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Abstract

Motivated by the problem of learning to detect and recogmiagcts
with minimal supervision, we develop a hierarchical prdbstiic model

for the spatial structure of visual scenes. In contrast witist existing
models, our approach explicitly captures uncertainty mribmberof

object instances depicted in a given image. Our scene meteakied on
the transformed Dirichlet process (TDP), a novel extensibtine hier-

archical DP in which a set of stochastically transformedtarx com-
ponents are shared between multiple groups of data. Foahdsenes,
mixture components describe the spatial structure of /features in an
object—centered coordinate frame, while transformationslel the ob-
ject positions in a particular image. Learning and infeeeimcthe TDP,
which has many potential applications beyond computeoriss based
on an empirically effective Gibbs sampler. Applied to a detaof par-
tially labeled street scenes, we show that the TDP’s inctusif spatial
structure improves detection performance, flexibly expigi partially

labeled training images.

1 Introduction

In this paper, we develop methods for analyzing the featoogsposing avisual sceng
thereby localizing and categorizing the objects in an im&de would like to design learn-
ing algorithms that exploit relationships among multifartially labeled object categories
during training. Working towards this goal, we propose admehical probabilistic model
for the expected spatial locations of objects, and the appea of visual features cor-
responding to each object. Given a new image, our model giesva globally coherent
explanation for the observed scene, including estimatéisedocation and category of an
a priori unknown number of objects.

This generative approach is motivated by the pragmatic farddarning algorithms which
require little manual supervision and labeling. While disinative models may produce
accurate classifiers, they typically require very largéntreg sets even for relatively sim-
ple categories [1]. In contrast, generative approachedismmover large, visually salient
categories (such as foliage and buildings [2]) without sug®n. Partial segmentations
can then be used to learn semantically interesting categ(such as cars and pedestrians)
which are less visually distinctive, or present in feweirtirsg images. Moreover, gen-
erative models provide a natural framework for learningtegtual relationships between
objects, and transferring knowledge between related, ibtindt, visual scenes.
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Figure 1: A scene with faces as described by three generative mo@elsstellation: Fixed parts
of a single face in unlocalized cluttdrDA: Bag of unlocalized face and background featuiedP:
Spatially localized clusters of background clutter, and one or more fatekis case, the sample
contains one face and two background clustexg)e: The LDA and TDP images are sampled from
models learned from training images, while the Constellation image is a lmarstracted illustration.

The principal challenge in developing hierarchical mod@scenes is specifying tractable,
scalable methods for handling uncertainty in the numbetb@ais. This issue is entirely
ignored by most existing models. We address this problenmgusirichlet processes [3], a
tool from nonparametric Bayesian analysis for learningtorex models whose number of
components is not fixed, but instead estimated from dataafticplar, we extend the re-
cently proposethierarchical Dirichlet procesgHDP) [4, 5] framework to allow more flex-
ible sharing of mixture components between images. Thdtimeguransformed Dirichlet
procesgTDP) is naturally suited to our scene understanding agfiin, as well as many
other domains where “style and content” are combined toyzredhe observed data [6].

We begin in Sec. 2 by reviewing several related generativéetsdor objects and scenes.
Sec. 3 then introduces Dirichlet processes and developeElRemodel, including MCMC

methods for learning and inference. We specialize the TDRsteal scenes in Sec. 4, and
conclude in Sec. 5 by demonstrating object recognition agdhentation in street scenes.

2 Generative Models for Objects and Scenes

Constellation model§7] describe single objects via the appearance of a fixed tyie
cally small, set of spatially constrained parts (see FigAlthough they can successfully
recognize objects in cluttered backgrounds, they do nettir provide a mechanism for
detecting multiple object instances. In addition, it seeiffgcult to generalize the fixed set
of constellation parts to problems where the number of dbjisauncertain.

