multimedia input such as speech, image and video as well as

text in another language, if we take a more general view. This

requires a model to capture the underlying, complex mapping

between the spatio-temporal structures of the input and the

complicated linguistic structures in the output. In this section,

we describe a neural network based approach to this problem,

based on the encoder–decoder framework with the recently

proposed attention mechanism.

A. Encoder–Decoder Network

An encoder–decoder framework is a general framework

based on neural networks that aims at handling the mapping

between highly structured input and output. It was proposed

recently in [24], [3], [25] in the context of machine translation,

where the input and output are natural language sentences

written in two different languages.

As the name suggests, a neural network based on this

encoder–decoder framework consists of an encoder and a

decoder. The encoder fenc first reads the input data x into

a continuous-space representation c:

c = fenc(x), (8)

The choice of fenc largely depends on the type of input.

When x is a two-dimensional image, a convolutional neural

network (CNN) from Sec. II-D may be used. A recurrent

neural network (RNN) in Sec. II-A is a natural choice when

x is a sentence.

The decoder then generates the output y conditioned on

the continuous-space representation, or context c of the input.

This is equivalent to computing the conditional probability

distribution of y given x:

p(Y |x) = fdec(c). (9)

Again, the choice of fdec is made based on the type of the

output. For instance, if y is an image or a pixel-wise image

segmentation, a conditional restricted Boltzmann machine

(CRBM) can be used [26]. When y is a natural language

description of the input x, it is natural to use an RNN which

is able to model natural languages, as described in Sec. II-B.

x1 x2 xT

yT' y2 y1

c

Decoder

Encoder
Fig. 1. Graphical illustration of the simplest form encoder-decoder model
for machine translation from [3]. x = (x1, . . . , xT ), y = (y1, . . . , yT ′ ) and
c are respectively the input sentence, the output sentence and the continuous-
space representation of the input sentence.

This encoder–decoder framework has been successfully

used in [25], [3] for machine translation. In both work, an

RNN was used as an encoder to summarize a source sentence

(where the summary is the last hidden state hT in Eq. (1))

from which a conditional RNN-LM from Sec. II-A decoded

out the corresponding translation. See Fig. 1 for the graphical

illustration.

In [19], [20], the authors used a pre-trained CNN as an

encoder and a conditional RNN as a decoder to let model

generate a natural language caption of images. Similarly, a

simpler feedforward log-bilinear language model [27] was
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used as a decoder in [21]. The authors of [28] applied the

encoder–decoder framework to video description generation,

where they used a pre-trained CNN to extract a feature vector

from each frame of an input video and averaged those vectors.

In all these recent applications of the encoder–decoder

framework, the continuous-space representation c of the input

x returned by an encoder, in Eq. (8) has been a fixed-

dimensional vector, regardless of the size of the input.2 Fur-

thermore, the context vector was not structured by design, but

rather an arbitrary vector, which means that there is no guar-

antee that the context vector preserves the spatial, temporal or

spatio-temporal structures of the input. Henceforth, we refer

to an encoder–decoder based model with a fixed-dimensional

context vector as a simple encoder–decoder model.

B. Incorporating an Attention Mechanism

1) Motivation: A naive implementation of the encoder–

decoder framework, as in the simple encoder–decoder model,

requires the encoder to compress the input into a single vector

of predefined dimensionality, regardless of the size of or the

amount of information in the input. For instance, the recurrent

neural network (RNN) based encoder used in [3], [25] for

machine translation needs to be able to summarize a variable-

length source sentence into a single fixed-dimensional vector.

Even when the size of the input is fixed, as in the case of a

fixed-resolution image, the amount of information contained in

each image may vary significantly (consider a varying number

of objects in each image).

In [29], it was observed that the performance of the neural

machine translation system based on a simple encoder–decoder

model rapidly degraded as the length of the source sentence

grew. The authors of [29] hypothesized that it was due to

the limited capacity of the simple encoder–decoder’s fixed-

dimensional context vector.

Furthermore, the interpretability of the simple encoder–

decoder is extremely low. As all the information required for

the decoder to generate the output is compressed in a context

vector without any presupposed structure, such structure is not

available to techniques designed to inspect the representations

captured by the model [12], [30], [31].

