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Abstract We develop hierarchical, probabilistic models for

objects, the parts composing them, and the visual scenes

surrounding them. Our approach couples topic models

originally developed for text analysis with spatial trans-

formations, and thus consistently accounts for geometric

constraints. By building integrated scene models, we may

discover contextual relationships, and better exploit par-

tially labeled training images. We first consider images of

isolated objects, and show that sharing parts among object

categories improves detection accuracy when learning from

few examples. Turning to multiple object scenes, we pro-

pose nonparametric models which use Dirichlet processes

to automatically learn the number of parts underlying each

object category, and objects composing each scene. The re-

sulting transformed Dirichlet process (TDP) leads to Monte

Carlo algorithms which simultaneously segment and recog-

nize objects in street and office scenes.
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1 Introduction

Object recognition systems use the image features compos-

ing a visual scene to localize and categorize objects. We

argue that multi-object recognition should consider the re-

lationships between different object categories during the

training process. This approach provides several benefits. At

the lowest level, significant computational savings are pos-

sible if different categories share a common set of features.

More importantly, jointly trained recognition systems can

use similarities between object categories to their advantage

by learning features which lead to better generalization (Tor-

ralba et al. 2004; Fei-Fei et al. 2004). This transfer of

knowledge is particularly important when few training ex-

amples are available, or when unsupervised discovery of

new objects is desired. Furthermore, contextual knowledge

can often improve performance in complex, natural scenes.

At the coarsest level, the overall spatial structure, or gist,

of an image provides priming information about likely ob-

ject categories, and their most probable locations within the

scene (Torralba 2003; Murphy et al. 2004). In addition, ex-

ploiting spatial relationships between objects can improve

detection of less distinctive categories (Fink and Perona

2004; Tu et al. 2005; He et al. 2004; Amit and Trouvé 2007).

In this paper, we develop a family of hierarchical gen-

erative models for objects, the parts composing them, and

the scenes surrounding them. We focus on the so-called

basic level recognition of visually identifiable categories,

rather than the differentiation of object instances (Liter and
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Bülthoff 1998). Our models share information between ob-

ject categories in three distinct ways. First, parts define

distributions over a common low-level feature vocabularly,

leading to computational savings when analyzing new im-

ages. In addition, and more unusually, objects are defined

using a common set of parts. This structure leads to the dis-

covery of parts with interesting semantic interpretations, and

can improve performance when few training examples are

available. Finally, object appearance information is shared

between the many scenes in which that object is found.

This generative approach is motivated by the pragmatic

need for learning algorithms which require little manual su-

pervision and labeling. While discriminative models often

produce accurate classifiers, they typically require very large

training sets even for relatively simple categories (Viola

and Jones 2004; LeCun et al. 2004). In contrast, generative

approaches can discover large, visually salient categories

(such as foliage and buildings Sivic et al. 2005) without su-

pervision. Partial segmentations can then be used to learn

semantically interesting categories (such as cars and pedes-

trians) which are less visually distinctive, or present in fewer

training images. Moreover, by employing a single hierarchy

describing multiple objects or scenes, the learning process

automatically shares information between categories.

Our hierarchical models are adapted from topic models

originally used to analyze text documents (Blei et al. 2003;

Teh et al. 2006). These models make the so-called bag of

words assumption, in which raw documents are converted

to word counts, and sentence structure is ignored. While it

is possible to develop corresponding bag of features mod-

els for images (Sivic et al. 2005; Fei-Fei and Perona 2005;

Barnard et al. 2003; Csurka et al. 2004), which model the

appearance of detected interest points and ignore their loca-

tion, we show that doing so neglects valuable information,

and reduces recognition performance. To consistently ac-

count for spatial structure, we augment these hierarchies

with transformation (Miller et al. 2000; Jojic and Frey 2001;

Frey and Jojic 2003; Simard et al. 1998) variables describ-

ing the locations of objects in each image. Through these

transformations, we learn parts which describe features rel-

ative to a “canonical” coordinate frame, without requiring

the alignment of training or test images.

The principal challenge in developing hierarchical mod-

els for scenes is specifying tractable, scalable methods for

handling uncertainty in the number of objects. This issue

is entirely ignored by most existing models, which are ei-

ther tested on cropped images of single objects (Weber et al.

2000; Fei-Fei et al. 2004; Borenstein and Ullman 2002), or

use heuristics to combine the outputs of local “sliding win-

dow” classifiers (Viola and Jones 2004; Torralba et al. 2004;

Ullman et al. 2002). Grammars, and related rule-based

systems, provide one flexible family of hierarchical repre-

sentations (Tenenbaum and Barrow 1977; Bienenstock et al.

1997). For example, several different models impose dis-

tributions on hierarchical tree-structured segmentations of

the pixels composing simple scenes (Adams and Williams

2003; Storkey and Williams 2003; Siskind et al. 2004;

Hinton et al. 2000; Jin and Geman 2006). In addition,

an image parsing (Tu et al. 2005) framework has been

proposed which explains an image using a set of regions

generated by generic or object-specific processes. While

this model allows uncertainty in the number of regions, and

hence objects, its high-dimensional state space requires dis-

criminatively trained, bottom-up proposal distributions. The

BLOG language (Milch et al. 2005) provides a promising

framework for representing unknown objects, but does not

address the computational and statistical challenges which

arise when learning scene models from training data.

