
Describing Use-Case Relationships

with Sequence Diagrams

JESÚS M. ALMENDROS-JIMÉNEZ* AND LUIS IRIBARNE

Departamento de Lenguajes y Computación, Information Systems Group, University of Almeria,

04120 Almeria, Spain

*Corresponding author: jalmen@ual.es

One of the key tools of the unified modelling language for behaviour modelling is the use-case

model. The behaviour of a use case can be described by means of interaction diagrams (sequence

and collaboration diagrams), activity charts and state diagrams or by pre-conditions and post-

conditions, as well as natural language text, where appropriate. This article explains a technique

to describe use cases by means of sequence diagrams. It compares sequence diagrams in order to

define sequence-diagram relationships for identifying and defining use-case relationships. This

article uses an automatic teller machine system case study to illustrate our proposal.

Keywords: UML, uses cases, activity diagrams, software modeling

Received 16 December 2005; revised 24 July 2006

1. INTRODUCTION

The unified modelling language (UML) [1] provides system

architects working on analysis and design with one consistent

language for specifying, visualizing, constructing and docu-

menting the artefacts of software systems, as well as for

business modelling.

In UML, one of the key tools for behaviour modelling is the

use-case model, caused by OOSE [2]. Use cases are a way of

specifying required usages of a system. Typically, they are

used to capture the requirements of a system, that is, what a

system is supposed to do. The key concepts associated with

the use-case model are actors and use cases. The users and

any other systems that may interact with the system are rep-

resented as actors. Actors always model entities that are

outside the system. The required behaviour of the system is

specified by one or more use cases, which are defined accord-

ing to the actors’ needs. Each use case specifies some beha-

viour, possibly including variants, which the system can

perform in collaboration with one or more actors.

Use cases define the offered behaviour of the system

without reference to its internal structure. These behaviours,

involving interactions between the actor and the system,

may result due to the changes of the state of the system

and communications with their environment. A use case

can include possible variations of its basic behaviour,

including exceptional behaviour and error handling. Each

use case specifies a unit of useful functionality that the

system provides its users, i.e. a specific way of interacting

with the system.

The behaviour of a use case can be described by means of

interaction diagrams (sequence and collaboration diagrams),

activity charts and state diagrams or by pre-conditions and

post-conditions, as well as natural language text, where appro-

priate. Which of these techniques to use will depend on the

nature of the use-case behaviour as well as the intended reader.

From a pragmatic point of view, use cases can be used for

the specification of the (external) requirements of an entity

and for the specification of the functionality offered by an

(already realized) entity. Moreover, the use cases also

indirectly state the requirements that the specified entity

poses to its users, i.e. how they should interact so that the

entity can perform its services.

One actor can communicate with several use cases of an

entity, i.e. the actor may request several services of the

entity, or one use case may communicate with one or several

actors when providing its service. If subsystems are used to

model the system’s containment hierarchy, the system can be

specified with use cases at all levels, and use cases can be

used to specify subsystems and classes. In addition, actors

representing potential users describe the particular system

view of each user and inheritance between actors is used to

specify a common view of the developed system.

One of the most controversial elements of the use-case

model along the UML development has been the use-case

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

The Author 2006. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access published on September 20, 2006 doi:10.1093/comjnl/bxl053

relationships called inclusion, generalization and extension,

introduced by Jacobson [3]. These relations have some

unstable semantics along the UML development. They have

received several interpretations [3–18], reflecting a great

deal of confusion among developers.

This article explains a technique to describe use cases by

means of sequence diagrams. It compares sequence diagrams

in order to define sequence-diagram relationships for identify-

ing and defining use-case relationships.

