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We show that density functional theory within the RPAandom phase approximation for the
exchange-correlation enengyrovides a correct description of bond dissociation in iH a
spin-restricted Kohn-Sham formalism, i.e., without artificial symmetry breaking. We present
accurate adiabatic connection curves both at equilibrium and beyond the Coulson—Fisher point. The
strong curvature at large bond length implies important std¢ift—right) correlation, justifying
modern hybrid functional constructions but also demonstrating their limitations. Although exact at
infinite separation and accurate near the equilibrium bond length, the RPA dissociation curve
displays unphysical repulsion at larger but finite bond lengths. Going beyond the RPA by including
the exact exchange kernd®PA+X), we find a similar repulsion. We argue that this deficiency is
due to the absence of double excitations in adiabatic linear response theory. Further analyzing the
H, dissociation limit we show that the RPA&s not size consistent, in contrast to the RPA2@5
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I. INTRODUCTION nonlocal XC energy functionals® Indeed LDa and GGAs
perform at best erratically for van der Waals bonded
Density functional theor’> (DFT) has proven to be a systemd®
powerful method for calculatingand analyzingthe ground-  (ji) Scaling to the high-density or weakly interacting re-
state properties of molecular and condensed matter. In it§ime, hybrid functionals do not properly recover the exact
standard Kohn-ShartKS) form, the densityn(r) and total ks exchange enerdy. This failure prominently concerns
energy are constructed from the self-consistent solution ofqq electron bonds, as exemplified by thé hholecule,
one-electron equations where, in practice, the exchanggyhere 100% exact exchange mixing and zero correlation en-
correlation(XC) energy functionaEyc[n] must be approxi- ergy would be needed:*
mated. Already the simple .Iocal-den.sity approx-imatlion (iii) In systems with significant statimondynamical
(LDA) and, more so, generalized gradient approximationg,q relation, LDA, GGA, and thus hybrid functionals under-
(GGAs can yield a remarkably realistic description of ogiimate the magnitude of the correlation enéfdy. This

chemlcgl bonds in solid and mplecular' systems. The'state cHecomes particularly problematic for the dissociation of elec-
the artis presently set by hybrid functioriafthat admix a tron pair bonds where near degeneracy effects arise in the

fraction of the exac{Fock exchange energy with GGA ex- molecular wave function. A famous example is the dissoci-

change. Ac_hieviqg,_on the average, nea_rly chemical accuraca/ting H, molecule. The propefsingled KS ground state at
for bqnd dissociation energies, thgy ”V.al mgch more de_larger bond lengths has much too high total energy for such
manding post-Hartree—Fock configuration interaction or, . i

functionals. Usually one works around the problem perform
coupled cluster methods.

However, there remain well-known conceptual limita- ing a spin-unrestricted cqlculatiqn, a sepond solution with
tions, with a clear practical significance, as exemplified byreasonable, Iovv_er energy 1s .ob.talned. Th.ls succeeds because
the following paradigm situations. exchgnge functlopals can mimic the stdiie., long-ranged
left—right) correlation and thus compensate for an error of the
(i) Long-ranged Coulomb correlations between nonoverLDA and GGA type correlation functionals that describe ef-
lapping systems are not included in local functionals such afectively only dynamical correlation coming from electron

the LDA or GGAs(and thus also hybridsout require fully  repulsion at short rang]Q.Yet the spin-unrestricted KS mo-
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lecular wave function artifically breaks the symmetry of thell. THE PROBLEM OF STRETCHED H, IN DFT
dissociating molecule, displaying unphysical nonzero spin A long-standing problem confronting all single-

polarization:” In fact spurioussymmetry breaking has re- geterminant calculations is that of stretcheg| Fepresenta-
mained a much discussed drawback of spin-unrestricted DFfiye for the dissociation of electron pair bonds in
(and Hartree—Fookcalculations of molecular propertiésee,  generaf!’® For any bond lengthR the true (interacting
e.g., Refs. 18-21 ground state is a singlé?,with equal spin-up and spin-down
) densities, and the tru@oninteracting KS ground-state cor-

Progress in each of the above noted respects may br%sponds to a single Slater determinﬂ,rlfts:|ag;g| made up
achieved through orbital-dependent XC functionals exfrom the bondings, molecular orbital. The spin-restricted
pressed in terms of th@ccupied and unoccupig&S eigen- LDA GGA, and hybrid functionalgas well as Hartree—Fogk
states, such as the random phase approxim@Ré&). The  correctly yield such a ground state, with reasonable total en-
RPA functional is the simplest realization of the adiabatic-ergy, around the equilibrium bond leng®. As a matter of
connection fluctuation-dissipation formali&hhat defines a  fact, the interacting ground state is also mainly|afog|
broad class of fully nonlocal XC functionals. In terms of the Nature aroundk~ Ry, H(})(\gvever, as the bond lengR s in-
“Jacob's ladder’ of density functional approximatiozﬁs, f:reased towar®— oo, ¥ no_longer resembles the mteract-_
RPA is on the top rung, putting it among the most genera,ng ground state wave function of the molecule. Asymptoti-

(but also th td dingf t-d . cally the latter assumes the familiar Heitler—London form
. u as<_) € most demandingt present-aay approxima- puts precisely one electron on each of the two hydrogen
tions. It includes the exact KS exchange enétgs well as

) s . ) _atoms, completely suppressing number fluctuations and de-
Iong—r?r;ged _Coulomb correlations giving rise t.o dlsp_erS|orgcribing two free hydrogen atoms, i.e.; HH (Ref. 17. By
forces.™ This makes the RPA a natural starting point to contrast¥*S is half contaminated by ionic contributions of
address the above limitatioig—(iii ) of existing functionals  the form|s,s,| and|s,s,| (s, ands, stand for the & orbitals
in a seamless and consistent way. centered on hydrogeA and B, respectively, in effect de-

In this paper we show that RPA functional is able toscribing the stretched Has 5(H---H)+3(H*---H").*" Opti-
describe the strong static correlation in the dissociation of thé&izing, e.g., within spin-restricted GGA, thg, orbital does
H, bond in aspin-restrictedkS formalism, without artificial NOt become a linear combination of the Hydrogenic orbit-

symmetry breaking. The transition from mostly dynamical to2!S Put gets much too diffuse, in order to avoid the dén-

strong static correlation is discussed in terms of the adiabati ibution. Hence_the d|s§OC|at|on energy_of stretchegis
. . . L severely overestimated, its total energy lying much above the
connection. Analyzing the dissociation energy curve of H

ne of two free hydrogen atonias illustrated later by our
we find that the RPA is accurate around the equilibrium bonqp:ig 4). On the oth)ér ha?nd a sgc‘/:ond solution Wittver (}e/md

length and yields, asymptotically, the correct dissociationyeasonableenergy may be obtained for bond lengths beyond
into two H atgms. At intermediate dlstancgs the dissociatioRhe so-called Coulson—Fisher pdfhit® by breaking the spin
energy still displays an erroneous repulsion. Of course thegymmetry and localizing on one hydrogen atom the “spin-
RPA is just the first step in an ongoing systematic quest, withup” electron and on the other the “spin-down” electron. This
encouraging results for small molecti&&’ as well as van is what is obtained, in practice, by performing spin-
der Waals bonded structure¥>®* To achieve satisfactory unrestricted LSDA, GGA, or hybrid functional(as well as
accuracy globally it requires extensions, some of which arémreStf'Cte_d Hf’:lrtree—Fo):Ical_culatlons. _ _
being examined alrea&ﬁ4’27'3°‘32 This situation for approximate XC functionals embodies