We propose a different, data-driven framework for han-

dling uncertainty in the number of object instances, based

on Dirichlet processes (DPs) (Jordan 2005; Pitman 2002;

Sudderth 2006). In nonparametric Bayesian statistics, DPs

are used to learn mixture models whose number of com-

ponents is automatically inferred from data (Escobar and

West 1995; Neal 2000). A hierarchical Dirichlet process

(HDP) (Teh et al. 2006) describes several related datasets

by reusing mixture components in different proportions. We

extend the HDP framework by allowing the global, shared

mixture components to undergo a random set of transfor-

mations. The resulting transformed Dirichlet process (TDP)

produces models which automatically learn the number of

parts underlying each object category, and objects compos-

ing each scene.

The following section begins by reviewing prior work on

feature-based image representations, and existing bag of fea-

tures image models. We then develop hierarchical models

which share parts among related object categories, auto-

matically infer the number of depicted object instances,

and exploit contextual relationships when parsing multi-

ple object scenes. We evaluate these models by learning

shared representations for sixteen object categories (Sect. 5),

and detecting multiple objects in street and office scenes

(Sect. 9).

2 Generative Models for Image Features

In this paper, we employ sparse image representations de-

rived from local interest operators. This approach reduces

dimensionality and dependencies among features, and sim-

plifies object appearance models by focusing on the most

salient, repeatable image structures. While the features we

employ are known to perform well in geometric correspon-

dence tasks (Mikolajczyk and Schmid 2005), we emphasize

that our object and scene models could be easily adapted to

alternative families of local descriptors.
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Fig. 1 Three types of interest

operators applied to two office

scenes: Harris-affine corners

(left), maximally stable extremal

regions (center), and linked

sequences of Canny edges

(right)

2.1 Feature Extraction

In each grayscale training or test image, we begin by de-

tecting a set of elliptical interest regions (see Fig. 1). We

consider three complementary criteria for region extraction.

Harris-affine invariant regions (Mikolajczyk and Schmid

2004) detect corner-like image structure by finding pix-

els with significant second derivatives. The Laplacian of

Gaussian operator (Lowe 2004) then provides a character-

istic scale for each corner. Alternatively, maximally stable

extremal regions (MSER) (Matas et al. 2002) are derived

by analyzing the stability of a watershed segmentation al-

gorithm. As illustrated in Fig. 1, this approach favors large,

homogeneous image regions.1 For object recognition tasks,

edge-based features are also highly informative (Belongie

et al. 2002). To exploit this, we find candidate edges via a

Canny detector (Canny 1986), and link them into segments

broken at points of high curvature (Kovesi 2005). These

lines then form the major axes of elliptical interest regions,

whose minor axes are taken to be 10% of that length.

Given the density at which interest regions are detected,

these features provide a multiscale over-segmentation of the

image. Note that low-level interest operators are inherently

noisy: even state-of-the-art detectors sometimes miss salient

regions, and select features which do not align with real 3D

scene structure (see Fig. 1 for examples). We handle this is-

sue by extracting large feature sets, so that many regions are

likely to be salient. It is then important to design recogni-

tion algorithms which exploit this redundancy, rather than

relying on a small set of key features.

2.2 Feature Description

Following several recent approaches to recognition (Sivic et

al. 2005; Fei-Fei and Perona 2005; Csurka et al. 2004), we

use SIFT descriptors (Lowe 2004) to describe the appear-

ance of interest regions. SIFT descriptors are derived from

1Software for the detection of Harris-affine and MSER features, and

computation of SIFT descriptors (Lowe 2004), was provided by the

Oxford University Visual Geometry Group: http://www.robots.ox.ac.

uk/~vgg/research/affine/.

windowed histograms of gradient magnitudes at varying lo-

cations and orientations, normalized to correct for contrast

and saturation effects. This approach provides some invari-

ance to lighting and pose changes, and was more effective

than raw pixel patches (Ullman et al. 2002) in our experi-

ments.

To simplify learning algorithms, we convert each raw,

128-dimensional SIFT descriptor to a vector quantized dis-

crete value (Sivic et al. 2005; Fei-Fei and Perona 2005).

For each training database, we use K-means clustering

to identify a finite dictionary of W appearance patterns,

where each of the three feature types is mapped to a dis-

joint set of visual words. We set the total dictionary size

via cross-validation; typically, W ≈ 1 000 seems appropriate

for categorization tasks. In some experiments, we improve

discriminative power by dividing the affinely adapted re-

gions according to their shape. Edges are separated by

orientation (horizontal versus vertical), while Harris-affine

and MSER regions are divided into three groups (roughly

circular, versus horizontally or vertically elongated). An ex-

panded dictionary then jointly encodes the appearance and

coarse shape of each feature.

