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We show that density functional theory within the RPAsrandom phase approximation for the
exchange-correlation energyd provides a correct description of bond dissociation in H2 in a
spin-restricted Kohn–Sham formalism, i.e., without artificial symmetry breaking. We present
accurate adiabatic connection curves both at equilibrium and beyond the Coulson–Fisher point. The
strong curvature at large bond length implies important staticsleft–rightd correlation, justifying
modern hybrid functional constructions but also demonstrating their limitations. Although exact at
infinite separation and accurate near the equilibrium bond length, the RPA dissociation curve
displays unphysical repulsion at larger but finite bond lengths. Going beyond the RPA by including
the exact exchange kernelsRPA+Xd, we find a similar repulsion. We argue that this deficiency is
due to the absence of double excitations in adiabatic linear response theory. Further analyzing the
H2 dissociation limit we show that the RPA+X is not size consistent, in contrast to the RPA. ©2005
American Institute of Physics. fDOI: 10.1063/1.1858371g

I. INTRODUCTION

Density functional theory1–3 sDFTd has proven to be a
powerful method for calculatingsand analyzingd the ground-
state properties of molecular and condensed matter. In its
standard Kohn–ShamsKSd form, the densitynsr d and total
energy are constructed from the self-consistent solution of
one-electron equations where, in practice, the exchange-
correlationsXCd energy functionalEXCfng must be approxi-
mated. Already the simple local-density approximation
sLDA d and, more so, generalized gradient approximations
sGGAsd can yield a remarkably realistic description of
chemical bonds in solid and molecular systems. The state of
the art is presently set by hybrid functionals4–6 that admix a
fraction of the exactsFockd exchange energy with GGA ex-
change. Achieving, on the average, nearly chemical accuracy
for bond dissociation energies, they rival much more de-
manding post-Hartree–Fock configuration interaction or
coupled cluster methods.

However, there remain well-known conceptual limita-
tions, with a clear practical significance, as exemplified by
the following paradigm situations.

sid Long-ranged Coulomb correlations between nonover-
lapping systems are not included in local functionals such as
the LDA or GGAssand thus also hybridsd but require fully

nonlocal XC energy functionals.7–9 Indeed LDa and GGAs
perform at best erratically for van der Waals bonded
systems.10,11

sii d Scaling to the high-density or weakly interacting re-
gime, hybrid functionals do not properly recover the exact
KS exchange energy.12 This failure prominently concerns
odd electron bonds, as exemplified by the H2

+ molecule,
where 100% exact exchange mixing and zero correlation en-
ergy would be needed.13,14

siii d In systems with significant staticsnondynamicald
correlation, LDA, GGA, and thus hybrid functionals under-
estimate the magnitude of the correlation energy.15,16 This
becomes particularly problematic for the dissociation of elec-
tron pair bonds where near degeneracy effects arise in the
molecular wave function. A famous example is the dissoci-
ating H2 molecule. The properssingletd KS ground state at
larger bond lengths has much too high total energy for such
functionals. Usually one works around the problem perform-
ing a spin-unrestricted calculation, a second solution with
reasonable, lower energy is obtained. This succeeds because
exchange functionals can mimic the staticsi.e., long-ranged
left–rightd correlation and thus compensate for an error of the
LDA and GGA type correlation functionals that describe ef-
fectively only dynamical correlation coming from electron
repulsion at short range.16 Yet the spin-unrestricted KS mo-
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lecular wave function artifically breaks the symmetry of the
dissociating molecule, displaying unphysical nonzero spin
polarization.17 In fact spurioussymmetry breaking has re-
mained a much discussed drawback of spin-unrestricted DFT
sand Hartree–Fockd calculations of molecular propertiesssee,
e.g., Refs. 18–21d.

Progress in each of the above noted respects may be
achieved through orbital-dependent XC functionals ex-
pressed in terms of thesoccupied and unoccupiedd KS eigen-
states, such as the random phase approximationsRPAd. The
RPA functional is the simplest realization of the adiabatic-
connection fluctuation-dissipation formalism22 that defines a
broad class of fully nonlocal XC functionals. In terms of the
“Jacob’s ladder” of density functional approximations,23

RPA is on the top rung, putting it among the most general
sbut also the most demandingd of present-day approxima-
tions. It includes the exact KS exchange energy24 as well as
long-ranged Coulomb correlations giving rise to dispersion
forces.7,25 This makes the RPA a natural starting point to
address the above limitationssid–siii d of existing functionals
in a seamless and consistent way.

In this paper we show that RPA functional is able to
describe the strong static correlation in the dissociation of the
H2 bond in aspin-restrictedKS formalism, without artificial
symmetry breaking. The transition from mostly dynamical to
strong static correlation is discussed in terms of the adiabatic
connection. Analyzing the dissociation energy curve of H2,
we find that the RPA is accurate around the equilibrium bond
length and yields, asymptotically, the correct dissociation
into two H atoms. At intermediate distances the dissociation
energy still displays an erroneous repulsion. Of course the
RPA is just the first step in an ongoing systematic quest, with
encouraging results for small molecules26,27 as well as van
der Waals bonded structures.25,28,29 To achieve satisfactory
accuracy globally it requires extensions, some of which are
being examined already.9,24,27,30–32

Last we would like to mention that the XC energy can be
approximated also as functional of the one-electron density
matrix, by making an appropriateansatzfor the exchange
and correlation hole functions. For a particular such func-
tional involving both the occupied and the unoccupied KS
states, Grüning, Gritsenko, and Baerends33 recently repro-
duced the entire dissociation energy curve of H2, including
proper dissociation. The validity of this approach is, how-
ever, still under debate.34

Our paper is organized as follows. In Sec. II we first
recall the classic problem of stretched H2 and its implications
in the context of different density functionals and briefly dis-
cuss ways of dealing with it. We then summarize the RPA
equations. In Sec. III we analyze the H2 dissociation in terms
of the adiabatic connection. Then, in Sec. IV we apply the
RPA to the dissociating H2 bond. In Sec. V we consider
functional beyond the RPA. Section VI summarizes our
conclusions.

II. THE PROBLEM OF STRETCHED H 2 IN DFT

A long-standing problem confronting all single-
determinant calculations is that of stretched H2, representa-
tive for the dissociation of electron pair bonds in
general.3,17,35 For any bond lengthR the true sinteractingd
ground state is a singlet,36 with equal spin-up and spin-down
densities, and the truesnoninteractingd KS ground-state cor-
responds to a single Slater determinantCKS= usgs̄gu made up
from the bondingsg molecular orbital. The spin-restricted
LDA GGA, and hybrid functionalssas well as Hartree–Fockd
correctly yield such a ground state, with reasonable total en-
ergy, around the equilibrium bond lengthR0. As a matter of
fact, the interacting ground state is also mainly ofusgs̄gu
nature aroundR<R0. However, as the bond lengthR is in-
creased towardR→`, CKS no longer resembles the interact-
ing ground state wave function of the molecule. Asymptoti-
cally the latter assumes the familiar Heitler–London form
and puts precisely one electron on each of the two hydrogen
atoms, completely suppressing number fluctuations and de-
scribing two free hydrogen atoms, i.e., H̄H sRef. 17d. By
contrastCKS is half contaminated by ionic contributions of
the form usas̄au and usbs̄bu ssa andsb stand for the 1s orbitals
centered on hydrogenA and B, respectivelyd, in effect de-
scribing the stretched H2 as 1

2sH¯Hd+ 1
2sH+

¯H−d.37 Opti-
mizing, e.g., within spin-restricted GGA, thesg orbital does
not become a linear combination of the 1s hydrogenic orbit-
als but gets much too diffuse, in order to avoid the H− con-
tribution. Hence the dissociation energy of stretched H2 is
severely overestimated, its total energy lying much above the
one of two free hydrogen atomssas illustrated later by our
Fig. 4d. On the other hand, a second solution withlower sand
reasonabled energy may be obtained for bond lengths beyond
the so-called Coulson–Fisher point38,39 by breaking the spin
symmetry and localizing on one hydrogen atom the “spin-
up” electron and on the other the “spin-down” electron. This
is what is obtained, in practice, by performing spin-
unrestricted LsSdDA, GGA, or hybrid functionalsas well as
unrestricted Hartree–Fockd calculations.