2) Attention Mechanism for Encoder–Decoder Models: We

the introduction of an attention mechanism in between the

encoder and decoder, we address these two issues, i.e., (1)

limited capacity of a fixed-dimensional context vector and (2)

lack of interpretability.

The first step into introducing the attention mechanism to

the encoder–decoder framework is to let the encoder return

a structured representation of the input. We achieve this by

allowing the continuous-space representation to be a set of

fixed-size vectors, to which we refer as a context set, i.e.,

c = {c1, c2, . . . , cM}

See Eq. (8). Each vector in the context set is localized to

a certain spatial, temporal or spatio-temporal component of

the input. For instance, in the case of an image input, each

2 Note that in the case of machine translation and video description
generation, the size of the input varies.

context vector ci will summarize a certain spatial location

of the image (see Sec. IV-B), and with machine translation,

each context vector will summarize a phrase centered around

a specific word in a source sentence (see Sec. IV-A.) In all

cases, the number of vectors M in the context set c may vary

across input examples.

The choice of the encoder and of the kind of context set it

will return is governed by the application and the type of the

input considered. In this paper, we assume that the decoder

is a conditional RNN-LM from Sec. II-B, i.e., the goal is to

describe the input in a natural language sentence.

The attention mechanism controls the input actually seen

by the decoder and requires another neural network, to which

refer as the attention model. The main job of the attention

model is to score each context vector ci with respect to the

current hidden state zt−1 of the decoder:3

eti = fATT(zt−1, ci, {α
t−1

j }Mj=1), (10)

where αt−1

j represents the attention weights computed at the

previous time step, from the scores et−1

i , through a softmax

that makes them sum to 1:

αt
i =

exp(eti)
∑M

j=1
exp(etj)

, (11)

This type of scoring can be viewed as assigning a probability

of being attended by the decoder to each context, hence the

name of the attention model.

Once the attention weights are computed, we use them to

compute the new context vector ct:

ct = ϕ
(

{ci}
M

i=1
,
{

αt
i

}M

i=1

)

, (12)

where ϕ returns a vector summarizing the whole context set

c according to the attention weights.

A usual choice for ϕ is a simple weighted sum of the context

vectors such that

ct = ϕ
(

{ci}
M

i=1
,
{

αt
i

}M

i=1

)

=

M
∑

i=1

αici. (13)

On the other hand, we can also force the attention model to

make a hard decision on which context vector to consider by

sampling one of the context vectors following a categorical

(or multinoulli) distribution:

ct = crt , where rt ∼ Cat(M,
{

αt
i

}M

i=1
). (14)

With the newly computed context vector ct, we can update

the hidden state of the decoder, which is a conditional RNN-

LM here, by

ht = φθ (ht−1,xt, ct) . (15)

This way of computing a context vector at each time step

t of the decoder frees the encoder from compressing any

variable-length input into a single fixed-dimensional vector.

By spatially or temporally dividing the input4, the encoder can

3 We use zt to denote the hidden state of the decoder to distinguish it from
the encoder’s hidden state for which we used ht in Eq. (1).

4 Note that it is possible, or even desirable to use overlapping regions.
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Fig. 2. Visualization of the attention weights αt
j of the attention-based neural

machine translation model [32]. Each row corresponds to the output symbol,
and each column the input symbol. Brighter the higher αt

j .

represent the input into a set of vectors of which each needs

to encode a fixed amount of information focused around a

particular region of the input. In other words, the introduction

of the attention mechanism bypasses the issue of limited

capacity of a fixed-dimensional context vectors.

Furthermore, this attention mechanism allows us to directly

inspect the internal working of the whole encoder–decoder

model. The magnitude of the attention weight αt
j , which is

positive by construction in Eq. (11), highly correlates with

how predictive the spatial, temporal or spatio-temporal region

of the input, to which the j-th context vector corresponds, is

for the prediction associated with the t-th output variable yt.
This can be easily done by visualizing the attention matrix
[

αt
j

]

t,j
∈ R

T ′×M , as in Fig. 2.

