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Differential topology, and specifically Morse theory, provides a suitable setting for formalizing and

solving several problems related to shape analysis. The fundamental idea behind Morse theory is
that of combining the topological exploration of a shape with quantitative measurement of geomet-
rical properties provided by a real function defined on the shape. The added value of approaches
based on Morse theory is in the possibility of adopting different functions as shape descriptors
according to the properties and invariants that one wishes to analyze. In this sense, Morse the-
ory allows one to construct a general framework for shape characterization, parametrized with
respect to the mapping function used, and possibly the space associated with the shape. The
mapping function plays the role of a lens through which we look at the properties of the shape,
and different functions provide different insights.

In the last decade, an increasing number of methods that are rooted in Morse theory and
make use of properties of real-valued functions for describing shapes have been proposed in the
literature. The methods proposed range from approaches which use the configuration of contours
for encoding topographic surfaces to more recent work on size theory and persistent homology.
All these have been developed over the years with a specific target domain and it is not trivial to
systematize this work and understand the links, similarities and differences among the different
methods. Moreover, different terms have been used to denote the same mathematical constructs,
which often overwhelms the understanding of the underlying common framework.

The aim of this survey is to provide a clear vision of what has been developed so far, focus-
ing on methods that make use of theoretical frameworks that are developed for classes of real
functions rather than for a single function, even if they are applied in a restricted manner. The
term geometrical-topological used in the title is meant to underline that both levels of information
content are relevant for the applications of shape descriptions: geometrical, or metrical, proper-
ties and attributes are crucial for characterizing specific instances of features, while topological
properties are necessary to abstract and classify shapes according to invariant aspects of their ge-
ometry. The approaches surveyed will be discussed in detail, with respect to theory, computation
and application. Several properties of the shape descriptors will be analyzed and compared. We
believe this is a crucial step to exploit fully the potential of such approaches in many applications,
as well as to identify important areas of future research.

Categories and Subject Descriptors: I.3.5 [Computational Geometry and Object Modeling]:
Curve, surface, solid, and object representations

General Terms: Theory, Algorithms

Additional Key Words and Phrases: Computational topology, contour tree, shape analysis, Morse
complexes, Morse theory, persistent homology, Reeb graph, size theory
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1. INTRODUCTION

Digital shapes are becoming an important media for exchanging information in
many scientific and applied scenarios. By digital shape we mean any multi-dimen-
sional media that is primarily characterized by form or spatial extent in a space
of two, three or higher dimension. Digital shapes are focal resources in many
scientific domains, e.g. molecular surfaces, CT data, force fields, mechanical parts,
and they populate virtual environments in advanced scientific simulations, as well
as in emerging edutainment applications.

Computer Graphics and Computer Vision are the two most representative disci-
plines dealing with digital shapes. Their major role is in the study of basic models
and methods for representing, generating and analyzing shapes. At the beginning,
Computer Graphics mostly focused on solving basic problems related to representa-
tion issues [Requicha 1980; Mäntylä 1988]. In Computer Vision, less emphasis has
been put on representation issues, as in this field digital representations are gener-
ally limited to the pixel-, or voxel-based encoding of objects acquired from the real
world. On the other hand, researchers in Computer Vision introduced the funda-
mental idea of using compact representations of shapes, namely shape descriptors,
and addressed issues related to analyzing, understanding and recognizing objects.

More recently, we have seen a gradual shift of research interests from methods to
represent shapes towards methods to describe shapes in Computer Graphics as well.
While a digital model, either pixel- or vector-based, is a digital representation that
is quantitatively similar to an object, its description is only qualitatively similar.
The distinction between representation and description can be expressed as follows
[Nackman 1984]:

an object representation contains enough information to reconstruct (an
approximation to) the object, while a description only contains enough
information to identify an object as a member of some class.

The representation of an object is thus more detailed and accurate than a descrip-
tion, but it does not necessarily contain any high-level information on the shape of
the object explicitly. The description is more concise and conveys an elaborate and
composite view of the object class.

Shape analysis and understanding are basic tools for constructing object de-
scriptions, as the processes aiming at detecting the main features of a given shape
and their configuration. Shape understanding has been successfully approached in
specific application domains with a well-established formalization of features, such
as, for example, the manufacturing context. The problem of describing shapes in
general is highly complex, since the definition of features is intrinsically vague in
free-form generic shapes. Shape understanding has been approached using a vari-
ety of methods, in both pixel-based and vector-based domains. Several examples
have been proposed in the literature, ranging from segmentation methods to skele-
tonization techniques, to the computation of global shape descriptors. Among the
many references in the field of image processing, we may cite some survey papers
and books that can serve as an entry point in the literature [Besl and Jain 1985;
Pavlidis 1995; Dryden and Mardia 1998; Loncaric 1998]. In the last decade, we have
seen a considerable growth of shape analysis methods also in Computer Graphics,
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where shape segmentation is a key ingredient in many shape manipulation pro-
cesses [Shamir 2006], and shape descriptors are crucial for 3D search and retrieval
[Veltkamp and Hagendoorn 2001; Tangelder and Veltkamp 2004; Bustos et al. 2005;
Iyer et al. 2005; Del Bimbo and Pala 2006].

In this scenario, this survey focuses on a class of methods that are grounded in
Morse theory and that we believe deserve specific attention. Intuitively, methods
based on Morse theory analyze a given shape by studying either the properties,
the configuration, or the evolution of the critical points of a real-valued function
f defined on the shape itself. Critical points are associated to the features of
interest that one wishes to extract, and the configuration, or evolution, of these
critical points captures a global description of the shape. In this context, we focus
on methods studying the configuration of critical points on the shape boundary
(Morse and Morse-Smale complexes), methods studying the evolution of the level
sets of f (contour trees and Reeb graphs), and methods studying the evolution,
or growth, of the lower level sets of f (size theory, persistent homology and Morse
shape descriptors).

There are two motivations for this choice. The first is that methods based on
Morse theory provide general results with respect to the specific selection of the
function f : different functions can be used to analyze different aspects of the
same shape, according to the features that one wishes to characterize or to the
invariants that the shape description should be able to capture. Therefore, Morse
theory defines a general framework for shape characterization, because different
properties can be studied using different functions. It is very important to provide
a generalized and unifying view of this class of methods, showing how and why
they all adhere to the same conceptual framework, and therefore give the same
theoretical guarantees and results.

The second motivation, which induces our selection of the survey focus, is related
to the interesting combination of theoretical aspects, discretization strategies and
computational issues that these methods imply. They have been developed over
the years with a specific target domain, and it is not trivial to systematize and
understand the links, similarities and differences between them. Moreover, different
terms have been used to denote the same mathematical constructs, which often
overwhelm the understanding of the underlying common framework. Bearing in
mind that the Computer Graphics community is becoming highly inter-disciplinary,
we think it is timely to propose a discussion on this class of methods, attempting
to provide a clear vision of what has been developed so far, from a theoretical and
computational perspective. We believe this is a crucial step to fully exploit the
potential of such approaches in several application domains, as well as to identify
important areas of future research.

We are aware that a survey of the methods based on Morse theory does not cover
the whole spectrum of shape analysis methods. Also, there are a number of shape
descriptors that are not directly defined using Morse theory, but closely related to
it, at least from the point of view of the extraction procedure. A notable example is
the class of methods that use the distance function for shape analysis [Jones et al.
2006]. In this case, the function is actually not applied to the shape itself, but used
to define a scalar field of distances between points in space and the shape itself.
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Similarly, the critical points of the distance field [Buchin et al. 2007] are related
to the main shape features and define the so-called medial axis, probably among
the best-known shape descriptors. A recent survey of techniques based on the
distance field appeared in [Jones et al. 2006], and the theoretical properties of the
medial axis have been the topic of several papers in the literature [Aurenhammer
1991; Wolter 1992; Giblin and Kimia 2004]. It should to be noted that approaches
based on distance functions do not properly belong to the class of methods that
the survey addresses: the unifying paradigm of the techniques surveyed is indeed
their parametric nature with respect to the mapping function f . Methods that use
the distance functions, indeed, provide one single type of description, where the
features are those characterized by the distance field itself. Conversely, in any of
the methods surveyed, f can vary, and changing f actually means changing the
properties, or features, by which the shape will be described.

While an exhaustive review of the literature on distance transform is beyond the
scope of our work, we discuss in this survey some aspects of methods for shape
analysis based on the use of distance fields, but limited to the discussion of re-
cent works that present a formulation of the distance transform in terms of the
conceptual elements of Morse theory.

Summarizing, this survey attempts to classify and compare methods based on
Morse theory, characterized by a common theoretical framework that is developed
for a whole class of real functions, rather than for a single function. The survey aims
to be viable for a varied audience, from experienced researchers in computational
topology to less experienced readers. The methods are reviewed at a theoretical
and implementation level, and we also describe the geometric intuition behind the
various techniques. In Section 2, we present a detailed overview of the survey and
explain the strategy of the presentation, which helps the reader to find the reading
path appropriate to his/her level of expertise.

2. OVERVIEW

Differential topology, and specifically Morse theory, provides a suitable setting for
formalizing and solving several problems related to shape analysis [Milnor 1963].
In the late 1990s, the potential of this approach was fully recognized by a group of
researchers in Computer Graphics who started a new research area called compu-
tational topology. This term was first introduced in [Vegter and Yap 1990; Vegter
1997; Dey et al. 1999], and denotes research activities involving both mathemat-
ics and computer science in order to formalize and solve topological problems in
computer applications, and to study the computational aspects of problems with a
topological flavour.

The intuition behind Morse theory is that of combining the topological explo-
ration of a shape S with quantitative measurements of its geometrical properties
provided by a mapping function f , defined on S [Milnor 1963]. Integrating the
classifying power of topology with the differentiating power of geometry enables us
to extract information about shapes at different levels, taking into account global
as well as local shape properties. Therefore, we focus on methods for shape un-
derstanding that find their roots in Morse theory, ranging from simple to complex
shapes, from single to arbitrary mapping functions, and from unstructured to alge-
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braically structured sets of descriptors.

Broadly speaking, the methods discussed in the survey can be divided into three
groups: methods studying the configuration of critical points on the shape boundary
(Morse and Morse-Smale complexes), methods studying the evolution of the level
sets of f (contour trees and Reeb graphs), and methods studying the evolution,
or growth, of the lower level sets of f (size theory, persistent homology and Morse
shape descriptors). The groups of methods discussed reflect, to different extents,
the modularity of the approaches based on Morse theory, especially from the point
of view of the applications they have been traditionally designed for.

Morse and Morse-Smale complexes were introduced in Computer Graphics for
the analysis of two-dimensional scalar fields, but recently their use has also been
extended to handle generic 3D shapes. These structures provide a view of shape
properties from the perspective of the gradient of the mapping function. Intuitively,
the aim is to describe the shape by decomposing it into cells of uniform behaviour
of the gradient flow. The decomposition can be interpreted as having been obtained
by a network on the surface that joins the critical points of the mapping function
f through lines of steepest ascent, or descent, of the gradient.

The theory behind Morse and Morse-Smale complexes holds in general for n-
manifolds, and is also related to the theory of dynamical systems. These two views
are clearly reflected in the literature and a considerable number of techniques have
been developed to extract critical points and lines, especially for terrain surface
modelling and analysis.

Contour trees have been used mainly to study the shape of scalar fields, and
no distinction is made between the shape and the function used to analyze it:
both coincide with the scalar field itself. Contour trees describe the shape of a
scalar field f by analyzing the evolution of its level sets, as f spans the range of
its possible values: components of level sets may appear, disappear, join, split,
touch the boundary or change genus. The contour tree stores this evolution and
provides a compact description of the properties and structure of the scalar field.
Contour trees, however, could, in principle, be defined for any shape with any
mapping function, and the theory behind them is general. Contour trees, in all
their variants, are discussed with emphasis on the methods developed in Computer
Graphics and with pointers to similar structures defined in Computer Vision.

The generalization of a contour tree is given by Reeb graphs, even if their defi-
nition is slightly different, as presented in the literature. While the definition and
use of contour trees developed mainly as an answer to computational issues, Reeb
graphs have a more theoretical nature. Their definition and theoretical study date
back to 1946, thanks to the research work of a French mathematician, George Reeb.
With respect to the modularity of Morse theory, Reeb graphs are the first example
of a fully modular framework for studying the shape of a manifold: here the shape
exists by itself and the function used to study it can be arbitrarily chosen. In re-
cent years, Reeb graphs have become popular in Computer Graphics as a tool for
studying shapes through the evolution and arrangement of the level sets of a real
function defined over the shape. Reeb graphs effectively code the shape, both from
a topological and geometrical perspective. While the topology is described by the
connectivity of the graph, the geometry can be coded in a variety of different ways,
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according to the type of applications the Reeb graph is devised for.

Contour trees and Reeb graphs are frequently associated, in the literature, with
the concept of skeletal graphs or centerline skeletons. By coding the barycentres of
each level set, it is indeed very easy to trace a kind of centerline spanning the volume
enclosed by the shape. Centerline skeletons are very popular in Computer Graphics
and Vision, and are, in principle, related to the medial axis transformation, in the
sense that they represent an effective way of reducing a complex 3D shape to a
simple one-dimensional geometric abstraction [Cornea et al. 2005; Lam et al. 1992].
While the notion of centerline skeleton, per se, does not fall within the ambit of this
survey, we discuss some recent results in that specific field in the section devoted
to Reeb graphs, in order to point out their similarities in theory and applications.

Besides the possibility of adopting different functions for describing shapes, at a
higher level of abstraction, the modularity of the approach based on Morse theory
can be extended to the choice of the space used to represent the shape, or phe-
nomenon, under study. The third group of methods reflects this higher degree of
modularity, and it is concerned with methods allowing one or more real functions
to be defined on spaces associated with the shapes under study. Size theory and
persistent homology theory fall into this last group and are characterized by the
possibility of varying the space underlying the shape and the real functions de-
fined on it. Furthermore, an extensive use of algebraic structure characterizes these
techniques.

Size theory has been developed since the beginning of the 1990s with the idea of
defining a suitable mathematical setting for the problem of shape comparison, and,
as such, it relies on the adoption of the natural pseudo-distance between size pairs
as the key for shape comparison, and the size functions, the size homotopy groups
and the size functor for shape description and discrimination. A common property
is that shapes are studied by varying the underlying space and the real functions
defined on it.

Persistent homology follows a similar approach, but introduces another paradigm,
persistence, which is based on growing a space (i.e., the shape) incrementally, and
analyzing the topological changes that occur during this growth. The occurrence
and placement of topological events (e.g., creation, merging, cancellation of the
connected components of the lower level sets) within the history of this growth
characterize the shape. Persistent homology aims to define a scale of the relevance
of these topological events, characterizing the features of the shape. The main as-
sumption is that longevity is equivalent to significance. In other words, a significant
topological attribute must have a long life-time in a growing complex.

Also, another contribution pertaining to this class is discussed, the Morse shape
descriptor, which differs from the other two, as it makes use of the theory of relative
homology groups to define a shape description.

In the first works related to Morse and Morse-Smale complexes, and to contour
trees, the shape was entirely encoded by the scalar field f , defined over a fixed
domain. For this reason, changing f would mean studying a completely different
object. Reeb graphs enable a shape S to be analyzed according to the behaviour of
a chosen function f , defined on S. Different choices of the function yield insights on
S from different perspectives. Finally, size theory and persistent homology theory
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allow a user to model the phenomenon by adopting suitable choices for both the
space to be associated to S and the function f .

To summarize, this survey attempts to provide an up-to-date description and
analysis of the major methods developed within the framework of Morse theory,
and to clarify the mathematics pertaining to each group of methods. For each set of
techniques, we discuss different algorithms and compare them, based on the type of
analysis, computational complexity and application context. The relationship be-
tween the different types of descriptors is discussed as well, in an overall comparison
section.

Since a detailed discussion of these methods calls for a comparison of theoretical
aspects, discretization strategies and computational issues, there is a substantial
amount of mathematical background necessary in order to discuss the methods,
ranging from basic notions related to cell complexes to Morse theory, and even
to homology theory. To provide a self-contained study, we preferred to include a
summary of background mathematical notions, which the expert reader can skip
completely. Also, since discretization strategies play a fundamental role in the way
the results stated in a smooth context can be achieved in discrete ones, we have
included a short discussion of the main discretization options for basic concepts,
such as the definition of critical points and Morse functions for piece-wise linear
shapes.

2.1 Organization of the survey

The survey is organized as follows.
Section 3 discusses the mathematical and computational background necessary

to understand the theories we are using. The mathematical overview introduces the
most important definitions and results that are used throughout the survey. The
discussion of computational aspects concerns the most relevant discretization issues
we are faced with when transferring theoretical frameworks to discrete digital con-
texts. Specifically, the definition of critical points for discrete models is discussed,
and theories are presented which rely on this basic notion to extract information
about shapes.

Since not all the notions described are equally necessary for the comprehension
of the various sections of the survey, and the reader may already be familiar with
some of them, in Table I and II we provide a kind of guide to the background
notions reviewed in Section 3.

After this, each group of methods finalized to the computation of a specific de-
scriptor is discussed in a separate section, organized into the theoretical, computa-
tional and application aspects: Morse and Morse-Smale decompositions in Section
4, contour trees in Section 5, Reeb graphs in Section 6, size theory in Section 7,
persistent homology in Section 8, and, finally, Morse shape descriptors are reviewed
in Section 9. The methods surveyed within each section are compared, based on
their properties, mainly from a computational point of view.

The presentation of the different techniques is followed by an overall comparison,
provided in Section 10. The methods are discussed, pointing out the similarities
and differences at the level of their combinatorial, structural or algebraic properties.
This comparison also highlights the differences in terms of loss of information of the
description with respect to the representation, context of applicability (e.g., type
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Subsection Concepts reviewed

3.1.1 Topological spaces topological space, open set, continuous function,
homeomorphism, homotopy type

3.1.2 Simplicial complexes simplex, face, oriented simplex,
simplicial complex, subcomplex, star, link,
r-skeleton, abstract simplicial complex

3.1.3 Cell complexes cell, attaching map, cell complex

3.1.4 Homology groups chain, boundary operator, cycle, boundary,
homology class, Betti numbers,
Euler characteristic

3.1.5 Morse theory manifold, critical point, critical value, Hessian,
non-degenerate critical point, index,
Morse function, monkey saddle, level set,
lower level set

3.2 Computational background regular grids, critical points on polyhedra,
discrete Morse theory, general functions, lower link
stratified Morse theory, discrete exterior calculus

Table I. Summary of the concepts reviewed Section 3.

Topics Mathematical requisites

Morse Smale complexes simplicial complexes,
cell complexes,
Morse theory

Contour trees Morse theory

Reeb graph simplicial complexes,
Morse theory

Size theory topological spaces,
homology groups,
Morse theory

Persistent homology simplicial complexes,
homology groups,
Morse theory

Morse shape descriptor homology groups,
Morse theory

Table II. Summary of the mathematical concepts pertaining to each group of methods surveyed.

of discrete model or dimensionality of the shape) and properties of the descriptors.
To the extent of our knowledge, this is the first attempt to systematize the work

done in this area over the last decade.
Finally, the concluding remarks discuss open problems and forthcoming areas of

development in the field are drawn in Section 11.

3. BACKGROUND NOTIONS

This section contains an overview of the main background notions to which the
methods surveyed refer. We do not claim to be exhaustive, but we attempt to
list concepts and theories that are frequently encountered in the portion of the
literature related to the topics of this paper. References are provided to direct the
interested reader to more detailed descriptions of the subjects.
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Fig. 1. Examples of 0-, 1-, 2- and 3-simplices.

3.1 Mathematical background

This first section provides a review of the theoretical concepts underlying the meth-
ods presented in this survey. See Tables I and II for a summary of the content.

3.1.1 Topological spaces. Topological spaces are mathematical structures that
allow the generalization of concepts such as closeness, limits, connectedness, or
continuity, from the Euclidean space R

n to arbitrary sets of points. This is achieved
using relationships between sets, rather than distances between points. A detailed
treatment of this subject can be found in [Willard 1970].

A topological space is a set X on which a topology is defined, i.e., a collection of
subsets of X which are called the open subsets of X and which satisfy the following
axioms: both X itself and the empty subset must be among the open sets, all
unions of open sets are open, and the intersection of two open sets is open.

A function between topological spaces is said to be continuous if the inverse
image of every open set is open. A homeomorphism is a bijection that is continuous
and whose inverse is also continuous. Two spaces are said to be homeomorphic
if there exists a homeomorphism between them. From the viewpoint of topology,
homeomorphic spaces are essentially identical.

A weaker relation type between topological spaces is captured by the notion of
homotopy type. Two spaces X and Y are of the same homotopy type if one can find
two continuous maps f : X → Y and g : Y → X such that the map compositions
g◦f and f◦g are not necessarily equal to the identity maps on X and Y respectively,
but are homotopic to them, i.e. they can be reduced to identity maps by continuous
deformations.

3.1.2 Simplicial complexes. In order to construct topological spaces, one can
take a collection of simple elements and glue them together in a structured way.
Probably the most relevant example of this construction is given by simplicial com-
plexes, whose building-blocks are called simplices.

A k-simplex ∆k in R
n, 0 ≤ k ≤ n, is the convex hull of k+1 affinely independent

points A0, A1, . . . , Ak, called vertices. Figure 1 shows the simplest examples of
simplices: ∆0 is a point, ∆1 an interval, ∆2 a triangle (including its interior), ∆3

a tetrahedron (including its interior).
A k-simplex can be oriented by assigning an ordering to its vertices: two or-
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(a) (b) (c)

Fig. 2. (a) A 0-simplex, (b) its star and (c) its link.

derings of the vertices that differ by an even permutation determine one and the
same orientation of the k-simplex. In this way, each k-simplex with k > 0 can
be given a positive or a negative orientation. The oriented k-simplex with ordered
vertices (A0, A1, . . . , Ak) is denoted by [A0, A1, . . . , Ak], whereas the k-simplex with
opposite orientation is denoted by −[A0, A1, . . . , Ak].

A face of a k-simplex ∆k is a simplex whose set of vertices is a non-empty
subset of the set of vertices of ∆k. A finite simplicial complex can now be defined
as a finite collection of simplices, together with their faces of any dimension, and
simplices can meet only along a common face. A concrete example of a simplicial
complex is given by triangulated surfaces, where the vertices, edges and faces of the
triangulation are 0-, 1- and 2-simplices, respectively. The dimension of a simplicial
complex is the maximum dimension of its simplices.

A subcomplex of a complex K is a simplicial complex whose set of simplices is a
subset of the set of simplices of K. Particular instances of subcomplexes are given
by the star and the link of a simplex. Given a simplex ∆, the star of ∆ is the
union of all the simplices containing ∆. The link of ∆ consists of all the faces of
simplices in the star of ∆ that do not intersect ∆. The concepts of star and link
are illustrated in Figure 2 for the case of a 0-simplex. Other useful subcomplexes
of a complex K are its skeletons: for 0 ≤ r ≤ dim(K), the r-skeleton of K is the
complex of all the simplices of K whose dimension is not greater than r.

Note that it is also possible to define an abstract simplicial complex without
using any geometry, as a collection A of finite non-empty sets such that if A is any
element of A, so is every non-empty subset of A. Simplicial complexes can be seen
as the geometric realization of abstract simplicial complexes.

For more details on simplicial complexes please refer to [Munkres 2000].

3.1.3 Cell complexes. Compared to simplicial complexes, cell complexes allow
the construction of a more general class of spaces, while still having a combinatorial
nature. The name suggests the idea of a topological space constructed from basic
building-blocks, called cells, that generalize the concept of simplices; these cells are
glued together via attaching maps. A λ-cell eλ corresponds to the closed unit ball
Bλ = {x ∈ R

λ | ‖x‖ ≤ 1} of dimension λ. Attaching the cell eλ to a space Y by
the continuous map ϕ : Sλ−1 → Y , with Sλ−1 = {x ∈ R

λ | ‖x‖ = 1} the boundary
of Bλ, requires taking Y

⋃

Bλ, where each point x ∈ Sλ−1 is identified with the
point ϕ(x) ∈ Y . The space so obtained is denoted by Y

⋃

ϕ eλ. It is important to
note that different attaching maps ϕ can lead to different spaces.
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(a) (b) (c)

Fig. 3. Examples of cell complexes. (a) Circle built starting with a point and attaching a 1-cell.
(b) Circle built starting with two points and attaching two 1-cells. (c) Sphere built starting with
a point and attaching a 2-cell.

The space X obtained by subsequently attaching finitely many cells is a finite
cell complex. This means that there exists a finite nested sequence ∅ ⊂ X0 ⊂ X1 ⊂
. . . ⊂ Xk = X such that, for each i = 1, 2, . . . , k, Xi is the result of attaching a cell
to Xi−1. Further details can be found in [Greenberg and Harper 1981].

Examples of cell complexes are given in Figure 3. In Figure 3(a) and (b) the
same circle is constructed through cell adjunction in two different ways. In (a),
we start with a 0-cell, i.e. a point, and we attach a 1-cell via the attaching map
that identifies the boundary of B1 with the starting point. In (b), two 1-cells are
attached to two 0-cells. In Figure 3(c) the sphere is obtained by attaching a 2-cell
directly to a 0-cell, that is, identifying the boundary of B2 with a point.

3.1.4 Homology groups. The approach adopted by algebraic topology is the
translation of topological problems into an algebraic language, in order to solve
them more easily. A typical case is the construction of algebraic structures to de-
scribe topological properties, which is the core of homology theory, one of the main
tools of algebraic topology.

The homology of a space is an algebraic object which reflects the topology of
the space, in some sense counting the number of holes. The homology of a space
X is denoted by H∗(X), and is defined as a sequence of groups {Hq(X) : q =
0, 1, 2, . . .}, where Hq(X) is called the q-th homology group of X . In the literature
there are various types of homologies [Spanier 1966]; the one we are addressing here
is (integer) simplicial homology, which is strictly related to the concept of simplicial
complex.

Let K be a simplicial complex in R
n. For each q ≥ 0, a q-chain of K is a formal

linear combination
∑

i ai∆i, of oriented q-simplices ∆i, with integer coefficients ai.
Two q-chains a =

∑

i ai∆i and b =
∑

i bi∆i are added componentwise, that is
to say a + b =

∑

i(ai + bi)∆i. We denote by Cq(K) the group of q-chains of K
with respect to the addition; for q larger than n or for q smaller than 0, we set
Cq(K) equal to the trivial group. On the group Cq(K), we can define the boundary
operator ∂q : Cq(K) → Cq−1(K). This is defined as the trivial homomorphism if
q ≤ 0, while for q > 0 it acts on each q-simplex via:

∂q[A0, A1, . . . , Aq] =

q
∑

i=0

(−1)i[A0, A1, . . . , Ai−1, Âi, Ai+1, . . . , Aq]

where [A0, A1, . . . , Ai−1, Âi, Ai+1, . . . , Aq] is the (q − 1)-simplex obtained by elim-
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inating the vertex Ai; the boundary map ∂q extends by linearity to arbitrary q-
chains. In Figure 4, the boundary operator is evaluated on some elementary sim-
plices. The arrows represent the orientation of the simplices. Notice that changing
the orientation of the simplices implies a different result for the boundary operator.