Using this visual dictionary, the ith interest region in im-

age j is described by its detected image position vji , and the

discrete appearance word wji with minimal Euclidean dis-

tance (Lowe 2004). Let wj and vj denote the appearance and

two-dimensional position, respectively, of the Nj features in

image j . Figure 2 illustrates some of the visual words ex-

tracted from a database of office scenes.

2.3 Visual Recognition with Bags of Features

In many domains, there are several groups of data which are

thought to be produced by related generative processes. For

example, the words composing a text corpus are typically

separated into documents which discuss partially overlap-

ping topics (Blei et al. 2003; Griffiths and Steyvers 2004;

Teh et al. 2006). Alternatively, image databases like MIT’s

LabelMe depict visual scenes which compose many differ-

ent object categories (Russell et al. 2005). While it is sim-

plest to analyze each group independently, doing so often



Int J Comput Vis

Fig. 2 A subset of the affine covariant features (ellipses) detected in images of office scenes. In five different colors, we show the features

corresponding to the five discrete vocabulary words which most frequently align with computer screens in the training images

neglects critical information. By sharing random parame-

ters among groups, hierarchical Bayesian models (Gelman

et al. 2004) provide an elegant mechanism for transferring

information between related documents, objects, or scenes.

Latent Dirichlet allocation (LDA) (Blei et al. 2003) pro-

vides one framework for learning mixture models which

describe several related sets of observations. Given J groups

of data, let xj = (xj1, . . . , xjNj
) denote the Nj data points

in group j , and x = (x1, . . . ,xJ ). LDA assumes that the data

within each group are exchangeable,2 and independently

sampled from one of K latent clusters with parameters

{θk}
K
k=1. Letting πj = (πj1, . . . , πjK) denote the mixture

weights for the j th group, we have

p(xji |πj , θ1, . . . , θK) =

K
∑

k=1

πjkf(xji |θk)

i = 1, . . . ,Nj . (1)

Here, f (x|θ) is family of probability densities, with corre-

sponding distributions F(θ) parameterized by θ . We later

use multinomial F(θ) to model visual words, and Gaussian

F(θ) to generate feature locations. LDA’s use of shared mix-

ture parameters transfers information among groups, while

distinct mixture weights capture the unique features of in-

dividual groups. As discussed in Appendix 1, we improve

the robustness of learning algorithms by placing conjugate

priors (Gelman et al. 2004; Sudderth 2006) on the cluster

parameters θk ∼ H(λ). Mixture weights are sampled from a

Dirichlet prior π j ∼ Dir(α), with hyperparameters α either

tuned by cross-validation (Griffiths and Steyvers 2004) or

learned from training data (Blei et al. 2003).

LDA has been used to analyze text corpora by asso-

ciating groups with documents and data xji with words.

The exchangeability assumption ignores sentence structure,

treating each document as a “bag of words”. This approx-

imation leads to tractable algorithms which learn topics

(clusters) from unlabeled document collections (Blei et al.

2003; Griffiths and Steyvers 2004). Using image features

like those in Sect. 2, topic models have also been adapted

to discover objects in simple scenes (Sivic et al. 2005) or

2Exchangeable datasets have no intrinsic order, so that every permuta-

tion has equal joint probability (Gelman et al. 2004; Sudderth 2006).

web search results (Fergus et al. 2005), categorize natural

scenes (Fei-Fei and Perona 2005; Bosch et al. 2006), and

parse presegmented captioned images (Barnard et al. 2003).

However, following an initial stage of low-level feature

detection or segmentation, these approaches ignore spatial

information, discarding positions vj and treating the image

as an unstructured bag of features wj . This paper instead

develops richer hierarchical models which consistently in-

corporate spatial relationships.

2.4 Overview of Proposed Hierarchical Models

In the remainder of this paper, we introduce a family of hi-

erarchical models for visual scenes and object categories.

We begin by considering images depicting single objects,

and develop models which share parts among related cat-

egories. Using spatial transformations, we then develop

models which decompose scenes via a set of part-based rep-

resentations of object appearance.

Fixed-Order Object Model In Sect. 3, we describe multi-

ple object categories using a fixed number of shared parts.

Results in Sect. 5 show that sharing improves detection per-

formance when few training images are available.

Nonparametric Object Model In Sect. 4, we adapt the hi-

erarchical Dirichlet process (Teh et al. 2006) to learn the

number of shared parts underlying a set of object categories.

The resulting nonparametric model learns representations

whose complexity grows as more training images are ob-

served.

Fixed-Order Scene Model In Sect. 6, we learn contextual

relationships among a fixed number of objects, which in turn

share parts as in Sect. 3. Results in Sect. 9 show that con-

textual cues improve detection performance for scenes with

predictable, global spatial structure.

Nonparametric Scene Model In Sect. 7, we develop a

transformed Dirichlet process (TDP), and use it to learn

scene models which allow uncertainty in the number of vi-

sual object categories, and object instances depicted in each

image. Section 8 then integrates the part-based object repre-

sentations of Sect. 4 with the TDP, and thus more accurately

segments novel scenes (see Sect. 9).
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Fig. 3 A parametric, fixed-order model which describes the visual

appearance of L object categories via a common set of K shared parts.