This attention-based approach with the weighted sum of

the context vectors (see Eq. (13)) was originally proposed in

[32] in the context of machine translation, however, with a

simplified (content-based) scoring function:

eti = fATT(zt−1, ci). (16)

See the missing {αt−1

j }Mj=1 from Eq. (10). In [22], it was

further extended with the hard attention using Eq. (14). In [33]

this attention mechanism was extended to be by taking intou

account the past values of the attention weights as the general

scoring function from Eq. (10), following an approach based

purely on those weights introduced by [34]. We will discuss

more in detail these three applications/approaches in the later

sections.

C. Learning

As usual with many machine learning models, the attention-

based encoder–decoder model is also trained to maximize

the log-likelihood of a given training set with respect to the

parameters, where the log-likelihood is defined as

L
(

D = {(xn, yn)}
N

n=1
,Θ

)

=
1

N

N
∑

n=1

log p(yn | xn,Θ),

(17)

where Θ is a set of all the trainable parameters of the model.

1) Maximum Likelihood Learning: When the weighted sum

is used to compute the context vector, as in Eq. (13), the whole

attention-based encoder–decoder model becomes one large

differentiable function. This allows us to compute the gradient

of the log-likelihood in Eq. (17) using backpropagation [35].

With the computed gradient, we can use, for instance, the

stochastic gradient descent (SGD) algorithm to iteratively

update the parameters Θ to maximize the log-likelihood.

2) Variational Learning for Hard Attention Model: When

the attention model makes a hard decision each time as

in Eq. (14), the derivatives through the stochastic decision

are zero, because those decisions are discrete. Hence, the

information about how to improve the way to take those focus-

of-attention decisions is not available from back-propagation,

while it is needed to train the attention mechanism. The

question of training neural networks with stochastic discrete-

valued hidden units has a long history, starting with Boltzmann

machines [36], with recent work studying how to deal with

such units in a system trained using back-propagated gradients

[37], [38], [39], [40]. Here we briefly describe the variational

learning approach from [39], [22].

With stochastic variables r involved in the computation from

inputs to outputs, the log-likelihood in Eq. (17) is re-written

into

L
(

D = {(xn, yn)}
N

n=1
,Θ

)

=
1

N

N
∑

n=1

l(yn, xn,Θ),

where

l(y, x,Θ) = log
∑

r

p(y, r|x,Θ)

and r = (r1, r2, . . . , r
′
T ). We derive a lowerbound of l as

l(y, x) = log
∑

r

p(y|r, x)p(r|x)

≥
∑

r

p(r|x) log p(y|r, x). (18)

Note that we omitted Θ to make the equation less cluttered.

The gradient of l with respect to Θ is then

∇l(y, x) =
∑

r

p(r|x) [∇ log p(y|r, x)

+ log p(y|r, x)∇ log p(r|x)] (19)

which is often approximated by Monte Carlo sampling:

∇l(y, x) ≈
1

M

M
∑

m=1

∇ log p(y|rm, x)

+ log p(y|rm, x)∇ log p(rm|x). (20)

As the variance of this estimator is high, a number of variance

reduction techniques, such as baselines and variance normal-

ization, are often used in practice [41], [39].
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Once the gradient is estimated, any usual gradient-based

iterative optimization algorithm can be used to approximately

maximize the log-likelihood.

IV. APPLICATIONS

In this section, we introduce some of the recent work in

which the attention-based encoder–decoder model was applied

to various multimedia description generation tasks.

A. Neural Machine Translation

Machine translation is a task in which a sentence in one

language (source) is translated into a corresponding sentence

in another language (target). Neural machine translation aims

at solving it with a single neural network based model, jointly

trained end-to-end. The encoder–decoder framework described

in Sec. III-A was proposed for neural machine translation

recently in [24], [3], [25]. Based on these works, in [32], the

attention-based model was proposed to make neural machine

translation systems more robust to long sentences. Here, we

briefly describe the model from [32].

1) Model Description: The attention-based neural machine

translation in [32] uses a bidirectional recurrent neural network

(BiRNN) as an encoder. The forward network reads the input

sentence x = (x1, . . . , xT ) from the first word to the last,

resulting in a sequence of state vectors
{−→
h 1,
−→
h 2, . . . ,

−→
h T

}

.

The backward network, on the other hand, reads the input

sentence in the reverse order, resulting in
{←−
h T ,
←−
h T−1, . . . ,

←−
h 1

}

.