This situation for approximate XC functionals embodies
the well-known spin symmetry dilemma for dissociating H2:
restricted KS schemes yield the proper symmetry adapted
ground state but poor total energies, while unrestricted KS
schemes yield very reasonable total energies but qualitatively
wrong spin densities.17

A. Local, semilocal, and hybrid functionals

At the origin of the problem is the inability of present
XC functionals to properly capture long-ranged left–right
correlation that eventually appears when a molecule
dissociates.40 Such staticsor nondynamicald correlation is
present in many real molecules even in or near the ground-
state geometry. As a matter of fact LDA and GGA calcula-
tions only mimic it through their exchange component while
their correlation component accounts forsshort-rangedd dy-
namical correlation onlyssee, e.g., Ref. 16d. In fact their
performance depends crucially on the well-known cancella-
tion of errors between exchange and correlation.12 This com-
pensation is of course neither perfect nor universal, as indi-
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cated by the on average, overestimated atomization energies,
particularly for multiply bonded species such as N2, but also
by often underestimated reaction energy barriersssee, e.g.,
Ref. 41d.

Hybrid functionals4–6 can provide a useful remedy and
are usually more accurate than LDA or GGAs alone. Yet they
still rely on a similar philosophy: the admixing of a certain
fixed fraction of the spossibly spin-unrestrictedd exact ex-
change energy can be understood to improve the description
of static correlation while dynamical correlation is still de-
scribed byssemi-d local LDA or GGA functionals. The errors
in the exchange and correlation energies do not sufficiently
cancel in cases where either exchangesparadigm: H2

+d or
static correlationsparadigm: dissociated H2d prevails, so that
eventually hybrid functionals can become inadequate too.15

For dissociating electron pair bonds, sufficiently negative ex-
change energies are obtained only by resorting to spin-
unrestricted exchange, i.e., by an unphysical breaking of the
symmetry of the KS molecular wave function. At which
bond length the spin-unrestricted solution becomes energeti-
cally preferable depends on the functional. Hybrid function-
als are more prone to break symmetry with an increased
admixing of exact exchangessee Ref. 42d. Artificially sym-
metry broken solutions from spin-unrestricted methods may
also yield unphysical molecular properties, despite providing
a lower energy solution and appearing better variationally.19

B. Functionals of occupied and unoccupied
KS states

Although the physical origin of the above difficulties is
clear it is far from simple to correct for them, while retaining
low computational cost. A variety of approaches have been
applied, mostly along the same lines as a traditional re-
stricted Hartree–Fock calculation would be corrected, such
as spin-unrestricted,39 multireference,43,44 or ensemble-
referenced Kohn–Sham schemes.20,45Although often useful,
these suffer from similar difficulties as in Hartree–Fock,
namely, that different approaches work for different
situations.

A more satisfying approach is to develop a more de-
manding but nonempirical scheme. Functionals involving oc-
cupied and unoccupiedsvirtuald KS orbitals offer this possi-
bility as recently shown by Baerends and co-workers.33,35A
well-defined starting point is the exact exchange formalism
sEXXd in Kohn–Sham DFTsRef. 46d which then must be
complemented with a compatible correlation functional, i.e.,
one that properly respects the weakly correlated, exchange-
only limit se.g., producing zero correlation energy in one-
electron systems such as H2

+d and accurately interpolates to
the strongly coupled regime to be discussed in Sec. III A.
The RPA XC functional discussed in Sec. II C represents a
possible first step into this direction.

C. Functionals from linear response:
RPA and beyond

The combination of the RPA with DFT was discussed as
early as the late 1970s,22 then for the uniform electron gas.
The idea is to start from the noninteracting KS response

function and dress it with asscaledd Coulomb interaction
lv̂ee, and eventually also with an exchange-correlation ker-
nel of time-dependent DFTsTDDFTd.47 This yields the re-
sponse function of an interacting system, which by way of
the fluctuation-dissipation theorem gives the corresponding
pair-correlation function and thus the electron–electron inter-
action energy. The XC energy is last obtained through an
integration of the electron–electron interaction energy along
an adiabatic path connecting the noninteracting KS system
sl=0d to the interacting onesl=1, see Sec. III Ad.

Working in the imaginary frequencyiu domain, the basic
equationssin Hartree atomic unitsd are as follows. Starting
from a KS ground state with eigenstateshfisfng ,eisfngj,
functionals of the densityn, one constructs the KS response

x0sr ,r 8; iud = o
s,k,l

sgks − glsd
iu − s«ls − «ksd

3 fks
* sr dflssr dfls

* sr 8dfkssr 8d, s1d

with gis=1 for occupied andgis=0 for unoccupied KS
states. The interacting response functionxl at coupling
strengthl follows from the Dyson-type screening equation

xlsiud = x0siudf1 − flvee+ fXC
l siudgx0siudg−1, s2d

where vee=1/ur −r 8u is the Coulomb repulsion andfXC
l siud

stands for the XC kernel of TDDFTfmatrix notation
A¬Asr ,r 8d andAB¬ed3r9Asr ,r 9dBsr 9 ,r 8d is implied hereg.
The fluctuation-dissipation theorem and the coupling
strength integrationssee Sec. III Ad finally yield an exact
expression for the XC energy:

FXCfng = −
1

2
E

0

1

dlE d3r d3r8
1

ur − r 8u

3 FHE
0

` du

p
xlsr ,r 8; iudJ + nsr ddsr − r 8dG ,

s3d

called the adiabatic-connection fluctuation-dissipation theo-
rem sACFDTd for the XC energy. Through approximations
for fXC

l , fully nonlocal ACFDT XC functionals can be gen-
erated in practice. In general these will be orbital-dependent
functionals involving, throughx0 sand eventuallyfXC

l d, both
occupied and unoccupied KS states. The RPA is obtained by
settingfXC

l =0, i.e., neglecting all XC contributions to screen-
ing in Eq. s2d. Approximating fXC

l by the sexactd exchange
kernel of TDDFTsRef. 47d defines the RPA+X functional.
In the ACFDT formulafEq. s3dg, because of the integral over
the coupling strength, an approximation toxl of a given
order inl, produces an approximation toEXCfng to the next
highest order. Thus, to zeroth order,x0 inserted in Eq.s3d
yields the exact exchange energy,EXfng, the first-order en-
ergy. The RPA yields an approximation toEXC that contains
all orders ofl, but misses contributions from second-order
onward. In RPA+X, on the other hand,fXC

l sand thusxld are
treated exactly up to first-order. In turn the RPA+X yields an
approximation toEXCfng that is exact up to second order but,
in an approximate way, again includes also all high orders of
l. Being exact to second order, the RPA+X produces the
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exact initial slope of the adiabatic connectionsto be dis-
cussed in detail in Sec. III Ad as given by second-order
Görling–Levy perturbation theorysGL2d.48