Sequence-diagram relationships are defined according to

the most accepted semantics for use-case relationships. In

fact, we believe that our proposal could be useful for a

better understanding of the cited semantics. We believe that

one of the contributions of our work is to provide a semantics

of use-case relationships by means of sequence diagrams. So

far, most of the works concerning use cases and their relation-

ships have used the UML metamodel or pseudocode to

describe the semantics. However, for practical reasons, and

in order to fulfil the UML philosophy, use-case modelling

should be integrated into other UML models to support the

detection of mistakes and missing details in use cases and to

facilitate the proper formulation of their relationships. In

addition, we also present a discussion on how the development

process and, in general, the developer decisions affect both

use-case modelling and sequence-diagram modelling, in par-

ticular, in the identification of use-case relationships.

Our proposal involves that each use case is described by

means of a sequence diagram. However, it is well known

that use cases can be specified or refined in several ways:

with some other UML models, pre–post conditions or

natural language. In addition, some use cases may not rep-

resent sequences of interaction steps in the developed

system but represent human tasks, services required to existent

software and so on. Therefore, our proposal could seem to

require a sort of tight coupling between use-cases modelling

and sequence-diagram modelling. However, this is not our

aim, instead we describe a specific method for specifying

use cases by means of sequence diagrams which can be

adopted in some other parts of the developed system. In

summary, the developer is still free to use the use-case

model for the other cited purposes.

However, the requirement analysis technique presented in

our proposal may still be used for other parts of the system.

In our opinion, similar relationships could be defined for

other notations such as activity diagrams and statecharts. As

future work, we might consider the study of such relationships

for other notations.

This work is organized as follows. In Section 2, we present

the most accepted semantics of use cases and their relations.

Section 3 describes our technique: how to describe use cases

by means of sequence diagrams and how to make the corre-

spondence between the inclusion, extension and generalization

relationships and the sequence-diagram relationships. Finally,

Section 4 discusses some conclusions and future work.

2. USE CASES AND USE-CASE RELATIONSHIPS

In spite of many attempts to clarify the use-case relationships,

there are many objections against how the UML development

has defined the semantics of use cases and their relationships.

Some authors [3, 13] and the UML reference manual [1]

agree that a use case is a high-level description of what the

system is supposed to do, whose aim is to capture the

system requirements. However, use cases have to be specified,

that is, many particular cases of a use case can be described. In

other words, if a use case represents a user interaction, many

variants of this user interaction can be described.

The variants of a use case can correspond to alternative

courses or fragments of behaviour [7, 8, 14] inserted in the

main behaviour, describing additional behaviour for particu-

lar cases or exception handling. In this respect, there are two

kinds of use cases [3, 6–10]. The first one consists of the

so-called abstract use cases, which are fragments of beha-

viour of another use case (called base use case) and are sep-

arately specified. Their aim is to factor out common flows of

use cases [3], but they cannot be instantiated, that is, they do

not completely do an operation, and they cannot be run indi-

vidually [8]. It is supposed that these abstract use cases are

inserted in the running of the base use case at a certain

position.

In addition, some authors [3, 13] agree that an ‘include’

relationship is not functional decomposition, i.e. inclusion

should not be used for decomposing the behaviour of a use

case in steps. Some other authors [3, 8, 13] claim that inclusion

corresponds to fragments of interaction steps which are

inserted in the base use case. Therefore, included use cases

are abstract use cases, whereas base use cases are concrete

use cases. In other words, whenever a use case includes

another use case, the included use case is inserted into the

main use case description. The second kind of use cases is

the concrete use cases, which has a complete behaviour and

is separately runnable.

In addition, some authors [7, 8] claim that the fragment of

interaction, represented by an included use case, should be

encapsulated and that inclusion does not have interleaving

semantics. Interleaving means the access from the base use

case to the abstract use-case space (attributes, methods and

so on) and/or from the abstract to the base use case.

However, throughout the UML development, the generaliz-

ation relationship has been confused with the ‘extend’

relationship. However, most experts on UML [3, 5] agree

that generalization is a way of describing particular cases of

use cases. In other words, generalization/specialization is

related to the concept of substitution or replacement of a use

case by another with at least the same behaviour.