The j th image depicts an instance of object category oj , whose posi-

tion is determined by the reference transformation ρj . The appearance

wji and position vji , relative to ρj , of visual features are determined

by assignments zji ∼ πoj
to latent parts. The cartoon example illus-

trates how a wheel part might be shared among two categories, bicycle

and cannon. We show feature positions (but not appearance) for two

hypothetical samples from each category

3 Learning Parts Shared by Multiple Objects

Figure 3 illustrates a directed graphical model which ex-

tends LDA (Blei et al. 2003; Rosen-Zvi et al. 2004) to learn

shared, part-based representations for multiple object cat-

egories. Nodes of this graph represent random variables or

distributions, where shaded nodes are observed during train-

ing, and rounded boxes are fixed hyperparameters. Edges

encode the conditional densities underlying the generative

process (Jordan 2004; Sudderth 2006). To develop this

model, we first introduce a flexible family of spatial trans-

formations.

3.1 Capturing Spatial Structure with Transformations

Figure 4 illustrates the challenges in developing visual scene

models incorporating feature positions. Due to variability

in three-dimensional object location and pose, the absolute

position at which features are observed may provide lit-

tle information about their corresponding category. Recall

that LDA models different groups of data by reusing iden-

tical cluster parameters θk in varying proportions. Applied

directly to features incorporating both position and appear-

ance, such topic models would need a separate global cluster

for every possible location of each object category. Clearly,

this approach does not sensibly describe the spatial structure

underlying real scenes, and would not adequately generalize

to images captured in new environments.

A more effective model of visual scenes would allow the

same global cluster to describe objects at many different lo-

cations. To accomplish this, we augment topic models with

transformation variables, thereby shifting global clusters

from a “canonical” coordinate frame to the object posi-

tions underlying a particular image. Let τ(θ;ρ) denote a

family of transformations of the parameter vector θ , in-

dexed by ρ ∈ ℘. For computational reasons, we assume that

parameter transformations are invertible, and have a com-

plementary data transformation τ̃ (v;ρ) defined so that

f (v|τ(θ;ρ)) =
1

Z(ρ)
f (τ̃ (v;ρ)|θ). (2)

The normalization constant Z(ρ), which is determined by

the transformation’s Jacobian, is assumed independent of

the underlying parameters θ . Using (2), model transforma-

tions τ(θ;ρ) are equivalently expressed by a change τ̃ (v;ρ)

of the observations’ coordinate system. In later sections,

we use transformations to translate Gaussian distributions

N (μ,Λ), in which case

τ(μ,Λ;ρ) = (μ + ρ,Λ), τ̃ (v;ρ) = v − ρ. (3)

Our learning algorithms use this relationship to efficiently

combine information from images depicting scale-norma-

lized objects at varying locations. For more complex data-

sets, we could instead employ a family of invertible affine

transformations (see Sect. 5.2.2 of Sudderth 2006).

Transformations have been previously used to learn mix-

ture models which decompose video sequences into a fixed

number of layers (Frey and Jojic 2003; Jojic and Frey 2001).

In contrast, the hierarchical models developed in this pa-

per allow transformed mixture components to be shared

among different object and scene categories. Nonparamet-

ric density estimates of transformations (Miller et al. 2000;

Miller and Chefd’hotel 2003), and tangent approximations

to transformation manifolds (Simard et al. 1998), have also

been used to construct improved template-based recognition

systems from small datasets. By embedding transforma-

tions in a nonparametric hierarchical model, we parse more
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Fig. 4 Scale-normalized images used to evaluate two-dimensional

models for visual scenes, available from the MIT LabelMe data-

base (Russell et al. 2005). Top: Five of 613 images from a partially

labeled dataset of street scenes, and segmented regions corresponding

to cars (red), buildings (magenta), roads (blue), and trees (green). Bot-

tom: Six of 315 images from a fully labeled dataset of office scenes,

and segmented regions corresponding to computer screens (red), key-

boards (green), and mice (blue)

complex visual scenes in which the number of objects is un-

certain.

3.2 Fixed-Order Models for Isolated Objects

We begin by developing a parametric, hierarchical model for

images dominated by a single object (Sudderth et al. 2005).

The representation of objects as a collection of spatially

constrained parts has a long history in vision (Fischler and

Elschlager 1973). In the directed graphical model of Fig. 3,

parts are formalized as groups of features that are spatially

clustered, and have predictable appearances. Each of the L

object categories is in turn characterized by a probability

distribution πℓ over a common set of K shared parts. For

this fixed-order object appearance model, K is set to some

known, constant value.

Given an image j of object category oj containing Nj

features (wj ,vj ), we model feature positions relative to

an image-specific reference transformation, or coordinate

frame, ρj . For datasets in which objects are roughly scale-

normalized and centered, unimodal Gaussian distributions

ρj ∼ N (ζoj
,Υoj

) provide reasonable transformation priors.