A chain z ∈ Cq(K) is called a cycle if the boundary operator sends z to zero,
i.e. ∂qz = 0; a chain b ∈ Cq(K) is called a boundary if it is the image, through
the boundary operator, of a chain of dimension greater by one, i.e. there exists
c ∈ Cq+1(K) such that b = ∂q+1c. The sets of cycles and boundaries form two
subgroups of Cq(K):

Zq(K) = {z ∈ Cq(K) | ∂qz = 0} = ker ∂q

Bq(K) = {b ∈ Cq(K) | b = ∂q+1c, for some c ∈ Cq+1(K)} = Im∂q+1,

where ker and Im denote the kernel and the image of the map, respectively. It
holds that Bq(K) ⊆ Zq(K), since ∂q∂q+1 = 0. The q-th simplicial homology group
of K is then the quotient group:

Hq(K) = Zq(K)/Bq(K).

Specifically, an element of Hq(K) is an equivalence class, called homology class,
of homologous q-cycles, i.e. cycles whose difference is a boundary. The homology
H∗(K) is a topological invariant of K; it is indeed an invariant of homotopy type.

The rank of Hq(K) is called the q-th Betti number of K, and it is a mea-
surement of the number of different holes in the space K. As an example, for
three-dimensional data the three Betti numbers β0, β1 and β2 count the num-
ber of connected components, tunnels and voids, respectively. The Betti numbers
can be used to define a well-known topological invariant, the Euler characteristic:
χ(K) =

∑n
i=0(−1)iβi(K).

A simplicial map f between two simplicial complexes K and L (i.e., a function
from the set of vertices of K to the set of vertices of L such that the image of any

Fig. 4. The boundary operator on elementary q-simplices.
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simplex in K is a simplex in L) induces uniquely a set H∗(f) of homomorphisms
between the homology groups:

Hq(f) : Hq(K) → Hq(L)

for each degree q. The maps Hq(f) satisfy two elementary properties: (i) the
identity map idK : K → K induces the identity map on homology; and (ii) the
composition g ◦ f of two maps corresponds to the composition Hq(g ◦ f) = Hq(g) ◦
Hq(f) of the induced homomorphisms.

3.1.5 Morse theory. Morse theory can be seen as the investigation of the rela-
tion between functions defined on a manifold and the shape of the manifold itself.
Intuitively, a manifold is a topological space that is locally Euclidean, meaning that
around every point there is a neighborhood that is topologically the same as the
open unit ball in R

n; the number n is the dimension of the manifold. More formally,
the following definition [Hirsch 1997] introduces the definition of manifold:

Definition 3.1. A topological Hausdorff space M is called an n-dimensional man-
ifold (n-manifold) if there is an open cover {Ui}i∈A of M such that for each i ∈ A
there is a map ϕi : Ui → R

n which maps Ui homeomorphically onto the open
n-dimensional disk Dn = {x ∈ R

n | ‖x‖ < 1}. An n-manifold with boundary is
a Hausdorff space in which each point has an open neighborhood homeomorphic
either to the open disk Dn or the open half-space R

n−1 × {xn ∈ R | xn ≥ 0}.

Each pair (Ui, ϕi) is called a coordinate map, or a chart. The union of charts
{(Ui, ϕi)}i∈A is called an atlas on the manifold M . Let (Ui, ϕi) and (Uj , ϕj) be two
arbitrary charts and consider the intersection Ui ∩Uj . On this intersection we can
consider the restriction ϕ̄i = ϕi|Ui∩Uj

and ϕ̄j = ϕj|Ui∩Uj
. Since the composition of

homeomorphisms is a homeomorphism, the maps ϕi,j = ϕ̄j ◦ ϕ̄−1
i : ϕi(Ui ∩ Uj) →

ϕj(Ui ∩ Uj) are homeomorphisms, and are called transition functions, or gluing
functions, on a given atlas. A manifold is said to be smooth if all transition functions
ϕi,j are smooth.

The key feature in Morse theory is that information on the topology of the
manifold is derived from the information about the critical points of real functions
defined on the manifold. Let us first introduce the definition of Morse function, and
then state the main results provided by Morse theory for the topological analysis of
smooth manifolds, such as surfaces. A basic reference for Morse theory is [Milnor
1963], while details about notions of geometry and topology can be found, for
example, in [Hirsch 1997].

Let M be a smooth compact n-dimensional manifold without boundary, and
f : M → R a smooth function defined on it. Then, a point p of M is a critical point
of f if we have

∂f

∂x1
(p) = 0,

∂f

∂x2
(p) = 0, . . . ,

∂f

∂xn

(p) = 0,

with respect to a local coordinate system (x1, . . . , xn) about p. A real number is
a critical value of f if it is the image of a critical point. Points (values) which
are not critical are said to be regular. A critical point p is non-degenerate if the
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Fig. 5. (a) The graph of f(x, y) = x2 − y2. The point (0, 0) is a non-degenerate critical point. (b)
and (c) The graphs of f(x, y) = x3 − 3xy2 (a “monkey saddle”) and f(x, y) = x3 − y2. In both
cases the point (0, 0) is a degenerate critical point.

determinant of the Hessian matrix of f at p

Hf (p) =
( ∂2f

∂xi∂xj

(p)
)

is not zero; otherwise the critical point is degenerate. Figure 5 shows some exam-
ples of non-degenerate and degenerate critical points. For a non-degenerate critical
point p, the number of negative eigenvalues of the Hessian Hf (p) of f at p deter-
mines the index of p, denoted by λ(p).
We say that f : M → R is a Morse function if all its critical points are non-
degenerate. The Morse Lemma states that the function f looks extremely simple
near each non-degenerate critical point p. Indeed, we can choose appropriate local
coordinates (x1, . . . , xn) around p, in such a way that f has a quadratic form repre-

sentation: f(x1, . . . , xn) = f(p) −
∑λ(p)

i=1 x2
i +

∑n
i=λ(p)+1 x2

i . Therefore, intuitively,
the index of a critical point is the number of independent directions around the
point in which the function decreases. For example, on a 2-manifold, the indices of
minima, saddles, and maxima are 0, 1, and 2, respectively.
An important property is that a Morse function defined on a compact manifold
admits only finitely many critical points, each of which is isolated. This means
that, for each critical point p, it is always possible to find a neighborhood of p not
containing other critical points.

Topological information about M is captured by the changes of the level sets and
the lower level sets of M relative to the function f . The level set of f corresponding
to the real value t is the set of points Vt = {p ∈ M | f(p) = t} = f−1(t); t is called
an isovalue of f . The lower level set is given by Mt = {p ∈ M |f(p) ≤ t} =
f−1((−∞, t]).

We begin by studying how the lower level set Mt changes as the parameter t
changes (Figure 6(a)). Morse theory states that the topology of Mt stays unchanged
(formally, the homotopy type is preserved) as the parameter t goes through regular
values of f , while changes occur when t passes through a critical value. More
precisely, the following theorem holds:

Theorem 3.2. Let a, b be real numbers such that a < b and the set f−1([a, b])
contains no critical points for f . Then Ma and Mb have the same homotopy type.
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(a)

(b)

(c)

Fig. 6. (a) A manifold M and three lower level sets Ma, Mb, Mc, with respect to the height
function. (b) There are no critical points in f−1([a, b]): Ma (left) and Mb (right) are diffeomorphic.
(c) The passage through the critical point p of index 1 causes a topological change: Mc (left) has
the same homotopy type as Mb with a 1-cell attached (right).

Actually, a stronger result holds in this case stating that Ma and Mb are diffeomor-
phic, namely, there is a differentiable and invertible function between Ma and Mb,
whose inverse is also differentiable (see Figure 6(b)).

Theorem 3.3. Let p be a critical point of f with index λ and let f(p) = c. Then,
for each ε such that f−1([c − ε, c + ε]) contains no critical points other than p, the
set Mc+ε has the same homotopy type of the set Mc−ε with a λ-cell attached:

Mc+ε
∼= Mc−ε ∪ϕp

eλ.

According to the definitions in Section 3.1.3, the attaching map ϕp identifies each
point x ∈ Sλ−1 with the point ϕp(x) ∈ Mc−ε (see Figure 6(c)).
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In order to study the changes in the level sets Vt = f−1(t), an approach to Morse
theory based on the attaching of handles [Milnor 1965], rather than cells, can be
used, as in [Gramain 1971] for the case of surfaces. When f is defined on a surface,
if t is a regular value for f then Vt, if not empty, is the union of finitely many
smooth circles. Moreover, if a, b are real numbers such that a < b, then

(1) if the set f−1([a, b]) contains no critical points for f , then Va and Vb are diffeo-
morphic;

(2) if the set f−1([a, b]) contains only one critical point of index 0 for f , then Vb is
the union of Va with a circle;

(3) if the set f−1([a, b]) contains only one critical point of index 2 for f , then Vb is
diffeomorphic to Va without one of its circles;

(4) if the set f−1([a, b]) contains only one critical point of index 1 for f , then the
number of connected components of Vb differs from that of Va by −1, 0 or 1
depending on the attaching map.

In case (4), the difference in the number of connected components is non-zero if the
handle (in this case, the strip [0, 1] × [0, 1]) is attached without twists (or with an
even number of twists), while it is 0 if there is an odd number of twists. The presence
of an odd number of twists implies that the surface is non-orientable. Therefore,
when the surface is embedded in R

3, Va and Vb necessarily have a different number
of connected components.

3.1.6 Homology of manifolds. Morse theory asserts that changes in the topology
of a manifold endowed with a Morse function occur in the presence of critical points;
since smooth manifolds can be triangulated as simplicial complexes [Cairns 1934]
and a Morse function can be discretized on simplices, those changes in the topology
can be interpreted in terms of homology. Thus, we have the following description
of the homology of a manifold M [Greenberg and Harper 1981]:

Theorem 3.4. Let a, b be real numbers such that a < b and f−1([a, b]) contains
only one critical point p of f , of index λ, and let ϕp be the attaching map of the
λ-cell corresponding to p. Then:

(a) if k 6= λ and k 6= λ − 1 then Hk(Mb) ∼= Hk(Ma)

(b) Hλ−1(Mb) ∼= Hλ−1(Ma)/ImHλ−1(ϕp)

(c) Hλ(Mb) ∼= Hλ(Ma) ⊕ KerHλ−1(ϕp)

This means that, depending on the attaching map ϕp, only the homology degrees
λ − 1 and λ can be affected by the adjunction of a λ-cell. In particular, the Betti
number βλ−1 can decrease and βλ can increase. For example, in the case shown
in Figure 6, when we pass through the critical point p according to the increasing
value of f , a tunnel is created, and β1 increases from the value 0 to the value 1.

This characterization gives a hint of the ideas underlying Reeb graphs, size theory,
persistent homology theory and Morse shape descriptors.
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3.2 Computational background

In this section, we present an overview of some of the issues arising when applying
concepts and theories defined in the continuum to a computational setting. Specif-
ically, we discuss approaches to the representation of shapes in a digital context
and to the definition of differential concepts and related properties in the discrete,
with emphasis on the definition of critical points. Finally, we survey approaches for
handling differential operators.

3.2.1 Representation of shape models. Generally speaking, by shape we mean
any phenomenon in the real or virtual world which exhibits a geometric nature, that
is, is characterized by spatial extension (e.g. positions in some space, dimension-
ality, size). Thus, we have shapes acquired from existing objects (e.g. images, 3D
scans), shapes that are defined by sampling mathematical surfaces (e.g. implicit or
algebraic surfaces), or shapes that are defined by the behavior of a physical quantity
(e.g. temperature, or viscosity of a fluid).

From a mathematical point of view, a shape can be modeled as a topological
space in R

n, and usually we consider shapes in R
3 when dealing with applications

in Computer Graphics. Often these shapes are abstracted as manifolds embedded
in R

n, usually orientable and smooth.
This first stage in the modeling pipeline is known as mathematical modeling

[Requicha 1980] and consists of formulating the basic properties that an abstract
computational model should have. In most of the methods discussed (e.g. contour
trees, Reeb graphs, Morse decompositions), shapes are abstracted as manifolds ,
but we also discuss methods that assume the shape to be a more general topological
space (e.g. in the context of size theory).

The next step is the selection of a computational representation scheme consistent
with the mathematical model. Cell decompositions are the most common geomet-
ric model used in computer graphics and CAD/CAM [Mäntylä 1988; Mortenson
1986]. From a historical perspective, the first type of model used was the wireframe
model, which consists of the representation of edge curves and points on the object
boundary. This has been developed further into surface models, that provide the
full representation of the geometry of the boundary of a 3D shape, and by solid
models, that encode a shape as a composition of volumes.

Shapes defined as graphs of scalar fields are the simplest kind of shapes studied in
the methods surveyed. Formally, a scalar field is defined by any real-valued function
f : R

n → R. Generally, a d-dimensional scalar field Γ is denoted by the pair (D, f)
and the values of f describe a physical phenomenon measured at a discrete set
of points in D. In all methods surveyed, the domain D is assumed to be simply-
connected, that is, f is considered only on a domain D ⊂ R

n corresponding to a
d-dimensional interval in R

n, where d ≤ n. As a consequence, the shapes defined
by f have genus g = 0.

Representing a scalar field Γ in a computational setting implies the discretization
of the domain D as well as the discretization of the range of f .

The domain is generally partitioned through a d-dimensional simplicial or cell
complex. Thus, a model for a scalar field is called simplicial if the domain decom-
position is a simplicial complex, while it is called regular if the domain is discretized
through a regular grid, i.e, a cell complex in which all the cells are hypercubes.
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These cells are known as pixels in 2D and voxels in 3D, when the scalar field de-
scribes a two-dimensional or three-dimensional image [Klette and Rosenfeld 2004]).
In a regular model the value of the field can be associated either with vertices or
with d-cells, and it is interpolated at other locations. If the field value is associated
with the d-cells, then a step function is used as field approximation. If the field
values are associated with the grid vertices, usually an at least C0-interpolant is
used on the d-cells of the complex.

In general, most of the methods discussed in this survey deal with shape models
represented by simplicial meshes (e.g. 3D shapes discretized as triangle or tetra-
hedral meshes, scalar fields defined on simplicial decompositions of the domain) or
regular grids (e.g. scalar fields defined on rectangular 2D or 3D grids). Simplicial
meshes are usually based on a piece-wise linear interpolation of the shape geometry.
Regular grids define a step-wise or analytical approximation of the shape geometry,
according to the type of interpolation associated with the hypercubes.

Regular grids can be encoded in very compact data structures. On the other
hand, simplicial meshes require data structures which maintain connectivity in-
formation, the relation between the d-simplices and the vertices of the complex,
plus adjacency relations among d-simplices. Simplicial models, however, are better
adapted to variation of the shape, since they can adaptively be built from irregularly
distributed data points.

3.2.2 Discretization of differential concepts in a computational setting. The main
differential concept we discuss concerns the definition of critical points. The defi-
nition of a critical point for a function defined over a cell complex, or a simplicial
complex, has received a lot of attention in the literature. As most of the concepts
are related to differential geometry, the properties characterizing critical points can
be expressed in either geometric, analytic, or topological terms. The equivalence
among these views gives rise to alternative discretization approaches.

Banchoff [Banchoff 1970] introduced critical points for height functions defined
over polyhedral surfaces, that is piece-wise linear surfaces defined over a cell decom-
position, by using a geometric characterization of critical points. This latter takes
into account the position of the tangent plane with respect to the surface. A sim-
plicial model in which linear interpolation is used on the triangles of the underlying
mesh is the most common example of a polyhedral surface. A small neighborhood
around a local maximum or minimum, never intersects the tangent plane, as shown
in Figure 7(a), while a similar small neighborhood is split into four pieces at non-

p
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ξ
ξ

(a) (b) (c)

Fig. 7. Configuration of vertices around a maximum point (a), around a non-degenerate saddle
(b), and around a monkey-saddle point (c).
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degenerate saddles, as shown in Figure 7(b). The number of intersections is used
to associate an index with each discrete critical point.

Consider a two-dimensional simplicial complex Σ in R3 with a manifold domain,
and the height function ξ : R

3 → R with respect to the direction ξ in R
3; ξ is called

general for Σ if ξ(v) 6= ξ(w) whenever v and w are distinct vertices of Σ. Under
these assumptions, critical points may occur only at the vertices of the simplices
and the number of times that the plane through vertex p and perpendicular to ξ
cuts the link of p is equal to the number of 1-simplices in the link of p with one
vertex above the plane and one below (see Figure 7). Point p is called middle for ξ
for these 1-simplices. Then, an indexing scheme is defined for each vertex of Σ as
follows [Banchoff 1967]:

i(v, ξ) = 1 −
1

2
(number of 1 − simplices with v middle for ξ). (1)

Discrete critical points are at the vertices of the simplicial model and are defined
as points with index different from 0. In particular, the index is equal to 1 for
maxima and minima, while it can assume an arbitrary negative integer value for
saddles. For example, a so-called monkey-saddle will have index equal to −2, as
shown in Figure 7(c). The discrete index is different from the classical index (dis-
cussed in Section 3.1.5), but Banchoff proved the following Critical Point Theorem,
that holds for general height functions defined on polyhedral surfaces:

∑

v∈Σ

i(v, ξ) = χ(Σ). (2)

Note that for the discrete case, the theorem holds under the assumption that
f is general, and it also includes the case of isolated degenerate critical points,
such as monkey-saddles, that are not considered by Morse theory. Banchoff also
proved the validity of the previous results for general functions defined over d-
dimensional complexes, where the indicator function generalizes the index defined in
Equation (1) [Banchoff 1967]. The characterization provided by Banchoff correctly
distinguishes critical points in dimension 2 and 3, while for higher-dimensional
spaces the Betti numbers of the lower link, that is the set of connected components
of the link of a vertex which join points with a height less than that the vertex,
provide a more complete characterization of discrete critical points, as suggested in
[Edelsbrunner and Harer 2002].

Banchoff’s work has been used by most of the authors dealing with computa-
tional topology. In many applications, however, the shapes to be analyzed are
likely to have degenerate critical points. Degenerate critical points can be handled
either by replacing the notion of critical point with that of critical area [Biasotti et
al. 2002; Cox et al. 2003], or by perturbing and unfolding the simplicial complex
[Edelsbrunner and Mücke 1990; Axen 1999; Edelsbrunner et al. 2003b]. The first
approach preserves the characteristics of the embedded manifold, while the second
approach requires a slight modification of the shape and the unfolding is ambigu-
ous since there are several splitting choices possible. Depending on the technique
in question, the unfolding ambiguity may or may not be able to be removed in a
post-processing phase.
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Fig. 8. Transition in the topology of contours around a critical point.

The geometric characterization of critical points can also be used to define critical
points on regular models. The difference is that the concept of neighborhood has
to be adapted to the connectivity of the underlying regular grid. Moreover, in this
case the height function is often viewed as a step function defined at the d-cells of
a grid (the pixels or voxels in a digital image), while a piece-wise linear interpolant
is always assumed for simplicial models when detecting critical points. The field
value at a vertex p of a regular grid is compared to the field values of a suitably-
defined set of neighbors of p on the grid [Peucker and Douglas 1975; Toriwaki and
Fukumura 1978; Bajaj et al. 1998; Gerstner and Pajarola 2000; Weber et al. 2002;
Papaleo 2004]. These approaches are rooted in digital geometry and have been
extensively used in image processing [Klette and Rosenfeld 2004].

Another approach commonly used for regular grids is what we call an analytic
approach. In this case, there is no attempt at simulating the concept of critical
point in the discrete case, but the approach relies on the general idea of fitting an
approximating function, sometimes globally discontinuous, on the vertices of the
grid (at which the field values are known) [Watson et al. 1985; Bajaj et al. 1998;
Schneider and Wood 2004; Schneider 2005; Weber and Scheuermann 2004; Weber
et al. 2003]. Critical points are then usually detected through analytical techniques.

Another approach to the definition of critical points in the discrete case is based
on a study of the evolution of the level sets (see Section 3.1.5). The level sets may
have several connected components, each of which is called a contour or isocontour
of f . In the case of three-dimensional data, each contour is an isosurface. A critical
point is defined by each change of the topology of the contours, see Figure 8. Thus,
the knowledge of the existence of a critical point of Morse index λ between two
level sets allows us to topologically reconstruct the shape from the level sets, by
joining them appropriately with a λ-cell [Gramain 1971]. This approach is more
oriented towards homology than to differential properties, and as pointed out in
[Allili et al. 2004], it is more stable with respect to the presence of noise compared
with analytical approaches. Above all, it can handle non-isolated critical points
without ad-hoc solutions.

A discretization approach related to Morse theory is provided by the so-called
discrete Morse theory introduced by Forman in [Forman 1998; 2002]. While Morse
proved that the topology of a manifold is related to the critical points of a smooth
function defined over it, Forman gave an analogous result based on a function
defined on the discretization of the manifold as a simplicial or cell complex. As
discussed in Section 4, Forman’s theory has been applied as a basis for comput-
ing discrete approximations of the Morse and Morse-Smale complexes through an
entirely combinatorial approach.
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(a) (b)

Fig. 9. (a) A discrete Morse function. (b) The edge f−1(1) is critical of index 1.

Forman defines a discrete Morse function on a simplicial complex K as a function
which assigns higher numbers to higher-dimensional simplices, with at most one
exception, locally, at each simplex. This fact implies that the function flows from
2-simplices to 1-simplices and from 1-simplices to 0-simplices, simulating a discrete
gradient on the complex. More formally, a function f : K → R is a discrete Morse
function if, for every p-simplex αp ∈ K, the following two conditions hold:

(1) Card({βp+1 ⊃ αp | f(βp+1) ≤ f(αp)}) ≤ 1,

(2) Card({γp−1 ⊂ αp | f(γp−1) ≥ f(αp)}) ≤ 1,

where βp+1 and γp−1 are, respectively, a (p+1)- and a (p−1)-simplex of K, β ⊃ α
means that α is a face of β, and Card(·) denotes the cardinality of the set. A trivial
example of a discrete Morse function is given by a function which associates with
each simplex its dimension. Figure 9(a) shows another example of a discrete Morse
function.

Based on the above definition, Forman has introduced the definition of a critical
simplex. A simplex αp is said to be a critical simplex of index p for a discrete Morse
function f if it is true that

(1) Card({βp+1 ⊃ αp | f(βp+1) ≤ f(αp)}) = 0,

(2) Card({γp−1 ⊂ αp | f(γp−1) ≥ f(αp)}) = 0.

With reference to Figure 9(a), vertex f−1(0), edge f−1(3) and triangle f−1(4) are
critical, and they are the only critical simplices. The above definition provides a
discrete analogue of the smooth notion of a critical point of index p, as illustrated
by Figure 9(b). In this example edge e = f−1(1) is critical of index 1, since the
value f(e) is greater than the value of f at either boundary vertex, and less than
the value of f at the 2-simplices bounded by edge e. This means that f decreases
as one moves from the edge to its boundary (formed by its two extreme vertices),
and increases in every transversal direction, corresponding to the two 2-simplices
bounding it. This is a discrete analogue of what happens for smooth functions,
where a saddle is connected by an integral line to its two adjacent minima (which
are critical points of index 0) and to its two adjacent maxima (which are critical
points of index 2).

By the use of the combinatorial approach proposed in Forman’s work [Forman
1998], different theorems, analogues of the main theorems of classical Morse theory,
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have been proved. Forman defined a Morse complex as a differential complex which
consists of the critical cells of a discrete Morse function, and proved that this
complex has the same homology as the underlying manifold [Forman 1998].

Forman theory is not the only attempt at the development of a discrete theory
which maintains the results of the smooth setting. Different approaches have been
proposed, such as stratified Morse theory [Goresky and MacPherson 1988] and,
more recently, chainlet geometry [Harrison 2005]. Another very interesting piece
of work has also been proposed recently: the theory of discrete exterior calculus
by [Hirani 2003] which develops an entire calculus framework which is based only
on geometric and combinatorial properties, and extends the concept of differential
forms, vector fields and operations on them to discrete objects.

4. MORSE AND MORSE-SMALE COMPLEXES

The intuition behind Morse and Morse-Smale complexes is nicely described by
Maxwell [Maxwell 1870]:

Hence each point of the earth’s surface has a line of slope, which begins
at a certain summit and ends in a certain bottom. Districts whose
lines of slope run to the same bottom are called basins or dales. Those
whose lines of slope come from the same summit may be called, for want
a better name, hills. Hence, the whole earth may be naturally divided
into basins or dales, and also, by an independent division, into hills, each
point of the surface belonging to a certain dale and also to a certain hill.

If we consider the height function on a terrain, the partition of the surface into its
hills corresponds to the decomposition defined by the unstable, or ascending, Morse
complex. Similarly, the decomposition of the surface into its dales corresponds to
the partition defined by the stable, or descending, Morse complex. If we overlap
the decompositions based on the hills and on the dales, we obtain what is called a
Morse-Smale decomposition.

This intuitive notion generalizes to any smooth surface and any mapping function
f . The distinctive characteristics of Morse and Morse-Smale complexes are that
they provide the study of shape properties from the perspective of the gradient of
the mapping function. Morse and Morse-Smale complexes describe the shape by
decomposing it into cells of uniform behavior of the gradient flow and by encoding
the adjacencies among these cells in a complex which describes both the topology
and the geometry of the gradient of f .

The use of Morse and Morse-Smale complexes was originally introduced in Com-
puter Graphics for the analysis of two-dimensional scalar fields, but, recently, their
use has been extended to handle three-dimensional scalar fields as well as generic
3D shapes. The theory behind Morse and Morse-Smale complexes, however, is of
general application and has its roots in the theory of dynamical systems [Palis and
Melo 1982]. Moreover, Morse and Morse-Smale complexes are strongly related to
visualization of vector field topology [Helman and Hesselink 1989; Theisel et al.
2007]. Morse complexes correspond to a decomposition of the shape into either the
stable or unstable manifolds associated with the mapping function, and the Morse-
Smale complex is defined as the intersection of the stable and unstable manifolds,
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under some hypotheses that will be discussed below. Alternatively, this decom-
position can be interpreted as been obtained by joining the critical points of the
mapping function f by lines of steepest ascent or descent of the gradient, in the
case of a two-dimensional scalar field, or surfaces in the case of a three-dimensional
scalar field.

These two views are clearly reflected in the literature. A considerable number
of algorithms have been developed for extracting critical points and lines, with a
specific focus on terrain modeling and analysis. Morse and Morse-Smale complexes
have been extensively studied, mainly for the understanding and visualization of
scalar fields, but also for more general applications in shape analysis, by using as
a mapping function the curvature [Mangan and Whitaker 1999; Page 2003], or the
Connolly function [Cazals et al. 2003].

In this section, we review relevant works reported in the literature that cover
both interpretations of Morse and Morse-Smale complexes, including also methods
that are oriented towards a segmentation of the shape into catchment basins of its
minima, that again can be seen as a geometric interpretation of the same mathe-
matical concept, namely regions of uniform flow of the gradient vector field of the
mapping function. In other words, we have collected all methods that are rooted,
explicitly or not, in the same mathematical framework. We have interpreted dif-
ferent classes of methods as different computational approaches for detecting the
same geometrical and topological characterization of a shape.

In the remainder of this section, we discuss first some theoretical aspects, and
then review and compare existing algorithms for the extraction of Morse and Morse-
Smale complexes, or related structures.

4.1 Theoretical aspects

As pointed out in [Bremer et al. 2004], the first works related to the analysis of
the behavior of the gradient over a surface date back to the 19th century [Cayley
1859; Maxwell 1870], even before the publication of the results on Morse theory
developed by Thom [Thom 1949] and Smale [Smale 1960]. The definition of Morse
complexes relies on the concepts of critical point and of integral line, as discussed
below.