According to this, some authors [6–8] have found out that

the UML semantics (expressed in the UML metamodel) is

confusing regarding the ‘extend’ relationships. It is clarified

in Metz et al. [14, 15], assuming that ‘extend’ should be

USE-CASE RELATIONSHIPS WITH SEQUENCE DIAGRAMS 117

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

used for expressing alternative courses: variants of the same

behaviour, exception handling and so on.

With regard to the difference between ‘inclusion’ and

‘extension’ relationships, some authors [6] stated that exten-

sion is conditioned to the occurrence of a boolean condition,

something like ‘if this condition occurs then’, but inclusion

is not conditioned, that is, an inclusion is something like ‘if

true then’. But, the problem is the direction of the arrow repre-

senting both inclusion and extension, a problem found by

some authors [6–8].

The arrow of inclusion is supposed to go from the base use

case to the included use case. But in the extension relation-

ships, the arrow goes in the opposite direction. It can be

explained as follows: an included use case is a piece of beha-

viour of the base use case, and therefore, the base use case

depends on the included use case. However, in the extension

relationships, the base use case does not need the extension,

that is, it is completely defined and the extension adds new

behaviour in some specific point; in fact, the extension

needs the base use case for it to make sense and therefore it

depends on the base use case.

Finally, some authors [14, 15] have deeply studied the

extension points of extended use cases. Moreover, they have

introduced a new concept called rejoint point, which defines

the point on which an alternative course can rejoin to the

base use case.

This interpretation can be considered as the most accepted

one for use cases and use-case relationships. The proposed

technique will use these intended properties and will clarify

some of these concepts by means of sequence diagrams.

Sequence diagrams describe use cases, and use-case relation-

ships are extracted from them.

3. DESCRIBING USE CASES BY MEANS OF

SEQUENCE DIAGRAMS

This section explains a technique to describe use cases by

means of sequence diagrams. In fact, we will compare

sequence diagrams in order to define sequence-diagram

relationships, which will be used for identifying and defining

use-case relationships.

Regarding the model-driven development, we also show a

discussion on how the development process and, in general,

the developer decisions affect both use-case modelling and

sequence-diagram modelling, in particular, the identification

of use-case relationships.

Our technique can be summarized as follows.

(i) A use-case model is built and the actors are connected

to use cases. Each use case represents a task in which

the actor participates.

(ii) For each use case, a sequence diagram is built. Each

sequence diagram specifies the main interaction

steps to be achieved for each task (i.e. use case).

Some of the interaction steps in a sequence diagram

can be deployed in another sequence diagram (or

subdiagram).

(iii) From the sequence diagrams, use-case relationships

are identified. Sequence subdiagrams are identified

with new use cases. Then, the inclusion relationships

are identified between the use cases specified and

the new use cases.

(iv) The sequence diagrams are refined: some interaction

steps are added as extensions to the original sequence

diagrams. These extensions are represented as new

sequence (sub)diagrams. These new subdiagrams are

identified with new use cases. Sometimes, new

abstract use cases can be defined representing

generic sequence diagrams, and particular cases of

abstract use cases are identified in which interaction

steps are added or rewritten.

(v) From the refined sequence diagrams, new use-case

relationships are discovered: new generalization/
specialization and extension relationships. Generali-

zation/specialization relationships between abstract

and particular use cases are identified. Extension

relationships are identified between old use cases

and their extending use cases.

(vi) Some of the previous steps might be applied incre-

mentally in the development process.

Next sections take as a running example the description of

an automatic teller machine (ATM) system. During the expla-

nation, we will focus on some specific parts of the ATM

system. A complete version of the modelling technique

applied to this ATM system is available at http://indalog.ual.

es/mdd.

3.1. Use cases

We assume that a use-case diagram is a high-level description

of actor interactions with the system to be developed. Figure 1

shows an initial description of the use-cases diagram of the

ATM system, in which we have considered three actors and

four use cases.

