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Abstract

Background: The potential role of RNA molecules as gene expression regulators has led to a new perspective on
the intracellular control and genome organization. Because secondary structures are crucial for their regulatory role,
we sought to investigate their robustness to mutations and environmental changes.

Results: Here, we dissected the structural robustness landscape of the small non-coding RNAs (sncRNAs) encoded
in the genome of the bacterium Escherichia coli. We found that bacterial sncRNAs are not significantly robust to
both mutational and environmental perturbations when compared against artificial, unbiased sequences. However,
we found that, on average, bacterial sncRNAs tend to be significantly plastic, and that mutational and
environmental robustness strongly correlate. We further found that, on average, epistasis in bacterial sncRNAs is
significantly antagonistic, and positively correlates with plasticity. Moreover, the evolution of robustness is likely
dependent upon the environmental stability of the cell, with more fluctuating environments leading to the
emergence and fixation of more robust molecules. Mutational robustness also appears to be correlated with
structural functionality and complexity.

Conclusion: Our study provides a deep characterization of the structural robustness landscape of bacterial
sncRNAs, suggesting that evolvability could be evolved as a consequence of selection for more plastic molecules. It
also supports that environmental fluctuations could promote mutational robustness. As a result, plasticity emerges
to link robustness, functionality and evolvability.
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Background

The discovery of the regulatory role of RNA has revolu-

tionized our understanding of the molecular control and

genome organization of living cells [1,2]. Small non-cod-

ing RNAs (sncRNAs) have been shown, both in prokar-

yotes and eukaryotes, to exert a tight control on gene

expression. Of relevance, a particular secondary struc-

ture can confer a regulatory ability of translation [3], a

catalytic activity [4], or an interfering ability to silence

gene expression [5]. Importantly, a unique secondary

structure is underlying all these mechanisms that, while

preventing the degradation of the sncRNA, allows the

interaction with and subsequent modification of other

sncRNAs, mRNAs, or proteins. In summary, structures

are fundamental in determining the potential roles of

sncRNA and are, consequently, a fundamental compo-

nent of the fitness of these molecules [6]. In an attempt

to proof this point, many research groups have pursued

identifying the footprints of natural selection on second-

ary structures of sncRNAs, although this remains elu-

sive. In this study we test the hypothesis that selection

indeed operates at this level, driving the evolution of

sequences to codify structures that present beneficial

traits for the organism.

Early studies tackled the structural robustness of RNA

molecules [7,8], considering that robustness would be a

beneficial trait. These approaches took advantage of a

physicochemical model [9] that allows predicting the

resulting phenotype (structure) from a given genotype

(sequence). Recent computational studies have been

mainly focused on precursors of miRNAs [10-13] and

on viruses [14-16], and have suggested that natural RNA
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sequences are robust to mutations. However, as we

show in this study, the statistical significance of the

results depends on the choice of the reference sample of

sequences. Moreover, whether robustness evolves driven

directly by selection or is the by-product of the selection

for another related magnitude remains highly controver-

sial [17]. Despite their biological relevance, however,

very little is known about the structural robustness of

bacterial sncRNAs. Here, we propose a new definition of

environmental robustness that better allows studying its

relationship with mutational effects. In addition, we

explore and describe the robustness landscape of bacter-

ial sncRNAs and link it to functionality and evolvability.

Robustness to environmental perturbations is the cor-

nerstone of biological adaptation and diversification. In

bacteria, adaptation to environment requires of funda-

mental changes at the molecular level (i.e., mutations).

These changes may lead to the functional divergence of

proteins or RNAs that mediate the adaptation to the

environment. Indeed, bacteria have the ability to rapidly

accumulate beneficial mutations when growing in new

environments [18]. If most of such functional mutations

are destabilizing, owing to the fact they compromise

ancestral functions, robustness to these mutations may

fuel biological evolvability [19]. However, a strong

robustness may buffer the accumulation of beneficial

mutations. Hence, determining how robust are proteins

or RNAs to environmental and genetic perturbations

may unearth the rules of evolvability [20]. Our study

reveals that plasticity evolved in natural sncRNAs, con-

ferring evolvability to bacteria [8], and it also reveals

that this magnitude modulates robustness.

Results and discussion

Robustness of small RNAs

Here, we define structural robustness as the sensitivity of

an RNA molecule to perturbations: the greater the

robustness of an RNA molecule, the more insensitive is

to perturbations. To understand how RNA molecules

respond to perturbations, we measured two types of

robustness. First, environmental robustness (Re) accounts

for the robustness to perturbations in the environment

where the sncRNA lives. These perturbations come

mostly from extra-cellular factors. We assumed that

environmental perturbations alter the physicochemical

properties for RNA folding. Under this assumption, we

computationally induced environmental perturbations by

altering the energetic parameters implemented in the

thermodynamic model for the base-pairs interactions [9].