Last we would like to mention that the XC energy can bethe vyell—known spin symmetry dilemma for dissociating H

. . . restricted KS schemes vyield the proper symmetry adapted

approximated also as functional of the one-electron densit

) . ) ¥)round state but poor total energies, while unrestricted KS
matrix, by makmg an app.roprlatensatzfor.the exchange schemes yield very reasonable total energies but qualitatively
and correlation hole functions. For a particular such func—Wrong spin densitie¥’
tional involving both the occupied and the unoccupied KS
states, Gruning, Gritsenko, and Baeré”ﬁdxecently repro-
duced the entire dissociation energy curve of kcluding
proper dissociation. The validity of this approach is, how- At the origin of the problem is the inability of present
ever, still under debat¥. XC functionals to properly capture long-ranged left-right
correlation that eventually appears when a molecule
dissociate4® Such static(or nondynamical correlation is
present in many real molecules even in or near the ground-
state geometry. As a matter of fact LDA and GGA calcula-

X e IDAtions only mimic it through their exchange component while
equations. In Sec. Ill we analyze the Hissociation interms i correlation component accounts fshort-rangei dy-
of the adiabatic connection. Then, in Sec. IV we apply thenamical correlation only(see, e.g., Ref. 16 In fact their
RPA to the dissociating jibond. In Sec. V we consider performance depends crucially on the well-known cancella-
functional beyond the RPA. Section VI summarizes ourtion of errors between exchange and correlatfofihis com-
conclusions. pensation is of course neither perfect nor universal, as indi-

A. Local, semilocal, and hybrid functionals

Our paper is organized as follows. In Sec. Il we first
recall the classic problem of stretched &hd its implications
in the context of different density functionals and briefly dis-
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cated by the on average, overestimated atomization energidsnction and dress it with d@scaled Coulomb interaction

particularly for multiply bonded species such ag But also v, and eventually also with an exchange-correlation ker-

by often underestimated reaction energy barrise, e.g., nel of time-dependent DFTTDDFT).*" This yields the re-

Ref. 4. sponse function of an interacting system, which by way of
Hybrid functionalé® can provide a useful remedy and the fluctuation-dissipation theorem gives the corresponding

are usually more accurate than LDA or GGAs alone. Yet theypair-correlation function and thus the electron—electron inter-

still rely on a similar philosophy: the admixing of a certain action energy. The XC energy is last obtained through an

fixed fraction of the (possibly spin-unrestrictedexact ex- integration of the electron—electron interaction energy along

change energy can be understood to improve the descriptican adiabatic path connecting the noninteracting KS system

of static correlation while dynamical correlation is still de- (\=0) to the interacting oné\=1, see Sec. Il A

scribed by(semiy local LDA or GGA functionals. The errors Working in the imaginary frequendy domain, the basic

in the exchange and correlation energies do not sufficientlgquations(in Hartree atomic unijsare as follows. Starting

cancel in cases where either excharigaradigm: H) or  from a KS ground state with eigenstatés [n], €,[n]},

static correlatior{paradigm: dissociated $iprevails, so that functionals of the density, one constructs the KS response

eventually hybrid functionals can become inadequate'too.

For dissociating electron pair bonds, sufficiently negative ex- XO(r,rsiu) = M

change energies are obtained only by resorting to spin- okl U= (815~ &Ko)

unrestricted exchange, i.e., by an unphysical breaking of the * x ,

symmetry of the KS molecular wave function. At which X Do(N) o) 1M bieolr), (@)

bond length the spin-unrestricted solution becomes energetjvith =1 for occupied andy,=0 for unoccupied KS

cally preferable depends on the functional. Hybrid function-states. The interacting response functigh at coupling

als are more prone to break symmetry with an increasedtrengtha follows from the Dyson-type screening equation
admixing of exact exchangesee Ref. 42 Artificially sym-

metry broken solutions from spin-unrestricted methods may ~ X"(it) = x°(U[1 = [Avee+ fic(iu) Ix%u)1™, (2)
also yield unphysical molecular properties, despite providin

Qvherevee=1/|r -r'| is the Coulomb repulsion antk(iu
a lower energy solution and appearing better variatior’t%lly. vee=1/ | P (i\@( )

stands for the XC kernel of TDDFTmatrix notation
A=:A(r,r") andAB=: [d®"A(r ,r")B(r”,r') is implied herg.
B. Functionals of occupied and unoccupied The fluctuation-dissipation theorem and the coupling
KS states strength integratior(see Sec. Il A finally yield an exact

Although the physical origin of the above difficulties is €XPression for the XC energy:
clear it is far from simple to correct for them, while retaining 1 (L 1
low computational cost. A variety of approaches have been Fxc[n]=- > f dA f dr d3r’ﬁ
applied, mostly along the same lines as a traditional re- 0 r=r
stricted Hartree—Fock calculation would be corrected, such »
. - . 43,44 U T '
as spin-unrestricte®, multireferencé>** or ensemble- X X (r,r’iu) p+n(r)d(r—r’) |,

referenced Kohn—Sham scherﬁ%é?Although often useful, 0

these suffer from similar difficulties as in Hartree—Fock, (3)
namely, that different approaches work for different . ) . ) L
situations called the adiabatic-connection fluctuation-dissipation theo-

rem (ACFDT) for the XC energy. Through approximations

A more satisfying approach is to develop a more de \ )
manding but nonempirical scheme. Functionals involving ocf0" fxc. fully nonlocal ACFDT XC functionals can be gen-

cupied and unoccupie@irtual) KS orbitals offer this possi- erated in practice. In general these will be orbital-dependent

. functionals involving, th 0 (and tuallyfy.), both
bility as recently shown by Baerends and co-workérga  functionals involving, througfy” (and eventuallyfyc), bo
well-defined starting point is the exact exchange formalismoccyp'e}fj and .unoccupledl KS states. Thg RF,)A is obtained by
(EXX) in Kohn-Sham DFT(Ref. 4§ which then must be Se€ttindfxc=0, i.e., neglecting all XC contributions to screen-

. . . . . )\

complemented with a compatible correlation functional, i.e.in9 iN EQ. (2). Approximatingfyc by the (exac} exchange
one that properly respects the weakly correlated, exchang&®Mel of TDDFT(Ref. 47 defines the RPAX functional.
only limit (e.g., producing zero correlation energy in one-!n the ACFDT formulaEq. (3)], because of the integral over

electron systems such as)Hand accurately interpolates to (€ coupling strength, an approximation 10 of a given
the strongly coupled regime to be discussed in Sec. Il ACTder inA, produces an approximation Ec[n] to the next