These vectors are concatenated per step to form a context set

(see Sec. III-B2) such that ct =
[−→
h t;
←−
h t

]

.

x1 x2 x3 xT

+
αt,1
αt,2 αt,3

αt,T

yt-1 yt

h1 h2 h3 hT

h1 h2 h3 hT

z t-1 z t

Fig. 3. Illustration of a single
step of decoding in attention-based
neural machine translation [32].

The use of the BiRNN is crucial if the content-based

attention mechanism is used. The content-based attention

mechanism in Eqs. (16) and (11) relies solely on a so-called

content-based scoring, and without the context information

from the whole sentence, words that appear multiple times

in a source sentence cannot be distinguished by the attention

model.

The decoder is a conditional RNN-LM that models the

target language given the context set from above. See Fig. 3 for

the graphical illustration of the attention-based neural machine

translation model.

TABLE I
THE TRANSLATION PERFORMANCES AND THE RELATIVE IMPROVEMENTS

OVER THE SIMPLE ENCODER-DECODER MODEL ON AN

ENGLISH-TO-FRENCH TRANSLATION TASK, MEASURED BY BLEU [32],
[42]. ⋆: AN ENSEMBLE OF MULTIPLE ATTENTION-BASED MODELS. ◦: THE

STATE-OF-THE-ART PHRASE-BASED STATISTICAL MACHINE TRANSLATION

SYSTEM [43].

Model BLEU Rel. Improvement

Simple Enc–Dec 17.82 –
Attention-based Enc–Dec 28.45 +59.7%

Attention-based Enc–Dec (LV) 34.11 +90.7%
Attention-based Enc–Dec (LV)⋆ 37.19 +106.0%

State-of-the-art SMT◦ 37.03 –

2) Experimental Result: Given a fixed model size, the

attention-based model proposed in [32] was able to achieve

a relative improvement of more than 50% in the case of the

English-to-French translation task, as shown in Table I. When

the very same model was extended with a very large target

vocabulary [42], the relative improvement over the baseline

without the attention mechanism was 90%. Additionally, the

very same model was recently tested on a number of European

language pairs at the WMT’15 Translation Task.5. See Table II

for the results.

The authors of [44] recently proposed a method for in-

corporating a monolingual language model into the attention-

based neural machine translation system. With this method, the

attention-based model was shown to outperform the existing

statistical machine translation systems on Chinese-to-English

(restricted domains) and Turkish-to-English translation tasks

as well as other European languages they tested.

B. Image Caption Generation

Image caption generation is a task in which a model looks

at an input image and generates a corresponding natural

language description. The encoder–decoder framework fits

well with this task. The encoder will extract the continuous-

space representation, or the context, of an input image, for

instance, with a deep convolutional network (see Sec. II-C,)

and from this representation the conditional RNN-LM based

decoder generates a natural language description of the image.

Very recently (Dec 2014), a number of research groups inde-

pendently proposed to use the simple encoder–decoder model

to solve the image caption generation [18], [17], [19], [20].

5http://www.statmt.org/wmt15/

TABLE II
THE PERFORMANCE OF THE ATTENTION-BASED NEURAL MACHINE

TRANSLATION MODELS WITH THE VERY LARGE TARGET VOCABULARY IN

THE WMT’15 TRANSLATION TRACK [42]. WE SHOW THE RESULTS ON

TWO REPRESENTATIVE LANGUAGE PAIRS. FOR THE COMPLETE RESULT,
SEE HTTP://MATRIX.STATMT.ORG/.

Language Pair Model BLEU Note

En->De
NMT 24.8

Best Non-NMT 24.0 Syntactic SMT (Edinburgh)

En->Cz
NMT 18.3

Best Non-NMT 18.2 Phrase SMT (JHU)

http://www.statmt.org/wmt15/
http://matrix.statmt.org/
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Instead, here we describe a more recently proposed approach

based on the attention-based encoder–decoder framework in

[22].
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Fig. 4. Graphical illustration of the attention-based encoder–decoder model
for image caption generation.

1) Model Description: The usual encoder–decoder based

image caption generation models use the activation of the

last fully-connected hidden layer as the continuous-space

representation, or the context vector, of the input image (see

Sec. II-D.) The authors of [22] however proposed to use the

activation from the last convolutional layer of the pre-trained

convolutional network, as in the bottom half of Fig. 4.