Let M be a smooth compact n-manifold without boundary, and let f : M → R

be a smooth Morse function. Let us also assume that M is embedded in R
n or that

a Riemannian metric is defined on M . An integral line γ : R → M of f is defined
as a maximal path on M whose velocity vectors, or tangent vectors, agree with the
gradient of f , meaning that ∂γ

∂s
= ∇f(γ(s)) for all s in R. Each integral line is

open at both ends, having its origin (i.e., lims→−∞ γ(s)) and its destination (i.e.,
lims→+∞ γ(s)) at critical points of f [Palis and Melo 1982]. Note that the critical
points are images of constant integral lines by themselves.

It can be shown that integral lines are pair-wise disjoint, that is, if their images
share a point, then they are the same line. The images of integral lines cover the
whole M , but if we consider the integral lines associated with the critical points of
f , their images define a partition of M .

This partition is used to decompose M into regions of uniform flow, thus captur-
ing the characteristics of the gradient field. More precisely, the descending manifold
of a critical point p is the set D(p) of points that flow towards p, and the ascending
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manifold of p is the set A(p) of points that originate from p. In formulae:

A(p) = {q ∈ M : lim
t→+∞

γq(t) = p}

D(p) = {q ∈ M : lim
t→−∞

γq(t) = p},

where γq is the integral line at the point q. Note that the descending manifold of
f is the ascending manifold of −f .

In the mathematical literature, the term unstable is used instead of ascending,
and the term stable is used instead of descending [Palis and Melo 1982]. Note also
that the partition into ascending manifolds is similar to watershed decomposition
[Meyer 1994; Vincent and Soille 1991; Mangan and Whitaker 1999], as we will
discuss below.

Here, we follow the terminology and notations adopted in the description of
the majority of the methods we discuss. Note that there are slight differences in
the definitions of ascending or descending manifolds, depending on whether the
critical points are considered as belonging to the manifolds or not. For instance, in
[Edelsbrunner et al. 2003b; Bremer et al. 2004], the critical points are added to the
related descending and ascending manifolds.

The descending manifold of a critical point p of index i is an open i-cell. Similarly,
the ascending manifold of a critical point of index i is a n−i open cell. For example,
if M is a 2-manifold the descending manifold of a maximum is an open disk, that
of a saddle is an open interval, and that of a minimum is the minimum itself.

The collection of all descending manifolds form a complex, called the descending
Morse complex, and the collection of all ascending manifolds also form a complex,
called the ascending Morse complex, which is dual with respect to the descending
complex. For instance, when M is a 2-manifold, the 2-cells of the descending Morse
2-complex correspond to the maxima of f , the 1-cells to the saddle points, and the
0-cells to the minima. Symmetrically, the 2-cells of the ascending Morse 2-complex
correspond to the minima of f , the 1-cells again to the saddle points, and the
0-cells to the maxima. An example of a decomposition of the domain of a two-
dimensional scalar field into an ascending Morse complex is shown in Figure 10 (a).
When M is a 3-manifold, the 3-cells of a descending Morse 3-complex correspond
to the maxima, the 2-cells to the 2-saddles, the 1-cells to the 1-saddles, and the
0-cells to the minima. Symmetrically, the 3-cells of the ascending Morse 3-complex
correspond to the minima, the 2-cells to the 1-saddles, the 1-cells to the 2-saddles,
and the 0-cells to the maxima.

Morse-Smale complexes are defined for functions belonging to the important class
of dynamical systems, called Morse-Smale systems. They are structurally stable
on compact manifolds meaning that their structure is preserved under topological
equivalencies of the manifold. Intuitively, this means that the topological behavior
of the images of the integral lines does not change under small perturbations of the
vector field [Palis and Melo 1982]. This property is guaranteed when function f is
a Morse-Smale function, that is, the descending and ascending Morse complexes
intersect only transversally1. In 2D this means that, if an ascending 1-manifold

1By definition, two submanifolds A and B of a manifold M intersect transversally in p if TpA +
TpB = TpM where Tp is the tangent space at p.
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Fig. 10. (a) The ascending Morse complex of a two-dimensional scalar field (the 2-cells correspond
to the minima). (b) The Morse-Smale complex. Its 1-skeleton (the set of simplices of dimension
0 and 1) is the critical net.

(a) (b) (c)

Fig. 11. (a) The integral lines emanating from the higher saddle s reach s′, but a slight perturba-
tion of the height direction causes the integral lines to reach m instead (b). The Morse complex is
shown in (c). In (c) the black vertex correspond to the 0-cell, the blue lines represent the 1-cells
while the light blue region is the 2-cell.

intersects a descending 1-manifold transversally, they cross at exactly one point.
An example can be found in Figure 10 (b), where the two lines in the 1-skeleton
intersect at most in one point (a saddle). The importance of the above condition is
that it is a stable and generic condition, which is independent of small perturbations
of function f and of manifold M . In Figure 11, an example of function whose
gradient is not Morse-Smale is shown. The height function on the torus defines
four critical points, one maximum, one minimum and two saddles. The integral
lines emanating from the higher saddle have the lower saddle as destination in (a),
but a slight perturbation of the height directions causes the gradient to flow towards
the minimum m instead, as illustrated in (b,c).

In the case of Morse-Smale functions, it is possible to define a complex, called the
Morse-Smale complex, as the intersection of the ascending and descending mani-
folds. The cells of the Morse-Smale complex are the components of sets D(p)∩A(q),
for all critical points p and q of function f [Edelsbrunner et al. 2001; Edelsbrunner
et al. 2003a]. Each cell of the Morse-Smale complex is the union of the integral
lines sharing the same origin p of index i and the same destination q of index j.
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minimum saddle maximum

(a) (b) (c) (d)

Fig. 12. The four possible configurations for the slope districts in a CPCG.

The dimension of the cell is given by the difference of the indices. Figure 10 (b)
shows an example of a Morse-Smale complex. Notice that, in general, the closure
of the cells of a Morse-Smale complex may not be homeomorphic to a closed ball.

The Morse-Smale complex is characterized by cells with a regular connectivity.
In the 2D case, each saddle point p has four incident 1-cells, two joining p to
maxima, and two joining p to minima. Such 1-cells alternate in a cyclic order
around p. Also, the 2-cells are quadrangles whose vertices are critical points of
f of index 1, 0, 1, 2 (i.e., saddle, minimum, saddle, maximum) in this order. In
the 3D case, all 2-cells are quadrangles whose vertices are a minimum, 1-saddle,
2-saddle, 1-saddle in this order (quadrangles of type 1) , or a 1-saddle, a 2-saddle,
a maximum, a 1-saddle in this order (quadrangles of type 2). A 1-cell connecting
a 1-saddle and a 2-saddle is on the boundary of four quadrangles that alternate
between quadrangles of type 1 and type 2. The 3-cells are called crystals and are
bounded by quadrangles [Edelsbrunner et al. 2001; Edelsbrunner et al. 2003a].

It is interesting to note the similarity between the Morse-Smale complex and the
configuration of slope districts defined in [Nackman 1984], where the function is
not necessarily a Morse-Smale one, but simply a Morse function. In particular,
Nackman defined a graph, called the Critical Point Configuration Graph (CPCG),
in which the nodes represent critical points and the arcs represent the integral
lines connecting them. The CPCG is a planar graph and its embedding on the
domain M of f induces a partition of M into two-dimensional regions, called slope
districts, characterized by the uniformity of the gradient flow. Since f is not nec-
essarily a Morse-Smale function, there are configurations of the critical points of f
which do not occur for Morse-Smale functions. Nackman shows [Nackman 1984]
that there are only four basic possible configurations for a slope district and they
can be obtained, up to equivalence, by inserting saddle points in the arcs. These
configurations are illustrated in Figure 12. The configurations in Figures 12(a), (b)
and (c) are formed by saddle, minimum, saddle, and maximum. All three illustrate
the possible types of 2-cells in a Morse-Smale complex. The ones in Figures 12 (b)
and (c) correspond to degenerate situations, usually called strangulations [Gyulassy
et al. 2005]. The configuration in Figure 12(d) cannot happen for a Morse-Smale
function, since ascending and descending 1-manifolds do not intersect transversally,
but coincide.

The 1-skeleton of a Morse-Smale complex is a 1-complex formed by integral lines
joining critical points. Similar structures among critical points have been widely
studied in the literature under the name of critical nets. A graph representation
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of the critical net in a two-dimensional Morse-Smale complex is the so-called sur-
face network [Pfaltz 1976; Schneider and Wood 2004], widely used in spatial data
processing for morphological terrain modeling and analysis (see [Rana 2004] for an
interesting collection of contributions on this specific topic).

4.2 Computational aspects

In this section, we describe and analyze different techniques proposed in the lit-
erature to compute the Morse or the Morse-Smale complexes. The majority of
the algorithms have been developed for two-dimensional scalar fields, or for scalar
functions defined over a 2-manifold without boundary.

Most of these algorithms use what we call a boundary-based approach, since
they extract the Morse-Smale, or the Morse complexes, by computing the critical
points and then tracing the integral lines joining them, or their approximations,
starting from saddle points and converging to minima and maxima. In this sense,
they compute the Morse-Smale complex by extracting the boundaries of its 2-cells.
Other algorithms use a region-based approach in the sense that they compute an
approximation of the ascending and/or descending Morse complex by growing the
2-cells corresponding to the minima, or to the maxima, of the Morse function f
defined on a manifold M . If f is a Morse-Smale function, then the Morse-Smale
complex can be obtained as the intersection of the ascending and descending Morse
complexes. For this reason, we organize the presentation of the various methods by
grouping them as methods for extracting the Morse, or the Morse-Smale, complexes.
Note that, in general, region-based methods aim to extract a Morse complex, while
boundary-based approaches typically focus on the extraction of a Morse-Smale
complex. Exceptions are the algorithms by [Cazals et al. 2003] and [Ni et al. 2004].
We can also classify the algorithms on the basis of their input, namely a regular
model [Bajaj et al. 1998; Schneider and Wood 2004; Schneider 2005], or a simplicial
model [Takahashi et al. 1995; Edelsbrunner et al. 2001; Bajaj and Schikore 1998;
Bremer et al. 2003; Cazals et al. 2003; Danovaro et al. 2003a; Danovaro et al.
2003b; Edelsbrunner et al. 2003a; Pascucci 2004; Magillo et al. 2007; Ni et al.
2004]. Finally, watershed algorithms, developed for image segmentation, can be
viewed as region-based methods for computing the ascending and descending Morse
complexes [Meyer 1994; Vincent and Soille 1991; Mangan and Whitaker 1999; Stoev
and Strasser 2000].

4.2.1 Computing ascending and descending Morse complexes. In [Danovaro et
al. 2003b; Magillo et al. 2007], algorithms have been presented for computing the
descending and ascending Morse complexes for a 2D simplicial model. These algo-
rithms have been applied to the segmentation and morphological analysis of terrain
models, and the algorithm in [Magillo et al. 2007] has also been applied to 3D shape
segmentation. In both algorithms, the ascending and descending complexes are
computed independently by applying a region-growing technique on the triangles
of the simplicial model. Basically, the algorithms perform a breadth-first traversal
of the dual graph of the triangle mesh, in which the nodes correspond to triangles
of the mesh, and the arcs to the edges shared by edge-adjacent triangles. When
extracting the descending Morse complex, maxima are extracted (as discussed in
Section 3.2.2). A descending 2-cell C, associated with a current maximum m, is
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initialized with all the triangles in the star of m, which have not yet been assigned
to any 2-cell. Then, the cell C is grown in a breadth-first fashion by adding one
triangle at a time according to a criterion which is specific for each algorithm.

In [Danovaro et al. 2003b], the 2-cell C of the ascending complex is extended to
include a triangle t = pqr which is adjacent to C along a common edge pq if the
remaining vertex r of t is has a height lower than those of p and q. At the end of
the process, any 2-cell containing a maximum on its boundary is merged with the
2-cell adjacent along that boundary. In [Magillo et al. 2007], the growing technique
in [Danovaro et al. 2003b] is improved to avoid over-segmentation. A triangle t
is attached to the descending 2-cell C when the previous condition is verified, but
also when vertex r has a height values which is between the height values of p and
q. In this case, also some of the triangles in the star of r are added to C.

The ascending complex is computed in a completely symmetric way for both
algorithms. Their worst-case time complexity is linear in the number of vertices of
the simplicial model. Note that both algorithms are entirely combinatorial, since
they do not involve floating-point computations. In [Danovaro et al. 2003a], a
variant of this approach is presented which is based on the gradient associated with
each triangle, similarly to [Yu et al. 1996].

The algorithm described in [Danovaro et al. 2003b] has been defined in a dimension-
independent way and implemented for 3D simplicial models as well. In [Mesmoudi
and De Floriani 2007] the authors have defined the discrete gradient vector field
associated with the decomposition produced by the algorithm in [Danovaro et al.
2003b] and have shown that it is a subfield of the gradient field of a Forman func-
tion F whose restriction over the vertices of the simplicial model coincides with the
given scalar field function f .

A region-based combinatorial algorithm for computing ascending manifolds has
been proposed in [Dey et al. 2003] to segment a 3D shape M into meaningful
features. In this case, the shape is defined by a set of points belonging to its
boundary and is discretized as a Delaunay tetrahedral mesh Σ with vertices at the
data points. In this case, a distance function f : R

n → R is defined over the space
R

n where the shape M is embedded by the relation:

f(x) = min
p∈M

‖ p − x ‖2, ∀x ∈ R
n

and, most importantly, the results are discussed for that specific function selection.
Note that the distance function is not a Morse function, so we cannot properly talk
about a Morse complex, but the authors are interested in the computation of the
ascending manifolds of maxima. Maxima of the distance function are detected at a
subset of the vertices of the dual Voronoi diagram of the mesh Σ. Approximations
of the three-dimensional ascending manifolds are computed by a region-growing
approach starting from the tetrahedra which contain the maxima. A discrete gra-
dient field is computed by defining a flow relation between face-adjacent tetrahedra,
whose transitive closure is acyclic [Edelsbrunner et al. 1998; Giesen and John 2003].

In [Ni et al. 2004], a boundary-based approach to the computation of the de-
scending Morse complex is proposed. The algorithm is applied to a triangle mesh
Σ discretizing a 2-manifold without boundary endowed with a Morse function f
which minimizes the number of critical points. The algorithm extracts first the
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critical points and successively traces the descending 1-manifolds starting from the
saddles, in no specific order. If a point p is a multiple saddle of multiplicity m,
then m manifolds start at p, each corresponding to one connected component of
the lower link of p, see Section 3.2.2. Descending 1-manifolds are constructed by
moving along the edges of the triangle mesh by choosing each time a point with
lowest height in the lower link of the current point (as in [Bajaj and Schikore 1998;
Takahashi et al. 1995]). These manifolds can merge, but they cannot cross, and
they do not separate after merging. Descending 1-manifolds are not allowed to pass
through saddles other than their starting saddle. In other words, if a descending 1-
manifold has reached a point p in the link of a saddle s, then the edge ps cannot be
used to extend the manifold, i.e., saddle s is not taken into account when searching
the neighbor of p with lowest height. Further improvements are proposed, which
include handling flat regions, or plateaus, or surfaces with boundary. In the case of
plateaus, each simply-connected flat region is considered as a single vertex. This is
equivalent to collapsing edges connecting vertices in the flat region. Surfaces with
boundary are treated by adding a vertex p for each boundary component, together
with edges and triangles connecting p to vertices on the boundary loop, producing
a model without boundary.

The ascending and descending Morse complexes can also be computed by apply-
ing the discrete watershed transform. The watershed transform was first introduced
in image analysis for the segmentation of gray-scale images and several definitions
exist in the discrete case [Beucher and Lantuejoul 1979; Bieniek and Moga 1998;
Meijster and Roerdink 1996; Meyer 1994; Vincent and Soille 1991]. It provides a
decomposition of a the domain of a C2 function f into regions of influence of the
minima, called catchment basins. The boundary of the catchment basins of the min-
ima form the watershed lines. Catchment basins and watershed lines are described
in terms of topographic distance, using the formalization proposed in [Meyer 1994].
In the 2D case, if f is a Morse function, it can be seen that the catchment basins of
the minima of f are the 2-cells in the ascending Morse complex of f and the water-
shed lines are 1-cells in such complex. Through a change in the sign of function f ,
the descending manifolds of the maxima can be extracted, and thus, we can obtain
the descending Morse complex for the original function.

Several algorithms have been developed for the computation of the watershed
transform (see [Roerdink and Meijster 2000; Najman and Couprie 2003] for a sur-
vey). Here, we briefly review the two major approaches proposed in the literature,
namely those based on the discretization of the topographic distance [Meyer 1994],
and those based on simulating the immersion of a catchment basin in water [Vin-
cent and Soille 1991]. Both types of watershed algorithms have been developed for
images and, thus, can be applied to regular models of terrain without any change,
but their extension to simplicial models is straightforward. Watershed algorithms
only label the vertices of the mesh, but such labeling can be easily propagated to the
triangles. Note that the watershed algorithms discussed here are entirely discrete
and differ from the approach developed in the computational geometry literature
for piece-wise linear triangulated terrains, in which the terrains are considered as
continuous, and several steepest descent paths can cross a single triangle [Yu et al.
1996; McAllister 1999; de Berg et al. 2007]. In this case, the drainage network
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computed on the basis of the watersheds of the points on the terrain model can
have a worst-case complexity of Ω(n3), even if in practice the size of the network
has been observed to be linear in the number of vertices of the model [Yu et al.
1996].

The definition of a catchment basin, watershed, and watershed transform in the
discrete case is similar to the definition in the continuous case as proposed in [Meyer
1994]. The only difference is that the continuous topographic distance is replaced
with a (cost-based) discrete topographic distance. The discrete topographic distance
between two vertices p and q of a simplicial model is defined as the minimum-cost
path joining them. A path between two vertices p and q of a simplicial model is
defined as a sequence of edges in the model joining p and q. The cost of an edge
uv, having u and v as extreme vertices, can be defined in different ways (e.g. the
Euclidean distance between u and v, the Euclidean distance composed with the
function values f(u) and f(v) and so on) [Meyer 1994]. The cost of a path is just
the sum of the costs of the edges forming it. By selecting as topographic distance
a minimum-cost path, the catchment basin of a minimum p becomes the set of
vertices in the simplicial model which are closer, in terms of the discrete topographic
distance, to p than to any other minimum in the model. The watershed lines are
the complement of the collection of the catchment basins of the minima, when
the complement is taken on the set of vertices of the simplicial model. There are
different implementations of the approach proposed in [Meyer 1994]. All of them
implement a modification of a classical shortest path algorithm in order to grow
the ascending manifold, or equivalently, the catchment basin associated with each
minimum. The worst-case time complexity of the algorithm presented in [Meyer
1994] is O(n log n) where n is the number of vertices in the simplicial model, due
to the initial sorting of the vertices according to their height values.

The discrete topographic distance is not the only way to apply a watershed al-
gorithm to a simplicial model. In [Vincent and Soille 1991; Soille 2004], a different
paradigm is presented, based on the idea of simulated immersion (see also [Serra
1983] for the binary case). This idea can be described in a very intuitive way. Let
us consider the graph of a two-dimensional scalar field f , and assume that holes
are drilled in place of local minima. We immerse this surface in a pool of wa-
ter, building dams to prevent water coming from different minima from merging.
Then, the watershed of f is described by these dams, and the catchment basins of
the minima are delineated by the dams. The definition of watershed by simulated
immersion is given in a recursive manner in [Beucher and Lantuejoul 1979; Vincent
and Soille 1991], where the immersion procedure is simulated by the use of the
concept of skeleton by influence zones which associates with a family of compo-
nents C1, C2, ..., Cn (dams), called markers, the connected set of points at equal
Euclidean distance from two different components (see [Soille 2004] for definitions
and details). The skeleton basically maintains the information regarding how and
when the different dams merge together. The algorithm first sorts the vertices of
the model in increasing function value and extracts the set of minima and then it
performs the flooding step level by level, starting from the minima. This technique
is similar to the plane sweep approach used in the computation of the contour
tree, e.g. [de Berg and van Kreveld 1997] in Section 5.2. As shown in [Stoev and
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Strasser 2000], there exists an implementation of the algorithm in [Vincent and
Soille 1991] which has a linear worst-case time complexity in the number of vertices
of the initial regular model since it does not require sorting. But, for simplicial
models, the algorithm requires a sorting of vertices according to their height value
and this results in an O(n log n) worst-case complexity.

Both approaches described above start from the minima and let the catchment
basins grow until all the points in the model are labeled as belonging to catchment
basins, or to watershed lines. A dual strategy is used in the watershed algorithms
presented in [Mangan and Whitaker 1999; Stoev and Strasser 2000], which are
based on the rain falling paradigm. Both algorithms label the vertices of the mesh
and construct steepest descending paths from each vertex p until a minimum m,
or a labeled vertex q, is reached. The membership label of m (or q) is propagated
backwards along the steepest path reaching p. As result of this process, the simpli-
cial model is segmented into catchment basins associated with the minima of f (but
no watershed lines are identified), where each catchment basin is defined by the set
of vertices sharing a membership-label. Note the correspondence between these
labels and the components of the union-find data structure used in the contour tree
computation [van Kreveld et al. 1997; Pascucci and Cole-McLaughin 2002; Carr
2004], Section 5.2. The two algorithms differ basically in the type of input they use
since [Mangan and Whitaker 1999] was proposed for triangle meshes, while [Stoev
and Strasser 2000] was presented for 2D, or 3D, regular grids, even if [Stoev and
Strasser 2000] could be easily extended to grid structures with irregular connectiv-
ity. [Mangan and Whitaker 1999; Stoev and Strasser 2000] produce a labeling of
the vertices of the input simplicial model as output. A drawback of the rain falling
paradigm is in the non-uniqueness of the lowest neighbor q of a point p, and the
occurrence of plateaus, or flat zones (see [Stoev and Strasser 2000]). In the case
of plateaus, both algorithms distinguish among plateau types. For plateaus corre-
sponding to a minimum, both algorithms mark all the points of each plateau with
a unique label. In [Mangan and Whitaker 1999] each non-minimal plateaus Q is
assigned entirely to a single catchment basin, while in [Stoev and Strasser 2000] Q
is split among different catchment basins. No strategy is presented in [Mangan and
Whitaker 1999] to solve the ambiguity arising when a point p has more than one
lowest neighbor, while a disambiguation procedure is given in [Stoev and Strasser
2000]. The worst-case time complexity of both watershed algorithms in [Mangan
and Whitaker 1999; Stoev and Strasser 2000] is O(n log n), where n is the number
of vertices in the simplicial model. For regular models, the complexity becomes
linear in the number of vertices, as shown in [Stoev and Strasser 2000].

4.2.2 Computing a Morse-Smale complex. Most boundary-based methods for
computing a Morse-Smale complex [Takahashi et al. 1995; Bajaj and Schikore 1998;
Edelsbrunner et al. 2001; Bremer et al. 2003; Pascucci 2004; Bremer and Pascucci
2007] from two-dimensional complexes follow the same algorithmic approach, con-
sisting of two basic steps:

—extract the critical points and unfold multiple saddles;

—compute the 1-cells of the Morse-Smale complex, or their approximations, by
starting from the saddle points, and tracing two paths on the underlying shape
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Fig. 13. The normal space for a cluster of triangles incident on a vertex.

model which stop at minima and maxima, respectively.

The extraction of the critical points is usually performed based on techniques
implementing the classification by Banchoff [Banchoff 1967] (see Section 3.2.2). In
[Bajaj and Schikore 1998], a different approach is used even if, as in the previous
algorithms, the technique performs the classification of vertices with respect to the
local neighborhood. In this case, at a given vertex of the simplicial model, the
authors estimate the gradient as it can take a range of values based on the normals
of the triangles incident in that vertex. As a result, critical points are defined as
vertices at which the normal space of the incident triangles includes the vector
(0, 0, 1) (see Figure 13).

The main difference among the different methods relies in the technique used to
trace the integral lines that define the 1-cells: either the steepest ascent or descent is
traced, or approximated integral lines are used instead, provided that they respect
the connectivity of the Morse-Smale complex.

The algorithms in [Takahashi et al. 1995; Bajaj and Schikore 1998; Bremer and
Pascucci 2007] extract the integral lines forming the Morse-Smale complex by com-
puting paths only along the edges of the triangle mesh, selecting the vertex of
highest, or lowest, height at each step. As observed by [Chiang et al. 2005], the
time complexity of [Takahashi et al. 1995] is O(nc), where c denotes the number
of critical points. As a pre-processing step, to simulate that the critical points are
non degenerate and there exist no boundary saddles, [Bremer and Pascucci 2007]
adopted a symbolic perturbation of the mesh before extracting the Morse-Smale
complex. The algorithms in [Bremer et al. 2003; Pascucci 2004] estimate the gradi-
ent along 1-simplices and 2-simplices, and compute the ascending and descending
paths not only along the edges, but possibly crossing triangles in order to follow
the actual paths of steepest ascent, or descent.

In [Edelsbrunner et al. 2001; Edelsbrunner et al. 2003a] the notion of Quasi
Morse-Smale (QMS) complex is introduced as an intermediate step towards the
computation of the Morse-Smale complex. The QMS is defined for 2D and 3D sim-
plicial complexes, which triangulate a 2-manifold or a 3-manifold without boundary,
respectively. The QMS has the same combinatorial structure of a Morse-Smale com-
plex, but it differs from it in that the 1-cells in 2D, and the 1-cells and 2-cells in 3D
are not necessarily those of maximal ascent, or descent. The idea behind a QMS,
called simulation of differentiability is that of extending the smooth notions to the
piece-wise linear case so as to guarantee that the complex has the same structural
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form of the smooth counterpart, and to achieve numerical accuracy via local trans-
formations that preserve the structure of the complex [Edelsbrunner et al. 2001].
The QMS is a splittable quadrangulation of M whose vertices are the critical points
of f and whose arcs are strictly monotonic in f . The 0-cells of a QMS complex
are the critical points of f , the 1-cells connect minima to saddles (1-saddles in 3D),
maxima to saddles (2-saddles in 3D) and, in the 3D case, 1-saddles to 2-saddles
[Edelsbrunner et al. 2003a]. Since the computed lines are an approximation of the
integral lines in the smooth case, the algorithm resolves problems arising when
merging and forking of paths occur. Once the QMS complex is computed, a series
of operations, called handle slides, are applied to turn the QMS into a Morse-Smale
complex. For 2-manifolds, it is possible to find such a sequence of handle slides,
while for 3-manifolds this is still an open question [Edelsbrunner et al. 2003a].

Note that the algorithm in [Ni et al. 2004], discussed in Section 4.2.1, is an
extension of the boundary-based algorithm in [Edelsbrunner et al. 2001] with the
difference that it extracts the descending Morse complex, it does not split multiple
saddles, and it can deal with flat regions.

The boundary-based algorithm in [Edelsbrunner et al. 2003a] extracts the Quasi
Morse-Smale complex for a simplicial model of a three-dimensional scalar field by
computing first the critical points through the reduced Betti numbers of the lower
link of the vertices. Second, the descending Morse complex is computed and, finally,
the algorithm extracts the ascending manifolds in pieces inside the cells formed by
the descending manifolds. In other words, the structure of the descending manifolds
is used while computing the ascending ones in order to maintain the structural
integrity of the whole complex. Note that it is not guaranteed that the same
complex would be obtained if first the ascending, and then the descending manifolds
were computed. An implementation of this algorithm is described in [Natarajan
and Pascucci 2005]. The running time of the algorithm for computing the Morse-
Smale complex is bounded from above by the time for sorting the vertices, plus
the input size, for constructing and analyzing the vertex links, plus the output size
for describing the resulting Morse-Smale complex, as pointed out in [Edelsbrunner
et al. 2003a]. Sorting the n vertices of the input model takes O(n log n) time, the
input size is O(n2), while the worst case for the size of the output can be arbitrary
large.