The actors are: (a) the Manager who achieves the Startup

and Shutdown of the ATM; (b) the Client who is registered

FIGURE 1. Main use-case diagram of the ATM system.

118 J. M. ALMENDROS-JIMÉNEZ AND L. IRIBARNE

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

http://indalog.ual

(i.e. Register use case) in the ATM and can Make Trans-

actions once registered; (c) finally, the Bank, an external

system that interacts with the ATM in order to carry out the

bank operations.

Now, in our technique, each use case is described by means

of a unique sequence of behaviour in which the developers can

decide whether they includes all the steps and variants. That is,

pieces of behaviour could separately be described by means of

another sequence diagram. Here, a sequence should be

understood as a juxtaposition of steps which can be con-

ditioned, that is, the sequence can include steps such as ‘if

something happens then’ or even repetition structures such

as ‘for each element do’.

In UML 2.0, there exist constructors to specify these kinds

of ‘programming flow structures’ such as opt and loop.

Given that a use case has a unique specification, specifications

(i.e. sequence diagrams) are identified with use cases. In other

words, use cases are specified by several scenarios described

FIGURE 2. A sequence diagram of the Register use case.

USE-CASE RELATIONSHIPS WITH SEQUENCE DIAGRAMS 119

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

in a single diagram. Included use cases, use-case extensions

and generalizations can thus uniformly be handled. This will

be explained later on.

In Figure 2, the Register use case is specified by means of

a sequence diagram in which a successful behaviour is

described, that is, both the card number and the pin are

valid. It is supposed that the developer has decided to

include both validations in order to describe the basic beha-

viour. However, whenever the card is not valid or the pin is

incorrect, the alternative course should be separately described

from other use cases, in particular, they will correspond to

extensions of this base use case.

Alternatively, the developer could include all the alternative

courses in a unique sequence diagram handling the invalid

card and invalid pin cases inside the opt constructor. This

depends on the number of alternative branches and also

whether the system designer is still in a step of development,

which will be refined later.

3.2. Associations between use cases and actors

Now, an association between a use case and an actor means

that an actor participates in the behaviour described by the

use case. This participation involves interaction: an observable

result by the actor. In addition, if a use case includes another

one, the actor necessarily interacts with the included use

case. The same happens with use-case extensions and

use-case specializations.

In Figure 3, the Client actor interacts with the Make

Transactions use case. As we can see, this includes two

other use cases, Withdraw Cash and Recharge Phone-

Card. Although there is no association directly connecting

the actors (Client and Bank) and the included use cases,

the actors can observe and therefore interact with the

system to withdraw cash or recharge a phone card.

However, the Mobile actor interacts only in the Recharge

PhoneCard use case, given that it is directly connected to

this use case.

One of the reasons why the actor interaction with the use

case is required is to prevent the inclusion from corresponding

to functional decomposition referring to internal processing.

The use-case model shows an external view of the system

[3], and therefore, each use case should interact with the

actors representing the system boundaries.

3.3. Included use cases

An included use case specifies a fragment of the base use-case

behaviour. In this fragment, the actor connected to the base use

case participates. The included use case is inserted in the spe-

cification of the base use-case behaviour. In fact, the name of

the included use case is inserted as one of the sequence steps of

the base.

The included use case can be either mandatory or optional,

occurring in sentences such as ‘if this condition occurs then

,name of use case.’ or ‘for each element do ,name of

the use case.’. The included use case is encapsulated and

there is no interleaving with the base use case.

The base use case cannot access the included use case,

except for the retrieval of the observable result by the actor.

Therefore, included use cases are encapsulated by means of

‘methods’ which can specify the data input as parameters

and the data output as a return parameter. In addition, the

actor connected to the base use case also interacts with the

included use-case specification.