Alterations in the conformation of the sncRNA structure

resulting from such perturbations were used to calculate

Re. This assumption is justified because the thermody-

namic model assumes a mathematical expression by

decomposition, whose parameterization must be done

against experimental data. Different sets of energetic

parameters have been proposed [21], each of them being

a relatively good approximation for making predictions.

However, the model is certainly a simplification of the

reality (effective model) and many more equations and

parameters would be needed for a much more accurate

calculation of free energies and RNA structures. There-

fore, it is indebted to think that environmental conditions

(e.g., concentration of ions) modulate the energetic para-

meters of this effective model, and that environmental

robustness would be achieved by being insensitive to per-

turbations in those parameters [22]. Second, mutational

robustness (Rm) accounts for the robustness of structures

to single point mutations in the sncRNA sequence. We

provide formal mathematical definitions of these vari-

ables in section Methods. To perform the computation

over RNA secondary structures we used Vienna RNA

package [23].

We focused our study on the sncRNAs (79 genes) of

the bacterium Escherichia coli, in particular the strain

K12 MG1655 (Table S1) [24]. Among bacteria, E. coli is

the one with more reported sncRNAs. And among the

different strains of this bacterium, the K12 MG1655 is

the one owning more sncRNAs. In bacteria, most of the

riboregulation is based on antisense RNA-mediated

repressions, although there are still few examples of

activation. For instance, dsrA gene codifies for one

sncRNA that represses the expression of hns gene

(encoding for a Histone-like protein) in E. coli by indu-

cing a loop in the mRNA, while it activates the expres-

sion of rpoS gene (encoding for a sigma factor for stress

response regulation) that is under the control of a leader

sequence able to sequester the ribosome binding site by

forming a hairpin [25]. We calculated the mutational

and environmental robustness for those bacterial

sncRNAs. To do so, we first computed the thermody-

namic ensembles of structures of all RNA molecules.

We then applied several mutational and environmental

perturbations to each of the sequences, recomputed the

ensemble of structures of perturbed sequences, and cal-

culated the base-pair distance between ensembles [26].

We finally averaged the results to compute Rm and Re

(Table S2, Figures 1, S1 and S2). In order to calculate Re
we fixed the sequence and perturbed (several times) the

energetic parameters, while in the case of Rm we kept

constant the energetic parameters and mutated (several

times) the sequence.

To assess the statistical significance of robustness

values, we computed the z-scores associated to each

sequence, with respect to the random population of

structural analogs (Table S3). We constructed three dif-

ferent random samples of artificial sequences having the

same minimal free energy (MFE) structures as the real

sequences (see section Methods). We found that the
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statistical significance of the robustness (z > 1.64, P-

value < 0.05), to both mutational and environmental

perturbations, depends on the choice of the sample

(Table S4). For instance, in sample I, 31.6% of the

sequences was significantly robust to mutations, and

32.9% significantly robust to environmental perturba-

tions. In addition, the entire set of sncRNAs was on

average significantly robust (U-tests, P-values < 10-10 for

Rm and Re) (Figure 1). These results are in agreement

with previous studies [10,15], although caution should

be taken in interpreting these values of robustness. In

sample II, the fraction of significantly robust sncRNAs

to mutations was reduced to 22.8%, while robustness to

environment was reduced to 26.6% (Table S4). Despite

these reductions, the results remain to be in stark agree-

ment with a recent study [12]. In contrast to the two

previous samples, sample III, the more unbiased one,

allowed us to better identify the subset of significantly

robust sncRNAs. In this sample, about 60% of genes

were on average robust to both types of perturbations,

mutational and environmental (z > 0), while only 1.3%

(only 1 element) and 3.8% (only 3 elements) of genes

were significantly robust to either mutational or envir-

onmental perturbations, respectively (Table S4). In addi-

tion, we did not find a significant enrichment in both

types of robustness on average, comparing the whole set

of bacterial sncRNAs against sample III (U-tests, P-

values > 0.3 for Rm and Re) (Figure 1). Figure 2 illus-

trates the structural robustness landscape of bacterial

sncRNAs, using this last sample. Our results indicate

that bacterial sncRNAs are not robust with respect to

random sequences, and the comparative of the results

for different null models indicate that previous analyses

on the robustness of pre-miRNAs [10-12] should be

revisited. To address this issue, we further applied our

methodology to pre-miRNAs of Caenorhabditis elegans,

and we found that they are not so robust as claimed

before. More precisely, Szöllósi and Derényi reported for

C. elegans 37% of significantly robust pre-miRNAs,
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Figure 1 Distributions of structural properties for sncRNAs. Histogram of plasticity (P), mutational and environmental robustness (Rm and Re)
for the bacterial sncRNAs (blue bars) and for different samples (I, II and III) of artificially constructed sequences (gray bars). U-tests were applied
to assess the statistical significance of the distributions. For P, the P-values of samples I, II and III are 8·10-12, 10-4 and 0.0016, respectively. For Rm,
the P-values of the three samples are 7·10-16, 2·10-12 and 0.38, respectively. For Re, the P-values of the three samples are 5·10-13, 3·10-10 and 0.82,
respectively.
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Figure 2 Structural robustness landscape of the bacterial

sncRNAs. Histograms of z-scores for (a) plasticity (P), (b) mutational
robustness (Rm), (c) epistasis (E), and (d) environmental robustness
(Re).
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while we did not obtain any in the 100 sequences ana-

lyzed using an analog sample III.