In [Cazals et al. 2003], an approach, rooted in the discrete Morse theory proposed
by Forman (see Section 3.2), is presente for the computation of the Morse-Smale
complex for a two-dimensional simplicial complex. In order to apply Forman theory
to a scalar field f which is given only at the vertices of a mesh, f is suitably
extended by defining it on all 1- and 2-simplices (i.e. edges and triangles), in such a
way that minima, saddles and maxima of f occur at vertices, edges, and triangles,
respectively. A discrete gradient vector field is induced on the complex by the
discrete Morse function [Forman 1998; 2002]. The algorithm proposed in [Cazals et
al. 2003] is based on the analysis of the 1-skeleton of the simplicial complex (i.e. the
graph formed by its vertices and edges) and the dual graph of the underlying triangle
mesh (in which the nodes correspond to the triangles and the arcs correspond to the
edges). The ascending manifold of a minimum p consists of vertices and edges, while
the descending manifold of a maximum q is made of triangles and edges. In [Lewiner
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et al. 2003; 2004], it has been shown that a gradient vector field is equivalent to two
spanning forests, one on the 1-skeleton and the other on the dual graph of the model,
such that an edge cannot belong to both forests. The roots of the two forests are
the minima and the maxima, respectively. The connected components of the two
forests define the descending and ascending 2-manifolds. The Morse-Smale complex
is obtained as the intersections of these regions. This algorithm can be classified
both as a boundary-based and as a region-based technique, since the ascending
2-manifolds are computed through a sort of region-growing approach around the
maxima, while the boundaries of the descending 2-manifolds are computed from
the forests in the 1-skeleton. The worst-case time complexity of the preprocessing
edge sorting step is O(n log n), and that of the forest creation step is O(nα(n)),
where n denotes the number of vertices of the model, and α is the inverse of the
Ackermann function [Ackermann 1928; Cazals et al. 2003].

Algorithms exist in the literature that compute the Morse-Smale complex directly
from two-dimensional regular grids [Bajaj et al. 1998; Schneider and Wood 2004;
Schneider 2005]. They are boundary-based in nature, since they compute the 1-
skeletons of the Morse-Smale complex (i.e. the critical net), through a technique
conceptually very similar to the one used for two-dimensional simplicial models.
First, the critical points are extracted, and then the integral lines joining them are
computed as lines of steepest ascent, or descent. All three algorithms fit a surface
with a certain degree of continuity to the input data set in order to extract the
critical points.

The algorithm presented in [Bajaj et al. 1998] uses a globally C1 Bernstein-Bézier
bi-cubic interpolant, locally defined on each two-dimensional cell. This interpolat-
ing function does not remove any critical point of the initial input data, but it may
add a small number of additional critical points that are defined as vertices at which
the normal space of the adjacent triangles includes the vector (0, 0, 1), see Figure
13. The integral lines are computed through a Runge-Kutta integration technique
[Press et al. 1992].

The algorithm proposed in [Schneider 2005] uses a bilinear C0 interpolating func-
tion on each 2-cell of the grid. Minima and maxima can occur only at grid vertices,
but additional saddles may be introduced by the interpolation inside a 2-cell. A
grid point p is classified by considering only the height of its 4-adjacent neighbors,
while a saddle inside a 2-cell can be detected by considering the height of the four
vertices of the 2-cell. Integral lines can follow grid edges, or go through 2-cells.
When an integral line crosses a grid cell, it is approximated with small linear steps,
or computed exactly, by solving a linear system of differential equations.

The algorithm presented in [Schneider and Wood 2004] fits a bi-quadratic poly-
nomial by considering the 8-adjacent neighbors of each grid vertex p, four along grid
edges and four diagonally. The classification of the critical points is done by looking
at the neighbors. The algorithm produces a globally discontinuous approximation,
formed by local surface patches and computes the first and second derivatives ana-
lytically, as in [Schneider 2005]. This information is used to trace the integral lines
starting from the saddles.

As in the case of simplicial models, the problem of computing a Morse-Smale
complex from 3D regular models has not been studied extensively. There are few
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algorithms that extract critical points [Bajaj et al. 1998; Weber et al. 2002; Weber et
al. 2003; Weber and Scheuermann 2004; Papaleo 2004]. [Weber et al. 2002; Papaleo
2004] use Banchoff’s definition of critical points in the discrete case presented in
Section 3.2.2, while [Bajaj et al. 1998] use a different approach, as discussed above
in this Section for the 2D case. Moreover, in [Bajaj et al. 1998] integral lines
connecting the critical points are computed, thus providing an approximation of
the 1-skeleton of the Morse-Smale complex. In [Weber et al. 2003; Weber and
Scheuermann 2004], a trilinear interpolant is used on the 3-cells. Also, the authors
assume that the values of scalar field f at any pair of edge-adjacent vertices of
the grid are different. Thus, critical points can occur only at vertices, and saddle
points only inside the 3- and the 2-cells. In [Weber et al. 2003], the above approach
is further extended to detect critical regions associated with minima, maxima and
saddles, and not just isolated critical points. Critical regions arise in practice since
data sets often contain regions of constant values.

Table III summarizes the algorithms reviewed. The running time complexity is
not specified by several of the authors and is therefore not reported in the table.
However, the time complexity varies from O(n) to O(n log n), where n is the number
of vertices in the initial model. An O(n) implementation is possible for several
algorithms which do not require an initial sorting step.

Algorithm Input Output

[Vincent and Soille 1991] Regular Morse complex

[Meyer 1994] Regular Morse complex

[Takahashi et al. 1995] Simplicial (2D) Morse-Smale complex

[Bajaj and Schikore 1998] Simplicial (2D) Morse-Smale complex

[Bajaj et al. 1998] Regular (2D) Morse-Smale complex

[Bajaj et al. 1998] Regular (3D) 1-skeleton of the Morse-Smale complex

[Mangan and Whitaker 1999] Simplicial (2D) Morse complexes

[Stoev and Strasser 2000] Simplicial (2D/3D) Morse complexes

[Edelsbrunner et al. 2001] Simplicial (2D) Morse-Smale complex

[Dey et al. 2003] Simplicial (3D) Morse complexes (stable manifolds)

[Danovaro et al. 2003a] Simplicial (2D) Morse complexes

[Danovaro et al. 2003b] Simplicial (2D/3D) Morse complexes

[Bremer et al. 2003] Simplicial (2D) Morse-Smale complex

[Weber et al. 2003] Regular (3D) Critical regions for maxima and minima

[Cazals et al. 2003] Simplicial (2D) Morse-Smale complex

[Edelsbrunner et al. 2003a] Simplicial (3D) Morse-Smale complex

[Ni et al. 2004] Simplicial (2D) Morse complexes

[Pascucci 2004] Simplicial (2D) Morse-Smale complex

[Schneider and Wood 2004] Regular (2D) Morse-Smale complex

[Schneider 2005] Regular (2D) Morse-Smale complex

[Magillo et al. 2007] Simplicial (2D) Morse complex

Table III. Algorithms for the extraction of the descending/ascending Morse complex or of the
Morse-Smale complex. For each algorithm the input model is outlined (regular or simplicial) as
well as the output it produces (Morse or Morse-Smale complex).
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4.3 Applications

Applications of Morse and Morse-Smale complexes can be found in scientific visual-
ization [Bremer et al. 2003; Pascucci 2004; Edelsbrunner et al. 2001; Edelsbrunner
et al. 2003a; Gyulassy et al. 2005; Gyulassy et al. 2006], where scientific data con-
sist of measurements over a geometric domain or space. Applications in physics
simulation of the turbulent mixing between two fluids are discussed in [Bremer and
Pascucci 2007]. The segmentation provided by these complexes allows modeling
the bubbles formed during the mixing process. Some methods have been applied
for segmenting and analyzing molecular 3D shapes [Cazals et al. 2003; Natarajan
et al. 2006; Bremer and Pascucci 2007] to study the role of cavities and protrusions
in protein-protein interactions.

The computation of ascending manifolds of the distance function has been used
also in shape matching and retrieval [Dey et al. 2003]. Since the method is tuned
on the use of the distance function, the resulting segmentation extracts the pro-
trusions of the shape. Based on such segmentation, a shape signature is defined
which associates with each Morse complex of the segmented 2-manifold a number
of properties, e.g. the weighted volume or the bounding box, that are used for
similarity assessment. The results are mainly geared towards shapes that exhibit a
structure that is well-described by protrusions.

Interesting results have also been reported for the analysis of terrains in Geo-
graphic Information System applications [Takahashi et al. 1995; Danovaro et al.
2003a; Bremer et al. 2003]. For example, in [Danovaro et al. 2003a], the extraction
of the Morse-Smale complex was applied to generate a multi-resolution model for
terrains which encodes the terrain morphology at a continuous range of different
resolutions.

In the field of image analysis, watershed algorithms have been used for image
segmentation [Vincent and Soille 1991; Meyer 1994; Najman and Schmitt 1996;
Bieniek and Moga 2000]. Watershed approaches have been applied to 3D shape
segmentation, as for example in [Page 2003; Mangan and Whitaker 1999], where
the curvature is used as the height function in order to obtain natural shape seg-
mentations from a human perception point of view. The algorithm in [Magillo et
al. 2007] has been applied to curvature-based shape segmentation, based on the dis-
crete curvature estimation technique in [Mesmoudi et al. 2007]. These approaches
have important applications in form feature extraction, mesh reduction, and tex-
ture mapping. Scalar topology detection has been proven to be useful for image
co-registration, iso-contouring, and mesh compression [Bajaj and Schikore 1998;
Bajaj et al. 1998].

Recent research activities have moved towards hierarchical representations of
scalar fields. For example, the Morse-Smale complex has been used to perform con-
trolled simplification of topological features in functions defined on two-dimensional
domains [Bremer et al. 2004; Edelsbrunner et al. 2003b; Danovaro et al. 2006].
These works are motivated by two major issues.

The first issue is a common problem in both image and mesh segmentation algo-
rithms and is the over-segmentation due to the presence of noise in the data sets.
For this purpose, generalization algorithms have been developed by several authors
that locally simplify the structure of a Morse-Smale complex [Wolf 2004; Edels-
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brunner et al. 2001; Bremer et al. 2004; Takahashi et al. 1995; Takahashi 2004;
Gyulassy et al. 2005; Gyulassy et al. 2006; Natarajan et al. 2006]. In [Laney et al.
2006], for example, the authors build a hierarchical Morse-Smale complex for the
envelope surfaces describing the boundary between undisturbed and mixed fluids,
and they use topological persistence (see Section 8) to automatically cleanup the
noise.

The generalization of a Morse-Smale complex for a 2D scalar field consists of
collapsing a maximum-saddle pair into a maximum, or a minimum-saddle pair into
a minimum, so as to maintain the consistency of the underlying complex. This
operation is called cancellation (see also Section 8.3). A generalization can be
described in terms of the combinatorial representation of the critical net, defined
by the surface network [Danovaro et al. 2006]. The problem of generalizing 3D
Morse-Smale complexes has been recently investigated in [Edelsbrunner et al. 2003a;
Gyulassy et al. 2005; Gyulassy et al. 2006], by defining three cancellation operators
and extending the 2D technique described in [Edelsbrunner et al. 2001; Bremer et
al. 2004].

The second issue is related to the large size and complexity of available scien-
tific data sets. Thus, a multi-resolution representation is crucial for an interactive
exploration of such data sets. There exist just a few proposals in the literature
for multi-resolution representations for 2D scalar fields based on Morse-Smale com-
plexes [Bremer et al. 2004; Bremer et al. 2005; Danovaro et al. 2006; Danovaro et
al. 2007]. All such proposals are based on the general multi-resolution framework
for cell complexes introduced in [De Floriani et al. 1999].

Starting from the eigenfunctions of the Laplacian matrix of a closed triangle
mesh, the Morse-Smale complexes are used as quadrangular complexes and applied
to mesh parameterization and remeshing in [Dong et al. 2006]. The Morse-Smale
complexes are simplified through cancellation operations of the critical points until
a denoised complex is obtained. Then, the simplified base complex is used to build
a global parameterization over the complex. Once possibly degeneracies of the
complex were eliminated, the quadrangular complex is used to produce a semi-
regular mesh.

Note that generalization operators may be defined on Morse-Smale complexes
that use a global view over the spatial distribution of the function critical points
for detecting, ordering, and removing features. The Morse-Smale complex may
also be generalized locally, by restricting the generalization to a local neighborhood
of the non-significant features [Gyulassy et al. 2006]. Simplification of topological
features has also been studied in the context of vector fields [de Leeuw and van
Liere 1999; Tricoche et al. 2001]. These approaches use numerical techniques and
are therefore prone to instability. In contrast, approaches based on Morse-Smale
complexes are usually more stable since they are combinatorial in nature.

5. CONTOUR TREES

Isocontours are very useful to visualize the variation of a scalar field in its domain.
Pioneering work in this field can be dated back to the beginning of the 18th century,
when Edmond Halley published the results of his extensive measurements of the
difference between compass readings and determinations of north by astronomical
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observation. The results were published as a sea chart depicting also the isogons
of the earth’s magnetic field, that is, lines connecting those points at which the
magnetic declination is the same [Halley 1702]. More than one century after, Cayley
[Cayley 1859] highlighted the relevance of contour lines for topographic analysis.
Cayley defined contour lines to be connected sets of points at which the elevation
field has some specific constant value. Similar concepts were extended by Maxwell
[Maxwell 1870]:

The results of the survey of the surface of a country are most conve-
niently exhibited by means of a map on which are traced contour-lines,
each contour-line representing the intersection of a level surface with
the surface of the earth, and being distinguished by a numeral which
indicates the level surface to which it belongs.

Starting from the consideration that the evolution of contour lines on a surface
explicitly represents hills and dales with their elevation-based adjacency relation-
ships, contour trees were originally introduced as an efficient data structure to store
containment relationships among contours in contour maps, typically representing
terrain elevations or any other continuous real function of two variables [Boyell and
Ruston 1963].

The main target of contour trees was the fast evaluation of elevations at locations
other than the points on the contours [Freeman and Morse 1967; Merrill 1973]. In
the last decade, contour trees have been extensively used as a more general tool to
analyze and understand shapes defined by n-dimensional scalar fields, as a support
to scientific visualization of complex phenomena. In their general form, contour
trees explore the shape of a scalar field Γ = (D, f) by analyzing the evolution of
its level sets as f spans the range of its possible values over D: isocontours may
appear, disappear, join, split, touch the boundary or change genus. The contour
tree stores this evolution and provides a compact description of the properties and
structure of the scalar field.

From the perspective of the survey, the focus here is on the study of the function
that defines the shape, the scalar field itself, rather than on the variation of the
description with respect to changes of the mapping function. Contour trees and
their properties are grounded in the Morse theory of critical points and are closely
related to the more general Reeb graphs. The two structures, however, are surveyed
separately as the literature on the topics also evolved separately. A discussion on
their relationships will be given in Section 10.

5.1 Theoretical aspects

In the literature, several slightly different definitions of contour trees have been
introduced. All of them reflect the intuition that each connected component of the
level sets of the scalar field is contracted to a point and the contour tree represents
the events in their evolution, as the isovalue varies in the range of possible values.
These events, which correspond for example to the creation, union, or disappearance
of isocontours, are closely related to the presence of critical points of the scalar field.
In a more general case it has been demonstrated that, given a smooth 2-manifold M
and a Morse function f on M , when the isovalue spans a range of values containing
a critical value of f then the isocontours change (see Section 3.1.5 and [Gramain
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1971]). In contrast, a change in the topology of the level sets locates a critical value
of f . The same results can be derived for piecewise linear functions [Chiang et al.
2005].

The differences in the surveyed definitions of contour trees mainly depend on the
type of evolution, that is on the type of critical point, stored in the structure. The
contour tree typically keeps track of the critical points in which only the number
of components of the level set varies, but not the genus of isocontours. For two-
dimensional scalar fields this situation does not occur, but for three-dimensional
scalar fields there are critical values at which the topological genus of the isosurface
changes without modifying the number of connected components nor the adjacency
of the isocontours, see Figure 14.

(a) (b) (c) (d)

Fig. 14. Isosurfaces around a minimum (a) and a saddle (b-c). At the saddle point in (d), a
torus evolves into a sphere changing the genus of the isosurface without altering the number of
components (1) of the level set.

In this survey, we have decided to adopt the term component-critical points to
denote critical points at which only the number of connected components of the
level set varies, as used for example in [Chiang et al. 2005]. In the literature,
the terminology used to distinguish different types of critical points with respect
to changes in the level sets is quite inhomogeneous: for example, in [Carr 2004]
critical points are named Morse-critical points while the component-critical points
are simply called critical points.

In the following, we use a Morse-theoretic definition of contour tree inspired
by the one proposed in [Carr 2004], see also theorem 3.2. Given a scalar field
Γ = (D, f), with f Morse, two isocontours C and C′ are said to be equivalent if
there exists some f -monotone path α in D that connects some point in C with
another in C′ such that no point x ∈ α belongs to a contour of any component-
critical points of f [Carr 2004]. The classes induced by this equivalence are called
contour classes. Contours that include critical points are the sole members of their
(finite) contour classes. In contrast, infinite contour classes correspond to open
intervals and represent a set of contours of essentially identical connectivity. Then,
the contour tree is a graph (V, E) such that:

(1) V ={vi|vi is a component-critical point of f};

(2) for each infinite contour class created at a component-critical point vi and
destroyed in another component-critical point vj , (vi, vj) ∈ E.

Finally, it is assumed that an arc (vi, vj) is directed from the higher to the lower
value of f on it. Figure 15 shows the contour tree of a two-dimensional scalar field.
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(a) (b) (c) (d)

Fig. 15. A two-dimensional scalar field (a,b) and its contour tree (c,d). The edge orientation and
the spatial embedding of the contour tree are shown in (d).

It should be noted that, while the domain D of the scalar function f is supposed
to be any compact subset of R

n, in practice, only simply connected domains are
considered, like rectangles or parallelepipeds [Pascucci and Cole-McLaughlin 2003;
Chiang et al. 2005]. This directly influences the type of connectivity that the
contour tree may assume, since cycles cannot appear and therefore the structure is
that of a tree.

The contour tree may be also viewed as the dual graph of the regions bounded
by the level sets and by the boundary of D [Carr 2004]. Contours that intersect
the boundary of the domain D may be thought of as manifolds with boundary.
Two main approaches to the analysis of the boundary have been proposed: a local
classification of the boundary vertices, as in [Chiang et al. 2005], or the setting of the
function f at −∞ (or +∞) outside D [Cox et al. 2003]. The latter case is equivalent
to closing the boundary with a virtual root of the graph [Takahashi et al. 1995;
Biasotti et al. 2000a], and making the image of the scalar field homeomorphic to a
(hyper)sphere [Griffiths 1976]. Since critical points (and therefore the nodes of the
contour tree) depend on the interpretation chosen, these two approaches generate
contour trees that differ along the contours that intersect the boundary [Mizuta
and Matsuda 2005]. In particular, the virtual closure forces an interpretation of
the scalar field that could be a limit when both positive and negative values of the
scalar field are significant.

Several variations of the contour tree have been proposed in the literature. For
example, when resolving all multiple critical points into simple ones, Takahashi et
al. [Takahashi et al. 2004a] named the contour tree of a 3D scalar field as the volume
skeleton tree. Moreover, the contour tree may be enriched with further information
on all topological changes of the level sets by adding nodes that correspond to
critical values where not the number but the topology of the contours changes.
This tree was first introduced in [Pascucci and Cole-McLaughin 2002] with the
name of augmented contour tree, and renamed contour topology tree by [Chiang et
al. 2005] to avoid confusion with the augmented contour tree described in [Carr
et al. 2000], which denotes the refinement of the contour tree with the inclusion
of all isocontours traced at the vertices of the input mesh. Other variations of
the contour tree are the criticality tree [Cox et al. 2003], which corresponds to the
subpart of the contour tree that codes only the contour joins, and the topographic
change tree [Giertsen et al. 1990]. Finally, in the context of image processing,
analogous structures are the region-based contour tree [Mizuta and Matsuda 2005],
the component tree [Couprie and Bertrand 1997; Jones 1999], the fast level lines
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transform [Monasse and Guichard 2000], the max tree [Salembier et al. 1998] and
the scale-tree [Bangham et al. 1998a].

5.2 Computational aspects

Algorithms for the computation of contour trees first appeared in the field of spatial
data handling for coding the evolution of contour lines in topographic data. One of
the first papers on this topic considers the nesting relationships of a set of polygonal
contours manually extracted from a topographic map [Boyell and Ruston 1963].
The whole surface is enclosed by an outside region, so that each contour has an
inside and outside region. Nodes representing contours are added to the tree one
at time.

A more systematic approach to encode geographical data organized in a trian-
gulation was also proposed in [de Berg and van Kreveld 1997]. After ordering the
function values, the authors extract contours and keep track of their evolution by
sweeping the data set twice: first, from the highest to the lowest isovalue, and then
sweeping again in the reverse direction from the lowest to the highest. This method
is specialized for two-dimensional scalar fields and runs in O(n log n) operations,
where n is the number of vertices of the mesh. A simplification of the algorithm
and its extension to higher dimensions was proposed in [van Kreveld et al. 1997].
The complexity remains O(n log n) for two-dimensional scalar fields and becomes
O(N2) for higher dimensions, where N is the number of cell higher-dimensional
simplices of the mesh. In this class of methods, the vertices and the edges of the
tree are called super-nodes and super-arcs, while nodes are introduced along super-
arcs to represent regular points. The function f is supposed to be general in order
to guarantee that all super-nodes are simple, i.e., the function f is injective on
them. If f is not general, the original data are perturbed. The algorithm in [van
Kreveld et al. 1997] has been further improved for 3D scalar fields by Tarasov and
Vyalyi [Tarasov and Vyalyi 1998] by showing that the re-labeling process can also
be done efficiently in three dimensions (it requires O(N log N) operations), and by
extending the pre-processing of complex saddles.

Carr at al. [Carr et al. 2000; 2003; Carr 2004; Carr and Snoeyink 2007] propose a
generalization of the contour tree extraction for higher dimensions, which simplifies
and extends the method in [Tarasov and Vyalyi 1998]. In this case, contours are not
explicitly maintained and the pre-processing of the multi-saddles and of the surface
boundary is not required. In this approach, the two sweeps are used explicitly
to code the connectivity of the upper and lower level sets, {x : f(x) ≥ h} and
{x : f(x) ≤ h} according to the definitions in Section 3.1.5, in a join tree and a
split tree, which represent the connectivity of the two sets respectively, as shown in
Figure 16. Finally, the contour tree is assembled by picking local extrema from the
join and split trees and transferring them into a so-called augmented contour tree
that contains all mesh vertices. As an optional step, regular points may be removed
so that the contour tree is explicitly coded. The most efficient implementation of
this method requires O(C log C + Nα(N)) operations [Carr 2004], where C is the
number of nodes of the tree, N is the number of higher-dimensional simplices and
α is the inverse of the Ackermann function [Ackermann 1928].

In [Pascucci et al. 2004], the method in [Carr et al. 2000; 2003] is modified in
order to store the contour tree in a multi-resolution fashion. The contour tree is
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Fig. 16. The join tree and the split tree (left) of the contour tree (right) of the scalar field in
Figure 15.

hierarchically decomposed into a set of branches that may identify more nodes and
arcs. The decomposition is not unique but, once a hierarchy has been extracted,
it is possible to generate different approximations of the original tree by adding
branches to a root. To obtain this representation, the merge of the join and split
trees is modified considering as atoms of the operations the branches of the trees
instead of the leaves. In particular, branches to be inserted in the hierarchical
contour tree are selected according to a priority queue that measures the length
(i.e. the difference in function values of its end-points) of each branch. Even if the
algorithm requires a multi-resolution data structure, the procedure for computing
the hierarchical contour tree has the same complexity of [Carr et al. 2000], that is
O(N log N). However, this cost may be improved to O(N) by using a FIFO queue
instead of a priority queue, eventually generating a unbalanced tree, as discussed
in [Pascucci et al. 2004].

An algorithm that computes the contour tree for 2D and 3D scalar fields opti-
mally, both in space and time, has been proposed in [Chiang et al. 2005]. Here the
sweep algorithm described in [Carr et al. 2003] is slightly modified, combined with
an analytic approach and changed in the way the join and the split tree are obtained.
Instead of ordering all mesh vertices, Chiang et al. first characterize the critical
points, and then sort and connect them through monotone paths. The component-
critical points are identified through an initial unordered scan of the vertices that
analyses the neighborhood of each vertex. Only the component-critical points are
ordered, and this improves the computational complexity to O(N + c log c), where
N is the number of higher-dimensional simplices and c the number of component-
critical points of the mesh. Therefore the time complexity depends on the output
size. In particular, [Berglund and Szymczak 2004] proposed an encoding technique
that, beside the contour tree of the whole domain, is able to return also a repre-
sentation of the contour tree of its sub-domains.

Another extension of the algorithm in [van Kreveld et al. 1997] to 3D domains
has been proposed in [Pascucci and Cole-McLaughin 2002] and further extended
in [Pascucci and Cole-McLaughlin 2003]. In this case, the domain D is split into
subparts and the isosurfaces are separately processed using a parallel approach,
based on a divide-and-conquer paradigm. This paradigm is used to compute both
the join and the split trees (it is worth noticing that in these papers the notions
of join and split tree are used inversely from [Carr et al. 2003]). In addition, a
more detailed characterization of the contours is achieved coding the Betti numbers
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associated to each arc of the tree. Finally, the different trees are merged according
to adjacency of the subparts of D, eventually revising the Betti numbers of each
component. The resulting tree is called augmented contour tree because all the
critical points of the scalar field correspond to nodes of the tree and the contours
associated with an arc contain no critical points. The complexity of the algorithm
for a 3D regular mesh, that is a triangle mesh obtained from a regular grid, is
O(n + c logn) where n is number of vertices of the mesh and c is the number of
critical points. Even if the method works on meshes whose vertices do not lie on
a grid, the split of the mesh into subparts for the parallel computation does not
improve the complexity of this method, which still is O(n log n), see discussion in
[Chiang et al. 2005].