Figure 4 shows the behaviour description of the Make

Transactions use case by means of a sequence diagram.

The Withdraw Cash and Recharge PhoneCard use cases

have been introduced in the base sequence diagram (the

base use case) using the UML 2.0 notation. Both the

inclusions are conditioned if in, the first case, the user

option is ‘withdraw’, and in the second case, the user option

is ‘recharge’. Let us remark that included use cases can be

out of ‘opt’ boxes when the running of included use cases is

mandatory.

Included use cases are used for the following two main

reasons.

(i) The base use case is too big, and it is specified by

means of fragments of specification, that is, the beha-

viour is decomposed into several steps. However, the

specification of the base use case describes how these

steps are combined in order to obtain a unique

behaviour.

(ii) A use case was specified in a previous step of the

development process and now it is reused. The

reuse of specifications is a good practice in software

FIGURE 3. Deployment of the interactions for the Client actor

into the ATM system.

120 J. M. ALMENDROS-JIMÉNEZ AND L. IRIBARNE

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

development. The developer can reuse the pre-

viously specified processes in a new version of the

system or a new system. In fact, the developer

might work with a library of use-case specifications

for reusing.

The inclusion is not used for functional decomposition

because of the following.

(i) The actors always interact with use cases, and there-

fore, internal processing is removed from the

use-case diagram.

(ii) The included use case is supposed to describe a frag-

ment of behaviour extracted from the base use case.

However, an extensive extraction causes too big

use-case diagrams with many included use cases of

small size (i.e. use cases with few steps of execution).

In addition, the use-case model is supposed to be used

in the early steps of system analysis, where little

information about system components is available,

and therefore decomposition is useless.

In summary, the use of inclusion for functional decompo-

sition is not practical, and another kind of diagrams (in our

case, sequence diagrams) will be used instead. Finally, given

that the base use case depends on the included use case to

be runnable, the arrow will go from the base use case up to

the included use case.

FIGURE 4. Sequence diagram of Make Transactions.

USE-CASE RELATIONSHIPS WITH SEQUENCE DIAGRAMS 121

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

3.4. Generalization

A specialization of a use case is a use case whose sequence of

steps have been specialized. There are two cases in our

technique.

(i) The specialized use case replaces some steps by

specialized steps.

(ii) The specialized use case introduces new steps of

execution but without interleaving.

For instance, in Figure 3, all ATM transactions that a client

can make have been generalized. The Transaction use case

is a general or abstract use case and each specific type of trans-

action is a particular case. The behaviour of the abstract use

case (Transaction) is described by means of a general

sequence diagram (Figure 5). The specialized Withdraw

Cash use case (Figure 6) replaces some steps of the Trans-

action sequence diagram and modifies the general name of

the methods. For instance, the operation() method in the

FIGURE 5. A generalized sequence diagram of the Transaction use case.

122 J. M. ALMENDROS-JIMÉNEZ AND L. IRIBARNE

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

abstract sequence diagram has been rewritten by the with-

draw() method in the specialized sequence. Methods 2, 7

and 8 have also been modified to implement Withdrawing

cash. Besides, method 11 has been rewritten as an optional

operation to deliver cash when the transaction has been

successful.

However, Figure 7 shows the specialized sequence to

recharge a phone card. The specialization replaces some

steps of the generalization, and it also introduces a new and

last step of execution to send an SMS to the client’s mobile

notifying the result of the recharge transaction.

The idea is that specialized use cases correspond to the

concept of inheritance of object-oriented programming. That

is, assuming that the designers have a use case previously

specified, they would like to have a new and complete use

case with some slight modifications which consist of adding

new interaction steps (conditioned or not) or modifying

some existent ones. However, interaction steps can only be

modified when they specialize the old version. In other

words, the specialized use case adds new steps and rewrites

the existing ones.