Grammars and related rule—based systems, were one of the earlipgiaaghes to scene
understanding [8]. More recently, distributions over hrehical tree—structured partitions
of image pixels have been used to segment simple sceneg.[9nlAddition, animage
parsing[11] framework has been proposed which explains an imageusset of regions
generated by generic or object—specific processes. Whilertbdel allows uncertainty in
the number of regions, and hence the number of objects, tiedimensionality of the
model state space requires good, discriminatively trabwtbm—up proposal distributions
for acceptable MCMC performance. We also note that the BLa&t@guage [12] provides
a promising framework for reasoning about unknown objeds. of yet, however, the
computational tools needed to apply BLOG to large—scaldicgijpns are unavailable.

Inspired by techniques from the text analysis literatuegesal recent papers analyze scenes
using a spatially unstructureloiag of featuresextracted from local image patches (see
Fig. 1). In particularjatent Dirichlet allocation(LDA) [13] describes the features;; in
imagej using aK component mixture model with parametérs Each image reuses these
same mixture parameters in different proportiang(see the graphical model of Fig. 2).
By appropriately defining these shared mixtures, LDA may delito discover object cat-



egories from images of single objects [2], categorize mhtoenes [14], and (with a slight
extension) parse presegmented captioned images [15].

While these LDA models are sometimes effective, their neglespatial structure ignores
valuable information which is critical in challenging obfedetection tasks. We recently
proposed a hierarchical extension of LDA which learns shaeets describing the internal
structure of objects, and contextual relationships amargvk groups of objects [16]. The
transformed Dirichlet proces@ DP) addresses a key limitation of this model by allowing
uncertainty in the number and identity of the objects depidh each image. As detailed
in Sec. 4 and illustrated in Fig. 1, the TDP effectively pr®g atexturalmodel in which
locally unstructured clumps of features are given globatigpstructure by the inferred set
of objects underlying each scene.

3 Hierarchical Modeling using Dirichlet Processes

In this section, we review Dirichlet process mixture mod&sc. 3.1) and previously pro-
posed hierarchical extensions (Sec. 3.2). We then intethetransformed Dirichlet pro-
cesygTDP) (Sec. 3.3), and discuss Monte Carlo methods for lagrfiDPs (Sec. 3.4).

3.1 Dirichlet Process Mixture Models

Let # denote a parameter taking values in some sggacand H be a measure 08. A
Dirichlet process(DP), denoted byDP(~, H), is then a distribution over measures ©n
where the concentration parametecontrols the similarity of sample§ ~ DP(~, H)
to the base measuié. Samples from DPs are discrete with probability one, a ptgpe
highlighted by the followingstick—breaking constructiof]:

0o k—1
G(6) =) _ 5r3(6,6) Bi~Beta(l,y)  B=8[[0-8) @
k=1 =1
Each parameteh, ~ H is independently sampled, while the weigBts= (51, 52, . . .) use
Beta random variables to partition a unit—length “stick’pobbability mass.

In nonparametric Bayesian statistics, DPs are commonlg aseprior distributions for
mixture models with an unknown number of components [3]. E&) denote a family
of distributions parameterized W Given G ~ DP(y, H), each observation; from
an exchangeable data seis generated by first choosing a paraméter G, and then
samplingz; ~ F(6;). Computationally, this process is conveniently descriined setz of
independently sampled variables~ Mult(3) indicating the component of the mixture

G() (see eq. (1)) associated with each data pejnt F(6.,).

Integrating ovelG, the indicator variables demonstrate an important clustering property.
Letting n;, denote the number of times componépis chosen by the firgi — 1) samples,

1 _
= m Zk:nké(zi’k) + 76 (zi, k) (2
Here,k indicates a previously unused mixture componargr{ori, all unused components
are equivalent). This process is sometimes described Hpgnto a Chinese restaurant
in which the (infinite collection of) tables correspond te timixture component, and
customers to observations [4]. Customers are social, tending to sit at tables with many
other customers (observations), and each table sharegla dish (parameter).

p(zl | Zla"'azi—la’Y)

3.2 Hierarchical Dirichlet Processes

In many domains, there are several groups of data produceetlated, but distinct,
generative processes. For example, in this paper’s afiplisaeach group is an im-
age, and the data are visual features composing a scenen Gigeoups of data, let
x; = (2;1,...,2;n,;) denote the:; exchangeable data points in group