To capture the internal structure of objects, we define K

distinct parts which generate features with different typi-

cal appearance wji and position vji , relative to ρj . The

particular parts zj = (zj1, . . . , zjNj
) associated with each

feature are independently sampled from a category-specific

multinomial distribution, so that zji ∼ πoj
.

When learning object models from training data, we as-

sign Dirichlet priors πℓ ∼ Dir(α) to the part association

probabilities. Each part is then defined by a multinomial dis-

tribution ηk on the discrete set of W appearance descriptors,

and a Gaussian distribution N (μk,Λk) on the relative dis-

placements of features from the object’s transformed pose:

wji ∼ ηzj i
, vji ∼ N (τ (μzj i

,Λzj i
;ρj )). (4)

For datasets which have been normalized to account for ori-

entation and scale variations, transformations are defined to

shift the part’s mean as in (3). In principle, however, the

model could be easily generalized to capture more complex

object pose variations.

Marginalizing the unobserved assignments zji of features

to parts, we find that the graph of Fig. 3 defines object ap-

pearance via a finite mixture model:
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p(wji, vji |ρj , oj = ℓ)

=

K
∑

k=1

πℓkηk(wji)N (vji; τ(μk,Λk;ρj )). (5)

Parts are thus latent variables which capture dependencies

in feature location and appearance, while reference transfor-

mations allow a common set of parts to model unaligned

images. Removing these transformations, we recover a vari-

ant of the author-topic model (Rosen-Zvi et al. 2004), where

objects correspond to authors, features to words, and parts

to the latent topics underlying a given text corpus. The LDA

model (Blei et al. 2003) is in turn a special case in which

each document (image) has its own topic distribution, and

authors (objects) are not explicitly modeled.

The fixed-order model of Fig. 3 shares information in two

distinct ways: parts combine the same features in different

spatial configurations, and objects reuse the same parts in

different proportions. To learn the parameters defining these

parts, we employ a Gibbs sampling algorithm (Griffiths and

Steyvers 2004; Rosen-Zvi et al. 2004), which Sect. 6.2 de-

velops in the context of a related model for multiple object

scenes. This Monte Carlo method may either give each ob-

ject category its own parts, or “borrow” parts from other

objects, depending on the structure of the given training im-

ages.

3.3 Related Part-Based Object Appearance Models

In independent work paralleling the original development

of our fixed-order object appearance model (Sudderth et

al. 2005), two other papers have used finite mixture mod-

els to generate image features (Fergus et al. 2005; Loeff et

al. 2006). However, these approaches model each category

independently, rather than sharing parts among them. In ad-

dition, they use discrete representations of transformations

and feature locations. This choice makes it difficult to learn

typical transformations, a key component of the contextual

scene models developed in Sect. 6. More recently, Williams

and Allan have pointed out connections between so-called

generative templates of features (Williams and Allan 2006),

like the model of Fig. 3, and probabilistic voting methods

such as the implicit shape model (Leibe et al. 2004).

Applied to a single object category, our approach is also

related to constellation models (Fischler and Elschlager

1973; Weber et al. 2000), and in particular Bayesian train-

ing methods which share hyperparameters among cate-

gories (Fei-Fei et al. 2004). However, constellation models

assume each part generates at most one feature, creating a

combinatorial data association problem for which greedy

approximations are needed (Helmer and Lowe 2004). In

contrast, our model associates parts with expected propor-

tions of the observed features. This allows several different

features to provide evidence for a given part, and seems bet-

ter matched to the dense, overlapping feature sets described

in Sect. 2.1. Furthermore, by not placing hard constraints

on the number of features assigned to each part, we develop

simple learning algorithms which scale linearly, rather than

exponentially, with the number of parts.

4 Sharing Parts using Nonparametric Hierarchical

Models

When modeling complex datasets, it can be hard to de-

termine an appropriate number of clusters for parametric

models like LDA. As this choice significantly affects per-

formance (Blei et al. 2003; Teh et al. 2006; Griffiths and

Steyvers 2004; Fei-Fei and Perona 2005), it is interesting

to explore nonparametric alternatives. In Bayesian statistics,

Dirichlet processes (DPs) avoid model selection by defining

priors on infinite models. Learning algorithms then produce

robust predictions by averaging over model substructures

whose complexity is justified by observed data. The follow-

ing sections briefly review properties of DPs, and then adapt

the hierarchical DP (Teh et al. 2006) to learn nonparamet-

ric, shared representations of multiple object categories. For

more detailed introductions to Dirichlet processes and clas-

sical references, see (Pitman 2002; Jordan 2005; Teh et al.

2006; Sudderth 2006).