The RPA XC functional discussed in Sec. Il C represents 419hest order. Thus, to zeroth ordaf, inserted in Eq.(3)
possible first step into this direction. yields the exact.exchange ener'@k[r.]], the first-order en-
ergy. The RPA yields an approximation By that contains

all orders of\, but misses contributions from second-order
onward. In RPA-X, on the other hand. (and thusy") are
treated exactly up to first-order. In turn the RPX¥ields an

The combination of the RPA with DFT was discussed asapproximation tEyc[n] that is exact up to second order but,

early as the late 19738 then for the uniform electron gas. in an approximate way, again includes also all high orders of
The idea is to start from the noninteracting KS response.. Being exact to second order, the RPX-produces the

C. Functionals from linear response:
RPA and beyond
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exact initial slope of the adiabatic connectigim be dis- 56) or PBE GGA(Ref. 57 instead of the EXX for calculat-
cussed in detail in Sec. lllAas given by second-order ing the initial KS states.
Gorling—Levy perturbation theor§GL2).*®

While the RPA is expected to be quite accurate(fso-
electronig total energy differences, it overestimates absolutq||. ADIABATIC CONNECTION ANALYSIS
correlation energie¥' Indeed, the short-range behavior of OF H, DISSOCIATION
xX*PAis incorrect, because the electrons only respond to the
averaged density fluctuations. In particular, tspurious In this section and i_n_the foIIOV\_/ing section, we show that
“self-response” of an electron to its own contribution to thesé"® RPA offers a promising handling of the problem of dis-
density fluctuations is the most important source of error irOciating electron pair bonds, as exemplified by ki par-
few electron systems. It is responsible fotspurious non- ticular, we analyze the adiabatic connection curves as the

zero self-correlation energy in one-electron systems such ayStem passes through its Coulson—Fisher point, i.e., where
the H atom. This deficiency of the RPA may well be cor- the KS ground state from standard XC functionals bifurcates

rected by a local-density functionE%r-LDA[n] designed for into a spin-symmetry adapted and a lower energy but sym-
the purposé® defining the so-called “RPA+" functional metry broken solution. We first consides, Ht its equilibrium
EﬁEATHFEﬁéA[n]+EZr'LDA[n]. As expected in Refs. 24 and bond length(Sec. Ill A) and in the completely dissociated

30 and confirmed in Refs. 26 and 27, local or semilocalIImIt (Sec. 1B,
short-ranged corrections have rather minor effects on mo-

lecular dissociation energies, yet nicely correct for spurious ) _ _
RPA self-response problem in the H and He atémBor A Adiabatic connection

these reasons we focus in this paper ondtierenceof the To understand in detail how DFT handles static correla-
total energies and XC energies between the molecule and thn, one invokes the adiabatic connectfGri’ already
isolated atoms. briefly mentioned in Sec. Il C. One imagines altering the

Compared to hybrid functionals, the RPA involves bothstrength of the electron—electron repulsion by multiplying it
occupiedandunoccupieKS states. Its computational cost is by a constank, which varies between 0 and 1. At the same
quite severe(a factor 16-10° compared to a GGA ap- time, the one-body potential is altered, i.e., made a function
proach, but its promise is to tackle the nonlocality of ex- of \, so as to keep the electron density fixed. This is a way of
change and correlation on an equal footing, leading to a&ontinuously connecting the noninteracting KS systém
seamless description from the chemically bonded to the dis=0) to the interacting physical systeth=1). More impor-
sociated regime, including van der Waals interactions notantly, by virtue of the Hellmann—Feynman theorem, one can
accounted for in GGAs or hybrids. write the XC energy as an integral over purely potential

Recent calculations for small molecules by Fuféhe energy:
found that the RPA describes the chemical bonds with similar 1
but not better accuracy as modern GGAs. Although this ap- Exc[n] = f dA\Uyxc[n](N), (4)
pears to be disappointing, we note that the RPA is in fact 0

accurate for Hand the difficult case of Be(Ref. 27 where  \here Uy [n](\) = (WM n][o.d M Nn])-U[Nn]. Here ¥M[n] is
LDA and GGA fail. Also there has been significant progressthe ground-state wave function at coupling strength.., is

in building XC functionals on top of the RPA that include the the Coulomb repulsion, and[n] is the Hartree energy. The
dispersion forces between layered solid-state structures sughtegrandUy[n](\) represents the potential energy contri-
as jellium slab modefS and graphité? and between atoms pution to XC and makes up the adiabatic connection curve.

or molecule€® We further point out that the RPA is just @ At the A=0 end it corresponds to the exact Kohn—Sham ex-
ready realization of a much broader class of functionalshange energEx,24

based on the adiabatic-connection fluctuation-dissipation _
theorem  which  offers  various  options  for Uxcln](0) = Bxinl, )
improvements$/?Moreover, the RPA is amenable to ex- and has anegativé initial slope, given by the correlation
tensions derived in many-body Green function theory whichenergy of second-order Goérling—Levy perturbation thé%ry
itself is being very actively explored for total energy (GL2)
calculations***including H,.>*~>* q

In the present study we do not perform self-consistent ~ Uj[n](\)= —Uyxc[n](\)|  =2ESn]. (6)
RPA calculations, these are computationally too costly at d\ A=0
present(although formally perfectly feasible, see Refs. 54 All N dependence rests in the correlation contribution
and 59. Instead we evaluate Eq€l)—<(3) a posteriori with B
the KS eigenstates taken from EXX calculations as explained Uclnl() = Uxcln](n) = Bxn]. )
further in Sec. IV A. Thanks to the variational principle for At A=1, Uyc[n](\) describes the XC potential energy of the
DFT total energies we expect the resulting RPA total energiephysical systemUyc[n]=:Uxc[Nn](1), and similarly the cor-
to be tight upper bounds to the self-consistent RPA resultgelation potential energyJc[n]=:U[n](1).
Indeed we found that our results for the RPA total energies The\ dependence for ACFDT type functiondkee Eg.
remained virtually unchanged when we used the LER&f.  (3)], appearing through the response functidnis given by
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1 00 du . ' -1 = I j 1 T | . I "I :—

Uclnl(v) = - Ef ;Tr[vee{){}\(m) - X°(w}], 8 E o exact g
’ O ey PBE GGA |

where TfA]=: [d%A(r,r). The full A curve may then be = e R /\ E
calculated thanks to E@7). For the LDA or GGA type func- 2 3 ~~._F
tionals thex dependence can be readily calculated from the = -
exact relatior’ <3 RPA / -
] GL2 -

d 5 7= T T TR T SR TR N T =

Uxclnl(N) = a()\ Exclninl), 9 0 05 1

coupling strength A
where the XC energy functional is evaluated at the SCaleglG. 1. Adiabatic connection for at bond lengttR=1.4 bohrs within the