The method proposed in [Takahashi et al. 1995; Takahashi 2004] is devised for
building contour trees of two-dimensional scalar fields represented by a regular
grid, that is converted to a triangulation by splitting each cell with its diagonal;
more details on how to triangulate a regular grid are in Section 3.2.1. Note that
the authors refer to their contour structure as a Reeb graph. A surface network,
see Section 4.1, is extracted from the grid and used as intermediate structure for
constructing the contour tree. In fact, the authors prove that the contour tree
of a two-dimensional scalar field may be deduced by its surface network. This
method is mainly analytic because it identifies the critical points on the vertices
of the triangulation by analyzing the star of each vertex and simulates the paths
of steepest descent on the model. A global virtual minimum acts as the root of
the tree giving a unique interpretation of the surface behavior along its boundary.
The computational complexity of this algorithm was not stated by the authors, but
its analysis is given in [Chiang et al. 2005], where it is claimed that the method
requires O(N) operations for reading the data, O(nc) operation for finding the
paths and O(c2) time for constructing the tree, where N , n and c are respectively
the number of triangles, vertices and critical points of the mesh. This approach
has been extended to volumetric gridded data [Takahashi et al. 2004b] represented
by tetrahedral cells, using a voxel flow network as support during the contour
tree extraction instead of a surface network. Moreover, the method admitted the
removal of critical points whose relevance (in the sense of length of the adjacent arcs)
is irrelevant to describe the global topological structure of the volume. Even if the
authors do not provide the computational complexity of their algorithm, it seems
reasonable that the computational cost may be expressed with the same expression
as in the two-dimensional case, considering that the number N of triangles is related
also to tetrahedra. Finally, the method in [Takahashi et al. 2004a] combines three
approaches: the extraction of the contour tree in [Carr et al. 2003] is joined together
with the analysis of the genus of each isosurface component proposed in [Pascucci
and Cole-McLaughin 2002] and simplified according to the procedure described in
[Takahashi et al. 2004b].

The method proposed in [Itoh and Koyamada 1995] automatically detects a graph
from a three-dimensional mesh. The authors remove simplices (i.e. vertices, edges,
faces and tetrahedra) while preserving the connection between the mesh critical
points. In this case the nodes of the tree might differ from the critical points and
the edges are compound of a generic monotonic path between two nodes. However,
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this method is computationally efficient because it is linear and performs in O(n)
operations, where n is the number of mesh vertices.

The approach proposed in [Biasotti et al. 2000a] extracts a contour tree, called an
Extended Reeb Graph (ERG), from two-dimensional scalar fields described by a set
of isocontours. Starting from these contours, a Delaunay constrained triangulation
is built, forcing the isocontours (in the sense of both edges and vertices) to belong to
the mesh. The function f of the scalar field (in this case the height of the vertices) is
not required to be either Morse or simple and, therefore, the method can deal with
multi-saddles, plateaus and volcano rims. Similarly to [Takahashi et al. 1995], the
surface is virtually closed introducing a global virtual minimum. Since it is supposed
that all vertices in the mesh lie on contours, the authors use a characterization of the
triangles which is based on the number of vertices with the same elevation. Based
on this characterization, critical areas are defined as areas containing critical points.
Then, the tree is built using a region growing process that starts from the critical
areas, spreads them in all directions and completely covers the surface keeping
track of the contours crossed. Unlike the approach in [van Kreveld et al. 1997],
the region growing process is based on a visit of mesh triangles which is linear in
the number of triangles, O(N). Therefore, the computational complexity of the
method depends on the construction of the Delaunay triangulation constrained to
contours, that requires O(n log n) operations, where n is the number of vertices
of the isocontours in input. An extension of this approach has been proposed in
[Biasotti et al. 2004]: here the classification of the critical areas and the graph
construction do not require that the triangle mesh is originally constrained to the
level sets. However, the successive insertion of the contours in the mesh increases
the computational complexity of the method to O(max(m + n, n log n)), where n
is the number of vertices of the original mesh and m is the number of vertices
added during the insertion of the level sets (in the worst case m may be O(n2)).
The extension of the method to closed surfaces [Attene et al. 2001; 2003] and to
generic two-dimensional surfaces [Biasotti 2004b] is discussed in Section 6.2, which
is devoted to Reeb graphs.

Cox et al. [Cox et al. 2003] propose a variant of the contour tree called the crit-
icality tree which is based on the analysis of the isosurfaces without relying on the
classical Morse theory. In particular, the authors develop a discrete theory, called
digital Morse theory, in order to disambiguate the characterization of the isosurface
evolution on cubic grids and to include non-general functions. In practice, the criti-
cality tree proposed in this work is a join tree augmented by the component-critical
points rather than a contour tree. In fact the criticality tree stores the evolution
of the volumes that, starting from maxima, are bounded by the isosurfaces. These
volumes are denoted topological zones and are locally nested. Due to the need of
extracting the topological zones, the computational complexity of this method is
O(kN log(kN)), where N is the number of 3-cells and k is the length of the longest
path traversed in the tree.

In the field of image processing, several variations of the contour tree have been
adopted. The region-based contour tree proposed in [Mizuta and Matsuda 2005]
transposes the classical contour tree definition to gray-level images. The key idea
behind this method is that the changes in the isosurfaces (i.e. the variations in
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the number of connected components of pixels at a given gray-level) are directly
encoded in a tree. Therefore, the nodes of the tree correspond to regions of pixels.
The algorithm adopts an extraction procedure analogous to that proposed in [Carr
et al. 2003] which runs in O(p log p) operations, where p is the number of pixels
of the image. However, since the pixels assume only integer values, the authors
claim that, if the gray-level values vary between 8 and 16, a bucket-sort algorithm
to order the pixels would decrease the computational cost to be O(p).

The component tree, also known as confinement tree or dendrone [Jones 1999;
Couprie and Bertrand 1997; Mattes and Demongeot 2000], displays all image com-
ponents in a hierarchical sequence. Gray-levels are therefore piled one on the other
in a graph, which is a useful structure for further filtering. This hierarchy im-
plies that the component tree is a variation of the join tree rather than a contour
tree. This description has been successfully used for image segmentation and has
been proved to achieve better results in comparison with standard connected filters
[Breen and Jones 1996]. An efficient algorithm for the extraction of component
trees is proposed in [Mattes and Demongeot 2000] where the global computational
complexity performs in O(p log p) operations, where p is the number of pixels of
the image. Closely to the component tree, the Fast Level Lines Transform (FLLT)
codes the evolution of the connected components of the gray levels of an image
[Monasse and Guichard 2000]. Notice that the sorting of the components is ob-
tained checking the geometric inclusion of the level sets, thus discarding the arc
orientation induced by the increase/decrease of the gray-level intensity.

Another popular structure in image processing is the max-tree introduced by
Salembier et al. [Salembier et al. 1998], and its dual, the min-tree. Similarly to
component tree, the max-tree encodes in a tree the hierarchy of the connected level
set of pixels. The main difference between a component tree and a max-tree does not
involve the topology (i.e., the connection among the nodes), but the construction
process and the kind of information stored in each node. An efficient method
for storing and building the max tree has been proposed in [Huang et al. 2003].
This method performs in linear time in the number of pixels O(p) and combines
the dynamic allocation of the memory in a linked list with the node tree storage
provided by a hash table. The scale-tree in [Bangham et al. 1998b; Bangham et al.
1998a] is also based on the level-set image decomposition. In particular, the scale-
tree automatically selects a number of scales and codes the regions with slightly
different attributes, like their amplitude, shape and position so that the coding is
invertible.

More recently, the interest for time-dependent data sets has increased leading
to the introduction of methods for extracting the graph for time-varying models
[Szymczak 2005; Sohn and Bajaj 2006]. The main innovation of these methods is
not in the extraction algorithm itself (they refer to [Pascucci and Cole-McLaughlin
2003] and [Carr et al. 2003], respectively) but in the way contours of 2D and 3D
data sets join and split during a time interval. These methods also investigate the
relationships between the contour tree over the entire domain D and those restricted
to its sub-domains. Contour trees are computed in a pre-processing phase and the
focus is the definition of efficient structures and algorithms for the query execution.
For example, the computational complexity of the query algorithm in [Szymczak
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2005] is O(s(1 + log(t1 − t0))), where s denotes the maximum size of a contour tree
and t0, t1 are two time values. In [Sohn and Bajaj 2006] the correspondence between
the nodes of the contour tree is stored in a graph called a topology change graph
that supports visualization of contour evolution. The computational complexity for
extracting the topology change graph is O(n log n + N + (ct)

2ct+1), where n and
N are respectively the number vertices and tetrahedra of the mesh and ct is the
number of critical points of f at time t.

A summary of methods for contour tree extraction is proposed in Table IV.

Contour tree

Approach Method Domain Costs

2D 3D nD

[Boyell and Ruston 1963] Manual X –

[Itoh and Koyamada 1995] Erosion X X O(n)

[de Berg and van Kreveld 1997] Sweep X O(N log N)

[van Kreveld et al. 1997; 2004] Sweep1 X X O(N log N) / O(N2)

[Tarasov and Vyalyi 1998] Sweep X X O(N + n log n)

[Carr et al. 2000; 2003] Sweep2 X X X O(N log N)
[Carr 2004] O(C log C + NαN)

[Pascucci et al. 2004] Sweep3 O(N log N)
O(N)

[Chiang et al. 2005] Sweep X X O(N + c log c)

[Pascucci and Cole-McLaughin 2002] Sweep4 X X O(n + c log n) /
[Pascucci and Cole-McLaughlin 2003] O(n log n)

[Takahashi et al. 1995] Analytic X O(N)+O(nc) + O(c2)
[Takahashi 2004] X

[Takahashi et al. 2004b] Analytic X O(N)+O(nc) + O(c2)

[Biasotti et al. 2000a] Contours X O(n log n)

[Biasotti et al. 2004] Contours X O(max(m + n, n log n))

[Cox et al. 2003] Isosurfaces X O(kn log(kn))

[Mizuta and Matsuda 2005] Level sets5 2D Images O(p log p)

[Mattes and Demongeot 2000] Level sets 2D Images O(p log p)

[Bangham et al. 1998b] Level sets 2D Images O(p log p)
[Bangham et al. 1998a]

[Huang et al. 2003] Level sets 2D Images O(p)

Table IV. Classification of the methods for extracting the contour tree. Symbols: N is the number
of higher-dimensional simplices or cells; n is the number of vertices or points; m is the number of
vertices inserted in the mesh during contouring phases; c is the number of critical points; C is the
number of tree nodes; α is the inverse of the Ackermann function; k is the length of the longest
path traversed in the tree and p is the number of pixels. Note that, in the 2D case, N = O(n).

1The complexity is, respectively, O(N log N) for 2D and O(N2) for 3D domains.
2The method is essentially the same in both papers. The cost improvement is due to a more
efficient implementation of the data structures.
3The complexity of this method depends on the use of a FIFO or a priority queue.
4The complexity of this method varies if considering regular or simplicial meshes.
5The complexity of the method may decrease to O(p) if the range of pixel values is between 8 and
16.
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5.3 Applications

The original application of contour trees was in topography [Boyell and Ruston
1963], Geographic Application System (GIS) applications [Takahashi et al. 1995;
Takahashi 2004] and surface analysis and understanding [Biasotti et al. 2000a;
2004]. Another possible application is shape matching and retrieval [Zhang et al.
2004].

As far as three-dimensional scalar fields are concerned, the main applications of
contour trees are image processing and analysis of volume data sets [Cox et al. 2003;
Takahashi et al. 2005], volume simplification [Chiang and Lu 2003; Carr et al. 2004;
Weber et al. 2007], automatic isosurface propagation [Itoh and Koyamada 1994;
1995; Itoh et al. 2001] and scientific visualization [Pascucci and Cole-McLaughin
2002; Pascucci 2004; Cox et al. 2003; Takahashi et al. 2004b]. Recently, Bajaj et al
[Bajaj et al. 2007] used the contour tree for molecular data analysis. The scalar field
for the contour tree extraction is defined by the distance function from the surface
of the molecule, that is able to detect the secondary structural motifs of a protein
molecule [Bajaj and Goswami 2006]. This allows the identification of tunnels and
pockets of the molecule. Finally, contour trees in higher dimensions apply to X-ray
analysis and visualization [Carr et al. 2003] and to scientific visualization [Pascucci
2004].

The contour tree is an effective tool for representing the abstract structure of
the scalar field with an explicit description of the topological changes of the level
sets. Beside the contour spectrum [Bajaj et al. 1997], that is a set of geometric
measures (like length, area, gradient integral, etc.) that are computed over the
level sets of the scalar field, the contour tree has been proposed as an element of
an user interface able to drive interactive data exploration sessions [Kettner et al.
2003; Carr and Snoeyink 2003; Carr 2004; Takahashi et al. 2005].

In practical applications, the fact that most of the algorithms extract a represen-
tation that may be overwhelming in size and that a planar embedding of the tree
may generate many self-intersections has limited the use of the contour tree. To
overcome the problem of the size of the graph, the work in [Pascucci et al. 2004]
proposes a method for extracting a multi-resolution contour tree and visualizing the
tree subparts, that are called branches. Since a branch of the tree may be drawn as
a chain of connected arcs, branches are sorted according to their importance into
the contour tree and progressively rendered. The representation of the tree is em-
bedded into the 3D space by moving each node to a z value that corresponds to the
value of the scalar field in that node. In addition, 2D self-intersections are avoided
using the algorithm for rooted trees proposed in [di Battista et al. 1999]. More
recently, these branches have been used to topologically simplify the rendering of
complex volumetric data sets [Carr et al. 2004; Weber et al. 2007].

In the field of image processing, contour trees [Mizuta and Matsuda 2005; Turner
1998] and their variations [Jones 1999; Monasse and Guichard 2000; Salembier et al.
1998; Bangham et al. 1998a] have been mainly used for optimizing the coding and
the manipulation of images and their meaningful components. While the topology
of image surfaces is simple (an image may be easily represented as a scalar field
whose scalar function is provided by the gray-level intensity), the configuration of
contour trees provides an interesting support for many filtering and segmentation
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operations. In particular, the max tree has been adopted in a number of Computer
Vision problems including stereo matching, image filtering, segmentation and in-
formation retrieval.

6. REEB GRAPHS

Similar to contour trees, the main idea behind Reeb graphs is to encode the evo-
lution and the arrangement of the level sets of a real function defined on a shape.
While the definition and use of contour trees developed mainly as an answer to com-
putational issues, Reeb graphs have a more theoretical nature. They originated in
1946 in the work of a French mathematician, George Reeb. In recent years, Reeb
graphs have become popular in Computer Graphics as tools for shape description,
analysis and comparison.

Reeb graphs present a framework for studying the shape of a manifold: here the
shape exists by itself and the function used to study its shape can be arbitrarily
chosen. Different functions can be used for extracting a structure that effectively
codes the shape from both a topological and geometrical perspective. Topology
here means that the shape can be described as a configuration of parts that are
attached together respecting the topology of the shape, while geometry means that
the different parts correspond to features of the shape, as embedded into the Eu-
clidean space, that have specific properties and descriptive power (e.g., protrusions,
elongated parts, wells).

6.1 Theoretical aspects

Reeb graphs were first defined by Georges Reeb in 1946 [Reeb 1946] as topological
constructs. Given a manifold M and a real-valued function f defined on M , the
simplicial complex defined by Reeb, conventionally called the Reeb graph, is the
quotient space defined by the equivalence relation that identifies the points belong-
ing to the same connected component of level sets of f . Under some hypotheses
on M and f , Reeb stated the following theorem, which actually defines the Reeb
graph.

Theorem 6.1. Let M be a compact n-dimensional manifold and f a simple2

Morse function defined on M , and let us define the equivalence relation “∼” as
(P, f(P )) ∼ (Q, f(Q)) iff f(P ) = f(Q) and P , Q are in the same connected com-
ponent of f−1(f(P )).

The quotient space on M ×R induced by “∼” is a finite and connected simplicial
complex K of dimension 1, such that the counter-image of each vertex ∆0

i of K
is a singular connected component of the level sets of f , and the counter-image of
the interior of each simplex ∆1

j is homeomorphic to the topological product of one
connected component of the level sets by R [Reeb 1946; Ehresmann and Reeb 1944].

Reeb also demonstrated the following theorems, which clarify the relations be-
tween the degree, or order, of the vertices of the simplicial complex K associated
with the quotient space and the index of the corresponding critical point.

Theorem 6.2. The degree of a vertex ∆0
i of index 0 (or n) is 1 and the index

of a vertex ∆0
i of degree 1 is 0 or n.

2A function is called simple if its critical points have different values
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Theorem 6.3. If n ≥ 3 the degree of vertices ∆0
i of index 1 (or n − 1) is 2 or

3. If n = 2 the degree of vertices ∆0
i of index 1 is 2, 3, or 4. The degree of vertices

∆0
i of index different from 0, 1, n − 1, or n is 2.

In other words, the first theorem states that leaf nodes of K can be either maxima
or minima of f , while from the second theorem we can deduce that, for 2-manifolds
that can be embedded in R

3, the degree of vertices representing saddles is always
3, see Section 3.1.5.

To the extent of our knowledge, Reeb graphs were first introduced in Computer
Graphics by Shinagawa et al. [Shinagawa et al. 1991] and the term Reeb graph is
used to identify the simplicial complex associated with the quotient space. As a
consequence of their ability to extract high-level features from shapes, since their
introduction in Computer Graphics Reeb graphs have been gaining popularity as
an effective tool for shape analysis and description tasks, especially in case of 2-
manifolds.

The Reeb graph has been also used for the analysis of 3-manifolds with boundary.
In this case the structure of the 3-manifold is studied either by introducing a virtual
closure of the manifold [Edelsbrunner et al. 2004], or by associating a Reeb graph
to each 2-manifold boundary component of the 3-manifold and keeping track with
a supplementary graph of the changes between interior and void [Shinagawa et al.
1991; Shattuck and Leahy 2001].

For orientable, closed 2-manifolds, the number of cycles in the Reeb graph cor-
responds to the genus of the manifold, and this result has been generalized in
[Cole-McLaughlin et al. 2003], where the authors demonstrate that the number
β1(M) of non-homologous loops of the surface is an upper bound of the number of
loops β1(K) of the Reeb graph. The equality holds in case of orientable surfaces
without boundary [Cole-McLaughlin et al. 2003], while, in general, the following
relation holds:

g ≤ β1(K) ≤ 2g + bM − 1,

where bM denotes the number of boundary components of the 2-manifold M having
genus g. Theoretical results are available for non-orientable 2-manifolds. In this
case, the number of loops of the Reeb graph verify the following relations: 0 ≤
β1(K) ≤ g

2 when M is closed, and 0 ≤ β1(K) ≤ g + bM − 1 for manifolds with
boundary.

As for 3-manifolds, it is not true that the number of the loops of an orientable,
closed 3-manifold is independent of the mapping function f . In addition, it has
been proven that for every 3-manifold M there exists at least one Morse function
f such that the Reeb graph of M with respect to f is a tree [Cole-McLaughlin et
al. 2003].

The extension of Reeb graphs to shapes defined by piecewise linear approxima-
tions has been studied by several authors. For example, in [Biasotti 2004a] the
definition of Reeb graph was extended to triangle meshes representing 2-manifolds
embedded in R

3, with or without boundary, and which admit degenerate critical
points. The relationship between the genus of the mesh and the cycles in the ex-
tended Reeb graph is maintained, as discussed in [Biasotti 2004a; 2004b]. On the
basis of this representation, a further extension of the domain of the Reeb graph
to point clouds was proposed in [Werghi et al. 2006], defining a so-called discrete
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Reeb graph.
Figure 17 shows two examples of Reeb graphs of a closed surface. In Figure 17(a)

some level sets of the height function are drawn with the corresponding Reeb graph;
in Figure 17(b) the Reeb graph of the same object is shown using the Euclidean
distance from a point.

(a) (b)

Fig. 17. Reeb graph with respect to the height function (a) and to the distance from a point (b).

6.2 Computational aspects

Several algorithms have been proposed for the computation of the Reeb graph
of closed surfaces, while only a few algorithms deal with 3-manifolds, higher-
dimensional or time-dependent data.

The first algorithm, proposed by Shinagawa et al. [Shinagawa and Kunii 1991],
automatically constructs the graph from surface contours generated by the height
function. Since the contour ordering proposed in [Boyell and Ruston 1963] is not
suitable for manifolds without boundary, a weight function, which depends on the
average distance between the vertices of two different contours, is defined for each
pair of contours lying on adjacent (consecutive) level sets. First, the algorithm
automatically generates most of the arcs of the Reeb graph where the number of
contours of two consecutive cross sections is one. Then the rest of the graph is
determined by using the weight function and a priori knowledge of the surface
genus. Specifically, the graph is completed by adding edges in decreasing order of
the weight between contour pairs, so that the genus of the graph preserves that
of the original surface. The main drawbacks of this algorithm are the need for a
priori knowledge of the genus of the surface and the fact that this procedure is
limited to contour levels of the height function. In addition, since this algorithm
loses the shape information between two consecutive cross sections, the frequency
of the contours of the surface is critical; therefore, a reasonable computation of the
graph requires a high number of surface slices and it is time and space consuming
(O(n2), where n represents the total number of vertices of the scattered contours).
To deal with models with cavities, Shinagawa et al. encoded the Reeb graphs of
both the shape and its complement. Similar considerations on the evolution of the
model and its complement have been proposed in [Shattuck and Leahy 2001] to
define a method for the extraction of a topological graph for cortical volume data.

The method proposed in [Hilaga et al. 2001] provides a multi-resolution Reeb
graph (MRG) representation of triangle meshes which is independent of the object
topology. The construction of the MRG begins with the extraction of the graph at
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the finest resolution desired, then adjacency rules are used to complete the multi-
resolution representation in a fine-to-coarse order. First of all, the domain of the
mapping function is divided into a number of intervals and triangles whose image
under f lies in two intervals are subdivided so that the image of every triangle
belongs to only one interval. Second, the triangle sets, that is the sets of connected
components of triangles whose images belong to the same interval, are calculated.
A node of the graph is associated with each triangle set and arcs are detected
by checking the region adjacency of triangle sets. It is worth noticing that this
contouring approach induces a quantization of the interval of f that, although it
may locally amend the local topological noise, does not guarantee that the number
of loops of the MRG equals the number of holes of the surface. Once the function
f has been evaluated on the vertices of the mesh and triangles have been split, the
Reeb graph extraction requires O(n+m) operations, where n represents the number
of triangles of the original mesh and m represents the number of triangles inserted
during the subdivision phase. Notice that the evaluation of the function f may
be a computationally expensive step. For example, the exact computation of the
geodesic function proposed in [Hilaga et al. 2001] requires O(n2 log n) operations,
while its approximation runs in O(kn log n), where k is a user-defined constant
(usually greater than 150). In Figure 18 an example of the Reeb graph construction
method proposed in [Hilaga et al. 2001] is shown; in this case the domain of f is
subdivided in 4 intervals. The contour insertion in Figure 18(b) determines a set
of mesh regions that correspond to the graph nodes in Figure 18(c), while their
adjacency originates the arcs of the graph (see Figure 18(d)).

(a) (b) (c) (d)

Fig. 18. Pipeline of the multi-resolution Reeb graph extraction in [Hilaga et al. 2001].

A general algorithm for the Reeb graph extraction of 2-manifolds with or without
boundary represented by a simplicial complex was proposed in [Cole-McLaughlin et
al. 2003]. This approach also works for non-orientable models, like the Klein bottle.
The basic assumption here is that the mapping function is Morse and simple, so
that critical points have pairwise different function values. Then, the Reeb graph
is constructed by storing the level sets while sweeping the domain of the function.
To identify the critical points, the star of each vertex is classified according to the
approach in [Edelsbrunner et al. 2003b]. Once critical points have been detected, all
vertices of the model are processed according to the increasing value of the function
f and the evolution of level sets is tracked. Since operations are done on the edges,
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the complexity of the algorithm is O(n log n), where n is the number of edges of
the complex.

Recently, Pascucci et al. [Pascucci et al. 2007] proposed an algorithm able to
compute efficiently the Reeb graph of simplicial complexes of arbitrary dimension.
This algorithm is based on the assumption that the Reeb graph of the simplicial
complex is equivalent to the Reeb graph of its 2-skeleton. This assumption implies
that the structure obtained from this algorithm slightly differs from the original
definition given by Reeb [Reeb 1946] because it is not able to distinguish changes
in the topology of the isosurfaces. For instance, the 2-skeleton of a simplicial
complex of dimension 3 is not sensitive to the inner cavities of the model. The
usage of a stream approach eliminates the need of an initial ordering of the mesh
vertices, allows a progressive computation of the graph able to encode very large
models and provides a way to compute a run-time simplification of Reeb graph
loops based on their relevance. To achieve these tasks, two structures are used: one
for the input 2-skeleton and the other for the Reeb graph. These two structures
are related to each other and, when a new element is inserted in the 2-skeleton, the
Reeb graph is consequently updated by creating new nodes and arcs and merging
of two paths. In particular, two paths are merged if, during the progressive visit
of the 2-skeleton, a hole is filled or a loop is removed from the Reeb graph. The
computational complexity of the algorithm is still O(n log n), where n represent the
number of vertices, which is the theoretical lower bound complexity for the Reeb
graph extraction. However, the usage of the stream approach makes this method
efficient in practice, allowing a fast computation of the Reeb graph also on large
meshes.

The Extended Reeb Graph (ERG) representation proposed in [Attene et al. 2001;
2003; Biasotti 2004a] is able to represent a surface with or without boundary
through a finite set of contour levels of a given mapping function f . Besides the
combinatorial representation of the graph, the ERG is embedded in R

3 by associat-
ing with each node the position of the barycenter of the corresponding region and
visualized as a centerline skeleton of M . By considering a partition of Im(f) based
on a finite number of values of f (f -values) provided in input, an extended form of
Reeb equivalence relation is defined as the equivalence that identifies all points that
are in the pre-image of an interval, or an f -value, and belong to the same connected
component of the model. The ERG extraction is based on a generalized surface
characterization aimed at a region-oriented rather than a point-oriented classifica-
tion of the behavior of the surface. Since the level sets decompose M into a set
of regions, the behavior of their boundaries is used for detecting regular or critical
areas and for classifying them as maximum, minimum and saddle areas. Critical
areas correspond to nodes of the graph. Then arcs between nodes are detected
through an expansion process of the critical areas, which tracks the evolution of
the contour lines. Since the ERG considers critical areas instead of critical points,
it is also able to deal with degenerate configurations, such as volcano rims [Biasotti
et al. 2004]. In [Biasotti 2004b], the method was extended to surfaces having an
arbitrary number of boundary components. To obtain a minimal (in the sense of
graph loops) representation of the ERG, this algorithm virtually closes all bound-
ary components, as detailed in [Biasotti 2005]. In Figure 19 the main steps of the
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ERG extraction process are depicted: first, the arcs between minima and saddles
and between maxima and saddles are inserted, expanding all maxima and minima
to their nearest (in terms of region expansion) critical area; then the other arcs are
detected. The computational cost of the whole algorithm for the ERG extraction
mainly depends on the insertion of the contours in the triangle mesh, which requires
O(n log n) operations, and the region growing process, which is linear. Therefore,
the computational cost of the overall graph construction is O(max(m + n, n logn))
where m is the number of vertices inserted in the mesh during the slicing phase (in
the worst case m is O(n2)).

An extension of the ERG definition to unorganized point clouds of 3D scan data
that represent a human body has been proposed in [Werghi et al. 2006]. Since a
polygonal mesh is not available, a surface is implicitly defined by assuming that
the Euclidean distance among a point p and its closest point q is smaller than a
given threshold ǫ. Point sets whose sampling is sufficiently fine are connected in a
discrete sense. Therefore, level sets are defined as points that share the same value
of a mapping function and are connected in the discrete sense. The resulting graph
is called the Discrete Reeb Graph (DRG). Once a set of level sets has been detected,
the graph is progressively constructed visiting all points that are linked with respect
to the threshold ǫ. The declared complexity of the graph computation mainly
depends on the extraction of the level sets, which requires O(nk2) operations, where
n is the number of points and k is the average of the points contained in the
neighborhood of each point.