4.1 Dirichlet Process Mixtures

Let H be a measure on some parameter space Θ , like the

conjugate priors of Appendix 1. A Dirichlet process (DP),

denoted by DP(γ,H), is then a distribution over measures

on Θ , where the scalar concentration parameter γ controls

the similarity of samples G ∼ DP(γ,H) to the base mea-

sure H . Analogously to Gaussian processes, DPs may be

characterized by the distribution they induce on finite, mea-

surable partitions (T1, . . . , Tℓ) of Θ . In particular, for any

such partition, the random vector (G(T1), . . . ,G(Tℓ)) has a

finite-dimensional Dirichlet distribution:

(G(T1), . . . ,G(Tℓ)) ∼ Dir(γH(T1), . . . , γH(Tℓ)). (6)

Samples from DPs are discrete with probability one, a

property highlighted by the following stick-breaking con-

struction (Pitman 2002; Ishwaran and James 2001):

G(θ) =

∞
∑

k=1

βkδ(θ, θk),

(7)

β ′
k ∼ Beta(1, γ ), βk = β ′

k

k−1
∏

ℓ=1

(1 − β ′
ℓ).

Each parameter θk ∼ H is independently sampled from

the base measure, while the weights β = (β1, β2, . . .) use
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beta random variables to partition a unit-length “stick” of

probability mass. Following standard terminology (Teh et

al. 2006; Pitman 2002), let β ∼ GEM(γ ) denote a sam-

ple from this stick-breaking process. As γ becomes large,

E[β ′
k] = 1/(1 + γ ) approaches zero, and G approaches H

by uniformly distributing probability mass among a densely

sampled set of discrete parameters {θk}
∞
k=1.

DPs are commonly used as prior distributions for mixture

models with an unknown, and potentially infinite, number

of components (Escobar and West 1995; Neal 2000). Given

G ∼ DP(γ,H), each observation xi is generated by first

choosing a parameter θ̄i ∼ G, and then sampling xi ∼ F(θ̄i).

Note that we use θk to denote the unique parameters asso-

ciated with distinct mixture components, and θ̄i to denote

a copy of one such parameter associated with a particular

observation xi . For moderate concentrations γ , all but a

random, finite subset of the mixture weights β are nearly

zero, and data points cluster as in finite mixture models.

In fact, mild conditions guarantee that DP mixtures provide

consistent parameter estimates for finite mixture models of

arbitrary order (Ishwaran and Zarepour 2002).

To develop computational methods, we let zi ∼ β in-

dicate the unique component of G(θ) associated with ob-

servation xi ∼ F(θzi
). Marginalizing G, these assignments

z demonstrate an important clustering behavior (Pitman

2002). Letting Nk denote the number of observations al-

ready assigned to θk ,

p(zi |z1, . . . , zi−1, γ )

=
1

γ + i − 1

[

∑

k

Nkδ(zi, k) + γ δ(zi, k̄)

]

. (8)

Here, k̄ indicates a previously unused mixture component

(a priori, all clusters are equivalent). This process is some-

times described by analogy to a Chinese restaurant in which

the (infinite collection of) tables correspond to the mixture

components θk , and customers to observations xi (Teh et

al. 2006; Pitman 2002). Customers are social, tending to

sit at tables with many other customers (observations), and

each table shares a single dish (parameter). This clustering

bias leads to Monte Carlo methods (Escobar and West 1995;

Neal 2000) which infer the number of mixture components

underlying a set of observations.

4.2 Modeling Objects with Hierarchical Dirichlet

Processes

Standard Dirichlet process mixtures model observations via

a single, infinite set of clusters. The hierarchical Dirich-

let process (HDP) (Teh et al. 2006) instead shares infinite

mixtures among several groups of data, thus providing a

nonparametric generalization of LDA. In this section, we

augment the HDP with image-specific spatial transforma-

tions, and thereby model unaligned sets of image features.

As discussed in Appendix 1, let Hw denote a Dirichlet

prior on feature appearance distributions, Hv a normal-

inverse-Wishart prior on feature position distributions, and

Hw × Hv the corresponding product measure. To construct

an HDP, a global probability measure G0 ∼ DP(γ,Hw ×

Hv) is first used to define an infinite set of shared parts:

G0(θ) =

∞
∑

k=1

βkδ(θ, θk),

β ∼ GEM(γ ), (ηk,μk,Λk) = θk ∼ Hw × Hv.

(9)

For each object category ℓ = 1, . . . ,L, an object-specific

reweighting of these parts Gℓ ∼ DP(α,G0) is independently

sampled from a DP with discrete base measure G0, so that

Gℓ(θ) =

∞
∑

t=1

π̃ℓtδ(θ, θ̃ℓt ),

π̃ℓ ∼ GEM(α), θ̃ℓt ∼ G0, t = 1,2, . . . .

(10)

Each local part t (see (10)) has parameters θ̃ℓt copied from

some global part θkℓt
, indicated by kℓt ∼ β . Aggregating

the probabilities associated with these copies, we can also

directly express each object’s appearance via the distinct,

global parts:

Gℓ(θ) =

∞
∑

k=1

πℓkδ(θ, θk), πℓk =
∑

t |kℓt=k

π̃ℓt . (11)

Using (6), it can be shown that πℓ ∼ DP(α,β), where β and

πℓ are interpreted as measures on the positive integers (Teh

et al. 2006). Thus, β determines the average importance of

each global part (E[πℓk] = βk), while α controls the degree

to which parts are reused across object categories.