. . 3 . . .
densnyr?l./)\(r)—'n(r /)_\)/)\ -_He'f‘ce .anaIySIS by ad|abalt|c de- Rpa (solid line) and the GGA(dot-dashed line The GL2 curve(dashed
composition allows investigation into how well the different corresponds to the slope of the exact curvaab. Shown is the difference
functionals perform, and WhV.Bg between H and two free H atoms, evaluated on self-consistent EXX densi-

. . L . . ties. The “exact” curve is an interpolatioRef. 63 based on accurate values
Below we consider molecular dissociation energies, 1€t AE,, AExc, andAUy from a configuration interaction calculatigRefs.

the difference between the molecular and atomic total enelgy and 62
gies,
AE = Ey{moleculd - E,{atomg, (10)  curve given by Eq(6). For A>0, AUZE’(N) lies below the

_ o true curve, overestimating the absolute correlation energy.
and analyze the exchange-correlation contributions by meangdeed, calculatingy®” ™ to first order in\ we obtain

of the analogously defined differencesEyc, AEx, and  AEGL2=—_504 eV, about 0.3 eV below the true dissociation

AUxc(N). _ o ~energy. This indicates that the second-order perturbative
A useful measure of the correlation strength is given ingreatment is qualitatively but not quantitatively accurate for

Ref. 60. Define the parametbrby H,. Regarding the PBE GGA, Fig. 1 and Table | show that it
Excln] =bEy[n] + (1 —b)Uyxc[n]. (11 is accurate for the exchange ener@y=0) but underesti-

mates the absolute correlation potential enefyy1). In
A simple interpretation ob is given by the following geo- turn the PBE GGA also underestimates the absolute XC en-
metrical construction: if the adiabatic curve were a horizontakrgy and the dissociation energy of.H
line of value Ey[n] running from O tob, and then dropped Calculations of the exact adiabatic connection for mol-
discontinuously to another horizontal line of valgc[n]  ecules, using the accurate ground-state wave functions for all
running fromb to 1, thenb is that value of that yields the \, have so far not been attempted to our knowledge, while a
correct Exc[n]. Thus, in the high density limit, where the few such curves based on accurate ground-state densities
adiabatic connection curve is a straight libes exactly 1/2.  have been reported for atorfis®® bulk Si®’ and model
On the other hand, for strong static correlation, in which thesystem$® We remark that(d/d\)Uyc[n] (\)|yo, i.€., the
adiabatic connection curve drops rapidly to its final value, GL2 correlation energy, is also a key ingredient in a recent
is close to zero. One can also stdw coupling strength interpolation of the adiabatic connection
by Seidl, Perdew, and Kurthwhich performs with similar
_ Tcln] X . X
= , (12)  accuracy as modern hybrid functionals for molecular disso-
[Ucln]] ciation energies. For fclose to the equilibrium bond length,
the corresponding dissociation energy and adiabatic connec-
tion curve are in good agreement with our RPA res{fits.

whereT. is the kinetic portion of the correlation energy

Tcln] = Ec[n] = Uc[n]. (13
Thus smallb indicates that the correlation is indeed static,B' H, symmetry dilemma
i.e., has a smaller fraction of kinetic to potential energy. We now discuss the stretching of s a paradigm of the

For the atoms and most chemically bonded systems, theifficulties that single-determinant methods have with disso-
adiabatic connection curve is rather nondescript, lying closeiation. The nearly straight line behavior dramatically
to a straight line. This is illustrated by,tht the equiliborium  changes when the bond is stretchedRe-~. Asymptoti-
bond length in Fig. 1, where we pIcﬁUQEA()\). The area cally, the proper molecular wave function for any-0 (i.e.,
enclosed by the adiabatic connection curves represents thegardless of the interaction strength the bonding linear
XC contribution to the dissociation energyExc. As can be  combination of the 4 orbitals of the two H atoms. For the
seen from Table | the RPA dissociation energy of islin ~ H, “supermolecule” the exchange energy therefore has the
excellent agreement with the exact value. Noting also thesame value as in a hydrogen atom, i.&y[H"--H]
good agreement of the endpoints of our RPA curve in Fig. - EyH]=-U[n,]. Consequently also UJ[H---H]()\)
with accurate data from configuration interaction =-U[ny] for any A >0, since the dissociated,Hnolecule
calculation$? listed in Table I, this implies that the RPA must have the same total energy as two H atoms. Figure 2
curve lies very close to the true adiabatic connection curveshows the corresponding exact adiabatic connection
The straight line corresponds to GL2 theory, indicating theAUxc[H™---H]J(\). The immediate drop of the adiabatic con-
b=1/2 high density limit and the initial slope of the true nection curve at\=0 is characteristic for a system with
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TABLE |. Adiabatic decomposition of the dissociation enetyfy of H, at bond lengttR=1.4 bohrs, evaluated
on self-consistent EXX densities. Shown are the differences between the molecule and two free H atoms for the
coupling strength integrandUyc(\) and related quantities, as explained in the text. All values are in eV.

AE AEyc AE, AU ATC/|AU| AU(0)
PBE GGA -4.54 -1.01 -1.04 -1.52 0.431 -2.42
RPA -4.73 -2.10 -0.99 -1.95 0.427 -2.97
Exact -4.74 -2.04 -0.9¢ -1.99 0.450 -2.84

*Reference 36.

PFrom Refs. 61 and 62. In these works, Eyc, and T¢ were calculated on the fHensity obtained from a
configuration interaction calculation which yield&dE=-4.68 eV. Using these data we evaluated. from
Eq. (13).

strong static correlation: hete=0 exactly. The position of the first accurate calculations of adiabatic connection curves
one electron entirely determines the position of the otheas a system passes through its Coulson—Fisher point. We then
electron (left—right correlation: the two electrons in infi- discuss our results for the RPA dissociation energy curves
nitely separated Fimust sit on the two different nuclei but and compare with the PBE GGRef. 57 and PBEO hybria
never on the same, as spuriously allowed by the single K®unctionals(Sec. IV B).

determinant. Put diﬁerentﬁi in the concept of the XC hole,

the exchange hple of Hs spatially completely delocalized A. Beyond the Coulson—Fisher point

over both nuclei. However, the XC true hole is always cen-

tered about the reference electron. This means that the cor- A key concept in this paper is that DFT within the RPA
relation hole must be long ranged to yield the proper hydroallows correct dissociation of molecules. However, given our
genlike hole on one nucleus and the needed zero total X@resent inability to perform self-consistent RPA calculations,
hole on the opposite nucleus. By contrast, LDA or GGAthe demonstration of this fact becomes quite subtle. While
correlation holes, derived essentially from the uniform electhe (restricted EXX solution is an adequate starting point for
tron gas, are always short ranged and hence cannot candbe RPA around the equilibrium bond length, it is totally
the exact exchange hole far away. Breaking inversion syminadequate beyond the Coulson-Fisher poRit-2.5 bohrs
metry, L(S)DA and spin-dependent GGA on the other handfor H, treated in EXX, where ambiguity arises in a single-
(such as unrestricted Hartree—Fpakeady yield the spin-up determinant calculation. In the words of the symmetry di-
and -down exchange holes of separate hydrogen atoms, olf¢mma, should one use the unrestricted solution, which has a
posite spin electrons sitting on different nuclei, and thuspretty good energy but totally incorrect spin density, or the
mimic the static correlation: unrestricted Hartree—Fock or exfestricted solution, which has the correct symmetry but poor
act KS exchange indeed yield two hydrogen atoms as thenergeticgas seen in Fig. 2 Following Ref. 17, one must
dissociation products and produce curves similar to that inise the best estimate for the correct ground-state density that