Robustness versus plasticity

In addition to the environmental robustness, we also

took into account the plasticity (P) of the molecules (see

section Methods). Sequences are more plastic when the

thermodynamic ensemble of structures has higher varia-

bility [8]. In contrast to previous studies [11-13], here

we disentangled plasticity (which relates to thermal sta-

bility) from environmental robustness. This division

made it feasible distinguishing clear patterns of linked

genetic and environmental robustness. We calculated

the degree of plasticity of the sncRNAs and tested their

significance as above (using sample III). We found that

natural molecules were significantly more plastic, in

terms of population, than artificial ones (U-test, P-value

= 0.0016) (Figure 1). Specifically, 16.5% of the bacterial

sncRNAs were significantly plastic (Figure 2), albeit the

fraction of molecules significantly susceptible to the

environment (z < -1.64) was much lower (about 8%). In

addition, in terms of population, sncRNAs are not sig-

nificantly robust to environmental perturbations, neither

to mutational effects. As before, we also analyzed the

plasticity for the pre-miRNAs of C. elegans, obtaining a

significant enrichment of plasticity on average (U-test,

P-value < 0.005), similar to bacterial sncRNAs. Not sur-

prisingly we found a slight inverse correlation between

P and Re (Figure 3a), because 1-P can also be under-

stood as a kind of robustness to temperature (tempera-

ture as a particular environmental cue) [11]. Indeed,

previous work pointed out that the higher the energy

gap between the optimal and suboptimal structures of

the thermodynamic ensemble (P close to 0), the higher

is the robustness to mutations [27]. Of note, with a defi-

nition of environmental robustness of 1-P, our results

would indicate that bacterial sncRNAs are on average

more susceptible to environmental changes than artifi-

cial ones, while they are neither significantly susceptible

nor robust to mutations.

The conclusion that bacterial sncRNAs are signifi-

cantly plastic could entail important evolutionary and

functional implications (Figure S3). First, plasticity could

serve as a mechanism to diversify the functions of mole-

cules, since a single genotype could yield multiple phe-

notypes (large thermodynamic ensemble of structures),

even sncRNAs can adopt multistable states [28]. Second,

plastic molecules have greater evolvability [8], which

could lead to functional innovation (i.e., by increasing

plasticity, the time of adaptation could be reduced).

Third, the greater the plasticity, the larger structural

changes can be after mutational or environmental per-

turbations (t-tests, P-values < 0.0001 for Rm and Re,

using the average of P to construct two subsets).

Recently, it has been shown that robustness can corre-

late with evolvability but in a way strongly modulated

by plasticity: intermediate robustness levels are optimal

for fueling evolvability, where higher plasticity induces

lower optimal robustness levels [20].

We also investigated epistasis (E) [29], the interaction

of mutations, and its relationship with plasticity. In

terms of population, we found that double mutations in

bacterial sncRNAs tend to be antagonistic (E > 0) (t-

test, P-value = 5·10-5). 70.9% of the sequences display E

> 0, although with respect to sample III the statistical

significance is reduced (U-test, P-value = 0.16). Antago-

nistic epistasis indicates that the effects of the first

mutation at a nucleotide site provoke a disruption of

the structure that is more severe than the one provoked

by the effects of a second mutation at another site [29].

Accordingly, synergistic epistasis entails that single

mutations will have a moderate impact on the structure.
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Figure 3 Plasticity correlates with environmental robustness

and epistasis. (a) Scatter plot between plasticity (P) and
environmental robustness (Re) for the bacterial sncRNAs. Spearman
correlation coefficient = 0.396, P-value < 0.001. (b) Scatter plot
between plasticity (P) and epistasis (E) for the bacterial sncRNAs.
Spearman correlation coefficient = 0.728, P-value < 10-6.
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In fact, sncRNAs with synergistic epistasis displayed

higher levels of mutational robustness (t-test, P-value <

0.0001, using E = 0 to construct two subsets). In princi-

ple, epistasis would tend to 0 when the two mutations

fall down in the sequence with sufficient separation so

that their effects are uncorrelated. Nucleotide sites that

were detected to interact epistatically, both synergisti-

cally and antagonistically, were on average closer in the

structure than expected by chance (Figure S4). In addi-

tion, we found a positive correlation between plasticity

and epistasis (Figure 3b). Antagonistic epistasis thus

comes from the fact that more plastic molecules are less

robust. In this scenario, each individual is more sensitive

to mutations (i.e., the deleterious mutants are quickly

diluted while beneficial ones are fixed) and the popula-

tion tends to accumulate beneficial genetic variability

(Figure S3). Hence, our results are in tune with the sug-

gestion that antagonistic epistasis would promote evol-

vability [30], and that evolvability and mutational

robustness are inversely correlated, at least in the short

term [31].