Consider the generative process shown in Fig. 5 for an

image j depicting object category oj . As in the fixed-order

model of Sect. 3.2, each image has a reference transfor-

mation ρj sampled from a Gaussian with normal-inverse-

Wishart prior (ζℓ,Υℓ) ∼ R. Each feature (wji, vji) is gener-

ated by choosing a part zji ∼ πoj
, and then sampling from

that part’s appearance and transformed position distribu-

tions, as in (4). Marginalizing these unobserved assignments

of features to parts, object appearance is defined by an infi-

nite mixture model:

p(wji, vji |ρj , oj = ℓ)

=

∞
∑

k=1

πℓkηk(wji)N (vji; τ(μk,Λk;ρj )). (12)

This approach generalizes the parametric, fixed-order object

model of Fig. 3 by defining an infinite set of potential global



Int J Comput Vis

Fig. 5 Nonparametric, hierarchical DP model for the visual appear-

ance of L object categories. The generative process is as in Fig. 3,

except there are infinitely many potential parts. Left: Each of the Jℓ im-

ages of object ℓ has a reference transformation ρj ∼N (ζℓ,Υℓ), where

ϕℓ = (ζℓ,Υℓ). G0 ∼ DP(γ,Hw × Hv) then defines an infinite set of

global parts, and objects reuse those parts via the reweighted distrib-

ution Gℓ ∼ DP(α,G0). θ̄ji ∼ Gℓ are then the part parameters used to

generate feature (wji , vji). Right: Equivalent, Chinese restaurant fran-

chise representation of the HDP. The explicit assignment variables kℓt ,

tji are used in Gibbs sampling algorithms (see Sect. 4.3)

parts, and using the Dirichlet process’ stick-breaking prior

to automatically choose an appropriate model order. It also

extends the original HDP (Teh et al. 2006) by associating a

different reference transformation with each training image.

The HDP follows an extension of the DP analogy known

as the Chinese restaurant franchise (Teh et al. 2006). In

this interpretation, each object or group defines a separate

restaurant in which customers (observed features) (wji, vji)

sit at tables (clusters or parts) tji . Each table shares a sin-

gle dish (parameter) θ̃ℓt , which is ordered from a menu G0

shared among restaurants (objects). Let kℓ = {kℓt } denote

the global parts assigned to all tables (local parts) of cate-

gory ℓ. We may then integrate over G0 and Gℓ, as in (8), to

find the conditional distributions of these assignment vari-

ables:

p(tji |tj1, . . . , tji−1, α) ∝
∑

t

Nj tδ(tji, t) + αδ(tji, t̄), (13)

p(kℓt |k1, . . . ,kℓ−1, kℓ1, . . . , kℓt−1, γ )

∝
∑

k

Mkδ(kℓt , k) + γ δ(kℓt , k̄). (14)

Here, Mk is the number of tables previously assigned to θk ,

and Nj t the number of customers already seated at the t th ta-

ble in group j . As before, customers prefer tables t at which

many customers are already seated (see (13)), but sometimes

choose a new table t̄ . Each new table is assigned a dish kℓt̄

according to (14). Popular dishes are more likely to be or-

dered, but a new dish θk̄ ∼ H may also be selected. In this

way, object categories sometimes reuse parts from other ob-

jects, but may also create a new part capturing distinctive

appearance features.

4.3 Gibbs Sampling for Hierarchical Dirichlet Processes

To develop a learning algorithm for our HDP object appear-

ance model, we consider the Chinese restaurant franchise

representation, and generalize a previously proposed HDP

Gibbs sampler (Teh et al. 2006) to also resample refer-

ence transformations. As illustrated in Fig. 5, the Chinese

restaurant franchise involves two sets of assignment vari-

ables. Object categories ℓ have infinitely many local parts

(tables) t , which are assigned to global parts kℓt . Each ob-

served feature, or customer, (wji, vji) is then assigned to

some table tji . By sampling these variables, we dynami-

cally construct part-based feature groupings, and share parts

among object categories.

The proposed Gibbs sampler has three sets of state vari-

ables: assignments t of features to tables, assignments k of

tables to global parts, and reference transformations ρ for

each training image. In the first sampling stage, summa-

rized in Algorithm 1, we consider each training image j

in turn and resample its transformation ρj and feature as-

signments tj . The second stage, Algorithm 2, then examines

each object category ℓ, and samples assignments kℓ of local

to global parts. At all times, the sampler maintains dynamic

lists of those tables to which at least one feature is assigned,

and the global parts associated with these tables. These lists

grow when new tables or parts are randomly chosen, and
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Given a previous reference transformation ρj
(t−1), table assignments tj

(t−1) for the Nj features in an image depicting object

category oj = ℓ, and global part assignments kℓ
(t−1) for that object’s Tℓ tables:

1. Set tj = tj
(t−1), kℓ = kℓ

(t−1), and sample a random permutation τ(·) of the integers {1, . . . ,Nj }. For each i ∈

{τ(1), . . . , τ (Nj )}, sequentially resample feature assignment tji as follows:

(a) Decrement Nℓtj i
, and remove (wji, vji) from the cached statistics for its current part k = kℓtj i

:

Ckw ← Ckw − 1, w = wji,

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊖ (vji − ρj
(t−1))

(b) For each of the K instantiated global parts, determine the predictive likelihood

fk(wji = w,vji) =

(

Ckw + λ/W
∑

w′ Ckw′ + λ

)

·N (vji − ρj
(t−1); μ̂k, Λ̂k).