Fig. 2. is available. As argued there, the unrestricted solution yields
the best approximate DFT density, but its spin density is not
IV. H, DISSOCIATION WITHIN THE RPA to be believed. We therefore take tte#al density from our

unrestricted EXX KS calculation, and treat it as a spin sin-

~ We now examine how the RPA describes bond dissociaget, This becomes our input density to our RPA calculation.
tion, stretching H from equilibrium to large bond lengths. I Racall that this density becomes exact in the limiRof: o,

particular, we give the correct prescription for applying the\here it corresponds to two separate hydrogenic densities, in
scheme during dissociatidec. IV A\. Using it, we provide  cqonirast to a restricted scheme. Inverting the KS equ&tion

for n(r)=nFX(r)+n®X(r), we obtain the KS potential

W T 71 T T T T [ yielding that density and the respective KS eigenstates.
E i B. Results and discussion
= 5__ B Beyond the Coulson—Fisher point, the RPA adiabatic
;g . = connection of H becomes strongly bent downward, as is
< ] i shown in Fig. 3. Thus the RPA captures the onsetting strong
0| static correlation related to the multideterminant nature of
e = T the interacting many-electron wave function. This feature is

0 0.5 1

. missed by the PBE GGA correlation functional which sig-
coupling strength A

nificantly underestimates the magnitude of the correlation
FIG. 2. Exact adiabatic connection for dissociateg & bond lengthR energy, as seen from Table Il and from the PBE GEBKYS)
—, shown as the difference with respect to two free H atoms. For thecurve in Fig. 3. Switching to the unrestricted PRENnd

exact KS determinant the curve starts\atO with the negative of the exact ; [P
exchange energy of a single H aton,(H) 8.5 eV as explained in the PBEOQ scheme, the exchange component simulates the miss

text. The negative of the shaded area represents the correlation energy of téd static Correl_ation Wh”e the Correlatio_n componeqt is
H, molecule and equalE(H). much too small in magnitude. Correspondingly, unrestricted
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TABLE IlIl. Dissociation energy of H at bond lengthR, calculated with

o

; B different XC functionals as indicated in Fig. 4. Given are the energies from
= g‘ RPA = unrestricted KS calculations, except for RPA and RPAas explained in
?g 4 E = the text. All values are in eV.
PEPE E R (bohrg 1.4 3 5 10
2 3 - 2 EXX ~3.62 -0.47 ~0.02 0.00
03 _._._._._._._._.‘_.‘:\_—.:.:.—_.—:_—.:.:i_ PBE GGA -4.53 -1.27 -0.03 0.00
3, , , , | \PBEGGA(UKS) E PBEO hybrid -452 -1.07 -0.03 0.00
0 0.5 1 RPA -4.73 -1.44 +0.54 +0.20
coupling strength A RPA+X —-4.86 -1.45 +0.34 -0.25
Exacf -4.75 -1.56 -0.10 0.00

FIG. 3. Same as Fig. 1, but f&t=5 bohrs, i.e., beyond the Coulson-Fisher
point. The RPA results are based on th&al density of a unrestricted EXX *Reference 36.
KS calculation. Also shown are the adiabatic connections for the PBE GGA

applied in the restricted KS formalistRKS), yielding poor energetics, and

ih'the unrestr_icteq KS _formalisr(UKS), yielding better energetics but ar-  for R— o and produces precisely the exact adiabatic connec-
tifically breaking inversion symmetry. tion of Fig. 2. Including the higher lying KS states, the RPA
builds up spurious self-correlation in both the H atoms and
PBE (like PBEQ eventually gives dissociation energies thatthe H, supermolecule, which, however, cancels out in the
are in quite good agreement with the exact value, as listed idissociation energy. This cancellation is indeed also reflected
Table 11l. We stress that this is a result of error cancellationin the (identica) estimates of the local-density corrections
between(unrestrictedl exchange and correlation: the PBE (RPA+) in the atom and in the infinitely stretched molecule.
adiabatic connection curves is qualitatively clearly wrong,  Figure 4 also demonstrates that for proper dissociation it
especially ain=0, where itsAEx is much too small and its is crucial to work with qualitatively correct densities, i.e., to
slope turns out even slightly positivehough this is not vis-  start from a KS potential that takes into account the essential
ible on the scale of Fig.)3No such error cancellation occurs left—right correlation. The EXX, PBE, GGA, and PBEO hy-
within the RPA. The onset of strong static correlation is re-brid functionals within the spin-restricted KS formalism all
flected in the low value of our correlation strength parametefead to much too high total energies for the dissociating bond
b reported in Table Il for the RPA and exact curves, but notbecause the spin-restricted densitygiglitatively wrong as
for (semiy local density functional approximations. explained in Sec. Il. Reasonably accurate dissociation ener-
Although qualitatively correct the RPA adiabatic connec-getics are obtained only from the spin-unrestricted KS for-
tion curve is still deficient, as can be appreciated by compamalism. However, at smaller bond length, the PBEO curve
ing to the exact curve in Fig. 3 and data in Table Il still rises too quickly above the true curve. PBE GGA clearly
AUZPA(\) does not drop deep enough with despite its too  works better, and the lower energy solution appears only
steep initial slope. Correspondingly the RPA yields a toobeyondR=~4 bohrs, i.e., for at a larger bond length than for
positive molecular correlation energy and produces an artifithe EXX and the PBEO hybrid.
cial barrier for dissociation as seen in Table Ill. This is fur- The RPA curve is accurate around the efuilibrium
ther evidenced in the full RPA dissociation curve of Fig. 4.bond length and approaches the dissociation limit for large
Indeed, while the RPA performs accurately around equilib-R. The success of the RPA lies in the fact that it does so
rium R and again at largeR, it shows an unphysical bump at (properly as a functional of a singlet density only, rather
intermediate bond lengtR. The origin of this bump will be than spin densities as in the traditional approximations for
further discussed below. Nonetheless the asymptotic behaxC. Of course the density must ultimately come from a self-
ior (R— =) of the RPA is correct, as can be understood fromconsistent KS calculation and potential, whereas we have
a model RPA calculation using only the highest occupiedapproximated it non-self-consistently. Our findings confirm
molecular orbita(HOMO) and lowest unoccupied molecular that proper densities require accurate approximations also for
orbital (LUMO) EXX-KS states: as shown in the Appendix, the XC potential(the functional derivative oExc[n]), as
the RPA then yields the exact correlatiend tota) energy  argued recently by BaerentfsIn agreement with Ref. 35,

TABLE Il. Adiabatic decomposition of the dissociation enedyl of H, at bond lengttR=5 bohrs, as shown

in Fig. 3. The RPA functional is evaluated on the total density from a spin-unrestricted EXX calculation as
described in Sec. IV A. Also shown are results for the PBE GGA, evaluated as a spin-regRik@dand a
spin-unrestrictedUKS) functional using the EXX spin densities. All values are in eV.