While the RPA is expected to be quite accurate forsiso-
electronicd total energy differences, it overestimates absolute
correlation energies.24 Indeed, the short-range behavior of
xRPA is incorrect, because the electrons only respond to the
averaged density fluctuations. In particular, thesspuriousd
“self-response” of an electron to its own contribution to these
density fluctuations is the most important source of error in
few electron systems. It is responsible for asspuriousd non-
zero self-correlation energy in one-electron systems such as
the H atom. This deficiency of the RPA may well be cor-
rected by a local-density functionalEC

sr-LDAfng designed for
the purpose,24 defining the so-called “RPA+” functional
EXC

RPA+fng=EXC
RPAfng+EC

sr-LDAfng. As expected in Refs. 24 and
30 and confirmed in Refs. 26 and 27, local or semilocal
short-ranged corrections have rather minor effects on mo-
lecular dissociation energies, yet nicely correct for spurious
RPA self-response problem in the H and He atoms.27 For
these reasons we focus in this paper on thedifferenceof the
total energies and XC energies between the molecule and the
isolated atoms.

Compared to hybrid functionals, the RPA involves both
occupiedandunoccupiedKS states. Its computational cost is
quite severesa factor 102–103 compared to a GGA ap-
proachd, but its promise is to tackle the nonlocality of ex-
change and correlation on an equal footing, leading to a
seamless description from the chemically bonded to the dis-
sociated regime, including van der Waals interactions not
accounted for in GGAs or hybrids.

Recent calculations for small molecules by Furche26

found that the RPA describes the chemical bonds with similar
but not better accuracy as modern GGAs. Although this ap-
pears to be disappointing, we note that the RPA is in fact
accurate for H2 and the difficult case of Be2 sRef. 27d where
LDA and GGA fail. Also there has been significant progress
in building XC functionals on top of the RPA that include the
dispersion forces between layered solid-state structures such
as jellium slab models25 and graphite,28 and between atoms
or molecules.29 We further point out that the RPA is just a
ready realization of a much broader class of functionals
based on the adiabatic-connection fluctuation-dissipation
theorem which offers various options for
improvements.27,30–32Moreover, the RPA is amenable to ex-
tensions derived in many-body Green function theory which
itself is being very actively explored for total energy
calculations,11,49,50including H2.

51–53

In the present study we do not perform self-consistent
RPA calculations, these are computationally too costly at
presentsalthough formally perfectly feasible, see Refs. 54
and 55d. Instead we evaluate Eqs.s1d–s3d a posteriori with
the KS eigenstates taken from EXX calculations as explained
further in Sec. IV A. Thanks to the variational principle for
DFT total energies we expect the resulting RPA total energies
to be tight upper bounds to the self-consistent RPA results.
Indeed we found that our results for the RPA total energies
remained virtually unchanged when we used the LDAsRef.

56d or PBE GGAsRef. 57d instead of the EXX for calculat-
ing the initial KS states.

III. ADIABATIC CONNECTION ANALYSIS
OF H2 DISSOCIATION

In this section and in the following section, we show that
the RPA offers a promising handling of the problem of dis-
sociating electron pair bonds, as exemplified by H2. In par-
ticular, we analyze the adiabatic connection curves as the
system passes through its Coulson–Fisher point, i.e., where
the KS ground state from standard XC functionals bifurcates
into a spin-symmetry adapted and a lower energy but sym-
metry broken solution. We first consider H2 at its equilibrium
bond lengthsSec. III Ad and in the completely dissociated
limit sSec. III Bd.

A. Adiabatic connection

To understand in detail how DFT handles static correla-
tion, one invokes the adiabatic connection,22,39 already
briefly mentioned in Sec. II C. One imagines altering the
strength of the electron–electron repulsion by multiplying it
by a constantl, which varies between 0 and 1. At the same
time, the one-body potential is altered, i.e., made a function
of l, so as to keep the electron density fixed. This is a way of
continuously connecting the noninteracting KS systemsl
=0d to the interacting physical systemsl=1d. More impor-
tantly, by virtue of the Hellmann–Feynman theorem, one can
write the XC energy as an integral over purely potential
energy:

EXCfng =E
0

1

dlUXCfngsld, s4d

where UXCfngsld=kClfnguv̂eeuClfngl−Ufng. Here Clfng is
the ground-state wave function at coupling strengthl, v̂ee is
the Coulomb repulsion, andUfng is the Hartree energy. The
integrandUXCfngsld represents the potential energy contri-
bution to XC and makes up the adiabatic connection curve.
At the l=0 end it corresponds to the exact Kohn–Sham ex-
change energyEX,24

UXCfngs0d = EXfng, s5d

and has asnegatived initial slope, given by the correlation
energy of second-order Görling–Levy perturbation theory48

sGL2d

UXC8 fngsld = U d

dl
UXCfngsldU

l=0
= 2EC

GL2fng. s6d

All l dependence rests in the correlation contribution

UCfngsld = UXCfngsld − EXfng. s7d

At l=1, UXCfngsld describes the XC potential energy of the
physical system,UXCfng¬UXCfngs1d, and similarly the cor-
relation potential energy,UCfng¬UCfngs1d.

The l dependence for ACFDT type functionalsfsee Eq.
s3dg, appearing through the response functionxl, is given by
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UCfngsld = −
1

2
E

0

` du

p
Trfveehxlsiud − x0siudjg, s8d

where TrfAg¬ed3rAsr ,r d. The full l curve may then be
calculated thanks to Eq.s7d. For the LDA or GGA type func-
tionals thel dependence can be readily calculated from the
exact relation58

UXCfngsld =
d

dl
sl2EXCfn1/lgd, s9d

where the XC energy functional is evaluated at the scaled
densityn1/lsr d¬nsr /ld /l3. Hence analysis by adiabatic de-
composition allows investigation into how well the different
functionals perform, and why.12,59

Below we consider molecular dissociation energies, i.e.,
the difference between the molecular and atomic total ener-
gies,

DE = Etotfmoleculeg − Etotfatomsg, s10d

and analyze the exchange-correlation contributions by means
of the analogously defined differencesDEXC, DEX, and
DUXCsld.

A useful measure of the correlation strength is given in
Ref. 60. Define the parameterb by

EXCfng = bEXfng + s1 − bdUXCfng. s11d

A simple interpretation ofb is given by the following geo-
metrical construction: if the adiabatic curve were a horizontal
line of valueEXfng running from 0 tob, and then dropped
discontinuously to another horizontal line of valueUXCfng
running fromb to 1, thenb is that value ofl that yields the
correct EXCfng. Thus, in the high density limit, where the
adiabatic connection curve is a straight line,b is exactly 1/2.
On the other hand, for strong static correlation, in which the
adiabatic connection curve drops rapidly to its final value,b
is close to zero. One can also show60

b =
TCfng

uUCfngu
, s12d

whereTC is the kinetic portion of the correlation energy

TCfng = ECfng − UCfng. s13d

Thus smallb indicates that the correlation is indeed static,
i.e., has a smaller fraction of kinetic to potential energy.