Correlation between mutational and environmental

robustness

Based on our previous results, we sought to investigate

whether mutational robustness correlates with our defi-

nition of environmental robustness, provided that the

relationship between Rm and 1-P has been already

described [27]. We selected micA as a case study,

although similar results could be derived with other

sncRNAs, and we performed a neutral evolution process

(accounting for potential compensatory mutations as

described above to enlarge the sequence space). We

found a significant correlation between the two types of

robustness (Figure 4), although some punctual muta-

tions can entail an opposite effect on these variables

(Figure S5). By large, a sequence that evolves to increase

its environmental robustness also increases its muta-

tional robustness and vice versa. This reflects a clear

dependency of these two magnitudes. Energetic para-

meters handle the structural robustness in both cases,

but while environmental robustness is a global outcome,

mutational robustness is local.

We further dissected and quantified robustness in the

different sncRNA molecules. Interestingly, not all

sncRNAs displayed the same level of robustness: a frac-

tion of sncRNAs has not evolved to greater robustness

(e.g., C0664), while the majority of them have reached

suboptimal levels of robustness (e.g., dsrA) (Figures 5

and S6). The most robust gene was micF, to both muta-

tions (z = 2.05) and environmental changes (z = 2.34),

whereas the less robust gene was C0064, to both muta-

tions (z = -5.87) and environmental changes (z = -5.82).

MicF is a stress response sncRNA that targets the mem-

brane protein OmpF and other genes related to chemo-

taxis [32,33]. However, its structure is very simple, with

most of the nucleotides remaining unpaired, hence per-

turbations have minimal effects on the stability of this

gene. On the contrary, C0064 is an enzyme with trans-

ferase activity that modifies rRNA and has been identi-

fied as the most plastic of the bacterial sncRNAs (z =

7.33). Environmental robustness strongly correlates with

mutational robustness so that the promotion of one

variable entails a proportional effect on the other (Fig-

ures 4, 5, and S7). Of relevance is the fact that the varia-

bility in sequence compositions that share a common

neutral evolution 

Figure 4 Congruent evolution of mutational and environmental robustness. Computation of mutational and environmental robustness (Rm
and Re) during a neutral evolution (acceptance of mutations that do not change the structure) of a MicA-like sncRNA (scatter plot in the inset).
These two trajectories show a pattern of congruent evolution. One iteration corresponds to 100 mutations (order O(L)).
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structure was considerable and allowed unraveling a

precise pattern by which the more robust molecules to

environmental perturbations were also those more

robust to mutational perturbations. This reinforces the

fact that these two variables are not independent; hence

the congruent evolution of the two robustness variables

[11,12] in the case of bacterial sncRNAs becomes a

plausible hypothesis.

Free-living bacteria are subjected to fluctuations in

their environment. These perturbations affect the avail-

able resources that bacteria use for their development

and reproduction, but also affect variables such as tem-

perature, pressure, oxygen, metals, and concentration

of ions. Changes in these variables may affect RNA

folding, among other effects. It is then expected that

molecules of free-living bacteria (which live in highly

fluctuating environments) have evolved towards higher

robustness to these environmental changes. It follows

that environmental fluctuations may promote the evo-

lution of mechanisms that confer robustness to such

fluctuations. Afterwards, environmental robustness

would provide sncRNAs with robustness to mutations,

which is an inherent property of the molecule. In the-

ory, direct selection for mutational robustness would

only occur in organisms presenting high mutation

rates such as viruses [34]. Thus, in populations with

lower variability, mutational robustness could certainly

be a side effect of selection for mechanisms that miti-

gate the effects of environmental perturbations [17]. In

addition, the energetic features of the molecule manage

its structural robustness to both mutational and envir-

onmental perturbations [22,27], and this explains the
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Figure 5 Correlation between mutational and environmental robustness. Computation of mutational and environmental robustness (Rm
and Re) for different sncRNAs and their corresponding structural analogs. The robustness of artificial sequences sharing the natural structure was
evaluated (g gives the value of the slope). Solid lines indicate the values for the natural sequence.
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strong correlation between environmental and muta-

tional robustness.