(a) (b) (c)

Fig. 19. Pipeline of the ERG extraction: the recognition of the critical areas (a), the expansion
of maxima and minima (b) and the complete graph (c).

The approach proposed in [Wood et al. 2004] works on volume data. In this
case, the data are swept with a plane that generates a sequence of slices, which
are formed by the sets of grid elements bounded by two adjacent isosurfaces. Each
connected component of a slice is called a ribbon while the contours are given by the
intersection of the isosurfaces with a set of slicing planes. The graph described in
this approach is called an augmented Reeb graph because it also encodes geometric
information for each contour and each ribbon. The traversal is analyzed at discrete
z intervals of the volumetric grid along the boundary of a distance function and
may be done out-of-core on the dataset. Isosurfaces are analyzed one slice at time
and contours are constructed by searching from an arbitrary edge in the plane until
the contour is closed. Similarly, ribbons are constructed through a breadth-first
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traversal of the slice elements, starting from the polygons adjacent to a contour
until the connected component is completely detected. Both ribbons and contours
correspond to nodes of the Reeb graph while their adjacency is coded in the edges.
To avoid an object handle being completely contained within a ribbon, the Euler
characteristic of each isosurface component is computed and, possibly, the sweep is
locally refined. In this way the topology of the volume is completely coded and, in
each interval, the Reeb graph structure corresponds to the Euler characteristic of
the object ribbons.

In the analogous context of 3D binary images represented by voxel models, a
graph similar to the Reeb graph has been proposed in [Shattuck and Leahy 2001].
Since in a volume model configurations with internal cavities are not fully described
by the shape boundary, the 3D image is embedded in its bounding box and the
graphs are extracted for both the object and its complement. A point is associated
with each section. For each direction x, y and z, a foreground connectivity graph
G is extracted. Since cycles are not admitted in the final graph (because cycles
denote inner cavities and handles of the model to be removed as noise), a maximum
spanning tree is computed to select the set of arcs that should be eventually removed
from G. Then, graph tests are performed to simplify the graph until all cycles are
removed. Although the computational cost of this algorithm was not provided by
the authors, the computation of the maximum spanning tree seems to be the most
time consuming operation. Therefore, the complexity of this method is O(v log v),
where v represents the number of voxels of the cortical volume.

The hyper Reeb graph proposed in [Fujishiro et al. 1999; Fujishiro et al. 2000]
deals with 3D volume fields. The main concept behind this description is the
representation of the isosurfaces of a volume in terms of their Reeb graphs, and the
detection of the topology changes of these isosurfaces through the modifications of
their Reeb graphs. Once the volume data set is swept in the height direction and
a Reeb graph has been extracted for each isosurface, this collection of graphs is
encoded in a hyper graph, whose nodes correspond to the Reeb graphs. The Reeb
graph of a single isosurface is extracted from the surface network of the isosurface
extending the algorithm proposed in [Takahashi et al. 1995] for two-dimensional
scalar fields. This computation costs O(N) + O(nc) + O(c2) operations where N
and n represent the number of faces and vertices of the mesh and c is the number
of its critical points (see Table IV in Section 5.2). Therefore, the computational
complexity of the hyper Reeb graph is quite significant and depends on the number
of isosurfaces taken into account.

Centerline skeletons play a relevant role in Computer Graphics and Vision, be-
cause they represent a manner to reduce a complex 3D shape to a simple one-
dimensional geometric abstraction [Lam et al. 1992; Cornea et al. 2005]. In gen-
eral, centerline skeletons are related to the medial axis in the sense that they yield
a shape description that always falls inside the shape and aims to be in the middle
of the volume enclosed by a surface [Biasotti et al. 2007a; Siddiqi and Pizer 2007].

A formal definition of curve-skeletons, which is valid for surfaces without bound-
ary, was proposed in [Dey and Sun 2006] on the basis of the distance function from
a volume boundary. Here the curve-skeleton is defined as the set of points of the
medial axis that are singular with respect to a medial geodesic function. More
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formally, given a space O ⊂ R
3 bounded by a connected manifold surface M , let

MA, MA ⊂ O, be the medial axis of O. Two subsets of MA are defined, namely
MA2 and MA3. MA2 is the set of points whose maximal inscribed balls touch the
surface M at exactly two distinct points. MA3 is constituted by curves lying at
the intersection of the closure of three sheets in MA2. The maximum balls lying on
points of MA3 touch the surface M at three points. A Medial Geodesic Function
(MGF) is defined on MA2 and MA3. At a point x ∈ MA2, MGF is the length of
the geodesic path between two points at the intersection of the surface M with the
maximum ball centered in x. The definition of MGF is extended to each point of
MA3 on the basis of the values that MGF assumes in the three half-disks of MA2

around the point. The medial geodesic function is used to define the curve-skeletons
of the two subsets MA2 and MA3. The curve skeleton Sk2 of MA2 is the set of
singular points of MGF on MA2. The curve skeleton Sk3 of MA3 is the set of
points where the gradient flow of MGF sink into from the three local neighbors.
Finally, the curve-skeleton of the space O is defined as the closure of Sk2 ∪ Sk3.
Since the exact computation of the curve-skeleton is extremely hard, it is approx-
imated by adopting a rough evaluation of the function MGF on the centers of the
medial axis facets and a polygonal approximation of the medial axis.

The curve-skeleton and, in general, centerlines related to the concept of medial
axis provide a shape description which is unique and independent of other functions
defined on the shape. Therefore, these descriptions yield a geometric centerline of
the shape rather than a topological one. On the other hand, the spatial embedding
of the Reeb graph of a surface is often regarded as a topological centerline skeleton.
In this case, each contour may be visualized through its centroid.

In addition, various methods adopt a centerline encoding that can be related
to Reeb graphs, even if they do not explicitly originate from the Reeb graph def-
inition. These approaches generally do not require the mapping function to be
general nor simple and, differently from the centerlines based on the distance func-
tion, act as topological centerlines. The construction of the Level Set Diagrams
(LSD) from triangulated polyhedra proposed in [Lazarus and Verroust 1999] uses
Euclidean distances for wave propagation from a seed point. An heuristic detects a
point at the top of a protrusion on the basis of the geodesic distance. This source
point automatically determines a privileged “slicing direction”. In this approach, a
skeleton-like structure, available for input objects of genus zero, is proposed, which
is essentially a tree made of the average points (in the sense of centroids) associated
with the connected components of the level sets of the geodesic distance from the
source. The resulting skeleton is invariant under rotation, translation and uniform
scaling (see Figure 20). The method in [Axen 1999] follows the same approach
replacing Euclidean distance with topological distance.

An extension of the approaches in [Axen 1999] and [Lazarus and Verroust 1999]
to non-zero genus surfaces was presented in [Hetroy and Attali 2003]. In this case,
the evaluation of the measuring function, the mesh characterization (based on local
criteria) and the construction of the graph are performed at the same time using
Djikstra’s algorithm. A similar approach was introduced in [Wood et al. 2000] for
implicit storage of meshes obtained from distance volumes. In this case the graph
extraction is driven by the evolution of the isosurfaces of the geodesic distance
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from a single point. In fact, the object topology is reconstructed by considering a
wavefront-like propagation from a seed point by applying Dijkstra’s algorithm. The
cost complexity of these methods, all of which require the vertices to be sorted, is
O(n log n), where n is the number of vertices of the mesh.

Finally, the application of the approach in [Lazarus and Verroust 1999] to point
clouds was proposed in [Verroust and Lazarus 2000]. The algorithm runs in O(e +
n log n), where e is the number of edges in the neighborhood graph and n is the
number of points.

(a) (b) (c)

Fig. 20. Level sets (a) and the centerline (b,c) of an horse using the geodesic distance from a
source point as proposed in [Lazarus and Verroust 1999].

The method in [Mortara and Patané 2002] uses the multi-resolution curvature
evaluation proposed in [Mortara et al. 2004] to locate seed points that are subse-
quently used during the geodesic expansion. Seed points, also called representa-
tive vertices, are sequentially linked by using a wavefront traversal defined on the
simplicial complex (see Figure 21(a,b)). Once a set of representative vertices is se-
lected, rings made of vertices of increasing neighborhoods are computed in parallel
until the whole surface is covered (see Figure 21(c)), in a way similar to the wave-
traversal technique [Axen and Edelsbrunner 1998]. Rings growing from different
seed points will collide and join where two distinct protrusions depart, thus iden-
tifying a branching zone; self-intersecting rings can appear when expanding near
handles and through holes. A skeleton is drawn according to the ring expansion:
terminal nodes are identified by the representative vertices, while union or split of
topological rings give branching nodes. It is worth noticing that the terminal nodes
of the graph have degree 1. Arcs are drawn joining the center of mass of all rings
(see Figure 21(d)). Therefore, the complexity of the proposed graph, in terms of
number of nodes and branches, depends on the shape of the input object and on
the number of seed points which have been selected using the curvature estimation
criterion. The number of operations needed for extracting the skeleton is O(n)
in the number of mesh vertices (each vertex is visited once) even if an accurate
evaluation of the high curvature points may require O(n2) operations. In addition,
this curve-line representation has at least as many cycles as the number of holes
of the surface; however, some unforeseen cycles may appear as a result of colliding
wavefronts.

Time-varying data are not always best dealt with by means of a function defined
over four equivalent dimensions. In practice, most four-dimensional data consist
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(a) (b) (c) (d)

Fig. 21. (a) Vertex classification based on Gaussian curvature; (b) high curvature regions are
depicted in red; (c) topological rings expanded from centers of high curvature regions; (d) the
graph obtained as proposed in [Mortara and Patané 2002].

of time-slices of three-dimensional data that can be treated with a refinement of
3D algorithms. An algorithm for studying the evolution of the Reeb graph when
the mapping function varies with time is proposed in [Edelsbrunner et al. 2004].
To simplify the topological complexity of the space, a point at infinity is added.
In this way the space becomes topologically equivalent to the 3-sphere and each
Reeb graph will be equivalent to a tree. In this framework, the time is represented
by a conventional priority queue that stores birth-death and interchange events,
that are prioritized by the moments in time they occur. Once a Reeb graph is
computed, the evolution of the graph over time is detected using a Jacobi curve
that collects the birth-death points and maintains the occurrence of a new event. A
data structure is used to store the entire evolution. The computational cost of this
algorithm, O(N + En), depends on the number N of simplices of the triangulation
of the space-time data, the upper number n of simplices at a time t and the amount
E of birth-death and interchange events.

Table V summarizes the algorithms for Reeb graph computation surveyed here.

6.3 Applications

First introduced in Computer Graphics by Shinagawa et al. [Shinagawa et al.
1991], Reeb graphs were initially used only for Morse mapping functions and their
extraction required a priori knowledge of the object genus [Shinagawa and Kunii
1991].

Application fields related to the use of Reeb graphs include surface analysis and
understanding [Shinagawa et al. 1991; Attene et al. 2003]; identification of topolog-
ical quadrangulations [Hetroy and Attali 2003]; data simplification [Biasotti et al.
2002]; animation [Kanongchaiyos and Shinagawa 2000; Xiao et al. 2003]; surface
parameterization [Steiner and Fischer 2001; Patané et al. 2004; Zhang et al. 2005]

1Once a set of seed points has been recognized, the complexity of the skeleton extraction is linear
in the number of mesh vertices but an accurate evaluation of the high curvature points requires
O(n2) operations.
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Reeb graph

Approach Method Domain Costs

2D 3D nD

[Shinagawa and Kunii 1991] Contours X X O(n2)
[Shinagawa et al. 1991]

[Hilaga et al. 2001] X
[Bespalov et al. 2003] Contours O((n + m))

[Tung and Schmitt 2004]

[Attene et al. 2001; 2003] Contours X O(max(m + n, n log n))
[Biasotti 2004b; 2005]

[Cole-McLaughlin et al. 2003] Analytic X O(n log n)

[Pascucci et al. 2007] Analytic X X X O(n log n)

[Axen 1999]
[Lazarus and Verroust 1999] Contours X O(n log n)

[Hetroy and Attali 2003]

[Mortara and Patané 2002]1 Contours X O(n)

[Wood et al. 2000] X O(n log n)

[Wood et al. 2004] Contours X O(n log n)

[Shattuck and Leahy 2001] Contours X O(v log v)

[Verroust and Lazarus 2000] Contours Point clouds O(e + n log n)

[Werghi et al. 2006] Contours Point clouds O(n)

Table V. Classification of the methods for Reeb graph extraction. Symbols: n represent the
number of vertices or points; m the number of vertices inserted in the mesh during a possible
contouring phase; e the number of edges in the neighborhood tree; v the number of voxels.

and remeshing [Wood et al. 2000]; shape [Berretti et al. 2006] and human body
[Werghi et al. 2006] segmentation; approximation and modification of the input
geometry [Shinagawa and Kunii 1991]; object reconstruction [Biasotti et al. 2000b]
and editing where the stored information is exploited for shape recovering. More-
over, the knowledge of the shape topology given by the graph structure improves
the surface reconstruction from contour lines [Biasotti et al. 2000b], thus solving the
correspondence and the branching problems. Details on this topic may be found in
[Fuchs et al. 1977; Meyers et al. 1992; Oliva et al. 1996].

The compactness of the one-dimensional structure, the natural link between the
function and the shape, and the possibility of adopting different functions for de-
scribing different aspect of shapes have led to a massive use of Reeb graphs for
similarity evaluation, shape matching and retrieval [Hilaga et al. 2001; Biasotti
et al. 2003]. In [Hilaga et al. 2001] the Reeb graph is used in a multi-resolution
fashion for shape matching. The ratio of the area and the length of the model
sub-part in the whole model are associated with each node, i.e. shape slice, and
are used as attributes during the graph-matching phase. The set of the geometric
attributes is further enriched in [Tung and Schmitt 2005], where, for each slice, the
authors consider the volume, a statistic measure of the extent and the orientation
of the triangles, an histogram of the Koenderink shape index, which provides a
representation of the local shape curvatures [Koenderink 1990], and a statistic of
the texture. In particular, [Tung and Schmitt 2004] shows how the performance for
shape retrieval improves when these geometric attributes are added to nodes of the
multi-resolution graph structure. Finally, the method in [Hilaga et al. 2001] has
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been successfully applied also to database retrieval of CAD models as proposed in
[Bespalov et al. 2003].

The application of the extended Reeb graph to database retrieval has been ad-
dressed in [Biasotti et al. 2003] and discussed in the context of CAD models in
[Biasotti and Marini 2005]. The decomposition into significant regions induced by
the ERG defines a structural description of the shape, which is coupled with an
error-correcting subgraph isomorphism to build up a shape retrieval system. In
particular, the proposed graph matching framework makes it possible to plug in
heuristics for tuning the algorithm to the specific application and for achieving dif-
ferent approximations to the optimal solution. In [Biasotti et al. 2006] the authors
discuss a method for measuring the similarity and recognizing sub-part correspon-
dences of 3D shapes, based on the coupling of a structural descriptor, like the ERG,
with a geometric descriptor, like spherical harmonics. In the same paper it is dis-
cussed how a structure-based matching can improve the retrieval performance in
terms of both functionalities supported (i.e., partial and sub-part correspondences)
and the variety of shape descriptions that can be used to tune the retrieval with
respect to the context of application. Recently, the ERG has been adopted to
compare sets of 3D objects and results have been shown in two databases of 80
3D scenes, respectively made of 2 and 3 objects [Paraboschi et al. 2007]. In this
case, the ERGs of the objects in a scene are grouped in a scene graph obtained by
connecting each ERG to a virtual node and the distance between two scene graphs
is defined as a measure on the graph spectrum.

In the field of regularly sampled 3D grids of scalar values (that is a volume model
in which each grid cube has 8 neighbor grid points), the method proposed in [Wood
et al. 2004] topologically simplifies and repairs the topological noise that affects large
scattered datasets. Similarly, the method in [Shattuck and Leahy 2001] analyzes,
and eventually corrects, the topology of cortical volumes because it is assumed that
cortical volumes are homeomorphic to a sphere and no cycles are expected in the
graph representation.

Similarly, the method proposed in [Pascucci et al. 2007] has been used to find
and highlight small defects, such as small manifold handles and tunnels, in models
of arbitrary dimension. Since these features correspond to loops of the Reeb graph,
the model is simplified by removing parts that correspond to irrelevant loops, where
the relevance of a loop is defined as its persistence (cf. Section 8), in the sense of
a percentage of the function image.

The hyper Reeb graph defined in [Fujishiro et al. 1999; Fujishiro et al. 2000]
has been proposed to enhance traditional volume visualization techniques with a
double-layered topological structure. In [Fujishiro et al. 2000], the method is tested
on a large-scale, time-varying volume data set. There, the hyper Reeb graph is
used to simulate an ion-atom collision problem between a proton and a hydrogen
atom and to investigate the variation of the electron density distribution during
the collision. In particular, the identification of the Reeb graphs that correspond to
the simplest structure of the isosurfaces permits to approximate the collision time
of the atomic structures.
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7. SIZE THEORY

Size theory has been developed since the beginning of the 1990s in order to provide
a geometrical-topological approach to the comparison of shapes (cf. [Frosini 1990;
1991; Verri et al. 1993]). Introductory presentations can be found in [Frosini and
Landi 1999], [Kaczynski et al. 2004].

The basic notion behind size theory is the abstraction of the similarity between
shapes in terms of the natural pseudo-distance between the topological spaces that
represent the shapes. Intuitively, two shapes are similar when they exhibit similar
properties: this fact can be conceptualized by considering a shape as a pair defined
by a topological space and a function that measures some properties, which are
relevant in a specific context. Then, the similarity between shapes can be expressed
by a small variation in the measure of these properties when we move from one
shape to the other. In this setting, shapes are similar if there exists a bi-continuous
transformation, or, more precisely, a homeomorphism, that preserves the properties
conveyed by the functions.

The idea comes from the observation that many groups of transformations, such
as isometries or affinities, can be expressed in terms of the preservation of the values
of some real functions on topological spaces. For instance, the concept of isometry
can be traced back to the preservation of the distance function, and the concept
of affinity to the preservation of the affine area. Therefore, it seems natural to
consider shapes as spaces equipped with real functions and study the changes of
such functions, that is, study how the function values are modified or preserved
under the action of homeomorphisms between the spaces. The evaluation of such
changes yields a measure to compare shapes.

The formalization of this approach lead to the definition of the natural pseudo-
distance, intuitively defined as the infimum of the variation of the values of the
functions when we move from one space to the other through homeomorphisms.

Notice that the most common transformation groups, such as those mentioned
above, can be expressed using the language of the natural pseudo-distance [Frosini
1991]. The natural pseudo-distance actually defines a concept of similarity between
shapes. Indeed, in this theoretical setting, two objects have the same shape if
they share the same shape properties, expressed by the functions’ values, i.e. their
natural pseudo-distance vanishes.

In order to effectively estimate the natural pseudo-distance and compare shapes,
size functions were introduced. They are shape descriptors that analyze the vari-
ation of the number of connected components of lower level sets with respect to
the real function, which describes the shape properties we are interested in. This
theoretical approach is quite general and flexible, and has been recently extended
to multi-variate functions.

7.1 Theoretical aspects

The main idea in size theory is to compare shape properties that are described
by real functions defined on topological spaces associated with the “objects” to be
studied. This leads to considering size pairs (S, f), where S is a topological space
and f : S → R is a continuous measuring function.

When two objects X and Y must be compared, the first step is to find the “right”
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set of corresponding properties, i.e. of size pairs (S(X), fX), (S(Y ), fY ). Depending
on the problem, one can decide to work directly on X , so that S(X) = X , or to
compute a derived space S(X) which is different from X . For example, S(X) can be
chosen (whenever applicable) to be the Cartesian product X(n) = X ×X×· · ·×X ,
or the tangent space of X , or a projection of X onto a line, or the boundary of
X , or the skeleton of X , and so on. The measuring functions are meant to give
a quantitative description of S(X), S(Y ). Their choice is driven by the set of
properties that one wishes to capture.

The next step in the comparison process is to consider the natural pseudo-distance
d. The main idea in the definition of natural pseudo-distance between size pairs
is the minimization of the change in measuring functions due to the application of
homeomorphisms between topological spaces. Formally, d is defined by setting

d((S(X), fX), (S(Y ), fY )) = inf
h∈HX,Y

sup
P∈S(X)

|fX(P ) − fY (h(P ))|,

where h varies in a subset HX,Y of the set H of all homeomorphisms between S(X)
and S(Y ). The subset HX,Y must satisfy the following axioms: the identity map
idX ∈ HX,X ; if h ∈ HX,Y then the inverse h−1 ∈ HY,X ; if h1 ∈ HX,Y and h2 ∈ HY,Z

then the composition h2 ◦ h1 ∈ HX,Z [Frosini 1991]. Often, HX,Y coincides with H
(cf. [Donatini and Frosini 2004b; 2007]). If S(X) and S(Y ) are not homeomorphic
the pseudo-distance is set equal to ∞. It should be noted that the existence of a
homeomorphism is not required for X and Y but for the associated spaces S(X)
and S(Y ). In this way, two objects are considered as having the same shape if
and only if they share the same shape properties, i.e. the natural pseudo-distance
between the associated size pairs vanishes.

Since the set of homeomorphisms between two topological spaces is rarely tract-
able, simpler mathematical tools are required to estimate the natural pseudo-
distance. To this end, the main mathematical tool introduced in size theory is given
by size functions, which provide a lower bound for the natural pseudo-distance.

Size functions are shape descriptors that analyze the variations of the number of
connected components of the lower level sets of the studied space with respect to
the chosen measuring function. Given a size pair (S, f), the (reduced) size function

ℓ(S,f) : {(x, y) ∈ R
2 : x < y} → N

can easily be defined when S is a compact and locally connected Hausdorff space:
ℓ(S,f)(x, y) is equal to the number of connected components of the lower level set
Sy = {P ∈ S : f(P ) ≤ y}, containing at least one point of the lower level set Sx

(see [d’Amico et al. 2006]).
An example of size function is illustrated in Figure 22. In this example we

consider the size pair (S, f), where S is the curve represented by a continuous
line in Figure 22(a), and f is the function “distance from the point P”. The size
function associated with (S, f) is shown in Figure 22(b). Here, the domain of the
size function is divided by solid lines, representing the discontinuity points of the
size function. These discontinuity points divide the set {(x, y) ∈ R

2 : x < y} into
regions on which the size function is constant. The value displayed in each region
is the value taken by the size function in that region. For instance, for a ≤ x < b,
the set {P ∈ S : f(P ) ≤ x} has two connected components which are contained in

ACM Journal Name, Vol. V, No. N, February 2008.



Describing shapes by geometrical-topological properties of real functions · 65

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

������

������

������

������

������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

a
e

c

b
a

P

b ca

b

c

x

y

3

2

10

(a) (b)

Fig. 22. (a) The size pair (S, f), where S is the curve represented by a continuous line and f is
the function “distance from the point P”. (b) The size function of (S, f).

different connected components of {P ∈ S : f(P ) ≤ y} when x < y < b. Therefore,
ℓ(S,f)(x, y) = 2 for a ≤ x < b and x < y < b. When a ≤ x < b and y ≥ b,
all the connected components of {P ∈ S : f(P ) ≤ x} are contained in the same
connected component of {P ∈ S : f(P ) ≤ y}. Therefore, ℓ(S,f)(x, y) = 1 for
a ≤ x < b and y ≥ b. When b ≤ x < c and y ≥ c, all of the three connected
components of {P ∈ S : f(P ) ≤ x} belong to the same connected component of
{P ∈ S : f(P ) ≤ y}, implying that in this case ℓ(S,f)(x, y) = 1.

In [Frosini and Landi 1997] a new kind of representation of size functions was
introduced, based on the fact that they can always be seen as linear combinations
of characteristic functions of triangles (possibly unbounded triangles with vertices
at infinity), with a side lying on the diagonal {x = y} and the other sides parallel
to the coordinate axes. For example, the size function of Figure 23 (left) is the
sum of the characteristic functions of the triangles with right angles at vertices a,
b, c plus the characteristic function of the infinite triangle on the right of line r.
This suggests that the size function is completely determined by a, b, c, r. In fact,
the property that size functions can be represented as collections of vertices (called
cornerpoints) and lines (called cornerlines) always holds [Frosini and Landi 2001].
This provides a simple and concise representation for size functions in terms of
points and lines in R

2, drastically reducing the required descriptive dimensionality.
As suggested in Figure 23, this representation also allows for the comparison

of size functions using distances between sets of points and lines [Donatini et al.
1999], e.g. the Hausdorff metric or the matching distance. In particular, the match-
ing distance between two size functions l1 and l2, respectively represented by the
sequences (ai) and (bi) of cornerpoints and cornerlines, can be defined as

dmatch(l1, l2) := min
σ

max
i

d(ai, bσ(i))

where i varies in the set of natural numbers N, σ varies among all the bijections
from N to N, and the pseudo-distance d between two points p and p′ is equal to the
smaller between the cost of moving p to p′ and the cost of moving p and p′ onto
the diagonal {x = y}, with costs induced by the max-norm [d’Amico et al. 2006].
An example is shown in Figure 23 (right), where an optimal matching between
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Fig. 23. Two size functions can be described by cornerpoints and cornerlines and compared by
the matching distance.

cornerpoints and cornerlines of two size functions is shown. Here the matching
distance is given by the cost of moving the cornerpoint denoted by b onto the
diagonal.

The stability of this representation has been studied in [d’Amico et al. 2003;
2005]. In particular, it has been proven that the matching distance between size
functions is continuous with respect to the measuring functions, guaranteeing a
property of perturbation robustness. Moreover, it can be shown that the match-
ing distance between size functions produces a sharp lower bound for the natural
pseudo-distance between size pairs [Donatini and Frosini 2004a; d’Amico et al.
2005], thus guaranteeing a link between the comparison of size functions and the
comparison of shapes [d’Amico et al. 2006].

As pointed out in [Edelsbrunner and Harer 2007], an important problem is given
by the possibility of working in a k-dimensional setting, that is, using measur-
ing functions with values in R

k. Multi-dimensional measuring functions and, con-
sequently, multi-dimensional size theory and natural pseudo-distance were intro-
duced in [Frosini and Mulazzani 1999]. However, a direct approach to the multi-
dimensional case implies working in subsets of R

k × R
k, and it is unclear how to

combinatorially represent multi-dimensional size functions.
A solution is proposed in [Cerri et al. 2007; Biasotti et al. 2007b], where it is

proven that the computation and comparison of multi-dimensional size functions
can be reduced to the one-dimensional case by a suitable change of variables. The
idea is that the domain of k-dimensional size functions can be suitably partitioned
into half-planes, such that the restriction of a k-dimensional size function to each
half-plane is a classical one-dimensional size function. This implies that, on each
half-plane of the domain partition, the size functions can be represented by corner-
points and cornerlines. A multi-dimensional matching distance can also be defined,
based on the one-dimensional matching distance on each half-plane, which is stable
for small changes in the measuring functions.

An example of the computation of multi-dimensional size functions is shown in
Figure 24. Two surface models are analyzed using a two-dimensional measuring
function ~f = (f1, f2), and the domain of the two-dimensional size function is parti-

tioned into half-planes. Details on the definition of ~f and the partition can be found
in [Biasotti et al. 2007b]. In this figure, we show the behavior of the corresponding
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Fig. 24. Example of the computation of a two-dimensional size function on two surface models,
on five half-planes of the domain partition defined in [Biasotti et al 2007b].

two-dimensional size function on five half-planes of the partition, depicted from left
to right. On each half-plane, the two-dimensional size function coincides with a
classical one-dimensional size function. The underlying one-dimensional measuring
functions, derived from the components of ~f , are depicted on top of the correspond-
ing size functions (red corresponds to high values of the measuring function, blue
corresponds to low values). Then, the two-dimensional matching distance can be
computed, based on the classical one-dimensional matching distances between the
size functions on each of the half-planes.