For the atoms and most chemically bonded systems, the
adiabatic connection curve is rather nondescript, lying close
to a straight line. This is illustrated by H2 at the equilibrium
bond length in Fig. 1, where we plotDUXC

RPAsld. The area
enclosed by the adiabatic connection curves represents the
XC contribution to the dissociation energy,DEXC. As can be
seen from Table I the RPA dissociation energy of H2 is in
excellent agreement with the exact value. Noting also the
good agreement of the endpoints of our RPA curve in Fig. 1
with accurate data from configuration interaction
calculations,61,62 listed in Table I, this implies that the RPA
curve lies very close to the true adiabatic connection curve.
The straight line corresponds to GL2 theory, indicating the
b=1/2 high density limit and the initial slope of the true

curve given by Eq.s6d. For l.0, DUXC
GL2sld lies below the

true curve, overestimating the absolute correlation energy.
Indeed, calculatingxRPA+X to first order in l we obtain
DEGL2=−5.04 eV, about 0.3 eV below the true dissociation
energy. This indicates that the second-order perturbative
treatment is qualitatively but not quantitatively accurate for
H2. Regarding the PBE GGA, Fig. 1 and Table I show that it
is accurate for the exchange energysl=0d but underesti-
mates the absolute correlation potential energysl=1d. In
turn the PBE GGA also underestimates the absolute XC en-
ergy and the dissociation energy of H2.

Calculations of the exact adiabatic connection for mol-
ecules, using the accurate ground-state wave functions for all
l, have so far not been attempted to our knowledge, while a
few such curves based on accurate ground-state densities
have been reported for atoms,64–66 bulk Si,67 and model
systems.68 We remark thatsd/dldUXCfngusldul=0, i.e., the
GL2 correlation energy, is also a key ingredient in a recent
coupling strength interpolation of the adiabatic connection
by Seidl, Perdew, and Kurth69 which performs with similar
accuracy as modern hybrid functionals for molecular disso-
ciation energies. For H2 close to the equilibrium bond length,
the corresponding dissociation energy and adiabatic connec-
tion curve are in good agreement with our RPA results.70

B. H2 symmetry dilemma

We now discuss the stretching of H2 as a paradigm of the
difficulties that single-determinant methods have with disso-
ciation. The nearly straight line behavior dramatically
changes when the bond is stretched toR→`. Asymptoti-
cally, the proper molecular wave function for anyl.0 si.e.,
regardless of the interaction strengthd is the bonding linear
combination of the 1s orbitals of the two H atoms. For the
H2 “supermolecule” the exchange energy therefore has the
same value as in a hydrogen atom, i.e.,EXfH·

¯H·g
→EXfHg=−UfnHg. Consequently also UCfH·

¯H·gsld
;−UfnHg for any l.0, since the dissociated H2 molecule
must have the same total energy as two H atoms. Figure 2
shows the corresponding exact adiabatic connection
DUXCfH·

¯H·gsld. The immediate drop of the adiabatic con-
nection curve atl=0 is characteristic for a system with

FIG. 1. Adiabatic connection for H2 at bond lengthR=1.4 bohrs within the
RPA ssolid lined and the GGAsdot-dashed lined. The GL2 curvesdashedd
corresponds to the slope of the exact curve atl=0. Shown is the difference
between H2 and two free H atoms, evaluated on self-consistent EXX densi-
ties. The “exact” curve is an interpolationsRef. 63d based on accurate values
of DEx, DEXC, andDUXC from a configuration interaction calculationsRefs.
61 and 62d.
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strong static correlation: hereb=0 exactly. The position of
one electron entirely determines the position of the other
electron sleft–right correlationd: the two electrons in infi-
nitely separated H2 must sit on the two different nuclei but
never on the same, as spuriously allowed by the single KS
determinant. Put differently,35 in the concept of the XC hole,
the exchange hole of H2 is spatially completely delocalized
over both nuclei. However, the XC true hole is always cen-
tered about the reference electron. This means that the cor-
relation hole must be long ranged to yield the proper hydro-
genlike hole on one nucleus and the needed zero total XC
hole on the opposite nucleus. By contrast, LDA or GGA
correlation holes, derived essentially from the uniform elec-
tron gas, are always short ranged and hence cannot cancel
the exact exchange hole far away. Breaking inversion sym-
metry, LsSdDA and spin-dependent GGA on the other hand
ssuch as unrestricted Hartree–Fockd already yield the spin-up
and -down exchange holes of separate hydrogen atoms, op-
posite spin electrons sitting on different nuclei, and thus
mimic the static correlation: unrestricted Hartree–Fock or ex-
act KS exchange indeed yield two hydrogen atoms as the
dissociation products and produce curves similar to that in
Fig. 2.

IV. H2 DISSOCIATION WITHIN THE RPA

We now examine how the RPA describes bond dissocia-
tion, stretching H2 from equilibrium to large bond lengths. In
particular, we give the correct prescription for applying the
scheme during dissociationsSec. IV Ad. Using it, we provide

the first accurate calculations of adiabatic connection curves
as a system passes through its Coulson–Fisher point. We then
discuss our results for the RPA dissociation energy curves
and compare with the PBE GGAsRef. 57d and PBE0 hybrid5

functionalssSec. IV Bd.

A. Beyond the Coulson–Fisher point

A key concept in this paper is that DFT within the RPA
allows correct dissociation of molecules. However, given our
present inability to perform self-consistent RPA calculations,
the demonstration of this fact becomes quite subtle. While
thesrestrictedd EXX solution is an adequate starting point for
the RPA around the equilibrium bond length, it is totally
inadequate beyond the Coulson–Fisher pointsR.2.5 bohrs
for H2 treated in EXXd, where ambiguity arises in a single-
determinant calculation. In the words of the symmetry di-
lemma, should one use the unrestricted solution, which has a
pretty good energy but totally incorrect spin density, or the
restricted solution, which has the correct symmetry but poor
energeticssas seen in Fig. 4d? Following Ref. 17, one must
use the best estimate for the correct ground-state density that
is available. As argued there, the unrestricted solution yields
the best approximate DFT density, but its spin density is not
to be believed. We therefore take thetotal density from our
unrestricted EXX KS calculation, and treat it as a spin sin-
glet. This becomes our input density to our RPA calculation.
Recall that this density becomes exact in the limit ofR→`,
where it corresponds to two separate hydrogenic densities, in
contrast to a restricted scheme. Inverting the KS equation71

for nsr d=nEXXsr d+nEXXsr d, we obtain the KS potential
yielding that density and the respective KS eigenstates.