An illustrative test of this hypothesis would be the

analysis of the robustness of sncRNAs of different bac-

teria, each subjected to different environmental fluctua-

tions. Here we included in the analysis the

endosymbiotic bacterium of aphid insects (Buchnera

aphidicola), which lives in highly stable environments (i.

e., devoid of fluctuations), among other free-living bac-

teria. However, these endosymbionts (also Blochmannia

floridanus) have an extremely reduced genome [35] and

hence very few or even none reported sncRNAs. Among

all sncRNAs studied here, the gene codifying for one

RNA component of the signal recognition particle, ffs

[36], is highly conserved in many bacteria including B.

aphidicola. Then we decided to focus our study on just

this gene, observing that in B. aphidicola Ffs is signifi-

cantly less robust than their Ffs homologs in other bac-

teria, which live in more fluctuating environments

(Figure S8). Although these initial results do not consti-

tute an exhaustive analysis to point out that evolution of

robustness negatively correlates with environmental sta-

bility, they show that robustness can be compared

among species and not only against artificial sncRNAs.

Functionality of small RNAs

To further dissect the robustness landscape, we calcu-

lated the degree of functionality (V) of the sncRNAs

(see section Methods). The degree of functionality

gives the total number of accessible regions in the

sequence that may promote an interaction with

another RNA molecule. Indeed, this degree would

account simultaneously for complexity and functional-

ity in sncRNA [37], with longer molecules presenting

greater stability, more complex structures, and higher

number of regions for potential interactions (Figure

S9). The length (L) of the sncRNAs here studied goes

from 53 to 436 nucleotides, but below 250 we find the

majority of them (Figure S1). To show that the struc-

tural magnitude V is indeed a metric of functionality,

we took the connectivity values (k) from a recent com-

putational work that proposed an inferred network of

Hfq-dependent sncRNAs [33]. We found a rough

power-law relationship between V and k (Figure 6a).

The higher the degree of functionality of an sncRNA,

the more interactions can be established with mRNAs.

Furthermore, the variance of the distribution of Rm for

several sequences sharing a common MFE structure

depended on the functionality, while environmental

robustness was insensitive to it (Figures 5 and 6b).

This points out that more complex sncRNAs will dis-

play per se higher levels of mutational robustness (t-

test, P-value < 0.0005, using the average of V to con-

struct two subsets). Within a highly functional

sequence, there are key nucleotides whose mutations

provoke a significant disruption of the structure,

whereas the majority of nucleotides have a more

reduced impact on it. The sequence is hence on aver-

age robust to mutations. Similarly, studies relying on

the topological properties of gene interaction networks

have provided insights on why complex biological sys-

tems are more robust than simpler ones [38].

Of special interest are those molecules that are both

plastic and environmentally robust. In principle, as we

have shown, these two variables are negatively corre-

lated. However, we observed that 17 bacterial sncRNAs

presented this pattern. Among them, we highlight GcvB,

IsrB, GlmZ, RseX, and RyhB. Interestingly, these

b 

a 

Figure 6 Functionality of sncRNAs. (a) Scatter plot between the
connectivity degree of the sncRNAs (k) and degree of functionality
(V). The outlier (black point) corresponds to gene sgrS, which is a
particular sncRNA that also codifies for a small polypeptide (43
amino acids). (b) Scatter plot between degree of functionality (V)
and g, which is the slope of the linear regression between the
mutational and environmental robustness for all sequences that
have a common structure. For this plot, a representative subset of
sncRNA structures was considered (genes C0293, C0664, dsrA, ffs,
gcvB, glmY, micA, oxyS, psrN, rydC, ryhB, sokC, and ssrA).
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sncRNAs present a high connectivity degree, especially

GcvB. This could suggest that hub elements, in addition

to increased degree of functionality, require high levels

of plasticity to operate (P and V do not correlate, Figure

S10). However, DicF and IsrA, which also establish

many connections, do not exhibit this feature. Because

the interaction network was inferred, these results

should be interpreted with caution. Further studies are

needed to address the important issue of linking robust-

ness with functionality.

To further investigate the relationship between RNA

function and robustness, we calculated P, Rm and Re for

the bacterial tRNAs (Figure 7) (sequences from

GtRNAdb [39]). Because those tRNAs have a length

between 74 and 93 nucleotides, we compared them

against the sncRNAs with L < 100, although similar

results were obtained for the whole set of sncRNAs. We

observed that sncRNAs are significantly more robust,

both to mutations and environmental perturbations,

than tRNAs (U-test, P-value < 10-8 for Rm and Re), and

significantly less plastic (U-test, P-value = 0.01, although

the distributions are not normal). This could in princi-

ple indicate that the higher conservation of tRNAs is a

consequence of low structural robustness, where one

mutation would have a more severe effect than over a

given sncRNA. This comparison points out differences

in robustness of two RNA functional groups. However,

the function of an RNA molecule is usually associated

to the expression of one or various proteins. In particu-

lar, Hfq is an RNA chaperone that binds to sncRNAs

for stabilization and assisting the interaction with the

target mRNA [40]. We also know that tRNAs present

great stability because they are recognized by endogen-

ous enzymes that prevent degradation by nucleases,

which allow tRNAs to accumulate in high concentra-

tions within the cell [41]. Hence, it would be indebted

to account for those endogenous enzymes to further

link RNA robustness and functionality, for example by

looking at mutations in the RNA sequence falling down

in the protein recognition site.