AE AEyc AEy AU AT/|AU AUJ(0)
PBE (RKS) 2.20 2.30 2.81 -0.90 0.43 -1.23
PBE (UKS) -0.06 0.040 0.044 -0.008 0.50 0.084
RPA 0.54 1.33 5.72 -5.06 0.13 -111
Exact -0.16 0.82 5.85 -5.67 0.10 -56.8

“Reference 36.
From Refs. 61 and 62, see also Table I.
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T LA 2= L A to be improved for moderately large bond lengths. We now
4 BXRKS L discuss possible extensions of the RPA as an ACFDT XC
s ] ‘_‘____f?_'??.B!SS. functional.
g 2] B A known deficiency of the RPA is the spurious self-
5 ] PBERKS [ correlation in the absolute correlation energies, for the H
g 04 atom as well as the fHmolecule. For the one-electron H
ki ] EXXUKS T atom, self-correlation is eliminated by including the exact
g 2 /.. _ PBEOUKS L exchange kerne(f}=-\vo in the screening of the elec-
G N /g PBEUKS | tronic Coulomb interaction, Eq2). For the two-electron ki
4_'\// — — —— exact L the exact exchange kernb‘g\<:—()\/2)z)ee (Ref. 47], elimi-
1< [ nates self-correlation to second orderAiryet not to higher
s - order. Using this RPAX functional we obtain the dissocia-
g tion energy of H (R=1.4 bohr$ as —4.86 eV, about 0.1 eV
g o ot C below the true and our RPA values. Having estimated our
g —— RPA from oS - computational accuracy at the same order, we feel cautions
8 21141 /- RPASX, fromn® | about the significance of the RPA&result. On the other
% _______ RPA. from S - hand we find that the dissociation energy curve beyond the
© k. AT R T Coulson—Fisher point is not at all improved. To the contrary,

1 2 3 4 5 6 7 8 9 10
bond length (bohr)

while the RPA+X curve follows the RPA curve up to
~4 bohrs it drops below zero and approaches a negative
FIG. 4. Dissociation energy curve of,HThe upper panel compares results ConStam_for largeR. We regard_ this as a S|;e-.con3|s_tency
for EXX, the PBE GGA, and the PBEO hybrid functionals calculated in the problem in that the self-correlation error is eliminated in the
self-consistent restrictedRKS) and unrestrictedUKS) KS formalism, with H atoms, but reappears in the far stretcth'Hhis is further
exact data from Ref. 36. The lower panel compares the RPA and RPA+ . . N

curves, calculated with total densitig$<S obtained from unrestricted EXX Formb.o.rated in Appendix 2. Our flnd!ng Clear!y SE‘QQeStS that
KS calculations, with exact data. Also shown is the RPA curve calculatedn @ddition to exchange also correlation contributions need to
with densitiesnR*S from restricted EXX KS calculations. be included in the XC kernel. A ready way to do so would be

to employ the well-known adiabatic LDA kerridlor an

our results also show that unoccupied KS stésesl in par-  €nergy-optimized adiabatic XC kerrl.
ticular the LUMO statemust be included ifExc[n] in order As mentioned in Sec. IIC the incorrect RPA short-
to attain the correct dissociation limit. ranged correlation, including self-correlation, may be cor-
An obvious shortcoming of the RPA compared to therected through a specially designédemijlocal-density
unrestricted PBE GGA, and PBEO schemes is that its dissdunctional (RPA+). Although this improves upon the too
ciation curve displays an unphysical bump for intermediate negative RPA correlation energies as shown in Ref. 27, it
as seen in Fig. 4 and Table IIl. A similar behavior has beeragain does not correct the deficiencies we observe in the
found for N, (Ref. 26 and Be.?""? We believe that these RPA dissociation energy curve of,H
deficiencies stem from the RPA itself, rather than our lack of ~ The limitation of RPA, as in any adiabatic treatment of
self-consistency. In particular we have obtained essentiallyhe interacting linear response, might be that it treats only
the same curves when we used densities derived from unregingle excitation&' and thus cannot take into account density
stricted LDA and GGA calculations. A more conclusive an-flyctuations that correspond to doubly excited determinants
swer must either start from more accurate densities or awagind eventually also contribute to the correlation energy. As is
self-consistent calculations. Using ansatzfor the XC en-  \ye|| known, doubly excited determinants have larger weights

ergy functional in terms of natural orbitals in (@pproxi- iy the asymptotic interacting wave functions of For both
mately self-consistehfsingletKS calculation, Baerends and ground and excited states. FRr « this is evident from the

3,35 . L

_co-workeré recently reported a dissociation curve of H corresponding exact Heitler—London wave functigisee,

in very good agreement with the true curve forRillThe fact e.g., Refs. 75 and 76; for instance, the IoweEE and T

that for intermediatéR their curve is distinctly more accurate _.~ ' Lo ’ 9 uoo
singlets are the symmetric and antisymmetric linear combi-

than our non-self-consistent RPA result clearly calls for fur'nations, respectively, of the determinafm%?g| and |07

ther analysis of both approaches, including possible error

cancellation between different components of the total en[nade up of the HOMO and LUMD Double excitations im-

ergy. This is beyond the scope of our present study, ply additional poles in thdreal frequency interacting re-
' ' sponse and thus a strongly frequency-dependent XC kernel.

Any such pole contributes to the spectral decomposition of
the pair-correlation function or XC hole. While there is lim-
V. EXTENSIONS BEYOND THE RPA ited progress concerning the calculation of the excitation en-
ergies for certain doubly excited states within TDDFETyr-
So far we have shown that the RPA gives a qualitativelyther analysigand developmenbf the spatial and frequency
correct account of thédifferential) adiabatic connection of dependence of such XC kernels is needed for applications in
H,, in contrast to semilocal or hybrid functionals, but needsACDFT XC functionals.
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VI. SUMMARY APPENDIX

The central message of this paper is that the RPA re- In part 1 of this appendix we describe our computational
solves the long-standing symmetry dilemma encountered imethod for evaluating the RPA XC energy. In part 2 we
approximatedensity functional theory when breaking the H corroborate that thepin-restrictedRPA total energy of K (i)
electron pair bond. We showed that the RPA produces that asymptotically large separation becomes indeed equivalent
correct dissociation limit from a proper singlet KS density, to the total energy of two free H atoms calculated ispan-
without the need for artifical symmetry breaking as in unre-unrestrictedformalism, in contrast to the case of the RPA
stricted Kohn-Sham theory for traditional local- or +X kernel, (ii) for sufficiently large separationR includes
generalized-gradient functionals and hybrid XC functionalsthe expected €X”*/R® van der Waals attraction.