B. Results and discussion

Beyond the Coulson–Fisher point, the RPA adiabatic
connection of H2 becomes strongly bent downward, as is
shown in Fig. 3. Thus the RPA captures the onsetting strong
static correlation related to the multideterminant nature of
the interacting many-electron wave function. This feature is
missed by the PBE GGA correlation functional which sig-
nificantly underestimates the magnitude of the correlation
energy, as seen from Table II and from the PBE GGAsRKSd
curve in Fig. 3. Switching to the unrestricted PBEsand
PBE0d scheme, the exchange component simulates the miss-
ing static correlation while the correlation component is
much too small in magnitude. Correspondingly, unrestricted

TABLE I. Adiabatic decomposition of the dissociation energyDE of H2 at bond lengthR=1.4 bohrs, evaluated
on self-consistent EXX densities. Shown are the differences between the molecule and two free H atoms for the
coupling strength integrandDUXCsld and related quantities, as explained in the text. All values are in eV.

DE DEXC DEx DUC DTC/ uDUCu DUXC8 s0d

PBE GGA −4.54 −1.91 −1.04 −1.52 0.431 −2.42
RPA −4.73 −2.10 −0.99 −1.95 0.427 −2.97
Exact −4.74a −2.04b −0.98b −1.93b 0.450 −2.84

aReference 36.
bFrom Refs. 61 and 62. In these worksEX, EXC, andTC were calculated on the H2 density obtained from a
configuration interaction calculation which yieldedDE=−4.68 eV. Using these data we evaluatedDUC from
Eq. s13d.

FIG. 2. Exact adiabatic connection for dissociated H2 at bond lengthR
→`, shown as the difference with respect to two free H atoms. For the
exact KS determinant the curve starts atl=0 with the negative of the exact
exchange energy of a single H atom, −ExsHd.8.5 eV as explained in the
text. The negative of the shaded area represents the correlation energy of the
H2 molecule and equalsExsHd.
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PBE slike PBE0d eventually gives dissociation energies that
are in quite good agreement with the exact value, as listed in
Table III. We stress that this is a result of error cancellation
betweensunrestrictedd exchange and correlation: the PBE
adiabatic connection curves is qualitatively clearly wrong,
especially atl=0, where itsDEX is much too small and its
slope turns out even slightly positivesthough this is not vis-
ible on the scale of Fig. 3d. No such error cancellation occurs
within the RPA. The onset of strong static correlation is re-
flected in the low value of our correlation strength parameter
b reported in Table II for the RPA and exact curves, but not
for ssemi-d local density functional approximations.

Although qualitatively correct the RPA adiabatic connec-
tion curve is still deficient, as can be appreciated by compar-
ing to the exact curve in Fig. 3 and data in Table II.
DUC

RPAsld does not drop deep enough withl, despite its too
steep initial slope. Correspondingly the RPA yields a too
positive molecular correlation energy and produces an artifi-
cial barrier for dissociation as seen in Table III. This is fur-
ther evidenced in the full RPA dissociation curve of Fig. 4.
Indeed, while the RPA performs accurately around equilib-
rium R and again at largerR, it shows an unphysical bump at
intermediate bond lengthR. The origin of this bump will be
further discussed below. Nonetheless the asymptotic behav-
ior sR→`d of the RPA is correct, as can be understood from
a model RPA calculation using only the highest occupied
molecular orbitalsHOMOd and lowest unoccupied molecular
orbital sLUMOd EXX-KS states: as shown in the Appendix,
the RPA then yields the exact correlationsand totald energy

for R→` and produces precisely the exact adiabatic connec-
tion of Fig. 2. Including the higher lying KS states, the RPA
builds up spurious self-correlation in both the H atoms and
the H2 supermolecule, which, however, cancels out in the
dissociation energy. This cancellation is indeed also reflected
in the sidenticald estimates of the local-density corrections
sRPA+d in the atom and in the infinitely stretched molecule.

Figure 4 also demonstrates that for proper dissociation it
is crucial to work with qualitatively correct densities, i.e., to
start from a KS potential that takes into account the essential
left–right correlation. The EXX, PBE, GGA, and PBE0 hy-
brid functionals within the spin-restricted KS formalism all
lead to much too high total energies for the dissociating bond
because the spin-restricted density isqualitatively wrong as
explained in Sec. II. Reasonably accurate dissociation ener-
getics are obtained only from the spin-unrestricted KS for-
malism. However, at smaller bond length, the PBE0 curve
still rises too quickly above the true curve. PBE GGA clearly
works better, and the lower energy solution appears only
beyondR<4 bohrs, i.e., for at a larger bond length than for
the EXX and the PBE0 hybrid.

The RPA curve is accurate around the H2 equilibrium
bond length and approaches the dissociation limit for large
R. The success of the RPA lies in the fact that it does so
sproperlyd as a functional of a singlet density only, rather
than spin densities as in the traditional approximations for
XC. Of course the density must ultimately come from a self-
consistent KS calculation and potential, whereas we have
approximated it non-self-consistently. Our findings confirm
that proper densities require accurate approximations also for
the XC potentialsthe functional derivative ofEXCfngd, as
argued recently by Baerends.35 In agreement with Ref. 35,

FIG. 3. Same as Fig. 1, but forR=5 bohrs, i.e., beyond the Coulson–Fisher
point. The RPA results are based on thetotal density of a unrestricted EXX
KS calculation. Also shown are the adiabatic connections for the PBE GGA
applied in the restricted KS formalismsRKSd, yielding poor energetics, and
in the unrestricted KS formalismsUKSd, yielding better energetics but ar-
tifically breaking inversion symmetry.

TABLE II. Adiabatic decomposition of the dissociation energyDE of H2 at bond lengthR=5 bohrs, as shown
in Fig. 3. The RPA functional is evaluated on the total density from a spin-unrestricted EXX calculation as
described in Sec. IV A. Also shown are results for the PBE GGA, evaluated as a spin-restrictedsRKSd and a
spin-unrestrictedsUKSd functional using the EXX spin densities. All values are in eV.

DE DEXC DEX DUC DTC/ uDUCu DUXC8 s0d

PBE sRKSd 2.20 2.30 2.81 −0.90 0.43 −1.23
PBE sUKSd −0.06 0.040 0.044 −0.008 0.50 0.084
RPA 0.54 1.33 5.72 −5.06 0.13 −111
Exact −0.10a 0.82b 5.85b −5.61b 0.10 −56.8

aReference 36.
bFrom Refs. 61 and 62, see also Table I.

TABLE III. Dissociation energy of H2 at bond lengthR, calculated with
different XC functionals as indicated in Fig. 4. Given are the energies from
unrestricted KS calculations, except for RPA and RPA+X as explained in
the text. All values are in eV.

R sbohrsd 1.4 3 5 10

EXX −3.62 −0.47 −0.02 0.00
PBE GGA −4.53 −1.27 −0.03 0.00
PBE0 hybrid −4.52 −1.07 −0.03 0.00
RPA −4.73 −1.44 +0.54 +0.20
RPA+X −4.86 −1.45 +0.34 −0.25
Exacta −4.75 −1.56 −0.10 0.00

aReference 36.
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our results also show that unoccupied KS statessand in par-
ticular the LUMO stated must be included inEXCfng in order
to attain the correct dissociation limit.

An obvious shortcoming of the RPA compared to the
unrestricted PBE GGA, and PBE0 schemes is that its disso-
ciation curve displays an unphysical bump for intermediateR
as seen in Fig. 4 and Table III. A similar behavior has been
found for N2 sRef. 26d and Be2.