Unlike the fully-connected layer, in this case, the context set

consists of multiple vectors that correspond to different spatial

regions of the input image on which the attention mechanism

can be applied. Furthermore, due to convolution and pooling,

the spatial locations in pixel space represented by each con-

text vector overlaps substantially with those represented by

the neighbouring context vectors, which helps the attention

mechanism distinguish similar objects in an image using its

context information with respect to the whole image, or the

neighbouring pixels.

Similarly to the attention-based neural machine translation

in Sec. IV-A, the decoder is implemented as a conditional

RNN-LM. In [22], the content-based attention mechanism (see

Eq. (16)) with either the weighted sum (see Eq. (13)) or

hard decision (see Eq. (14) was tested by training a model

with the maximum likelihood estimator from Sec. III-C1 and

the variational learning from Sec. III-C2, respectively. The

authors of [22] reported the similar performances with these

two approaches on a number of benchmark datasets.
2) Experimental Result: In [22], the attention-based image

caption generator was evaluated on three datasets; Flickr

8K [47], Flickr 30K [48] and MS CoCo [49]. In addition to

the self-evaluation, an ensemble of multiple attention-based

models was submitted to Microsoft COCO Image Captioning

Challenge6 and evaluated with multiple automatic evaluation

metrics7 as well as by human evaluators.

6https://www.codalab.org/competitions/3221
7 BLEU [50], METEOR [51], ROUGE-L [52] and CIDEr [53].

TABLE III
THE PERFORMANCES OF THE IMAGE CAPTION GENERATION MODELS IN

THE MICROSOFT COCO IMAGE CAPTIONING CHALLENGE. (⋆) [20], (•)
[18], (◦) [45], (⋄) [46] AND (∗) [22]. THE ROWS ARE SORTED

ACCORDING TO M1.

Human Automatic
Model M1 M2 BLEU CIDEr

Human 0.638 0.675 0.471 0.91
Google⋆ 0.273 0.317 0.587 0.946
MSR• 0.268 0.322 0.567 0.925

Attention-based∗ 0.262 0.272 0.523 0.878
Captivator◦ 0.250 0.301 0.601 0.937

Berkeley LRCN⋄ 0.246 0.268 0.534 0.891

In this Challenge, the attention-based approach ranked third

based on the percentage of captions that are evaluated as better

or equal to human caption (M1) and the percentage of captions

that pass the Turing Test (M2). Interestingly, the same model

was ranked eighth according to the most recently proposed

metric of CIDEr and ninth according to the most widely used

metric of BLEU.8 It means that this model has better relative

performance in terms of human evaluation than in terms of the

automatic metrics, which only look at matching subsequences

of words, not directly at the meaning of the generated sentence.

The performance of the top-ranked systems, including the

attention-based model from [22], are listed in Table III.

The attention-based model was further found to be highly

interpretable, especially, compared to the simple encoder–

decoder models. See Fig. 5 for some examples.

C. Video Description Generation

Soon after the neural machine translation based on the

simple encoder–decoder framework was proposed in [25],

[3], it was further applied to video description generation,

which amounts to translating a (short) video clip to its natural

language description [28]. The authors of [28] used a pre-

trained convolutional network (see Sec. II-D) to extract a

feature vector from each frame of the video clip and average all

the frame-specific vectors to obtain a single fixed-dimensional

context vector of the whole video. A conditional RNN-LM

from Sec. II-B was used to generate a description based on

this context vector.

Since any video clip clearly has both temporal and spatial

structures, it is possible to exploit them by using the attention

mechanism described throughout this paper. In [23], the au-

thors proposed an approach based on the attention mechanism

to exploit the global and local temporal structures of the video

clips. Here we briefly describe their approach.

1) Model Description: In [23], two different types of

encoders are tested. The first one is a simple frame-wise

application of the pre-trained convolutional network. However,

they did not pool those per-frame context vectors as was done

in [28], but simply form a context set consisting of all the per-

frame feature vectors. The attention mechanism will work to

select one of those per-frame vectors for each output symbol

being decoded. In this way, the authors claimed that the overall

model captures the global temporal structure (the structure

across many frames, potentially across the whole video clip.)