Hierarchical Dirichlet processefHDPSs) [4, 5] describe grouped data with a coupled set of
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Figure 2:Graphical representations of the LDA, HDP, and TDP models for spaninture compo-
nentsfy,, with proportionsr;, among.J groups of exchangeable data = (xz;1,. .., n,). LDA

directly assigns observations; to clusters via indicators;;. HDP and TDP models use “table” in-
dicatorst;; as an intermediary between observations and assignmgritsan infinite global mixture
with weights3. TDPs augment each tablevith a transformatiorp;, sampled from a distribution
parameterized by, . Specializing the TDP to visual scenes (right), we model the positipand
appearance;; of features using distributionsg, indexed by unobserved object categores

mixture models. To construct an HDP, a global probabilityesweeGy, ~ DP(v, H) is
first chosen to define a set of shared mixture components. Aurne@; ~ DP(«, Gy) is
then independently sampled for each group. Becélsis discrete (as in eq. (1)), groups
G; will reuse the same mixture componefitsin different proportions:

G(0) = mrd(0,6%) m; ~ DP(a, B) (3)
k=1

In this construction, shared components improve geneattaiz when learning from few
examples, while distinct mixture weights capture differenbetween groups.

The generative process underlying HDPs may be understdedhirs of an extension of the
DP analogy known as théhinese restaurant franchigd]. Each group defines a separate
restaurant in which customers (observationg)sit at tables ;;. Each table shares a single
dish (parameterd, which is ordered from a ment, shared among restaurants (groups).
Letting k;; indicate the parametéy,;, assigned to tablein group;j, we may integrate over
Go andG (asin eq. (2)) to find the conditional distributions of thesgicator variables:

p (tji ‘ tjla cee 7tji*17 a) X anté(tjiv t) + aé(tjia {) (4)
t

p(kje | ke, oo ko, Ry, oo Ko, y) o ka5(kjt, k) +70(kje, k) (5)
k
Here,my, is the number of tables previously assignedto As before, customers prefer
tablest at which many customers;, are already seated (eq. (4)), but sometimes choose a
new tablef. Each new table is assigned a disfa according to eq. (5). Popular dishes are
more likely to be ordered, but a new digh~ H may also be selected.

The HDP generative process is summarized in the graphicdehad Fig. 2. Given the
assignments; andk; for group j, observations are sampled ag ~ F(0.,,), where
zj; = kji,, indexes the shared parameters assigned to the table dasdorith ;.

3.3 Transformed Dirichlet Processes

In the HDP model of Fig. 2, the group distributio6§ are derived from the global distri-
butionG, by resampling the mixture weights from a Dirichlet procesee(eqg. (3)), leaving
the component parametéls unchanged. In many applications, however, it is difficult to
definef so that parameters may be exactly reused between groupsidénrior example,



a Gaussian distribution describing the location at whicjecifeatures are detected in an
image. While the covariance of that distribution may stagtie¢ly constant across ob-
ject instances, the mean will change dramatically from ientmgimage (group to group),

depending on the objects’ position relative to the camera.

Motivated by these difficulties, we propose thensformed Dirichlet Proces8DP), an
extension of the HDP in which global mixture components ugdea set of random trans-
formations before being reused in each group.deénote a transformation of the param-
eter vecto € O, ¢ € ® the parameters of a distributi@p over transformations, an

a measure o®. We begin by augmenting the DP stick—breaking construaifay. (1) to
create a global measure describing both parameters arsfararations:

Go(6,p) =Y Brd(0,01)a(p | ¢) Oo~H  ¢p~R 6)
k=1
As before,3 is sampled from a stick—breaking process with parameté&ior each group,
we then sample a measute ~ DP(«, Gy). Marginalizing over transformations G, (6)
reuses parameters frafy (0) exactly as in eq. (3). Because samples from DPs are discrete,
the joint measure for groupthen has the following form:

Gi(0,p) = Zﬂjké(gaek) [Z wjszs(P,ije)} iju =1 (7)
k=1 =1 =1

Note that within thej*” group, each shared parameter vediomay potentially be reused
multiple times with different transformations,,. Conditioning ondy, it can be shown
thatG;(p | 0x) ~ DP(afBk, Q(¢x)), SO that the proportions ;, of features associated
with each transformation @, follow a stick—breaking process with parametet; .