27,72 We believe that these
deficiencies stem from the RPA itself, rather than our lack of
self-consistency. In particular we have obtained essentially
the same curves when we used densities derived from unre-
stricted LDA and GGA calculations. A more conclusive an-
swer must either start from more accurate densities or await
self-consistent calculations. Using anansatzfor the XC en-
ergy functional in terms of natural orbitals in asapproxi-
mately self-consistentd singletKS calculation, Baerends and
co-workers33,35 recently reported a dissociation curve of H2

in very good agreement with the true curve for allR. The fact
that for intermediateR their curve is distinctly more accurate
than our non-self-consistent RPA result clearly calls for fur-
ther analysis of both approaches, including possible error
cancellation between different components of the total en-
ergy. This is beyond the scope of our present study.

V. EXTENSIONS BEYOND THE RPA

So far we have shown that the RPA gives a qualitatively
correct account of thesdifferentiald adiabatic connection of
H2, in contrast to semilocal or hybrid functionals, but needs

to be improved for moderately large bond lengths. We now
discuss possible extensions of the RPA as an ACFDT XC
functional.

A known deficiency of the RPA is the spurious self-
correlation in the absolute correlation energies, for the H
atom as well as the H2 molecule. For the one-electron H
atom, self-correlation is eliminated by including the exact
exchange kernelsfX

l =−lveed in the screening of the elec-
tronic Coulomb interaction, Eq.s2d. For the two-electron H2
the exact exchange kernelffX

l =−sl /2dvee sRef. 47dg, elimi-
nates self-correlation to second order inl yet not to higher
order. Using this RPA+X functional we obtain the dissocia-
tion energy of H2 sR=1.4 bohrsd as −4.86 eV, about 0.1 eV
below the true and our RPA values. Having estimated our
computational accuracy at the same order, we feel cautions
about the significance of the RPA+X result. On the other
hand we find that the dissociation energy curve beyond the
Coulson–Fisher point is not at all improved. To the contrary,
while the RPA+X curve follows the RPA curve up to
<4 bohrs it drops below zero and approaches a negative
constant for largerR. We regard this as a size-consistency
problem in that the self-correlation error is eliminated in the
H atoms, but reappears in the far stretched H2. This is further
corroborated in Appendix 2. Our finding clearly suggests that
in addition to exchange also correlation contributions need to
be included in the XC kernel. A ready way to do so would be
to employ the well-known adiabatic LDA kernel73 or an
energy-optimized adiabatic XC kernel.31

As mentioned in Sec. II C the incorrect RPA short-
ranged correlation, including self-correlation, may be cor-
rected through a specially designedssemi-dlocal-density
functional sRPA+d. Although this improves upon the too
negative RPA correlation energies as shown in Ref. 27, it
again does not correct the deficiencies we observe in the
RPA dissociation energy curve of H2.

The limitation of RPA, as in any adiabatic treatment of
the interacting linear response, might be that it treats only
single excitations74 and thus cannot take into account density
fluctuations that correspond to doubly excited determinants
and eventually also contribute to the correlation energy. As is
well known, doubly excited determinants have larger weights
in the asymptotic interacting wave functions of H2 for both
ground and excited states. ForR→` this is evident from the
corresponding exact Heitler–London wave functionsssee,
e.g., Refs. 75 and 76; for instance, the lowest 1Sg

+ and 1Su
+

singlets are the symmetric and antisymmetric linear combi-
nations, respectively, of the determinantsusgs̄gu and usus̄uu
made up of the HOMO and LUMOd. Double excitations im-
ply additional poles in thesreal frequencyd interacting re-
sponse and thus a strongly frequency-dependent XC kernel.
Any such pole contributes to the spectral decomposition of
the pair-correlation function or XC hole. While there is lim-
ited progress concerning the calculation of the excitation en-
ergies for certain doubly excited states within TDDFT,77 fur-
ther analysissand developmentd of the spatial and frequency
dependence of such XC kernels is needed for applications in
ACDFT XC functionals.

FIG. 4. Dissociation energy curve of H2. The upper panel compares results
for EXX, the PBE GGA, and the PBE0 hybrid functionals calculated in the
self-consistent restrictedsRKSd and unrestrictedsUKSd KS formalism, with
exact data from Ref. 36. The lower panel compares the RPA and RPA+X
curves, calculated with total densitiesnUKS obtained from unrestricted EXX
KS calculations, with exact data. Also shown is the RPA curve calculated
with densitiesnRKS from restricted EXX KS calculations.
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VI. SUMMARY

The central message of this paper is that the RPA re-
solves the long-standing symmetry dilemma encountered in
approximatedensity functional theory when breaking the H2

electron pair bond. We showed that the RPA produces the
correct dissociation limit from a proper singlet KS density,
without the need for artifical symmetry breaking as in unre-
stricted Kohn–Sham theory for traditional local- or
generalized-gradient functionals and hybrid XC functionals.
By analyzing the adiabatic connection, we showed that the
RPA captures correctly the strong staticsleft–rightd correla-
tion that arises when the pair bond breaks. Local and
gradient-corrected functionals make serious errors here, and
even hybrids, which mimic this effect at equilibrium bond
lengths, cannot account for the extreme static correlation in
the dissociation limit. As the RPA yields an orbital-dependent
XC functional, our results demonstrate the importance of in-
cluding unoccupied KS states, in particular the LUMO state.
We also showed that it is crucial to work with an accurate
density, which we have constructed approximately in this
study and which could be improved by applying the RPA
self-consistently. We further found the RPA dissociation
curve to agree well with exact data near the equilibrium bond
length of H2. When the bond is stretched, it tends to the
correct limit, unlike all the common restricted Kohn–Sham
approaches. Noting that the RPA still leads to an unphysical
repulsion of the hydrogens for intermediate bond lengths, we
adressed inherent limitations and possible extensions of the
RPA. Seen as a first step to realize fully nonlocal XC func-
tionals by the adiabatic-connection fluctuation-dissipation
formalism, we believe that the RPA provides a sound basis
for quantitative refinements. Our study highlights H2 as a
significant benchmark system for assessing future progress
beyond the RPA.
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APPENDIX

In part 1 of this appendix we describe our computational
method for evaluating the RPA XC energy. In part 2 we
corroborate that thespin-restrictedRPA total energy of H2 sid
at asymptotically large separation becomes indeed equivalent
to the total energy of two free H atoms calculated in aspin-
unrestrictedformalism, in contrast to the case of the RPA
+X kernel, sii d for sufficiently large separationsR includes
the expected −C6

RPA/R6 van der Waals attraction.