Size functions are not the sole tool introduced in size theory. Indeed, algebraic
topology has been used to obtain generalizations of size functions that give a more
complete description of a pair (S, f), since they take into account not only the
number of connected components but also the presence of other features such as
holes, tunnels and voids. The first development in this sense can be found in [Frosini
and Mulazzani 1999] where size homotopy groups are introduced, inspired by the
classical mathematical notion of homotopy group. They are shown to provide a
lower bound for the natural pseudo-distance, much in the same way as size functions
do.

The study of size functions in the algebraic topology setting was also developed
in [Cagliari et al. 2001a] by observing that ℓ(S,f)(x, y) can be seen as the rank of the
image of H0(jxy) : H0(Sx) → H0(Sy) where jxy is the inclusion of Sx into Sy. This
observation has led to the definition of the size functor, which studies the maps
Hk(jxy) : Hk(Sx) → Hk(Sy) for every k. In other words, it studies the process of
the birth and death of homology classes as the lower level set changes. When M
is smooth and compact and f is a Morse function, the functor can be described by
oriented trees, called Hk − trees [Cagliari et al. 2001b].

ACM Journal Name, Vol. V, No. N, February 2008.



68 · S. Biasotti et al.

7.2 Computational aspects

From the computational point of view, the main efforts have been devoted to the
development of techniques for the computation of size functions [Frosini 1992], while
no algorithms are available to compute the size homotopy groups or the size functor.

From the application side, using size functions for shape analysis requires two
steps: (i) the choice of the size pair (S, f) and (ii) the computation of ℓ(S,f).
In the following we discuss each of these steps.

7.2.1 Choosing the size pair. One needs to choose both the space S = S(X),
associated with the object X under study, and the measuring function f . Since
each pair (S, f) conveys information about X from a different viewpoint, the choice
is driven by the set of shape properties that the user wants to capture.

In the applications, X can be a binary, a gray-scale or a full-color image, a
continuous curve, a closed surface or a simplicial complex (in particular a graph).
In [Uras and Verri 1997] the concept of auxiliary manifold S(X) is introduced, i.e.
an object of fixed and known topological structure that can be linked to the shape
X under study. The definition of the measuring functions on the auxiliary manifold
permits the solution of problems related to small topological changes in the original
shape due to noise and perturbations. The idea of an auxiliary space as a domain
for the measuring functions has also been proposed in the case of binary images in
[Cerri et al. 2006] and of surface meshes in [Biasotti et al. 2006b].

In [Verri and Uras 1996] the authors discuss the need for heuristic criteria to
select adequate measuring functions, and propose using parameterized families of
measuring functions. The key problem of the invariance requirements in Pattern
Recognition tasks is explored in [Landi and Frosini 2002], [Verri and Uras 1994]
and [Dibos et al. 2004], where the ability of size functions to deal with Euclidean,
affine and projective invariance is discussed.

7.2.2 Computing ℓ(S,f). In recent years three algorithms have been proposed to
compute the size functions, once the size pair (S, f) has been chosen.

The first two algorithms [Frosini 1992; 1996] involve the definition of two la-
beled graphs designed to discretize the size pair under study. The third algorithm
[d’Amico 2000] starts with a given labeled graph and directly computes the corner-
points and cornerlines, which completely describe the size function.

The algorithm in [Frosini 1992] (see also [Frosini 1991]) requires S to be a com-
pact and arcwise connected subset of R

m, and the measuring function f to be the
restriction to S of a continuous function f̄ : R

m → R. The first step of this algo-
rithm consists of the discretization of the space S. For this purpose, the concept
of δ-covering is introduced, i.e. a collection of open balls {B(Pi, δ)}i of radius δ
and centered at Pi, whose union contains S, and such that the intersection between
each ball and S is a non-empty arcwise connected set. We can define the size graph
approximating (S, f) as the labeled graph (G, f |G), where the set of vertices of G is
equal to {Pi}i, and two vertices, Pi and Pj , are adjacent if the intersection between
S and the union of the balls B(Pi, δ) and B(Pj , δ) is an arcwise connected set (see
Figure 25). Once the approximating size graph has been obtained, the size function
of (G, f |G) is computed. Theoretical results are available [Frosini 1992], relating
the size function defined in the continuous case to the approximating one computed
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(a) (b) (c)

Fig. 25. The discretization of a space described in [Frosini 1992]. (a) The original space. (b) The
process of δ-covering. (c) The approximating graph.

on the graph. These results allow us to restrict the computation of ℓ(G,f̄|G)(x, y) to

a finite subset of values (x, y), and permit an explicit calculation of the accuracy of
the approximation, depending on the function f .

The algorithm proposed in [Frosini 1996] assumes S to be a compact and smooth
manifold without boundary, and the measuring function f to be Morse. This
method is based on the construction of a Morse graph, whose vertices correspond to
the critical points of f , and where an arc exists between two vertices if and only if
they are connected by at least a gradient flow line. It has been shown that the size
function of the Morse graph is identical to the size function of the original space.

Both the preceding algorithms reduce the computation of the size function of the
chosen size pair (S, f) to that of a labeled graph. The approximating size graph
and the Morse graph are examples of size graphs. In general, a size graph is a size
pair (G, f), where G = (V (G), E(G)) is a finite graph, with V (G) and E(G) the
set of vertices and edges respectively, and f : V (G) → R is any function labeling
the nodes of the graph. Denoting by Gy the subgraph of G obtained by erasing all
vertices of G at which f takes a value strictly greater than y, and all edges that
connect those vertices to other vertices, the size function ℓ(G,f)(x, y) of (G, f) is
equal to the number of connected components of Gy, containing at least one vertex
of Gx.

Since the number of vertices and edges of size graphs can be very large, proce-
dures to reduce them are needed. In [Frosini and Pittore 1999] the instruments
of L-reduction and ∆-reduction have been introduced. Their main feature is that
they permit a simplification of the graph without changing the corresponding size
function.

The L-reduction is a global reduction method, since it requires knowledge of
the entire size graph. Basically, the vertices of the L-reduced graph are of two
types: vertices corresponding to local minimum values of the measuring function,
and vertices corresponding to saddles of lowest elevation between two minima. The
edges connect the minima with their corresponding saddles.

The ∆-reduction is a local method, in the sense that only the knowledge of
the local structure of the size graph is needed. Moreover, ∆-reduction has been
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extended in [d’Amico 2000] to ∆∗-reduction, a procedure defined by recursively
applying three different editing moves. It has been proven that a total ∆∗-reduction
exists, i.e. that the editing process cannot proceed infinitely, and that the totally
∆∗-reduced graph has the simple structure of a tree (or a forest, i.e. a disjoint union
of trees, when G has several connected components). A possible implementation
for this algorithm is based on the union-find structure [Tarjan and von Leeuwen
1984], so that its computational cost is O(n+m ·α(2m+n, n)), where m and n are
the number of vertices and edges in the graph, respectively, and α is the inverse of
Ackermann’s function. Note that m is O(n2) in the worst case.

The value of the ∆∗-reduction relies not only on reducing the numbers of vertices
and edges in the graph, but also on permitting faster computation of size functions
[d’Amico 2000]. In fact, the ∆∗-reduction permits direct computation of the cor-
nerpoints and cornerlines, that completely describe the size functions (see Section
7.1). To achieve this, one has to orient the reduced graph obtained through the
process of ∆∗-reduction by orienting each edge from the vertex with higher value to
the other one. The resulting configuration is an arborescence, i.e. an oriented tree
in which no two edges are directed to the same vertex. Finally, the cornerpoints and
cornerlines are computed from this arborescence by applying a recursive procedure.
The cost of computing the size function of the reduced graph is O(n′ log n′), with
n′ the number of vertices in the reduced graph; usually n′ is considerably smaller
than n.

Notice that also multi-dimensional size functions can be computed using the al-
gorithm in [d’Amico 2000], as a consequence of the results in [Cerri et al. 2007;
Biasotti et al. 2007b] that reduce the computation of multi-dimensional size func-
tions to that of one-dimensional ones through a suitable change of variables (see
Section 7.1).

7.3 Applications

The most explored field of application concerning size theory is the field of Pattern
Recognition, where size functions have been used as a tool for shape comparison,
retrieval and classification, especially in the case of natural or articulated objects.
The relationship between the comparison of shapes and the comparison of size
functions is studied in [Donatini and Frosini 2004a].

In [Verri and Uras 1996] and [Uras and Verri 1994] the authors proposed a recog-
nition scheme for the signs in the International Alphabet Sign Language (ISL). A
one-parameter family of 72 measuring functions is introduced, together with 72
corresponding feature vectors, to describe the signs belonging to the ISL, repre-
sented by the curves defining their outline. The problem of recognizing the sign
language by means of size functions has also been addressed in [Handouyaya et al.
1999], where a pair of moment-based size functions is used as an input to a neural
network classifier.

Size functions are also useful in the biomedical field. In [Ferri et al. 1994] a sys-
tem for the automatic classification of white blood cells, represented by gray-level
images, is presented. In this particular case, the choice of a set of adequate and
effective measuring functions is driven by the need to take into account the spe-
cific morphological features of the leukocyte classes. Similar principles guided the
choice of the features in the ADAM (Automatic Data Analysis for Melanoma early
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detection) project. In [d’Amico et al. 2004], [Stanganelli et al. 2005] size functions
and Support Vector Machines are combined to implement an automatic classifier
of melanocytic lesions; the system is mainly based on a qualitative assessment of
asymmetry, as a parameter to distinguish between nevi and melanomas.

Recently a strategy to address the problem of figurative images was proposed.
In [Cerri et al. 2006] a complete system for automatic trademark retrieval based
on size functions was implemented, in order to deal with the actual problem of
preserving product identity and avoiding copyright infringement. Experiments were
performed on a database to retrieve binary trademark images provided by the UK
Patent Office.

The problem of image retrieval on the Internet is dealt with in [Cerri et al.
2005]. Ferri and Frosini [Ferri and Frosini 2005] suggest equipping each image on a
Web site with a simplified drawing called keypic (in alternative to keyword). Cerri
et al. [Cerri et al. 2005] carry out an experimentation on a set of keypics, thus
proposing size functions as a possible ingredient in the solution to the problem of
image searching and retrieval on the Internet.

The comparison and retrieval of 3D objects has been dealt with using both clas-
sical (i.e. one-dimensional) and multi-dimensional size functions. In [Biasotti et al.
2006b] object surfaces are described through size graphs approximating a centerline
skeleton, that is enriched with geometrical attributes. The computation of the size
functions of these size graphs allows for the comparison and retrieval of the objects.
In [Cerri et al. 2007; Biasotti et al. 2007b] some sets of bi-variate and tri-variate
measuring functions are introduced to describe triangle meshes and voxelized digi-
tal models, respectively. Two-dimensional and three-dimensional size functions are
then computed on a small set of models, and experimental results are carried out
to test the feasibility of the approach.

8. PERSISTENT HOMOLOGY

We now introduce persistent homology, which provides a tool to study topological
features of spaces endowed with possibly varying real functions, completely based
on algebraic topology.

Algebraic topology is useful for detecting the number and type of topological
features, such as holes, in a space. Among the various tools offered by algebraic
topology to this aim, homology groups have the advantage of being computable.
However, standard homology is not able to decide to what extent a topological
attribute of a space is relevant for the shape description.

As we have seen in Section 3.1.5, Morse Theory explores the topological at-
tributes of an object in an evolutionary context. In [Edelsbrunner et al. 2000] and
[Edelsbrunner et al. 2002] this evolutionary approach has been revisited. The au-
thors introduce a technique, called persistence, which grows a space incrementally
and analyzes the topological changes that occur during this growth. In particular,
they produce a tool, called persistent homology, for controlling the placement of
topological events (such as the merging of connected components ofr the filling of
holes) within the history of this growth. The aim is to furnish a scale to assess
the relevance of topological attributes. The main assumption of persistence is that
longevity is equivalent to significance. In other words, a significant topological at-
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tribute must have a long life-time in a growing complex. In this way, one is able to
distinguish the essential features from the fine details.

Much of the material about persistent homology has been incorporated in [Zomoro-
dian 2005]. Recently, persistent homology was surveyed in [Edelsbrunner and Harer
2007].

8.1 Theoretical aspects

The first concept related to persistent homology theory is that of a filtered complex,
that is, a complex equipped with a filtration. A filtration of a complex is a nested
sequence of subcomplexes that ends with the complex itself. Formally, a complex
K is filtered by a filtration {Ki}i=0,...,n if Kn = K and Ki is a subcomplex of Ki+1

for each i = 0, . . . , n−1. An example of filtered complex is given in Figure 26 (Top).
Since the sequence of subcomplexes Ki is nested, one can think of K as a complex
that grows from an initial state K0 to a final state Kn = K. Therefore it is often
referred to as a growing complex.

Filtered complexes arise naturally in many situations. The simplest example of
filtration is the age filtration [Edelsbrunner et al. 2002]: The complex K is filtered
by giving an ordering ∆0, ∆1, . . . ,∆m to its simplices and by defining the sequence
of its subcomplexes Ki as Ki = {∆j ∈ K : 0 ≤ j ≤ i}. In other words the complex
grows from K0 = {∆0} adding each simplex one by one according to the given
order. It is assumed that if ∆i is a face of ∆j then ∆i enters the filtration before
∆j .

A filtered complex also arises when some space (e.g. a curve or a surface) is known
only through a finite sample X of its points. Since the knowledge of the original
space is necessarily imprecise, a multi-scale approach may be suited to describe
the topology of the underlying space (see also the approach in [Niyogi et al. 2006]
to compute the homology of submanifolds from random samples). The idea is to
construct, for a real number ǫ > 0, an abstract simplicial complex Rǫ(X), called the
Rips complex, whose abstract k-simplices are exactly the subsets {x0, x1, . . . , xk}
of X such that d(xi, xj) ≤ ǫ for all pairs xi, xj with 0 ≤ i, j ≤ k. Whenever ǫ < ǫ′,
there is an inclusion Rǫ(X) → Rǫ′(X) that reveals a growing complex (cf. [Collins
et al. 2004a], [Collins et al. 2004b]).

Another example of filtration is provided by a complex filtered by the increasing
values of a real piece-wise linear function defined on it. In other words, suppose
we are given a complex K and a piece-wise linear real function f on K (that is, a
function defined by its values on the vertices of K). Denoting by A0, A1, . . . , An

the vertices of K, it is possible to filter K by the subcomplexes Ki of K, consisting
of the vertices where the function f takes values not greater than f(Ai), together
with all the simplices (edges, triangles, etc.) connecting them (cf. [Edelsbrunner et
al. 2001], [Edelsbrunner et al. 2003a]).

In general, given a filtered complex, its topological attributes change through
the filtration, since new components appear or connect to the old ones, tunnels are
created and closed off, voids are enclosed and filled in, etc.

In particular, as for 0-homology, each homology class corresponds to a connected
component, and a homology class is born when a point is added, forming a new
connected component, thus being a 0-cycle. A homology class dies when two points
belonging to different connected components, thus belonging to two different 0-
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Fig. 26. The persistent homology of a filtered complex can be represented by P-intervals.

cycles, are connected by a 1-chain, thus becoming a boundary. As an example,
consider the filtered complex of Figure 26 (top): One 0-homology class is born at
K0, two other homology classes are born at K1; at K2, a new homology class is
born while one of the classes born at K1 dies, since it is merged to the class born
at K0; at K3 another class dies, and the same happens at K4, where we are left
with just one class that survives forever.

As for 1-homology, a homology class is born when a 1-chain is added, forming a
1-cycle (for instance, a 1-simplex is added, completing a circle), while it dies when a
2-chain is added so that the 1-cycle becomes a boundary (for instance, a 2-simplex
fills a circle). In the example of Figure 26 (top), a homology class is born at K3,
another one at K4, then at K5 the homology class born at K3 dies and at K6 also
the homology class born at K4 dies, so that no 1-cycle survives any longer.

The argument goes on similarly for higher degree homology. Persistent homology
algebraically captures this process of the birth and death of homology classes.

Given a filtered simplicial complex {Ki}i=0,...,n, the j- persistent k-th homology
group of Ki can be defined as a group isomorphic to the image of the homomorphism
ηi,j

k : Hk(Ki) → Hk(Ki+j) induced by the inclusion of Ki into Ki+j . In other
words, the j-persistent homology group of Ki counts how many homology classes of
Ki still survive in Ki+j . Persistence represents the life-time of cycles in the growing
filtration (much in the same way as in the definition of the size functor described in
Section 7.1). Note that, in more recent papers, the notation for persistent homology
groups has changed: the variables i, j have been replaced by i, i + j.

The persistent homology of a filtered complex can be represented by a set of
intervals, called persistence intervals (briefly P-intervals), as in Figure 26 (bottom).
More precisely, a P-interval is a pair (i, j), with i, j ∈ Z∪{+∞} and 0 ≤ i < j, such
that there exists a cycle that is completed at level i of the filtration and becomes a
boundary at level j.

More recently [Cohen-Steiner et al. 2005], P-intervals have been described as
sets of points in the extended plane. These sets of points are called persistence
diagrams. In the case of the 0-degree homology of complexes filtered by the lower

ACM Journal Name, Vol. V, No. N, February 2008.



74 · S. Biasotti et al.

level sets of a function f they substantially coincide with the representation of size
functions by cornerpoints and cornerlines (cf. Section 7.1). The difference lies in
the assumptions about the space and function allowing for their definition, that
in size theory are more general. In the same way that the representation of size
functions through cornerpoints and cornerlines satisfies the property of stability
under perturbations of the data, so this remains true for persistence diagrams, as
proven in [Cohen-Steiner et al. 2005; Cohen-Steiner et al. 2007b] with respect to
Hausdorff and bottleneck distances.

Considering persistence for complexes filtered by the values of a Morse function f ,
the process of capturing births and deaths of homology classes naturally establishes
a pairing for critical points of f . For example, when f is defined on a curve, passing
a local minimum creates a component, while passing a local maximum merges two
components represented by two local minima: the maximum is paired with the
higher of the two local minima. Clearly, some critical points will not be paired in
this process. They correspond to essential features of the shape under study, not
depending on the function f . In [Cohen-Steiner et al. 2007a], the persistence pairing
is extended to include the homology classes that cannot be paired by ordinary
persistent homology since their lifetime is infinite. Another way to pair essential
homology classes has been proposed in [Dey and Wenger 2007], where interval
persistence is introduced focusing on the stability of critical points rather than
critical values. In the case of a function defined on a 2-manifold, the pairing of
essential classes can be dealt with also using the Reeb graph [Agarwal et al. 2004]
(see also Section 8.3).

A recent advance in persistent homology theory is the use of a family of real
functions continuously varying in time [Cohen-Steiner et al. 2006]. The structures
obtained, referred to as vines and vineyards, seem to be suitable tools for study-
ing continuous processes. Roughly speaking, a vineyard is a bunch of possibly
intersecting curves (the vines) generated by the continuous evolution of persistence
diagrams over time.

Generalizing persistent homology to the case of a multi-variate situation in which
two or more functions are used to characterize the shape leads to the definition of
multi-filtration [Zomorodian and Carlsson 2007]. However, it is not possible to
extract from this structure a complete and concise representation generalizing the
concept of persistence intervals. An alternative solution to this problem is given in
[Cagliari et al. 2007].

We refer the reader to [Grandis 2003], [Robins 1999], [Robins 2002] for different
developments of the multi-scale approach to describe the topology of a space, which
we do not describe here in more detail, since the filtration of the complex does not
vary according to the choice of a real function defined on the space.

8.2 Computational aspects

Applying persistent homology requires the user to model the shape under study with
a filtered complex. In each application, the choice of the most suitable filtration is
left to the user, much in the same way as the choice of the size pair in size theory.

Once a filtered complex has been obtained, two different algorithms are available
to compute persistent homology. Both take as input a filtered complex. However,
they greatly differ both in the techniques used and in the scope of applications.
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The first algorithm reported ([Edelsbrunner et al. 2000]) required the complex to
be embedded in R

3 and filtered by the age filter. Moreover, it worked only with
homology coefficients in the field Z2 of integers modulo 2. An advantage of this
algorithm is that its rationale is rather intuitive. The second algorithm, presented in
[Zomorodian and Carlsson 2004], is much more general since it allows us to compute
the persistent homology of any filtered complex with coefficients over an arbitrary
field in any dimension. The drawback is that the algebraic machinery needed to
obtain this algorithm is rather sophisticated, although the final procedure is based
on Gaussian elimination. Both the algorithms take at most O(m3) in time, where
m is the number of simplices in the filtration.

We now describe the first algorithm ([Edelsbrunner et al. 2000; 2002]). The idea
is to pair the creation of a cycle with its conversion to a boundary. Such a pairing
algorithm takes as input a complex K = {∆0, ∆1, . . . ,∆m} embedded in R

3 and
filtered with the age filtration, and returns a list of simplex pairs (∆i, ∆j), where
∆i is a k-simplex and ∆j is a (k + 1)-simplex (0 ≤ k ≤ 2). Each pair represents a
k-cycle created by ∆i and turned into a k-boundary by ∆j . The algorithm initially
needs to decide whether the addition of a k-simplex creates a k-cycle (the cycle
question). This question can be answered using the incremental algorithm presented
in [Delfinado and Edelsbrunner 1995]. Here the assumption that K is embedded
in R

3 plays an important role. Indeed, this implies that the only interesting case
is k = 1, because any 0-simplex belongs to a cycle, no 3-simplex belongs to a cycle
and the case k = 2 can be reduced to the case k = 1 using a dual graph (that is,
the graph whose vertices correspond to the 3-simplices of K and where there is an
edge connecting two vertices if and only if the corresponding 3-simplices share a
common face). The algorithm is called incremental because it consists of adding
one simplex of K at a time. A 1-simplex creates a cycle if and only if its two
endpoints belong to the same component. This can be decided by implementing
a union-find structure [Tarjan and von Leeuwen 1984]. Once the cycle question is
decided for each simplex, the idea is to pair simplices as follows: if a (k+1)-simplex
∆j does not belong to a (k + 1)-cycle, consider its boundary d = ∂k+1(∆j). Since
d is a k-cycle, we can consider all the k-simplices in d that have been previously
marked as creating a k-cycle. The youngest one, that is, the one with the largest
index is the simplex ∆i that must be paired with ∆j .

The second algorithm that computes persistent homology ([Zomorodian and
Carlsson 2004], [Zomorodian and Carlsson 2005]) works on any filtered d-dimensional
simplicial complex {Ki}i=0,...,n and over any field F. Taking the homology coeffi-
cients in a field, the homology groups are actually vector spaces. The key observa-
tion is that the computation of persistence requires compatible bases for Hk(Ki)
and Hk(Ki+p). The idea underlying the algorithm is to represent the lifetime of a
simplex by utilizing multiplication by a formal parameter u: if a simplex ∆ enters
the filtration at time i, at time i + 1 it becomes u · ∆, at time i + 2 it becomes
u2 ·∆, and so on. We underline that the letter u is only a formal parameter, while
the actual information about the lifetime is given by the power of u. With this rep-
resentation, the boundary operator has coefficients in the ring F[u] of polynomials
over F in the letter u. It follows that the boundary operator can be represented by
a matrix with polynomial entries. A standard reduction algorithm on this matrix,
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more precisely Gaussian elimination by elementary operations on the columns, re-
duces the matrix to column-echelon form. By non-trivial algebraic arguments, the
P-intervals for the (k − 1)-th persistent homology can be directly read from the
pivots of the boundary operator ∂k, reduced into column-echelon form.

Finally, the computation of vineyards is carried out in [Cohen-Steiner et al. 2006]
through an algorithm that maintains an ordering of the simplices in the filtration as
time varies. This can be achieved in time O(n) per transposition of two simplices in
the filtration, where n is the number of simplices used to represent the topological
space.

8.3 Applications

One of the first applications of persistent homology reported in the literature [Edels-
brunner et al. 2001] addresses the problem of topological simplification viewed as
a process that decreases Betti numbers. We have seen that a by-product of the
computation of persistent homology is a set of pairs of simplices (∆i, ∆j), where
∆i is the simplex that, on entering the filtration, creates a cycle, and ∆j is the
simplex that, entering the filtration, adds the cycle to the group of boundaries. In
other words, attaching ∆i corresponds to the birth of a new homology class, while
attaching ∆j leads to its death. Thus, topological simplification can be achieved
by removing simplices in pairs, in the order of increasing importance: cycles whose
persistence is below some threshold can be removed, since they correspond to noise
or non-relevant features; only cycles with a longer life-time are considered impor-
tant. However, the meaning of the simplification changes according to the context.
Topological simplification of a complex filtered by a Morse function corresponds
to geometric smoothing of the Morse function. The application of this topological
simplification to complexes generated by sample points provides a method for noise
reduction in sample data. An example of this simplification process can be found
in [Edelsbrunner et al. 2002], carried out on a molecular structure represented as a
complex endowed with an age filtration. A further application is the simplification
of Morse-Smale complexes for 2-manifolds proposed in [Edelsbrunner et al. 2001],
where the sequence of cancellation of pairs of critical points is driven by the per-
sistence of the pairs. This approach is also followed in [Bremer et al. 2004], where
an algorithm is proposed which allows the simultaneous application of independent
cancellations (see also the formalization in [Danovaro et al. 2006]). Applications are
shown for terrain models. The extension of the idea of the persistence-driven simpli-
fication of Morse-Smale complexes to functions defined on 3-manifolds is performed
in [Gyulassy et al. 2005].

The problem of simplifying the function itself, rather than the underlying space,
has recently been addressed in [Edelsbrunner et al. 2006]. The notion of ǫ-simplification
of a function f is introduced, that is, a function g such that ||f−g||∞ ≤ ǫ and whose
persistence diagrams are the same as those of f , except that all points within L1-
distance less than ǫ from the diagonal of R

2 are removed. It is also shown, through
a constructive proof, that ǫ-simplifications exist for 2-manifolds. Beside the prob-
lem statement, the main novelty in [Edelsbrunner et al. 2006] is that, in previous
works on simplification, all points of the persistence diagrams could be moved to-
wards the diagonal, regardless of their distance from it, while this approach ensures
that points with persistence higher than ǫ are not moved. The order of removal of

ACM Journal Name, Vol. V, No. N, February 2008.



Describing shapes by geometrical-topological properties of real functions · 77

pairs of critical points no longer follows the order of increasing persistence, but the
increasing value of the function on the second point of the pair.

A study of shape description and classification via the application of persistent
homology is carried out in [Collins et al. 2004a; 2004b] for curve point cloud data,
and in [Carlsson et al. 2004; 2005], where examples are shown for geometric surfaces
and surfaces of revolution. The general idea is to describe the shape of a complex K,
filtered by the increasing values of a real function f , defined on K: the topological
changes occurring through the filtration, that, according to Morse theory, are due
to the presence of critical points of f , are captured by persistent homology. In
particular, in these works the shape of X is studied by constructing a new complex
strictly related to X : the tangent complex of X , that is the closure of the space of
all tangents to all points in X . The tangent complex contains a large amount of
information about the geometry of X . So far, the authors have confined themselves
to considering only one function, that is, the curvature at a given point along a
specified tangent direction. The choice of this function is directed at capturing
those features of a shape that are connected with curvature. From this setup the
authors derive the notion of the barcode of a shape, that is, the set of P-intervals
for this filtered tangent complex. A pseudo-metric between barcodes allows for a
measure of the similarity between shapes: being a pseudo-metric and not a metric,
the distance between two different shapes can be vanishing. It is interesting to note
that, analogous to what happens in size theory (cf. Section 7.1), in this research
the shape of X is studied by constructing a new complex, strictly related to X ,
which in this case is the filtered tangent complex. Barcodes as descriptors for
shape classification have been tested on a small database (80 items) of hand-drawn
copies of letters.