Each observation ;; is now generated by sampling;;, p;;) ~ G, and then choosing
xzj; ~ F(0;:,pj:) from a distribution which transformg;; by 5,;. Although the global
family of transformation distribution§)(¢) is typically non—atomic, the discreteness of
G; ensures that transformations are shared between obsasatithin groupy;.

Computationally, the TDP is more conveniently describedan extension of the Chinese
restaurant franchise analogy (see Fig. 2). As before, mest® (observations);; sit at
tablest;; according to the clustering bias of eq. (4), and new tablesstdishes according
to their popularity across the franchise (eq. (5)). Now, éesv, the dish (parametet) ,,

at tablet is seasoned (transformed) according$p ~ q(p;: | ¢x,,). Each time a dish is
ordered, the recipe is seasoned differently.

3.4 Learning via Gibbs Sampling

To learn the parameters of a TDP, we extend the HDP Gibbs samelailed in [4]. The
simplest implementation samples table assignmenttuster assignments, transforma-
tions p, and parameter8, ¢». Let t—/% denote all table assignments excluding and
definek—7¢, p~7¢ similarly. Using the Markov properties of the TDP (see Fig.vi2ze have

p (t]L =t | t7]l7kap70ax) xXp (t | ti]l) f (IJZ | ekjmpjt) (8)
The first term is given by eq. (4). For a fixed set of transfoiamatp, the second term is
a simple likelihood evaluation for existing tables, whilewntables may be evaluated by
marginalizing over possible cluster assignments (eq. (5))

Because cluster assignmenis and transformationg;; are strongly coupled in the poste-

rior, a blocked Gibbs sampler which jointly resamples themverges much more rapidly:

p (kjt = kapjt | k_jtap_jt7t707¢7x> xp (k ‘ k_jt) q(pjt | (bk) H f (le ‘ 9k7pjt)
tji=t

For the models considered in this pap£r,is conjugate ta? for any fixed observation

value. We may thus analytically integrate oygr and, combined with eq. (5), sample a
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Figure 3: Comparison of hierarchical models learned via Gibbs sampling frorthstio 2D data.
Left: Four of 50 “images” used for trainingCenter: Global distributionG,(6) for the HDP, where
ellipses are covariance estimates and intensity is proportional to pricalglitp Right: Global TDP
distributionGo (8, p) over both clusterg (solid) and translationg of those clusters (dashed).
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new cluster assignmeﬁ;t. Conditioned orl_cjt, we again use conjugacy to sample. We
also choose the parameter pridgfsand R to be conjugate t@) and F', respectively, so that
standard formulas may be used to resaniple.

4 Transformed Dirichlet Processes for Visual Scenes

4.1 Context—Free Modeling of Multiple Object Categories

In this section, we adapt the TDP model of Sec. 3.3 to desthiespatial structure of
visual scenes. Groupsnow correspond to training, or test, images. For the moment,
we assume that the observed data = (o;;, y;:), Wherey;; is the position of a feature
corresponding to object categary;, and the number of object categori@ss known (see
Fig. 2). We then choose cluster parametkrs= (o, 1k, Ar) to describe the meam, and
covariance\;, of a Gaussian distribution over feature positions, as veethasingleobject
categoryo;, assigned tall observations sampled from that cluster. Although thistelus
parameterization does not capture contextual relatipsshetween object categories, the
results of Sec. 5 demonstrate that it nevertheless proaidesfective model of the spatial
variability of individual categories across many differsnenes.

To model the variability in object location from image to igeg transformation parameters
p;+ are defined taranslatefeature position relative to that cluster’s “canonical”ang::

p(0ji,yji | tji = t, k5, p;,0) = 8(05i, 0k, ) X N (yjis tik,, + pjes Mi,) 9
We note that there is a different translatiop associated with each tabigallowing the
same object cluster to be reused at multiple locations wighgingle image. This flexi-
bility, which is not possible with HDPs, is critical to acetiely modeling visual scenes.
Density models for spatial transformations have been pusly used to recognize isolated
objects [17], and estimate layered decompositions of videmences [18]. In contrast, the
proposed TDP models the variability of object positionsoasrscenes, and couples this
with a nonparametric prior allowing uncertainty in the nienbf objects.