8http://mscoco.org/dataset/#leaderboard-cap

https://www.codalab.org/competitions/3221
http://mscoco.org/dataset/#leaderboard-cap


8

Fig. 5. Examples of the attention-based model attending to the correct object (white indicates the attended regions, underlines indicated the corresponding
word) [22]

Fig. 6. The 3-D convolutional network for motion from [23].

The other type of encoder in [23] is a so-called 3-D

convolutional network, shown in Fig. 6. Unlike the usual

convolutional network which often works only spatially over a

two-dimensional image, the 3-D convolutional network applies

its (local) filters across the spatial dimensions as well as the

temporal dimensions. Furthermore, those filters work not on

pixels but on local motion statistics, enabling the model to

concentrate on motion rather than appearance. Similarly to

the strategy from Sec. II-D, the model was trained on larger

video datasets to recognize an action from each video clip, and

the activation vectors from the last convolutional layer were

used as context. The authors of [23] suggest that this encoder

extracts more local temporal structures complementing the

global structures extracted from the frame-wise application of

a 2-D convolutional network.

The same type of decoder, a conditional RNN-LM, used in

[22] was used with the content-based attention mechanism in

Eq. (16).

2) Experimental Result: In [23], this approach to video

description generation has been tested on two datasets; (1)

Youtube2Text [54] and (2) Montreal DVS [55]. They showed

that it is beneficial to have both types of encoders together

in their attention-based encoder–decoder model, and that

the attention-based model outperforms the simple encoder–

decoder model. See Table IV for the summary of the evalua-

tion.

TABLE IV
THE PERFORMANCE OF THE VIDEO DESCRIPTION GENERATION MODELS

ON YOUTUBE2TEXT AND MONTREAL DVS. (⋆) HIGHER THE BETTER.
(◦) LOWER THE BETTER.

Youtube2Text Montreal DVS
Model METEOR⋆ Perplexity◦ METEOR Perplexity

Enc-Dec 0.2868 33.09 0.044 88.28
+ 3-D CNN 0.2832 33.42 0.051 84.41

+ Per-frame CNN 0.2900 27.89 .040 66.63
+ Both 0.2960 27.55 0.057 65.44

Similarly to all the other previous applications of the

attention-based model, the attention mechanism applied to the

task of video description also provides a straightforward way

to inspect the inner workings of the model. See Fig. 7 for

some examples.

Fig. 7. Two sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text. The bar plot under each frame cor-
responds to the attention weight αt

j (see Eq. (11)) for the frame when the

corresponding word (color-coded) was generated. Reprinted from [23].
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D. End-to-End Neural Speech Recognition

Speech recognition is a task in which a given speech

waveform is translated into a corresponding natural language

transcription. Deep neural networks have become a standard

for the acoustic part of speech recognition systems [56]. Once

the input speech (often in the form of spectral filter response)

is processed with the deep neural network based acoustic

model, another model, almost always a hidden Markov model

(HMM), is used to map correctly the much longer sequence of

speech into a shorter sequence of phonemes/characters/words.

Only recently, in [57], [8], [58], [59], fully neural network

based speech recognition models were proposed.

Here, we describe the recently proposed attention-based

fully neural speech recognizer from [33]. For more detailed

comparison between the attention-based fully speech recog-

nizer and other neural speech recognizers, e.g., from [58], we

refer the reader to [33].

1) Model Description–Hybrid Attention Mechanism: The

basic architecture of the attention-based model for speech

recognition in [33] is similar to the other attention-based

models described earlier, especially the attention-based neural

machine translation model in Sec. IV-A. The encoder is a

stacked bidirectional recurrent neural network (BiRNN) [60]

which reads the input sequence of speech frames, where each

frame is a 123-dimensional vector consisting of 40 Mel-scale

filter-bank response, the energy and first- and second-order

temporal differences. The context set of the concatenated

hidden states from the top-level BiRNN is used by the

decoder based on the conditional RNN-LM to generate the

corresponding transcription, which in the case of [33], consists

in a sequence of phonemes.

The authors of [33] however noticed the peculiarity of

speech recognition compared to, for instance, machine trans-

lation. First, the lengths of the input and output differ sig-

nificantly; thousands of input speech frames against a dozen

of words. Second, the alignment between the symbols in the

input and output sequences is monotonic, where this is often

not true in the case of translation.