By analyzing the adiabatic connection, we showed that the

RPA captures correctly the strong stafieft—right) correla-

tion that arises when the pair bond breaks. Local and

gradient-corrected functionals make serious errors here, andl Computational method

even hybrids, which mimic this effect at equilibrium bond

lengths, cannot account for the extreme static correlation in e have implemented the RPA functional in a pseudo-
the dissociation limit. As the RPA yields an orbital-dependentPotential plane-wave framewofR, handling the response
XC functional, our results demonstrate the importance of infunctions, Egs(1) and (2), in their reciprocal space repre-
cluding unoccupied KS states, in particular the LUMO state Sentation. Gauss—Legendre quadrature rules are used for the
We also showed that it is crucial to work with an accurateh andiu integrations. For our study ofthe —1# attraction
density, which we have constructed approximately in thigS replaced by a highly accurate norm-conserving
study and which could be improved by applying the RpApseudopotentia?I. The latter yields practically the exact en-
self-consistently. We further found the RPA dissociation€dy of the H atom and dissociation energies to within
curve to agree well with exact data near the equilibrium bond-1 mHa when compared to full-potential results, for LDA,
length of H,. When the bond is stretched, it tends to the GGA, or EXX calculations. We place the,Hnolecule in a
correct limit, unlike all the common restricted Kohn—Shamfcc supercell of 21 bohrs side length. For the initial KS cal-
approaches. Noting that the RPA still leads to an unphysicgfulation we use a plane-wave cutoff energy of 30 Ha, and
repulsion of the hydrogens for intermediate bond lengths, wd2 Ha for the response functions. In the KS response we
adressed inherent limitations and possible extensions of tHclude unoccupied states up to 2.5 Ha explicitly and treat
RPA. Seen as a first step to realize fully nonlocal XC func-the higher ones through a closure relation. For the frequency
tionals by the adiabatic-connection fluctuation-dissipatiorintegration we employ 12 supports fB<2 bohrs and up to
formalism, we believe that the RPA provides a sound basi®4 for largerR, concomitant with the closing of the HOMO-
for quantitative refinements. Our study highlights Bis a LUMO gap. For the coupling strength integration we use

significant benchmark system for assessing future progres-11 supports to capture the stronger curvaturgljpf with
beyond the RPA. increasingR. From convergence tests we estimate that our

total and dissociation energies are converged to well within
0.1 eV. Indeed our value for the,Hlissociation energy in
RPA, -4.73 eV, is in excellent agreement with previous

work 2827
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404\

QF(N) = B2+ ANKoEg + N2P(VEg+ O{(N\EQ)3,  (A8)
20z

X H(r 1 0) = 2 Q) Qy (), (A1)
n

where the HOMO-LUMO exchange integralKg
=(Po-to+|Ded Por o) =U[H]-(2R) ™+ O(exp reduces as-
ymptotically to the atomic Hartree energy, aRds an(here
unspecified, yet smooth function af Note that the first two

Mij (N) = wﬁgikajl + 4\":nfﬁﬁF(K)V";m (A2)  termson t_he right-hand sio[_@HS_) of Eq. (A8) also_ fol_low

from the single pole approximation to TDDFT excitation en-

involving all possible KS excitations from an occupied KS grgies, and that the remainder describes corrections due to
state ¢ to an unoccupied KS staig;, with respective KS  the coupling with higher KS excitatioi.The correspond-
transition freguenmes Wi = €~ €. Here f:]lﬁc()\) ing eigenvector |5UI)] 0=6j 0+0_+O()\\3’/E_g)_ Hence we can
=[drd® (1) ¢ (NTixc(r 1)y (r') ¢ (r’) denotes the ma-  gpjit the asymptotic RPA response of His follows:
trix elements of the Hartree and XC kernel, and it is assumed
that one works in the adiabatic approximation, i.e., the XC

where (\) are the transition frequencies a@} are the
associated amplitudes. THe,(\) are the positive square
roots of the eigenvalues of the matrix

kernel is frequency independent. From the eigenvedirs X[Hzl = X"[Ha] + 8x*[Ha] + O(exp), (A9)
of M;j (N), one obtains the spectral components
' where
Ql}]n =N wij/Qn()\)Ui)},n (A3)
of the amplitudesQ}(r) ==f°="°Q} &/ (r)¢;(r). In the an)a(r’)
RPA, flixc=Avee S H(r 1 iu) = - 4Eg———5—, (A10)
u+ Qg(N)

Consider now the Kimolecule at larg&R. For any finite
number N of (bound KS states,R can be chosen large
enough such that the molecular orbitals can be approximate@d X*=(1-X°Aved *x° is the contribution from the other
by the bonding and antibonding linear combinations of thegigenvalues and eigenvectors of the matill; ,(\). For
atomic orbitalsa,(r) andb;(r) of the H atomsA andB, re- large R, we can further writ€y* as the sum of the RPA

spectively: responses of the H atomgHagl, and an interatomic
i correction’ AxMH,]:
¢i:(r) = (2% 28) " qay(r) £ bi(r)}, (A4)
where § is the overlap integral. Similarly, we approximate Y [Hol = X Hal + X" [Ha] + Ax"[H,]. (A11)

the respective eigenenergiEs. = ¢ by the atomic eigenen-
ergiese, except for the HOMO and LUMO energids,.
whose gap we write a;=Ey_—Eg,.

In the (imaginary frequencyKS responsg[H,] of the
molecule, we first split off the HOMO-LUMO transition X'TH1= (1= X TH\wed X [H] (A12)
which is well separated from the higher ones, and define

The atomic part

is formally equivalent to the RPA response of spin-

q(rg(r’) polarizedH atom.

TWR+E2 (A5) Using the response functions as decomposed in Egs.
9 (A7), (A9), and (A1l), the RPA correlation energy for

where  q(r)=dou(r)do-()=(2y1-S)X(|ag(r)?~|bg(r)2).  stretched H reads

For R—=, the remaindery[H,]=:x[H,]-dx[H,] can

SX[H2](r,r’ iu) = - 4E,

readily be shown to splifup to exponentially decreasing 1 * du
correction$ into atomic contributionsy’[H,] and x[Hg], EE*PA[HZ]:_f d)\f —Trved x"[H,](iu)
where 0 o 2w

/2 - *(rVan(r! - x"[H2l(iu)}] (A13)

: (Nay(r)a; (r)ag(r’) 2
THAI i) == S A - e) g ,
X A] j=1 ] 0 u2 + (6J - 60)2
(A6) =EcHAl + EC”[Hg] + AES™TH,]

with a similar definition fory’[Hg]. x°[HA] and x°[Hg] are + SERAH,]. (A14)

formally equivalent to the KS response of a frepin-

polarizedH atom (see, however, the discussion of RPA+ Here ERPH] is the RPA correlation energy of a spin-
below). Hence we asymptotically get polg;iAz[ed H atom (associated with ngb[]—xo[H]),
Oy 1= O 0 0 AETH,] comes from Ay\[H,], and SEZ {H,] from

XTH1=XTHAl* X THe] + o TH] + O(exp). (A7) 5XKC[H2]—5X°[H2]. Expanding Ax"H,] in ;\vee one can