The recently introduced concept of vineyards is applied in [Cohen-Steiner et al.
2006] to the study of protein folding trajectories. The analysis of the behaviour of
proteins also motivates the work in [Agarwal et al. 2004]. The notion of elevation is
introduced for points on 2-manifolds smoothly embedded in R

3, in order to identify
cavities and protrusions in the protein structure, since they play an important role
in protein interaction. The definition of elevation is derived from an extension of
the classical notion of persistence pairing, which takes into account the pairings be-
tween all critical points of the function defined on a genus g embedded 2-manifold.
In particular, the 2g saddles starting the 2g cycles, which remain unpaired once the
manifold sweep is complete, are paired making use of the Reeb graph of the mani-
fold. Pairing all critical points allows the elevation of each point to be determined
by its persistence, that is, the absolute difference in function values to its paired
point. Results of the application of extended persistence pairing to protein docking
are presented in [Wang et al. 2005].

Addressing the problem of localizing topological attributes, in [Zomorodian and
Carlsson 2007] localized homology is proposed as a method to find the most local
basis of the homology of a given space. The main tool is the Mayer-Vietoris blowup
complex associated with an open covering of the simplicial complex under study.
The blowup complex and the original complex have the same homology but the
former can be filtered according to the number of open sets that cover each simplex.
The persistent homology of this filtered complex gives insights into the relationship
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between the local and global homology of the space.
Finally, we point out that the idea of considering the topology of a space at

various resolutions by means of persistent homology is inspiring research in new
directions, such as the coverage problem in sensor networks [de Silva and Ghrist
2007] and the analysis of the structure of natural images [de Silva and Carlsson
2004].

9. MORSE SHAPE DESCRIPTOR

The next method we survey is an algebraic descriptor for objects modeled as smooth
manifolds endowed with a Morse function that measures some metric properties
of the given objects. The key ingredient of this descriptor is, once again, Morse
theory, allowing for a link between topology and critical points in terms of homology
groups. The main difference with respect to persistent homology is the use of
relative homology groups instead of ordinary homology.

This topological descriptor, like size functions and persistent homology, provides
information that can remain constant, despite the variability in appearance of ob-
jects due to noise, deformation and other distortions. At the same time, it allows for
a significant reduction in the amount of data, while providing sufficient information
to characterize and represent objects.

9.1 Theoretical aspects

Like the previous approaches, the Morse shape descriptor describes the shape of a
manifold M by analyzing the changes in topology due to the presence of critical
points of a Morse function f , defined on M .

This approach is based on the use of relative homology groups. Roughly speaking,
the relative homology groups of a pair of spaces (X, A), with A ⊆ X , count the
number of cycles in X , while ignoring all the chains of X contained in A. For the
precise definition of relative homology groups we refer the reader to [Spanier 1966].

In [Allili et al. 2004], a descriptor is introduced, defined as the function Rf :
R

2×N → N defined by setting Rf (x, y, k) equal to the Betti number of the relative
homology group Hk(My, Mx), when x ≤ y and y belongs to the range of f , and
equal to 0, otherwise. Here M is assumed to be a connected compact manifold
without boundary and f : M → R a Morse function. The connectedness assumption
guarantees that f ranges over an interval and its compactness ensures that this
interval is finite and closed. Moreover, the absence of boundary guarantees that
the homology generators are directly related to the critical points of the function.
In fact, if the manifold has non-empty boundary, some of the homology generators
can be related to the boundary components. The idea under this definition is that
the relative homology groups give information about a change in the topology of
the lower level set when going through a critical value. Indeed, if a single critical
point of index λ is present between two levels, x and y, then the relative homology
group Hk(My, Mx) has rank equal to 1 if k = λ, and 0 otherwise.

We point out that the intimate connection between the relative homology groups
of the lower level sets and critical levels has been known for a long time in math-
ematics. For example, it was used in [Kelley and Pitcher 1947] to define critical
levels for any bounded real function f , defined on any topological space X , without
restricting f any further.
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The idea, sketched in [Allili et al. 2004], is more thoroughly developed in [Allili
and Corriveau 2007], where the authors distinguish between a Morse Descriptor
(MD) that corresponds to the function Rf above, and a Morse Shape Descriptor
(MSD), that is a Morse Descriptor defined only for Morse functions invariant under
rigid motions and scale transformations.

The Morse Descriptor allows for multi-scale analysis of shape, since, as shown in
[Allili and Corriveau 2007], the larger the number of the lower level sets studied,
the more topological information can be obtained: MDf (x, y, k) ≤ MDf(x, z, k)+
MDf(z, y, k), for every x ≤ y ≤ z in R and every k ∈ N.

9.2 Computational aspects

In its discrete form, the Morse shape descriptor is encoded in a collection of matrix
structures, one matrix for each homology degree. For a manifold of dimension n,
there are exactly n + 1 significant homology degrees k, 0 ≤ k ≤ n. The element in
the i-th row and j-th column of the k-matrix is precisely the number Rf (xi, yj , k).
Therefore, the comparison of shapes reduces to a distance measure between matri-
ces. The integer indexes i, j vary in the set of the first N natural numbers. The
value N represents the number of samples in the discretization of the range of f
normalized between the absolute minimum and maximum value.

The algorithm presented in [Allili and Corriveau 2007] involves the computation
of the relative homology of N(N − 1)/2 pairs of complexes.

In view of applications to images, the algorithm used in [Allili and Corriveau
2007] to compute the homology groups is based on cubical complexes, which are
complexes whose basic building-blocks are intervals, squares, cubes and their gener-
alizations to higher dimensions [Allili et al. 2001], [Allili and Ziou 2003], [Kaczynski
et al. 2004], [Ziou and Allili 2002].

9.3 Applications

The performance of the Morse Shape Descriptor has been evaluated in [Allili and
Corriveau 2007] on a 2D image retrieval problem. The experimental dataset con-
tains 1100 2D images clustered in 10 classes. In order to model the shapes as
connected compact manifolds without boundary, only the shape contours are con-
sidered. For each contour, four Morse Shape Descriptors are produced, associated
with four different measuring functions, invariant with respect to rigid motions and
scale transformations. The measure of similarity between two shapes is given by a
weighted sum of distances between the collection of Morse Shape Descriptors asso-
ciated with the contours. The effectiveness of the system is evaluated by measuring
its precision and recall.

10. DISCUSSION

In this survey we have focused on methods for shape analysis in which the object to
be studied is described by a pair (S, f), where S is a space, often coinciding with the
shape itself, and f is a real function defined on S. The shared aim of the methods
surveyed is to identify points of interest on a shape, and to capture the shape’s
connectivity in expressive structures. The approach common to all the methods
described finds its roots in classical Morse theory, which combines the topological
exploration of S with quantitative measurement of geometrical properties provided
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by f . This means that both global and local analysis concur to obtain the final
shape description.

Due to the possibility of adopting different functions for describing shapes, the
methods surveyed provide a general framework for shape characterization. Chang-
ing the properties that one wishes to analyze simply means changing the function,
without any other modification in the mathematical model. Moreover, the modu-
larity of the approach can be extended to the choice of the space S used to represent
the shape under study.

Although all the methods surveyed are inspired by Morse theory, there are some
substantial differences in the shape description and interpretation that they offer.
In this section we propose a global comparison among the techniques described,
which highlights the differences in terms of properties of the descriptors (Section
10.1), effectiveness of the description and loss of information with respect to the
representation (Section 10.2), usefulness and context of applicability (Section 10.3).

10.1 Overall comparison and general remarks

The distinguishing feature of Morse and Morse-Smale complexes is that they express
geometric information related to the gradient flow of the measuring function f ,
while the other descriptors encode features captured by f itself. Contour trees and
Reeb graphs compactly represent topological information related to the level sets of
f , expressing the way they are connected. Size theory, persistent homology theory
and the Morse shape descriptor explore in a homological setting the growth of a
space, according to the placement of topological events in the evolution of the lower
level sets.

We can also observe how the methods surveyed adopt mathematical structures
of different level of abstraction to convey geometrical-topological information. On
one hand, Morse and Morse-Smale complexes, contour trees and Reeb graphs are
essentially combinatoric structures. On the other hand, methods in size theory,
persistent homology theory and the Morse shape descriptor mainly rely on the use
of algebraic structures.

With regard to the combinatoric descriptors, the different kind of information
they encode is reflected by the differences in the combinatoric structures they pro-
duce. While contour trees and Reeb graphs always code the shape in terms of
one-dimensional structures (i.e. trees or more general graphs, respectively) disre-
garding the dimension of the underlying manifold, the decomposition provided by
Morse or Morse-Smale complexes is expressed in terms of a cell complex, where the
dimension of the complex coincides with the dimension of the manifold. Moreover,
Morse and Morse-Smale complexes explicitly induce a shape segmentation. A shape
segmentation could also be derived naturally from a Reeb graph, by observing that
the counterimages of the simplices in the graph actually define a decomposition of
the shapes into critical level sets and ribbons.

The connectivity of the different complexes is also worth consideration. Ascend-
ing and descending Morse complexes are dual to each other. For instance, in a
2-manifold the 0-cells in one complex correspond to the 2-cells in the other com-
plex and vice versa, and there is a one-to-one correspondence between the edges
in the two complexes. Thus, by using just one representation for a cell complex,
such as the winged edge [Baumgart 1975], the half-edge [Mäntylä 1988] or the
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quad-edge representation [Guibas and Stolfi 1985], it is possible to encode the com-
binatorial structure of both the ascending and descending complexes for a given
Morse function f into a single representation. In this representation, the minima
will be associated with the vertices and the maxima with the 2-cells, while the
saddle points will be attached to the edges. Two geometric descriptions will be
further associated with each edge e, namely the geometry of e in the descending
and ascending complex, respectively.

In the Morse-Smale complex each vertex corresponds to a critical point and has
valence less or equal to four. In particular, in the 2D case, a saddle is always
connected with at most two minima and at most two maxima, and a maximum or
a minimum is connected with at most four saddles. The 2-cells have four edges and
vertices, the latter corresponding to alternating critical points, namely a minimum,
a saddle, a maximum and another saddle. These properties allows a description of
the critical net of a Morse-Smale complex, called surface network in the 2D case,
as a tripartite graph whose nodes are the critical points.

With regard to Reeb graphs, the degree of a vertex, which corresponds to a 0-
cell of a Morse-Smale complex, depends on the index of the corresponding critical
points. Leaf nodes always represent maxima and minima, and intermediate nodes
(i.e., nodes with degree ≥ 2) correspond to saddles of different index (cf. Section
6.1). In the case of 2-manifolds embedded in R

3, the degree of vertices representing
saddles is always three. Similar properties could be stated for contour trees, which
are a special case of Reeb graphs. We recall, however, that contour trees are more
application-oriented than Reeb graphs, although they are rooted in the same theory.

There are also important differences in the way the shape is coded in the combi-
natorial representations defined by contour trees and Reeb graphs. Contour trees
are defined for scalar fields f : D ⊆ R

n → R where D is a simply-connected sub-
domain of R

n. This implies that the connected components of the level sets can
be ordered with a nesting criteria, and therefore contour trees do not admit cy-
cles. Reeb graphs are defined for a more general class of shapes, n-dimensional
manifolds, and therefore they can have a general connectivity which reflects the
topology of the manifold. Moreover, Reeb graphs take into account not only the
number but also the changes in the topology of connected components of the level
sets, while contour trees do not always (see Section 6.1). To give an example, let us
consider a scalar field in R

3 whose iso-surface changes genus across a critical value
of the scalar field. In this case, the classical contour tree would always count one
connected component while the Reeb graph would identify one critical point and
therefore reflect its presence in the related graph structure. In other words, the
contour tree does not necessarily encode all the saddles that might be identified by
analyzing the level set evolution. For all these reasons, Reeb graphs can be thought
of as a generalization of contour trees, which allows for a more flexible framework
for studying shape properties.

Size theory, persistent homology theory and Morse shape descriptors share a
different approach to shape analysis, based on the use of algebraic structures. We
remark that an increase of abstraction level and richness of topological information
about the shape corresponds to the increase of mathematical structure – from size
functions to persistent homology groups to the size functor – but at the price of
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diminishing the manageability of the descriptors. In particular, persistent homology
groups and size homotopy groups rely on the algebraic notion of group. Since these
algebraic structures are difficult to handle, the more manageable tools of persistence
diagrams and size functions have been introduced.

The unifying key among size functions, persistent Betti numbers (i.e., the rank
of the persistent homology groups) and the Morse shape descriptor is the observa-
tion that all these tools basically count some homology classes determined by the
inclusion of lower level sets of a space S with respect to a function f . Since for
x < y the size function ℓ(S,f)(x, y) counts the number of connected components of
the lower level set Sx which remain disconnected in Sy, we may notice that this
is precisely the rank of the corresponding 0th persistent homology group. This
means that size functions actually coincide with the 0th persistent Betti numbers.
It also follows that, in the case of 0-degree homology, the formal series describing
size function substantially coincide with the set of points of persistence diagrams.
The connection between size functions and the Morse shape descriptor is stated
in [Allili et al. 2004]. An analogous relationship can be stated between the Morse
shape descriptor and the rank of the persistent homology group, i.e. the persistent
Betti numbers.

It also makes sense to compare persistent homology groups with size homotopy
groups since they share the same algebraic structure. In much the same way as the
classical result that the first homology group is the abelianization of the fundamen-
tal group [Spanier 1966], it can be proved that the first persistent homology group
is the abelianization of the first size homotopy group.

Finally, we observe that the size functor furnishes a shape description by a still
more general structure, that is that of functor. In particular, persistent homology
groups can be seen as the images of the morphisms of the size functor.

10.2 Expressiveness of shape descriptors

The techniques surveyed can be discussed also from the point of view of their
potential for describing as well as for discriminating shapes.

According to the adopted tool, we obtain descriptions which store a different
amount of information about the pair (S, f). In general, we can observe that the
descriptors retaining a larger amount of information are those which allow better
discrimination among shapes. Depending on the application, this can be in turn an
advantage or a drawback. The advantage of forgetting descriptors is their concise
and manageable nature, while their drawback generally is the lack of completeness.
Completeness here is meant as the property of retaining sufficient data about the
shape so that it can be uniquely identified by the descriptor. Conversely, incom-
plete descriptions might bring up ambiguity in the sense that different shapes may
have the same associated representation. These two properties are obviously com-
plementary and the descriptor and abstract representation of the shape has to be
devised as a compromise between the two aspects, according to the requirements
of the application context.

From a theoretical point of view, the Morse and Morse-Smale complex are com-
plete descriptors among the methods surveyed, since they are naturally associated
with a decomposition of the original shape. Notice however that, in applied con-
texts, it is often better to compute and store the 1-skeleton of the Morse-Smale
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complex, i.e. the critical net, which is more manageable and computationally less
costly. In contrast, in several applications contour trees and Reeb graphs are not
treated as purely combinatoric structures, but instead enriched with geometric in-
formation related to the underlying model, such as the arc length [Wood et al. 2004],
some contour levels [Shinagawa et al. 1991; Biasotti 2004a], scalar values related
to surface [Hilaga et al. 2001; Tung and Schmitt 2005] or volume [Carr et al. 2004;
Zhang et al. 2004] segments, or the associated subpart decomposition [Biasotti et
al. 2006].

From a general perspective, we can observe that there is a decreasing amount
of data retained as we progress from combinatoric to algebraic descriptors. For
example, consider the 2-manifolds in Figure 27. The study of their shape, with
respect to the height function f in the horizontal direction, can be performed using
the persistence intervals or the Reeb graph. However, while the Reeb graph is able
to discriminate between the two surfaces, neither the 0th nor the 1st homology
persistence intervals are able to discriminate between them.

Notice that the triviality of the 0th homology persistence interval is not intrinsic
to the manifold, but depends on the particular choice of function. For instance, the
opposite of the chosen height function would generate a non-trivial description.

Since the Reeb graph is a one-dimensional simplicial complex with the ability
to capture salient shape features, it makes sense to apply other shape descriptors
directly to the Reeb graph representation. Since the Reeb graph codes the variation
of the connected components of the level sets, it follows that the size functions, the
0th persistent homology group and the 0th homology Morse shape descriptor can
be computed on either the original shape or on its Reeb graph. In contrast, this
is not true for the size homotopy groups, the higher degree persistent homology
groups and the higher degree Morse shape descriptors, since the reduction of the
original shape to a one-dimensional structure causes the loss of higher-dimensional
features. In particular, the 1st persistent Betti number of the Reeb graph is a lower
bound of the 1st persistent Betti number of the original shape, while the subsequent
persistent Betti numbers are always zero if computed on the Reeb graph. Notice
also that, for the special case of 2-manifolds embedded in R

3, the results on the
number of cycles in the Reeb graphs reported by [Cole-McLaughlin et al. 2003]
enabled the extension by [Agarwal et al. 2004] of the notion of persistence to form
a pairing between all the critical points of a function defined on the manifold.

10.3 Suitability for applications

In Table VI we summarize the surveyed methods according to the required proper-
ties of the space associated with the shape S, showing what is theoretically allowable
for a given method (see the second column of table VI) and what has actually been
achieved in practical applications, according to the literature surveyed (see the third
column of the same table).

From the point of view of applications, Morse and Morse-Smale complexes have
proven to be useful tools in analyzing the morphology of terrains. Moreover they
naturally provide a shape segmentation, which is suitable both for cutting a surface
into a single flattenable piece and for simplifying the model representation through
the extraction of a combinatorial base domain. This is fundamental for several
geometry processing tasks, such as parameterization, remeshing, surface texturing
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Fig. 27. (a,b) Two surfaces studied with respect to the height function f in the horizontal di-
rection; the values of f are depicted on the arrows. (c,d) Their corresponding Reeb graphs are
not isomorphic, and therefore allow to distinguish the original shapes. (e,f) The 0th and the
1st persistent homology groups of the two surfaces coincide, and therefore are not sufficient to
discriminate between these objects.

and deformation. In this context, structural problems like over-segmentation are
caused by the presence of noise, and efficiency issues arise because of the very
large size of existing data sets; these problems have been faced and solved by using
generalization techniques and hierarchical representations. Beside the purpose of
visual inspection, in recent works the Morse-Smale complex is computed using
the eigenfunctions of the discrete Laplacian operator and used to extract surface
quadrangulations, that are stable and intrinsic to the model [Dong et al. 2006].

Contour trees are mainly exploited in the visualization context. They have be-
come popular in image processing and topography for their properties that allow
a real time navigation of the data. In particular, the recent developments on this
topic have highlighted their potential for analyzing high-dimensional and time de-
pendent data, like the visualization of the hemoglobin dynamic and the simulation
of galaxy formation in the universe, see for example [Sohn and Bajaj 2006].

Since Reeb graphs generalize to n-dimensional manifolds the concepts behind
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Theoretical side Computational side

MC n-manifold 2D and 3D simplicial complexes, 2D grids

MSC n-manifold 2D and 3D simplicial complexes, 2D grids

CT n-manifold simplicial complexes, 2D and 3D grids

RG n-manifold simplicial complexes, 3D grids

SFn Topological spaces Graphs, 2D simplicial complexes, 2D and 3D grids

SHG Topological spaces –

SFr n-manifolds –

PH Simplicial complexes 1-,2-,3D simplicial complexes

MSD Cubical complexes 2D grids

Table VI. The properties of the input space S for the Morse complexes (MC), the Morse-Smale
complex (MSC), the contour tree (CT), the Reeb graph (RG), the size function (SFn), the size
homotopy groups (SHG), the size functor (SFr), the persistent homology (PH) and the Morse
shape descriptor (MSD).

the contour tree, their application domains partially overlap, for instance in sci-
entific visualization. Despite the more general definition, the existing algorithms
for Reeb graph extraction mainly work on 2− and 3−manifolds, and only recently
on 3D time-dependent data [Edelsbrunner et al. 2004] and n-dimensional simpli-
cial complexes [Pascucci et al. 2007]. Nevertheless, the definition of Reeb graphs
on a domain topologically more “complex” than a scalar field (e.g., with holes, or
concavities) emphasizes the compactness of this representation. This fact has stim-
ulated the use of this descriptor in a large number of applications related to surface
understanding, simplification, parameterization, segmentation and reconstruction.
In addition, the simplicity of the structure (an one-dimensional simplicial complex
in every dimension) and the natural link between the properties of the function f
and the shape S have lead to a massive use of this descriptor for shape comparison
and to development of several shape matching and retrieval tools.

Since the beginning, the declared aim of size theory has been the development of
a geometrical-topological framework for comparing shapes. Each shape is viewed
as a topological space equipped with a real function describing the shape proper-
ties relevant to the comparison problem at hand. Measuring dissimilarity in size
theory amounts to minimize the change in the functions due to the application of
homeomorphisms between topological spaces, with respect to the L∞ norm. Size
functions are a practical and manageable class of descriptors which allow to provide
a lower bound for the dissimilarity measure between shapes. With this theoretical
premise, size functions have been extensively used in the field of Pattern Recogni-
tion, mainly for image retrieval and classification in the Computer Vision domain,
and only recently in Computer Graphics domain [Biasotti et al. 2006a; 2006b; Cerri
et al. 2007; Biasotti et al. 2007b].

The idea of persistent homology was originally introduced to assess the relevance
of topological attributes in a growing complex. Persistence furnishes a scale to
separate out topological features, that is attributes with a long life-time in the
growing complex, from topological noise. The application of this relevance scale
to topological simplification is straightforward, leading for example to methods
for reducing noise in sample data. At the same time, considering the life-time of
topological attributes also induces a powerful description of the shape under study,
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that is an invariant reflecting geometrical-topological properties of shapes. This
approach to shape comparison has a clear potential which has been demonstrated in
a series of examples, although it seems still lacking for an extensive experimentation
in comparison with existing techniques. A few years after its introduction, the
theory of persistent homology is also becoming one of the basic instruments for
solving different application problems, such as protein docking or hole detection in
sensor networks.

11. CONCLUSIONS AND FUTURE EMERGING METHODS

The survey has provided an overview of the achievements of computational topol-
ogy methods for shape analysis using methods rooted in Morse theory. Comparing
the emerging challenges in the field identified some years ago in [Bern et al. 1999],
we may say that several problems have been successfully solved and many solu-
tions have been developed that also work satisfactorily in practical applications.
In particular, the study of the shape of orientable manifolds up to dimension 3
with computational topology methods is now quite mature. However, large multi-
dimensional data sets are increasingly available, both static and dynamic, arising
for example from scientific simulations. Therefore, one of the main challenges is the
definition and the development of mathematical and computational tools to extract
knowledge from high dimensional data.

We believe that future trends will mainly focus on two aspects: the concurrent
use of more functions to analyse a given shape, and the development of shape
description frameworks that improve the effectiveness, in the sense that they better
balance the use of geometrical and topological information for characterizing the
shape.

Regarding the first aspect, there are already a number of papers that anticipate
the trend: the work in [Edelsbrunner and Harer 2002] for example, mentions the
importance of developing methods that take into account the evolution and correla-
tion of topological features extracted by more functions applied to the same shape,
or alternatively, to study the shape of a scientific data set defined by a multi-valued
scalar field. The Jacobi set is introduced in the paper as the mathematical support
to the solution of the problem. Given a manifold M and two Morse functions de-
fined on it, the Jacobi set is defined as the set of critical points of the restrictions
of one function to the level sets of the other function. The Jacobi set can also
be characterized as the set of points where the gradients of the two functions are
parallel.

This idea leads to a more general and promising research topic, that considers
spaces equipped with multi-valued functions instead of scalar functions. Indeed,
a multi-dimensional approach seems more suitable for studying high-dimensional
shapes, or alternatively, for studying shapes with a set of functions. The develop-
ment of a multi-function analysis could bring interesting insights, giving a rich and
complete description of the data. While this approach was already suggested in
[Frosini and Mulazzani 1999], papers and preprints dealing with this subject have
only recently appeared in the framework of size theory [Biasotti et al. 2007b; Cerri
et al. 2007] and in persistent homology theory [Carlsson and Zomorodian 2007].

The analysis of dynamical shapes or phenomena also deserves special mention:
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from a theoretical point of view, time dependency could be handled as any another
variable, but special care has to be taken for the interpretation of dynamical effects.
Some of the work reviewed already points out the necessity of defining time-varying
descriptions of shapes, with solutions presented for the computation of contour
trees and Reeb graphs [Sutton and Hansen 1999; Edelsbrunner et al. 2004; Sohn
and Bajaj 2006; Szymczak 2005].

With respect to improvements in effectiveness, we have seen that all methods
discussed provide a general framework for studying a shape which is parameterized
with respect to the mapping function used, and possibly the space associated to
the shape. The mapping function plays the role of the lens through which we look
at the properties of the shape, and different functions provide different insights. A
more interesting problem is how to devise suites of mapping functions that can be
formalized beyond a generic best practice or rule of thumb. These functions should
be able to capture features that are somehow orthogonal in an abstract conceptual
space but also in a geometric sense [Biasotti et al. 2007c]. We think that one of
the most promising research direction is the use of the Laplacian eigenfunctions,
that are intrinsic to the shape and encapsulate the idea of orthogonality of shape
description [Dong et al. 2006; Lévy 2006].

Based on a rich and meaningful set of mapping functions, new descriptions based
on Reeb graph could be defined, for example, multi-skeletons or even combined
skeletons that capture the most relevant features, augmented with a sufficient geo-
metric data that would allow an efficient processing of the shape data [Marini et al.
2007]. To be noted, indeed, that very interesting results have been obtained using
Reeb graphs for shape retrieval applications, due to their capability of reducing the
dimensionality of the objects to the linear skeleton representation which supports
also partial matching tasks.

Morse and Morse-Smale complexes have proven to be useful tools in analyzing
the morphology of terrains and in segmenting 3D shapes. In this context, prob-
lems due to over-segmentation in the presence of noise, or efficiency issues baused
by the very large size of existing data sets, have been faced and solved by using
generalization techniques and hierarchical representations. On the other hand, the
challenges in scientific visualization are the definition and the development of math-
ematical tools to extract knowledge from large multi-dimensional data sets arising
from scientific simulations. Specifically, volume data sets both static and dynamic
(time-varying) are becoming more and more available. Morse and Morse-Smale
complexes can be appropriate tools for these purposes having more information
content that contour trees, which are sometimes used for the analysis of volume
data sets. A completely open issue is how to compute such representations for
four-dimensional scalar fields. Generalization and hierarchical representations are
even more important in this latter case because of the huge size of available data
sets. We need also new techniques for visualizing Morse and Morse-Smale com-
plexes in a way to be effectively helpful for inspecting three and higher-dimensional
scientific data sets. Finally, the development of a multi-function analysis also for
the Morse and Morse-Smale complex could also bring interesting insights. In these
cases, the study of the gradient flows of different measures and their relationship
should give a rich and complete description of the dataset.
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