In general, methods can be replaced whenever the developer

knows they represent similar operations. Boolean conditions

can also be replaced by more restrictive ones, and finally,

new interactions can be introduced. However, in order to

avoid interleaving semantics, the introduced interactions can

FIGURE 6. A transaction specialization sequence to Withdraw Cash.

USE-CASE RELATIONSHIPS WITH SEQUENCE DIAGRAMS 123

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

only be inserted at the beginning and at the end of the original

sequence. Finally, generalization/specialization can be con-

sidered not only for ‘abstract’1 use cases (for instance,

Transaction) but also for regular use cases.

The differences regarding inclusion are clear. The inclusion

is a fragment of a use case. The specialization is a new and

complete version of a use case which is completely specified

and the similarity is annotated in the use-case diagram.

However, whenever the base use case has an included use

case and is specialized, the particular use case inherits the

included use case, except when the included use case is

rewritten. In fact, whenever the included use case is rewritten

in the specialization, a inheritance relation should be included

between the two included use cases.

3.5. Extend relationships

An extension of a use case is a use case which introduces

an alternative course not specified in the base use case.

The actor connected to the base use case participates in the

extending version.

In our technique, we can consider extensions as counter-

parts of the inclusion relationships. That is, once the included

use case has been specified separately, the name of the

FIGURE 7. A transaction specialization sequence to Recharge PhoneCard.

1Here, the term abstract has the meaning of not runnable use cases intro-

duced in UML.

124 J. M. ALMENDROS-JIMÉNEZ AND L. IRIBARNE

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

included use case is inserted in the specification of the base use

case, and then, we know where the included use case is

inserted.

However, the extension is omitted from the specification of

the base use case, and now, an alternative course is specified at

some point of the base use case (called extension point) repre-

senting the extension. In addition, a rejoint point is specified.

The reason why the developers may use inclusions and

extensions is because the sequence diagram of the base use

case is too big and they would like to specify it with several

sequence diagrams.

Thus, the developer uses the inclusion to specify alternative

courses or exception handling, except when some alternative

courses require to break the main sequence and require to

abuse of ‘optional’ branches in the sequence diagram. In the

latter case, the use of extensions seems to be more suitable,

once the alternative courses and exception handling have

separately been specified.

In addition, following Metz et al. [14, 15], in our technique,

we have considered the extension and rejoint points establish-

ing at which point the main sequence is broken and where the

extension point rejoins the main sequence. We have

FIGURE 8. A more detailed use-case description of the ATM system.

USE-CASE RELATIONSHIPS WITH SEQUENCE DIAGRAMS 125

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

distinguished four kinds of extensions, which will be dis-

cussed later.

According to the UML semantics and Jacobson [3], the

arrow goes from the extending use case up to the base use

case, because the base use case defines a complete sequence

of behaviour, but the extension cannot be runnable without

the base use case. Let us remark that this is the opposite

case of the inclusion in which the base use case contains in

its specification the included use case and therefore is not

runnable without the included use case.

Finally, there exists an additional reason for using exten-

sions. Let us suppose that we have a general use case in

which we would like to use the specialization in order to

define a new use case, but the new use case should modify

the main sequence by adding new branches. We have con-

sidered that specialization can add new interactions but

without modifying the main sequence. However, we can use

the extension over an abstract-specialized use case in which

the extension inserts the new interactions.

Let us now pay attention to Figure 8 to illustrate the extend

relationship.

Figure 8 shows a more detailed description of the use cases

of the ATM system. We have used again the UML 2.0 notation

to describe the ,,extend.. relationship between two use

cases. An extension is complemented by a UML note. The

note introduces a boolean condition and an extension point

where the fragment of behaviour extends the base use case.

The extension points are defined by means of a tuple:

,after, before.. For instance, a tuple ,4,9. means

that the extension point where the extending use case is

inserted in the base use case is after the method 4 and

rejoins in method 9.

Using tuples for extensions points, we can consider the fol-

lowing four kinds of extensions.