As for the asymptotic RPA respon§@— «), inspection  show, analogously to the case of interacting closed-shell
of Eq. (A2) shows that the lowest eigenvalul%()\) (i.e., the systemd, that the leading, second-order contribution to
singlet excitation energyexponentially tends to zero and is AE?PA[HZ] recovers the van der Waals interaction between
well separated from the others. Indeed, the H atoms, i.e.,
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AERPAH,] = - CRPAHIR®, (A15) From Eg. (A16) we can interpret the ratioaPA(\)
=KoEy/ QT AN) <K as a correlation to the exact asymptotic
adiabatic connectiofFig. 2) that decays exponentially with
R— oo, turning on static correlatioraRPA(\) yields a posi-
tive O(v’FEg) contribution to the RPA exchange-correlation
energy[see Eq.(A18)]. While this contribution is expected

with the atomicCg coefficient obtained within the RPA. We
next consider the HOMO-LUMO part of the response, writ-
ing SERPAH,]=[3dNSURPAH,I(N), where

SURPAH,I(N) = - f

[

O Ted 83 (iU) - 8xiu)}]

o 27 to die out exponentially likeEy, it may still be significant
aroundR=10 bohrs, showing up as a spuriously repulsive
= KO{_EL - 1} dissociation curve. OUE;~ 102 eV at R=10 bohrs is in-
Qo(N) deed compatible with the-0.2 eV error we find from our
Ko A2P(M\) RPA calculation at this bond lengttthis estimate follows
- KO( 1+ B from the single transition model discussed at the end of this
_12 ’ ’ Appendix. We cannot rule out that in a self-consistent treat-
+ o()\Z)} - 1)_ (A16) ment Ey decays(sufficiently) more rapidly compared to our
present non-self-consistent calculation.
The integration oveh then yields asymptotically Behavior of E™*"[H,] for R—c. For the exact ex-
P — change kernél the same analysis of the molecular correla-
oEc AH,1=- Ko+ O(VKoEy) (A17) tion energy as for the RPA can be carried through with
replaced by\/2. For R—x, the static correlation term
=-U[H]+ (2R)™+ O(exp. (A18)  SERPAX[H,]~-U[H]+(2R) 2+ O(exp remains the same as

The termsERA is associated with the static correlation due™ the RPA. However, the atomic terms in He\14) do not
to the (nearly) degenerate HOMO and LUMO KS states. vanish, in contrast to the RPA%-correlation energy of spin-
Adding Ex[H,] ~ 2E,[H]+U[H]-(2R) 1+ O(exp) to polarized free H atoms. Indeed, for a free H atom the spin-
E§PA[H2] we last get for the RPA XC energy density responsgé(‘rif’Aer[H] andx?m,[H] are identical, as is
easily seen from the spin-resolved Dyson equatsae, e.g.,
ERCTH,] = 265 TH] - CE7R™®. (AL9) et y73. Thus ESPA"?([H]:O and y'f,f’mx[g]i(t—ggz a.?J.
The kinetic, electron—nucleus, nucleus—nucleus, and Hartrddowever, in the spin-compensated stretcheg béth the
components of the total energy of, Hre easily shown to spin-up and the spin-dowmoninteracting KS electrons are
also approach those of the free atoms Ror: 2. Hence the  found with a 50% chance on either nucleus. Thus what enters
RPA obeys the expected result km.Egy {H,]=2Efy [H].  as the atomic tery®[H] in Egs.(A7) and(A12) corresponds
Several remarks are in order. _ in fact to the KS spin response of a fictitious spin-
Leading RdependeQF(’:Ae of E{H,] for R— <. Equation  compensated H atorfdenoted H) with half occupied &
(A19) states that theCq R van der Waals term is the 5,4 5| states. The corresponding RPX+correlation en-
Igao_llng correction to the asymptotic RPA XC energy. Thlsergy appearing on the RHS of EdA14) is therefore
finding rests on the result of EGA18) that the static corre-  _rpa+x-, 4, RP . .
lation term SERPA H,] follows the (2R)~* behavior ofKy(R), B IH]=E; A.[H]/z (estimated to second orderAweo.
C 2 0 RPA+X RPA+X RP.
i.e., it contains no multipole terms of higher power ttirt Consequently, “rﬁ%x(Ewt. [HZJT ot [,H]):EC IH]
up toR°8. The latter holds ifi) the HOMO and LUMO are <0. In an_actual calculation we indeed find that the RPA
represented by linear combinations sfike atomic func- +X potential energy curve drops below zero beyoRd
tions, as is appropriate for large and as we had assumed. =7 bohrs(see Fig. 4.
Then higher order terms iy(R) decay in fact exponentially The RPA yieldsEZ"{H']=E¢" "{H], i.e., the distinction
with R, as can be seen from a multipole decompositiokpf between H and H does not matter. Thigpuriou$ RPA
A further condition is thatii) the HOMO-LUMO gapland  self-correlation energyER"{H] ~-23 mHa per atom, using
thus VKoE, in Eq. (A17)] decays exponentially, as is ex- the exactny) appears for the free atoms and the stretched H
pected for Kohn—Sham statéss opposed to a Hartree—Fock and thus cancels out. Had we treated the stretcheh H
calculation, wherégy<R™) and which we have verified nu- spin-polarized KS scheme, the two electrons would be local-
merically in the rangeR=4-10bohrs. Of course, for the ;a4 with opposite spin on either nucleus right from the be-
bond lengths considered here the van der Waals term is 'Binning. While we have not performed this calculation, we

. . . RPAH-6__ |
E%Tsagr:gallb fct))roerrssta;zg%ctivel ii mr?]\érznt?\ag';nmoerger Jpxpect from our above discussion that both the RPA and
= p Y, 1.€., PA+X yield limg_..Eio{ Ho]=2E,{H] in this case.

magnitude smaller than the total RPA errors given in Table >
Model based on the HOMO-LUMO transition only

Il (usingCRPA~4.6 a.u., calculated from the atomic dipole _

polarizability). Clearly, the RPA dissociation energy curve is W€ include in the response only the HOMO and LUMO KS

still dominated in the rangR=4-10bohrs by the static cor- States, we get a “minimal,” two-state model of k which

relation term of Eqs(A17) and(A18), as we further discuss all effects of higher transitions are ignored. ThegiH,] in

in the following paragraph. Eq. (Al4) is given by just the static correlation term
Repulsion at intermediate R and role of self-consistencySEH,|:
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2KKO
—1)-K,
Eg

= - K0+ \“JZK()Eg/K for R— 0,

E,
Ec[Ho] ~ f( 1+

(A20)

for the RPA (k=2) as well as the RPAX (k=1). The
asymptoticR dependence of this minimd&[H,] is again
that given by Eq.(A18). Hence within the minimal model
also the RPAK correctly yields the total energy of the dis-

sociated H as that of two free H atoms. Indeed, inspection

of Eq. (A16) shows that both RPA and RPA«recover the
exact adiabatic connection f&®— <, i.e., that SU.(\ >0)
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