Limitations and further approaches

Of course, the use of the secondary structure as a fitness

magnitude is a simplification. Future work could aim to

determine the robustness to changes in gene expression

by accounting for the interactions between sncRNAs

and mRNAs [42], and also to assess the optimality of

the natural riboregulators exploiting computational

design methods [43]. Furthermore, the use of secondary

structures to evaluate plasticity and robustness results in

a limited framework. Certainly, a more accurate model,

although at a high computational cost, would be the

three-dimensional structure of the molecule, as we

know that different types of interactions (not only

Watson-Crick) exist [44]. In that way, packages such as

iFoldRNA [45] could be exploited to carry out such

robustness analyses.

Another important aspect corresponds to the uncer-

tainty coming from transcription termination (a sncRNA

also encodes a transcription terminator, usually the last

hairpin of the structure is followed by a poly(U) tail).

This process of transcription termination produces a

population of sncRNAs with different lengths. The extra

nucleotides in the transcript due to an inefficient termi-

nation (or the lack of nucleotides due to a premature

termination) may influence the folding of the global

structure [7]. Therefore, we could analyze the robust-

ness of bacterial sncRNAs to this consequence, gaining

accuracy with predictors of transcription termination

[46].

In addition to compare natural RNAs against struc-

tural analogs, we could generate random sequences by

adapting the nucleotide composition of the pool [47,48].

We could also use structural variables to complement

sequence alignments in the detection of functional

RNAs [48]. On the other hand, randomly generated

sequences of sncRNAs could be a non-appropriate null

model, because the evolution of natural sequences

usually comes from shorter sequence distances [49]. To

overcome this issue, we can analyze sncRNAs among

different bacterial organisms. Although an sncRNA
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could not be significantly robust with respect to artificial

sequences, it could be so with respect to analogs from

other organisms (e.g., Ffs from B. aphidicola was signifi-

cantly less robust than its analogs from free-living bac-

teria). This comparison indeed accounts for the short

evolutionary distance and phylogenetic dependence.

Conclusions

In this work, we used a computational approach to dis-

sect the structural robustness landscape of the sncRNAs

encoded in the genome of the bacterium E. coli. We

identified that natural sncRNAs are not significantly

robust to both mutational and environmental perturba-

tions when compared against artificial, unbiased

sequences. We also showed the dependence of the

robustness analyses on different sets of artificial

sequences. However, using the appropriate null model,

we found a significant enrichment of plasticity in natural

sequences. In contrast, previous studies claimed for sig-

nificant robustness of natural pre-miRNAs [10-12], but

this could reflect a caveat of the reference set of artifi-

cial sequences. By further applying our methodology to

pre-miRNAs of C. elegans, we found that they are not

so robust as claimed before but are significantly plastic.

This is in tune with the results here presented for bac-

terial sncRNAs. Indeed, both bacterial sncRNAs and

nematode pre-miRNAs appear as significantly more

plastic on average, a trait that could promote evolvabil-

ity [8]. This enhances the idea that evolvability, or the

ability of finding beneficial or innovative mutations,

could be a selected trait in bacterial sncRNAs.

In addition, our results can strengthen the understand-

ing of the evolution of robustness and plasticity, concepts

that have fueled enormous interest in the latest literature

owing to their direct link with the promotion of adaptive

evolution [20]. On the one hand, more functional (com-

plex) structures would permit a larger number of RNA-

RNA interactions and we have shown these structures

display higher robustness levels. On the other hand, plas-

ticity would promote evolvability and we have shown it is

negatively correlated with robustness. The observation

that plasticity positively correlates with epistasis (on aver-

age, significantly antagonistic in bacterial sncRNAs) sup-

ports the positive relationship between plasticity and

evolvability, since antagonistic epistasis would promote

evolvability [30]. This reflects a given modulator effect of

plasticity on both robustness and evolvability. All in all,

our study provides a quantitative, deep characterization

of the complex map linking robustness, functionality and

evolvability in bacterial sncRNAs.