To ensure that the TDP scene model is identifiable, we defipe, | k;, ¢) to be a zero—-
mean Gaussian with covarianeg,,. The parameter prioR is uniform across object cat-
egories, whileR and H both use inverse—Wishart position distributions, weakbsed
towards moderate covariances. Fig. 3 shows a 2D synthegimge based on a single
object category@ = 1). Following 100 Gibbs sampling iterations, the TDP corredts-
covers that the data is composed of elongated “bars” in therught, and round “blobs”
in the lower left. In contrast, the learned HDP uses a largefsgobal clusters to discretize
the transformations underlying the data, and thus gezesafioorly to new translations.

4.2 Detecting Objects from Image Features

To apply the TDP model of Sec. 4.1 to images, we must learnglagionship between ob-
ject categories and visual features. Asin [2, 16], we old&arete features by vector quan-
tizing SIFT descriptors [19] computed over locally adaptdightical regions. To improve
discriminative power, we divide these elliptical regionsoi three groups (roughly circu-



lar, and horizontally or vertically elongated) prior to quiaing SIFT values, producing a
discrete vocabulary with800 appearance “words”. Given the density of feature detegction
these descriptors essentially provide a multiscale oegmgntation of the image.

We assume that the appearangg of each detected feature is independently sampled con-
ditioned on the underlying object categary (see Fig. 2). Placing a symmetric Dirichlet
prior, with parametei, on each category’s multinomial appearance distribugign

p(wji:b|oji:o7w_ji,t,k,0) X Cho + A (10)
wherecy, is the number of times featuieis currently assigned to objeot Because a
single object category is associated with each clusteGthbs sampler of Sec. 3.4 may be
easily adapted to this case by incorporating eq. (10) ird@#signment likelihoods.

5 Analyzing Street Scenes

To demonstrate the potential of our TDP scene model, we densi set of street scene
images (250 training, 75 test) from the MIT-CSAIL databaBkese images contain three
“objects”: buildings, cars (side views), and roads. Allezgiries were labeled in 112
images, while in the remainder only cars were segmentedhifiggsfrom semi—supervised

data is accomplished by restricting object category assags for segmented features.

Fig. 4 shows the four global object clusters learned foltayi00 Gibbs sampling itera-
tions. There is one elongated car cluster, one large bgildnster, and two road clusters
with differing shapes. Interestingly, the model has autiecally determined that building
features occur in large homogeneous patches, while rotutéssare sparse and better de-
scribed by many smaller transformed clusters. To segmehirteges, we run the Gibbs
sampler for 50 iterations from each of 10 random initial@as. Fig. 4 shows segmenta-
tions produced by averaging these samples, as well asdramsdl clusters from the final
iteration. Qualitatively, results are typically good,haltigh foliage is often mislabeled as
road due to the textural similarities with features deteateshadows across roads.

For comparison, we also trained an LDA model based solelyeatufe appearance, al-
lowing three topics per object category and again usingobligdoels to restrict the Gibbs
sampler’s assignments [16]. As shown by the ROC curves ofkigur TDP model of spa-
tial scene structure significantly improves segmentatenfigpmance. In addition, through
the set of transformed car clusters generated by the Gilohgles the TDP explicitly esti-
mates the number of objeirtstancesaunderlying each image. These detections, which are
not possible using LDA, are based on a single global parditiggoscene which automati-
cally estimates object locations without a “sliding winddid.

6 Discussion

We have developed the transformed Dirichlet process, atuieical model which shares a
set of stochastically transformed clusters among groupt. Applied to visual scenes,
TDPs provide a model of spatial structure which allows theber of objects generating
an image to be automatically inferred, and lead to improwetgation performance. We
are currently investigating extensions of the basic TDReerodel presented in this paper
which describe the internal structure of objects, and alsorporate richer contextual cues.
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