(i) ‘Same point’. Whenever after=before, that is, the

extension and rejoint points are the same. In other

words, the extension breaks the main sequence but it

returns to the same point. It can be considered as an

invocation.

(ii) ‘After that’. Whenever after,before, that is, the

main sequence is broken and some interactions are

removed from the main sequence. It can be considered

as a bifurcation.

(iii) ‘Before that’. Whenever after.before, that is, the

main sequence is broken and the extension returns to a

previous step in the main sequence. It can be con-

sidered as a loop.

(iv) ‘No return’. Whenever before=no return, that is,

the main sequence is broken, but the extension never

returns to the main sequence. It is used for exception

handling.

For example, the Withdraw Cash use case has an ’after

that’ extension point when the connection with the bank is

not possible and the ATM system operates with the amount

available in stock (Withdraw in stock).

The extended behaviour is described by the Withdraw in

stock sequence diagram shown in Figure 9a. As we can see

in the use-case model, the extended use case has an extension

point when the condition (status is not connected)

occurs. If it happens, the behaviour sequence of the With-

draw in stock use case, shown in Figure 9a, is run

between methods 4 and 9 in the base sequence diagram

(Figure 6).

Figure 9d and b shows two sequence examples of the

before that and no return extension points, respectively.

(i) In the first one, if the amount is out of the required

limits, then an exception, modelled by a before

that extension point occurs. A before that exten-

sion point is similar to a loop sequence.

(ii) In the second one, if the card is not valid, the ATM

definitively rejects the ATM operation and the main

sequence is broken. Thus, this is the case of a no

return extension point.

Finally, we have a case of the same point extension in

Figure 9c, when the clients request their account movements

before the new transaction is achieved.

Extensions are encapsulated, that is, the base use case

cannot access the extending use case. This does not make

sense given that the base use case does not include the exten-

sion in its specification.

3.6. Abstract and concrete use cases

Base use cases and specializations are concrete use cases.

Included use cases and extensions are abstract use cases,

except when they are connected to an actor.

For instance, in our running example, there is an included use

case which is connected to an actor. In Figure 8, the actor

Mobile is connected to the Recharge PhoneCard use case,

which is included in the Make Transactions use case. Sup-

posing that an actor is connected to the included use case, it

defines a concrete use case instead of an abstract one.

4. CONCLUSIONS AND FUTURE WORK

In this article, we have suggested a technique for describing

use cases by means of sequence diagrams, according to the

most accepted semantics of use cases and use-case relation-

ships. The use-case diagrams help the developer to identify

the requirements of the system to be developed. Sequence dia-

grams allow the developer to discover behavioural details of

the system or to better describe the already existing ones.

In this article, we have shown that a direct correspondence

between the requirements identified in the use cases with UML

sequence diagrams is feasible.

126 J. M. ALMENDROS-JIMÉNEZ AND L. IRIBARNE

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

As a future work, we would firstly like to provide a frame-

work for specifying pattern design, once generalization/
specialization can be combined with inclusions and exten-

sions in order to define generic patterns of components,

tasks and so on. Secondly, we could study the same kind of

relationships in other notations such as activity diagrams

and statecharts. Thirdly, we plan to extend our proposal to

deal with automated code generation and component-based

development, by parsing and translating use cases, relation-

ships and specifications into a class diagram and code.

Finally, we would like to incorporate all these ideas into a

CASE tool and integrate our technique into the whole devel-

opment process, especially into our previous works about use

cases and activity diagrams [18] and use cases and graphical

user interfaces design [17].

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees for

their insightful comments and suggestions, which greatly

helped them improve the contents and readability of the

article. This work has been partially supported by the EU

(FEDER) and the Spanish MEC under grants

TIN2005-09207-C03-02 and TIN2006- 06698.

REFERENCES

[1] UML 2. (2005) Unified modeling language specification. Object

Management Group, Needham, USA.