Methods

For a given sncRNA sequence (of length L), there is a

thermodynamic ensemble (Ω) that contains the different

suboptimal structures, each with a given free energy (Gi)

[50]. Thus, the partition function reads

Z =
∑
i∈�

exp(−Gi/kT) , and the free energy of the ensem-

ble is G = -kT ln(Z). Then, the probability that the

sncRNA folds into the structure i is given by

�i =
exp(−Gi/kT)

Z
. We assumed T = 37°C, then kT =

0.616 Kcal/mol. In this work, instead of comparing the

MFE structures to analyze two different sequences, we

compared the two ensembles of structures correspond-

ing to the sequences. We introduced the base-pair dis-

tance between two structures (dBP), which is more

accurate than the Hamming distance, to evaluate the

difference between two structures [26]. The base-pair

distance (dBP) between the different structures of Ω (Si
denotes structure i), referred as intrinsic distance, is

given by d0 =
∑
i∈�

∑
j∈�

dBP(Si, Sj)�i�j (doubly probabilisti-

cally averaged). This magnitude accounts for the struc-

tural variability within Ω of a given sequence, and then

allows defining plasticity (P). Lower values of d0 indicate

that Ω is dominated by the MFE structure, while higher

values correspond to ensembles with more suboptimal

structures within a given energy gap. More plastic is a

sequence when it presents more structural fluctuations

at the equilibrium. Therefore, we defined plasticity as

P =
2d0

L
. This magnitude can then be used to distin-

guish very stable RNAs.

To compute Rm we need to compare different mutant

sequences. The average distance between structural

ensembles after one single point mutation (d1) follows

d1 =
∑
i∈�

∑
j∈�1

dBP(Si, Sj)�i�j − d0 (where Ω1 is the

ensemble of mutants and Πj is calculated using the par-

tition function of Ω1, denoted by Z1). Since d1 only

accounts for one mutant, we need to average several cal-

culations. Here 〈•〉 indicates average for perturbations

and ∆• standard deviation. Hence, 〈d1〉 is the average

structural distance after 1 single point mutation (L cal-

culations). Then, we defined mutational robustness as

Rm = 1 −
2 〈d1〉

L
. As in the definition of P, we rescaled

by L/2 to have an absolute value, since 〈di〉 scales with L

and because the number of base-pairs of a structure is

bounded by L/2 (i.e., dBP between certain structure and

the unfolded state is bounded by L/2). Certainly, the

lower the distance, closer to 1 (maximum) should be

the robustness. Here we considered that robustness fol-

lows a linear trend with the relative structural distance,

although quadratic expressions could also be employed

[13]. Analogously, we calculated the distance between

structural ensembles after 2 single point mutations (d2),
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and the distance between ensembles after one environ-

mental perturbation (de), which was simulated as a ran-

dom variation over the value of all the energetic

parameters that define the model for base-pair interac-

tions. For that, all parameters determining the energies

for base pairing and stacking are perturbed simulta-

neously [22]. More in detail, to perform environmental

perturbations, we took variations up to 20% of the nom-

inal values following normal random distributions, i.e.,

being b0 the nominal value of an energetic parameter,

the perturbed value reads b = (1+0.2ξ)b0, where ξ ~

Ν(0,1). Hence, 〈d2〉 is the average structural distance

after 2 single point mutations (10 L calculations), and

〈de〉 is the average structural distance after an environ-

mental perturbation (1,000 calculations). Then, we

defined environmental robustness as Re = 1 −
2 〈de〉

L
.

We further defined epistasis as E = 1 −
〈d2〉

2 〈d1〉
, which

measures the interference between mutations. E > 0

means antagonistic epistasis (i.e., 〈d2〉 < 2〈d1〉, resulting

in compensatory effects), while E < 0 synergistic epista-

sis (i.e., 〈d2〉 > 2〈d1〉, resulting in enhancement effects)

[15].

In addition, for each sncRNA we computed its degree

of functionality (V), given by V =
∑

i∈�

Vi�i (probabilisti-

cally averaged), where Vi is the number of times that a

motif involving consecutively three free nucleotides and

three bound nucleotides (in the 5’ sense or in the 3’)

appears in the structure i of the ensemble. Two overlap-

ping motifs were counted as a single event. While Vi is

a magnitude that corresponds to one structure, V corre-

sponds to a sequence. We call this magnitude function-

ality because it quantifies the number of different

mechanisms for potential interactions with further RNA

molecules [2,42]. In other words, the degree of function-

ality accounts for the number of regions that may pro-

vide accessibility for RNA-RNA interactions. Moreover,

Vi is roughly proportional to the number of hairpins of

the structure, and that metric of functionality also

accounts for the complexity of the molecule.

Structural robustness was tested for significance by

comparing it to a distribution of robustness values gen-

erated from a large set of artificially originated

sequences. Artificial sequences shared the property of

yielding the same MFE structures as the real sequences.

For each sncRNA, we generated 69 random sequences,

resulting in a population of 5,451 elements. Results were

primary maintained when using smaller random popula-

tions. We constructed three different random samples.

Sample I was obtained by iteratively solving the corre-

sponding inverse folding problems using different initial

sequences [10] with Vienna RNA package (default ener-

getic parameters, dangles = 2, MFE objective) [23,51].