1. Computational method

We have implemented the RPA functional in a pseudo-
potential plane-wave framework,78 handling the response
functions, Eqs.s1d and s2d, in their reciprocal space repre-
sentation. Gauss–Legendre quadrature rules are used for the
l andiu integrations. For our study of H2 the −1/r attraction
is replaced by a highly accurate norm-conserving
pseudopotential.79 The latter yields practically the exact en-
ergy of the H atom and dissociation energies to within
0.1 mHa when compared to full-potential results, for LDA,
GGA, or EXX calculations. We place the H2 molecule in a
fcc supercell of 21 bohrs side length. For the initial KS cal-
culation we use a plane-wave cutoff energy of 30 Ha, and
12 Ha for the response functions. In the KS response we
include unoccupied states up to 2.5 Ha explicitly and treat
the higher ones through a closure relation. For the frequency
integration we employ 12 supports forR,2 bohrs and up to
54 for largerR, concomitant with the closing of the HOMO–
LUMO gap. For the coupling strength integration we use
4–11 supports to capture the stronger curvature ofUXC

l with
increasingR. From convergence tests we estimate that our
total and dissociation energies are converged to well within
0.1 eV. Indeed our value for the H2 dissociation energy in
RPA, −4.73 eV, is in excellent agreement with previous
work.26,27

2. RPA XC for H 2 at large bond lengths

In this section we show analytically that within the RPA
limR→`EtotsH2d=2EtotsHd, i.e., the total energies of the infi-
nitely stretched,spin-compensatedH2 molecule and of two
separatespin-polarizedH atoms are identical. We also show
that this does not hold for the exact exchange kernelsRPA
+X approximationd. We will examine the density response of
the H2 molecule using the particle-hole formulationsin a
product basis of the KS statesd of time-dependent DFT,74

which is equivalent to the matrix formalism used in Sec. II C
but more convenient for formal analysis. We emphasize that
our analysis holds for the RPA as an adiabatic approximation
only, and does not address the effects of double excitations
that require a nonadiabaticsfrequency-dependentd correlation
kernel as argued in Sec. V.

For the spin-compensated molecule the response func-
tion for some coupling strengthl can be written as
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xlfH2gsr ,r 8;vd = o
n

Qn
lsr d

4Vnsld
v2 − Vn

2sld
Qn

l*
sr 8d, sA1d

where Vnsld are the transition frequencies andQn
l are the

associated amplitudes. TheVnsld are the positive square
roots of the eigenvalues of the matrix

Mij ,klsld = vi j
2dikd jl + 4Îvi j f i j ,kl

HXCsldÎvkl sA2d

involving all possible KS excitations from an occupied KS
statefi to an unoccupied KS statef j, with respective KS
transition frequencies vi j =e j −ei. Here f ij ,kl

HXCsld
=ed3rd3r8fisr df j

*sr dfHXC
l sr ,r 8dfk

*sr 8dflsr 8d denotes the ma-
trix elements of the Hartree and XC kernel, and it is assumed
that one works in the adiabatic approximation, i.e., the XC
kernel is frequency independent. From the eigenvectorsUij ,n

l

of Mij ,klsld, one obtains the spectral components

Qij ,n
l = Îvi j /VnsldUij ,n

l sA3d

of the amplitudesQn
lsr d=oi

occo j
unoccQij ,n

l fi
*sr df jsr d. In the

RPA, fHXC
l =lvee.

Consider now the H2 molecule at largeR. For any finite
number N of sboundd KS states,R can be chosen large
enough such that the molecular orbitals can be approximated
by the bonding and antibonding linear combinations of the
atomic orbitalsaisr d and bisr d of the H atomsA and B, re-
spectively:

fi±sr d . s2 7 2Sid−1/2haisr d ± bisr dj, sA4d

whereSi is the overlap integral. Similarly, we approximate
the respective eigenenergiesEi± .ei by the atomic eigenen-
ergiesei, except for the HOMO and LUMO energiesE0±

whose gap we write asEg=E0−−E0+.
In the simaginary frequencyd KS responsex0fH2g of the

molecule, we first split off the HOMO–LUMO transition
which is well separated from the higher ones, and define

dx0fH2gsr ,r 8,iud = − 4Eg
qsr dqsr 8d
u2 + Eg

2 , sA5d

where qsr d=f0+sr df0−sr d=s2Î1−S0
2d−1sua0sr du2− ub0sr du2d.

For R→`, the remainderx̃0fH2g¬x0fH2g−dx0fH2g can
readily be shown to splitsup to exponentially decreasing
correctionsd into atomic contributionsx0fHAg and x0fHBg,
where

x0fHAgsr ,r 8; iud = − o
j=1

N/2

4se j − e0d
a0

*sr dajsr daj
*sr 8da0sr 8d

u2 + se j − e0d2 ,

sA6d

with a similar definition forx0fHBg. x0fHAg andx0fHBg are
formally equivalent to the KS response of a freespin-
polarizedH atom ssee, however, the discussion of RPA+X
belowd. Hence we asymptotically get

x0fH2g = x0fHAg + x0fHBg + dx0fH2g + Osexpd. sA7d

As for the asymptotic RPA responsesR→`d, inspection
of Eq. sA2d shows that the lowest eigenvalueV0

2sld si.e., the
singlet excitation energyd exponentially tends to zero and is
well separated from the others. Indeed,

V0
2sld = Eg

2 + 4lK0Eg + l2PsldEg + OhslEgd2j, sA8d

where the HOMO–LUMO exchange integralK0

=kf0−f0+uv̂eeuf0+f0−l.UfHg−s2Rd−1+Osexpd reduces as-
ymptotically to the atomic Hartree energy, andP is anshered
unspecified, yet smooth function ofl. Note that the first two
terms on the right-hand sidesRHSd of Eq. sA8d also follow
from the single pole approximation to TDDFT excitation en-
ergies, and that the remainder describes corrections due to
the coupling with higher KS excitations.80 The correspond-
ing eigenvector isUij ,0

l =di j ,0+0−+OslÎEgd. Hence we can
split the asymptotic RPA response of H2 as follows:

xlfH2g = x̃lfH2g + dxlfH2g + Osexpd, sA9d

where

dxlfH2gsr ,r 8; iud = − 4Eg
qsr dqsr 8d

u2 + V0
2sld

, sA10d

and x̃l=s1−x̃0lveed−1x̃0 is the contribution from the other
eigenvalues and eigenvectors of the matrixMij ,klsld. For
large R, we can further writex̃l as the sum of the RPA
responses of the H atoms,xlfHA,Bg, and an interatomic
correction,7 DxlfH2g:

x̃lfH2g = xlfHAg + xlfHBg + DxlfH2g. sA11d

The atomic part

xlfHg = s1 − x0fHglveed−1x0fHg sA12d

is formally equivalent to the RPA response of aspin-
polarizedH atom.