These issues, especially the first one, make it diffi-

cult for the content-based attention mechanism described in

Eqs. (16) and (11) to work well. The authors of [33] in-

vestigated these issues more carefully and proposed that the

attention mechanism with location awareness are particulary

appropriate (see Eq. (10). The location awareness in this case

means that the attention mechanism directly takes into account

the previous attention weights to compute the next ones.

The proposed location-aware attention mechanism scores

each context vector by

eti = fATT(zt−1, ci, f
i
LOC(

{

αt−1

j

}T

j=1
),

where f j
LOC is a function that extracts information from the

previous attention weights
{

αt−1

j

}

for the i-th context vector.

In other words, the location-aware attention mechanism takes

into account both the content ci and the previous attention

weights
{

αt−1

j

}T

j=1
.

In [33], f j
LOC was implemented as

f j
LOC(

{

αt
j

}

) =

j+K
2

∑

k=j−K
2

vkα
t−1

k , (21)

where K is the size of the window, and vk ∈ R
d is a learned

vector.

Furthermore, the authors of [33] proposed additional mod-

ifications to the attention mechanism, such as sharpening,

windowing and smoothing, which modify Eq. (11). For more

details of each of these, we refer the reader to [33].

2) Experimental Result: In [33], this attention-based speech

recognizer was evaluated on the widely-used TIMIT cor-

pus [61], closely following the procedure from [62]. As can

be seen from Table V, the attention-based speech recognizer

with the location-aware attention mechanism can recognize a

sequence of phonemes given a speech segment can perform

better than the conventional fully neural speech recognition.

Also, the location-aware attention mechanism helps the model

achieve better generalization error.

TABLE V
PHONEME ERROR RATES (PER). THE BOLD-FACED PER CORRESPONDS

TO THE BEST ERROR RATE ACHIEVED WITH A FULLY NEURAL NETWORK

BASED MODEL. FROM [33].

Model Dev Test

Attention-based Model 15.9% 18.7%
Attention-based Model + Location-Awareness 15.8% 17.6%

RNN Transducer [62] N/A 17.7%

Time/Frequency Convolutional Net+HMM [63] 13.9% 16.7%

Similarly to the previous applications, it is again possible

to inspect the model’s behaviour by visualizing the attention

weights. An example is shown in Fig. 8, where we can clearly

see how the model attends to a roughly correct window of

speech each time it generates a phoneme.

E. Beyond Multimedia Content Description

We briefly present three recent works which applied the

described attention-based mechanism to tasks other than mul-

timedia content description.

1) Parsing–Grammar as a Foreign Language: Parsing a

sentence into a parse tree can be considered as a variant of

machine translation, where the target is not a sentence but its

parse tree. In [64], the authors evaluate the simple encoder–

decoder model and the attention-based model on generating

the linearized parse tree associated with a natural language

sentence. Their experiments revealed that the attention-based

parser can match the existing state-of-the-art parsers which are

often highly domain-specific.

2) Discrete Optimization–Pointer Network: In [65], the at-

tention mechanism was used to (approximately) solve discrete

optimization problems. Unlike the usual use of the described

attention mechanism where the decoder generates a sequence

of output symbols, in their application to discrete optimization,

the decoder predicts which one of the source symbols/nodes

should be chosen at each time step. The authors achieve this
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h# m ay kcl k el kcl k ah l er dcl dhix bcl b eh dcl d r ux m w ao l w ix th kcl k r ey aa n s h#

FDHC0_SX209: Michael colored the bedroom wall with crayons.

Fig. 8. Attention weights by the attention-based model with location-aware attention mechanism. The vertical bars indicate ground-truth phone location.
For more details, see [33].

by considering αt
i as the probability of choosing the i-th input

symbol as the selected one, at each time step t.
For instance, in the case of travelling salesperson problem

(TSP), the model needs to generate a sequence of cities/nodes

that cover the whole set of input cities so that the sequence will

be the shortest possible route in the input map (a graph of the

cities) to cover every single city/node. First, the encoder reads

the graph of a TSP instance and returns a set of context vectors,

each of which corresponds to a city in the input graph. The

decoder then returns a sequence of probabilities over the input

cities, or equivalently the context vectors, which are computed

by the attention mechanism. The model is trained to generate

a sequence to cover all the cities by correctly attending to each

city using the attention mechanism.