Notably, this allows sharing the MFE structure, but the

thermodynamic ensembles may differ. Subsequently,

sample II was obtained by combining inverse folding

and neutral evolution, introducing mutations that do

not change the MFE structure [12], thereby minimizing

the bias introduced by the optimization method itself.

For that, we performed L mutations. This process,

nevertheless still produces biased sequences because

mutations would be accumulated in regions with

unpaired nucleotides (e.g., loops or tails). By definition,

mutations affecting paired nucleotides are not neutral,

with the exception of G-U/G-C paired regions. To

counterbalance this bias, we constructed a sample III by

which sequences were subjected to a neutral evolution

process accounting for potential compensatory muta-

tions (also L mutations). This process was based, in the

case of paired nucleotides, on mutating the complemen-

tary nucleotides as well. Following this procedure, the

simulated neutral evolution process accounts for both

neutral single-point mutations and neutral base-pair

mutations. This allowed enlarging considerably the

sequence space and avoid more efficiently the bias pro-

duced by inverse folding methods.

Additional material

Additional file 1: Figure S1 Histograms of the structural properties

for the bacterial sncRNAs.

Additional file 2: Figure S2 Plasticity modulates variability in

robustness. Scatter plots between the intrinsic distance (d0) and the
standard deviations of the distances between structures after one (∆d1)
or two mutations (∆d2) or environmental changes (∆de) for the bacterial
sncRNAs.

Additional file 3: Figure S3 Dependence of evolvability on

structural properties. Relationship scheme between plasticity (P),
epistasis (E), mutational robustness (Rm), and evolvability for bacterial
sncRNAs.

Additional file 4: Figure S4. Average effect of the location (relative
distance) of mutations on epistasis using a large set of artificial sncRNAs.

Additional file 5: Figure S5 Robustness and neutral evolution.
Computation of mutational and environmental robustness (Rm and Re)
during a neutral evolution (acceptance of mutations that do not change
the structure) of a MicA-like sncRNA. One iteration corresponds to one
mutation.

Additional file 6: Figure S6 Mutational versus environmental

robustness. Scatter plot between mutational (Rm) and environmental (Re)
robustness for the bacterial sncRNAs, showing the gene name of the
three frontier elements (genes rydC, C0664 and ssrA).

Additional file 7: Figure S7 Correlation between mutational and

environmental robustness. Scatter plot between the z-scores for
environmental and mutational robustness (Re and Rm), relative to sample
III.

Additional file 8: Figure S8 Effect of environmental stability on

robustness. (a) Mutational and (b) environmental robustness (Rm and Re)
of gene ffs for different bacteria (Buchnera aphidicola, Mycoplasma

genitalium, Vibrio fischeri, Escherichia coli, Salmonella enterica, Citrobacter
koseri, Serratia proteamaculans, and Pseudomonas putida). * denotes

Rodrigo and Fares BMC Evolutionary Biology 2012, 12:52

http://www.biomedcentral.com/1471-2148/12/52

Page 10 of 12

http://www.biomedcentral.com/content/supplementary/1471-2148-12-52-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-52-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-52-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-52-S4.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-52-S5.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-52-S6.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-52-S7.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-52-S8.PDF


statistical significance in a one-tailed z-test with (a) P-value = 0.059 and
(b) P-value = 0.041. When including into the analysis 15 more strains of
E. coli with different ffs sequences, we obtained (a) P-value = 0.005 and
(b) P-value = 0.017.

Additional file 9: Figure S9 Length correlates with stability and

functionality. Scatter plots between length (L) and free energy of the
ensemble (G) and degree of functionality (V) for the bacterial sncRNAs (G
in Kcal/mol).

Additional file 10: Figure S10 Plasticity does not correlate with

functionality. Scatter plot between degree of functionality (V) and
plasticity (P) for the bacterial sncRNAs.

Additional file 11: Table S1 Sequences for the small non-coding

RNAs (sncRNAs) obtained from the genome of the bacterium

Escherichia coli K12 MG1655.

Additional file 12: Table S2 Structural properties for the bacterial

sncRNAs. These are length (L), free energy of the thermodynamic
ensemble (G), degree of functionality (V), plasticity (P), mutational
robustness (Rm), epistasis (E), and environmental robustness (Re).

Additional file 13: Table S3 Statistical significance analysis results.
Z-scores for plasticity (P), mutational robustness (Rm), environmental
robustness (Re), and epistasis (E), for each sncRNA and relative to sample
III.

Additional file 14: Table S4 Effect of random sample of sequences

on robustness. Sample I accounts for sequences obtained from inverse
folding routines. Sequences of sample II were subsequently randomized
by introducing neutral mutations (which not change the structure).
Sequences of sample III were randomized by introducing neutral
mutations and neutral pairs of mutations and compensatory mutations
(for nucleotides in a stem). Using z-scores, we show the percentage of
sncRNAs that are robust (z > 0) and significantly robust (zc = 1.64, P-
value = 0.05).
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