Using the response functions as decomposed in Eqs.
sA7d, sA9d, and sA11d, the RPA correlation energy for
stretched H2 reads

Ec
RPAfH2g = −E

0

1

dlE
0

` du

2p
TrfveehxlfH2gsiud

− x0fH2gsiudjg sA13d

=Ec
RPAfHAg + Ec

RPAfHBg + DEc
RPAfH2g

+ dEc
RPAfH2g. sA14d

Here Ec
RPAfHg is the RPA correlation energy of a spin-

polarized H atom sassociated with xlfHg−x0fHgd,
DEc

RPAfH2g comes from DxlfH2g, and dEc
RPAfH2g from

dxlfH2g−dx0fH2g. Expanding DxlfH2g in lvee one can
show, analogously to the case of interacting closed-shell
systems,7 that the leading, second-order contribution to
DEc

RPAfH2g recovers the van der Waals interaction between
the H atoms, i.e.,
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DEC
RPAfH2g . − C6

RPAfHgR−6, sA15d

with the atomicC6 coefficient obtained within the RPA. We
next consider the HOMO–LUMO part of the response, writ-
ing dEc

RPAfH2g=e0
1dldUc

RPAfH2gsld, where

dUC
RPAfH2gsld = −E

0

` du

2p
Trfveehdxlsiud − dx0siudjg

= K0F Eg

V0sld
− 1G

= K0SH1 + 4l
K0

Eg
+

l2Psld
Eg

+ Osl2dJ−1/2

− 1D . sA16d

The integration overl then yields asymptotically

dEC
RPAfH2g = − K0 + OsÎK0Egd sA17d

.− UfHg + s2Rd−1 + Osexpd. sA18d

The termdEc
RPA is associated with the static correlation due

to the snearlyd degenerate HOMO and LUMO KS states.
Adding EXfH2g,2EXfHg+UfHg−s2Rd−1+Osexpd to
Ec

RPAfH2g we last get for the RPA XC energy

EXC
RPAfH2g . 2EXC

RPAfHg − C6
RPAR−6. sA19d

The kinetic, electron–nucleus, nucleus–nucleus, and Hartree
components of the total energy of H2 are easily shown to
also approach those of the free atoms forR→`. Hence the
RPA obeys the expected result limR→`Etot

RPAfH2g=2Etot
RPAfHg.

Several remarks are in order.
Leading R-dependence of Ec

RPAfH2g for R→`. Equation
sA19d states that theC6

RPAR−6 van der Waals term is the
leading correction to the asymptotic RPA XC energy. This
finding rests on the result of Eq.sA18d that the static corre-
lation termdEc

RPAfH2g follows thes2Rd−1 behavior ofK0sRd,
i.e., it contains no multipole terms of higher power thanR−1

up to R−6. The latter holds ifsid the HOMO and LUMO are
represented by linear combinations ofs-like atomic func-
tions, as is appropriate for largeR and as we had assumed.
Then higher order terms inK0sRd decay in fact exponentially
with R, as can be seen from a multipole decomposition ofK0.
A further condition is thatsii d the HOMO–LUMO gapfand
thus ÎK0Eg in Eq. sA17dg decays exponentially, as is ex-
pected for Kohn–Sham statessas opposed to a Hartree–Fock
calculation, whereEg~R−1d and which we have verified nu-
merically in the rangeR=4–10bohrs. Of course, for the
bond lengths considered here the van der Waals term is in
fact marginal: for instance,C6

RPAR−6,8 meV and,0.1 meV
at R=5 and 10 bohrs respectively, i.e., more than an order of
magnitude smaller than the total RPA errors given in Table
III susingC6

RPA,4.6 a.u., calculated from the atomic dipole
polarizabilityd. Clearly, the RPA dissociation energy curve is
still dominated in the rangeR=4–10bohrs by the static cor-
relation term of Eqs.sA17d andsA18d, as we further discuss
in the following paragraph.

Repulsion at intermediate R and role of self-consistency.

From Eq. sA16d we can interpret the ratioaRPAsld
=K0Eg/V0

RPAsld,K0 as a correlation to the exact asymptotic
adiabatic connectionsFig. 2d that decays exponentially with
R→`, turning on static correlation.aRPAsld yields a posi-
tive OsÎK0Egd contribution to the RPA exchange-correlation
energyfsee Eq.sA18dg. While this contribution is expected
to die out exponentially likeEg, it may still be significant
aroundR=10 bohrs, showing up as a spuriously repulsive
dissociation curve. OurEg,10−2 eV at R=10 bohrs is in-
deed compatible with the,0.2 eV error we find from our
RPA calculation at this bond lengthsthis estimate follows
from the single transition model discussed at the end of this
Appendixd. We cannot rule out that in a self-consistent treat-
mentEg decaysssufficientlyd more rapidly compared to our
present non-self-consistent calculation.

Behavior of Ec
RPA+XfH2g for R→`. For the exact ex-

change kernel47 the same analysis of the molecular correla-
tion energy as for the RPA can be carried through withl

replaced byl /2. For R→`, the static correlation term
dEc

RPA+XfH2g,−UfHg+s2Rd−1+Osexpd remains the same as
in the RPA. However, the atomic terms in Eq.sA14d do not
vanish, in contrast to the RPA+X correlation energy of spin-
polarized free H atoms. Indeed, for a free H atom the spin-
density responsesxss8

lRPA+XfHg andxss8
0 fHg are identical, as is

easily seen from the spin-resolved Dyson equationssee, e.g.,
Ref. 73d. Thus Ec

RPA+XfHg=0 and Etot
RPA+XfHg=−0.5 a.u.

However, in the spin-compensated stretched H2 both the
spin-up and the spin-downsnoninteractingd KS electrons are
found with a 50% chance on either nucleus. Thus what enters
as the atomic termx0fHg in Eqs.sA7d andsA12d corresponds
in fact to the KS spin response of a fictitious spin-
compensated H atomsdenoted H8d with half occupied 1s↑
and 1s↓ states. The corresponding RPA+X correlation en-
ergy appearing on the RHS of Eq.sA14d is therefore
Ec

RPA+XfH8g.Ec
RPAfHg /2 sestimated to second order inlveed.

Consequently, limR→`sEtot
RPA+XfH2g−Etot

RPA+XfHgd.Ec
RPAfHg

,0. In an actual calculation we indeed find that the RPA
+X potential energy curve drops below zero beyondR
.7 bohrsssee Fig. 4d.

The RPA yieldsEc
RPAfH8g=Ec

RPAfHg, i.e., the distinction
between H8 and H does not matter. Thissspuriousd RPA
self-correlation energysEc

RPAfHg<−23 mHa per atom, using
the exactnHd appears for the free atoms and the stretched H2

and thus cancels out. Had we treated the stretched H2 in a
spin-polarized KS scheme, the two electrons would be local-
ized with opposite spin on either nucleus right from the be-
ginning. While we have not performed this calculation, we
expect from our above discussion that both the RPA and
RPA+X yield limR→`EtotfH2g=2EtotfHg in this case.

Model based on the HOMO–LUMO transition only. If
we include in the response only the HOMO and LUMO KS
states, we get a “minimal,” two-state model of H2 in which
all effects of higher transitions are ignored. ThenEcfH2g in
Eq. sA14d is given by just the static correlation term
dEcfH2g:
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ECfH2g ,
Eg

k
SÎ1 +

2kK0

Eg
− 1D − K0

. − K0 + Î2K0Eg/k for R→ `, sA20d

for the RPA sk=2d as well as the RPA+X sk=1d. The
asymptoticR dependence of this minimalEcfH2g is again
that given by Eq.sA18d. Hence within the minimal model
also the RPA+X correctly yields the total energy of the dis-
sociated H2 as that of two free H atoms. Indeed, inspection
of Eq. sA16d shows that both RPA and RPA+X recover the
exact adiabatic connection forR→`, i.e., thatdUcsl.0d
=−UfHg. Note, however, that due to the closing HOMO–
LUMO gap for R→` the initial slopeudUC

RPA+Xsld /dlul=0

=−K0
2/Eg eventually diverges, as does the the GL2 correla-

tion energy. Independently of our work, an analogous mini-
mal model has been recently obtained by van Leeuwen and
co-workers, studying total energy functionals based on Green
functions.81
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