As was shown already in [65], this approach can be ap-

plied to any discrete optimization problem whose solution is

expressed as a subset of the input symbols, such as sorting.

3) Question Answering–Weakly Supervised Memory Net-

work: The authors of [66] applied the attention-based model

to a question-answering (QA) task. Each instance of this QA

task consists of a set of facts and a question, where each fact

and the question are both natural language sentences. Each fact

is encoded into a continuous-space representation, forming a

context set of fact vectors. The attention mechanism is applied

to the context set given the continuous-space representation of

the question so that the model can focus on the relevant facts

needed to answer the question.

V. RELATED WORK: ATTENTION-BASED NEURAL

NETWORKS

The most related, relevant model is a neural network

with location-based attention mechanism, as opposed to the

content-based attention mechanism described in this paper.

The content-based attention mechanism computes the rele-

vance of each spatial, temporal or spatio-temporally localized

region of the input, while the location-based one directly

returns to which region the model needs to attend, often in

the form of the coordinate such as the (x, y)-coordinate of an

input image or the offset from the current coordinate.

In [34], the location-based attention mechanism was suc-

cessfully used to model and generate handwritten text. In

[39], [67], a neural network is designed to use the location-

based attention mechanism to recognize objects in an image.

Furthermore, a generative model of images was proposed in

[68], which iteratively reads and writes portions of the whole

image using the location-based attention mechanism. Earlier

works on utilizing the attention mechanism, both content-

based and location-based, for object recognition/tracking can

be found in [69], [70], [71].

The attention-based mechanim described in this paper, or its

variant, may be applied to something other than multimedia

input. For instance, in [72], a neural Turing machine was

proposed, which implements a memory controller using both

the content-based and location-based attention mechanisms.

Similarly, the authors of [73] used the content-based attention

mechanism with hard decision (see, e.g., Eq. (14)) to find

relevant memory contents, which was futher extended to the

weakly supervised memory network in [66] in Sec. IV-E3.

VI. LOOKING AHEAD...

In this paper, we described the recently proposed attention-

based encoder–decoder architecture for describing multimedia

content. We started by providing background materials on

recurrent neural networks (RNN) and convolutional networks

(CNN) which form the building blocks of the encoder–decoder

architecture. We emphasized the specific variants of those

networks that are often used in the encoder–decoder model;

a conditional language model based on RNNs (a conditional

RNN-LM) and a pre-trained CNN for transfer learning. Then,

we introduced the simple encoder–decoder model followed by

the attention mechanism, which together form the central topic

of this paper, the attention-based encoder–decoder model.

We presented four recent applications of the attention-based

encoder–decoder models; machine translation (Sec. IV-A),

image caption generation (Sec. IV-B), video description gener-

ation (Sec. IV-C) and speech recognition (Sec. IV-D). We gave

a concise description of the attention-based model for each

of these applications together with the model’s performance

on benchmark datasets. Furthermore, each description was

accompanied with a figure visualizing the behaviour of the

attention mechanism.

In the examples discussed above, the attention mechanism

was primarily considered as a means to building a model that

can describe the input multimedia content in natural language,

meaning the ultimate goal of the attention mechanism was

to aid the encoder–decoder model for multimedia content

description. However, this should not be taken as the only

possible application of the attention mechanism. Indeed, as
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recent work such as the pointer networks [65] suggests, future

applications of attention mechanisms could run the range of

AI-related tasks.

Beside superior performance it delivers, an attention mech-

anism can be used to extract the underlying mapping between

two entirely different modalities without explicit supervision

of the mapping. From Figs. 2, 5, 7 and 8, it is clear that the

attention-based models were able to infer – in an unsuperivsed

way – alignments between different modalities (multimedia

and its text description) that agree well with our intuition. This

suggests that this type of attention-based model can be used

solely to extract these underlying, often complex, mappings

from a pair of modalities, where there is not much prior/-

domain knowledge. As an example, attention-based models

can be used in neuroscience to temporally and spatially map

between the neuronal activities and a sequence of stimuli [74].
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