[2] Jacobson, I., Jonsson, P., Christerson, M. and Övergaard, G.

(1992) Object-Oriented Software Engineering: A Use Case

Driven Approach. Addison-Wesley, MA, USA.

FIGURE 9. The four kinds of use-case extensions.

USE-CASE RELATIONSHIPS WITH SEQUENCE DIAGRAMS 127

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

[3] Jacobson, I. (2004) Use cases—yesterday, today, and tomorrow.

Software Syst. Model., 3, 210–220.

[4] Simons, A. and Graham, I. (1999) 30 things that go wrong in

object modelling with UML 1.3. In Kilov, H., Rumpe, B.

and Simmonds, I. (eds), Behavioral Specifications of

Businesses and Systems. Kluwer Academic Publishers,

Norwell, MA, USA.

[5] Övergaard, G. and Palmkvist, K. (1999) A formal approach to

use cases and their relationships. Proc. UML’98: Beyond the

Notation, Mulhouse, France, June 3–4, pp. 406–418. LNCS

1618, Springer-Verlag, London, UK.

[6] Génova, G., Llorens, J. and Quintana, V. (2002) Digging into

use case relationships. Proc. UML’2002, Dresden, Germany,

September 30–October 4, pp. 115–127. LNCS 2460,

Springer-Verlag, London, UK.

[7] Simons, A. J. H. (1999) Use cases considered harmful. Proc.

TOOLS/Europe’99, Nancy, France, June 7–10, pp. 194–203.

IEEE Computer Society, Washington, DC, USA.

[8] Metz, P. (2001) Against use case interleaving. Proc. UML’2001,

Toronto, Ontario, Canada, October 1–5, pp. 472–486. LNCS

2185, Springer-Verlag, London, UK.

[9] Isoda, S. (2005) On UML2.0’s abandonment of the

actors-call-use-cases conjecture. J. Object Technol., 4, 69–80.

[10] Isoda, S. (2003) A critique of UML’s definition of the use-case

class. Proc. UML 2003, San Francisco, CA, USA, October 20–

24, pp. 280–294. LNCS 2863, Springer-Verlag, London, UK.

[11] Williams, C., Kaplan, M., Klinger, T. and Paradkar, A. (2005)

Toward engineered, useful use cases. J. Object Technol., 4,

45–57.

[12] Génova, G. and Llorens, J. (2005) The emperor’s new use case.

J. Object Technol., 4, 81–94.

[13] Genilloud, G. and Frank, W.F. (2005) Use case concepts using a

clear, consistent, concise ontology. J. Object Technol., 4, 95–

107.

[14] Metz, P., O’Brien, J. and Weber, W. (2003) Specifying use case

interaction: types of alternative courses. J. Object Technol., 2,

111–131.

[15] Metz, P., O’Brien, J. and Weber, W. (2004) Specifying use case

interaction: clarifying extension points and rejoin points.

J. Object Technol., 3, 87–102.

[16] Wegmann, A. and Genilloud, G. (2000) The role of ‘Roles’

in use case diagrams. Proc. UML’2000, York, UK,

October 2–6, pp. 210–224. LNCS 1939, Springer-Verlag,

London, UK.

[17] Almendros-Jiménez, J.M. and Iribarne, L. (2005) Designing

GUI components for UML use cases. Proc. ECBS’05,

Greenbelt, Maryland, USA, April 4–5, pp. 210–217. IEEE

Computer Society Press, Washington, DC, USA.

[18] Almendros-Jiménez, J.M. and Iribarne, L. (2005) Describing

use cases with activity diagrams. Proc. MIS’04, Salzburg,

Austria, September 15–18, pp. 141–159. LNCS 3511,

Springer-Verlag, London, UK.

128 J. M. ALMENDROS-JIMÉNEZ AND L. IRIBARNE

THE COMPUTER JOURNAL Vol. 50 No. 1, 2007