Also determine the likelihood fk̄(wji, vji) of a potential new part k̄.

(c) Sample a new table assignment tji from the following (Tℓ + 1)-dim. multinomial distribution:

tji ∼

Tℓ
∑

t=1

Nℓtfkℓt
(wji, vji)δ(tji, t) +

α

γ +
∑

k Mk

[

K
∑

k=1

Mkfk(wji, vji) + γfk̄(wji, vji)

]

δ(tji, t̄).

(d) If tji = t̄ , create a new table, increment Tℓ, and sample

kℓt̄ ∼

K
∑

k=1

Mkfk(wji, vji)δ(kℓt̄ , k) + γfk̄(wji, vji)δ(kℓt̄ , k̄).

If kℓt̄ = k̄, create a new global part and increment K .

(e) Increment Nℓtj i
, and add (wji, vji) to the cached statistics for its new part k = kℓtj i

:

Ckw ← Ckw + 1, w = wji,

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊕ (vji − ρj
(t−1)).

2. Fix tj
(t) = tj , kℓ

(t) = kℓ. If any tables are empty (Nℓt = 0), remove them and decrement Tℓ.

3. Sample a new reference transformation ρj
(t) as follows:

(a) Remove ρj
(t−1) from cached transformation statistics for object ℓ:

(ζ̂ℓ, Υ̂ℓ) ← (ζ̂ℓ, Υ̂ℓ) ⊖ ρj
(t−1).

(b) Sample ρj
(t) ∼ N (χj ,Ξj ), a posterior distribution determined via (45) from the prior N (ρj ; ζ̂ℓ, Υ̂ℓ), cached part

statistics {μ̂k, Λ̂k}
K
k=1, and feature positions vj .

(c) Add ρj
(t) to cached transformation statistics for object ℓ:

(ζ̂ℓ, Υ̂ℓ) ← (ζ̂ℓ, Υ̂ℓ) ⊕ ρj
(t).

4. For each i ∈ {1, . . . ,Nj }, update cached statistics for global part k = kℓtj i
as follows:

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊖ (vji − ρj
(t−1)),

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊕ (vji − ρj
(t)).

Algorithm 1 First stage of the Rao–Blackwellized Gibbs sampler for

the HDP object appearance model of Fig. 5. We illustrate the sequential

resampling of all assignments tj of features to tables (category-specific

copies of global parts) in the j th training image, as well as that image’s

coordinate frame ρj . For efficiency, we cache and recursively update

statistics {ζ̂ℓ, Υ̂ℓ}
L
ℓ=1 of each object’s reference transformations, counts

Nℓt of the features assigned to each table, and appearance and position

statistics {Ckw, μ̂k, Λ̂k}
K
k=1 for the instantiated global parts. The ⊕ and

⊖ operators update cached mean and covariance statistics as features

are added or removed from parts (see Sect. 12.1). The final step en-

sures consistency of these statistics following reference transformation

updates
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Given the previous global part assignments kℓ
(t−1) for the Tℓ instantiated tables of object category ℓ, and fixed feature

assignments tj and reference transformations ρj for all images of that object:

1. Set kℓ = kℓ
(t−1), and sample a random permutation τ(·) of the integers {1, . . . , Tℓ}. For each t ∈ {τ(1), . . . , τ (Tℓ)},

sequentially resample global part assignment kℓt as follows:

(a) Decrement Mkℓt
, and remove all features at table t from the cached statistics for part k = kℓt :

Ckw ← Ckw − 1 for each w ∈ wt � {wji |tji = t},

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊖ (v − ρj ) for each v ∈ vt � {vji | tji = t}.

(b) For each of the K instantiated global parts, determine the predictive likelihood

fk(wt ,vt ) = p(wt |{wji |kℓtj i
= k, tji �= t},Hw) · p(vt |{vji |kℓtj i

= k, tji �= t},Hv).

Also determine the likelihood fk̄(wt ,vt ) of a potential new part k̄.

(c) Sample a new part assignment kℓt from the following (K + 1)-dim. multinomial distribution:

kℓt ∼

K
∑

k=1

Mkfk(wt ,vt )δ(kℓt , k) + γfk̄(wt ,vt )δ(kℓt , k̄).

If kℓt = k̄, create a new global part and increment K .

(d) Increment Mkℓt
, and add all features at table t to the cached statistics for its new part k = kℓt :

Ckw ← Ckw + 1 for each w ∈ wt ,

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊕ (v − ρj ) for each v ∈ vt .

2. Fix kℓ
(t) = kℓ. If any global parts are unused (Mk = 0), remove them and decrement K .

3. Given gamma priors, resample concentration parameters γ and α using auxiliary variables (Escobar and West 1995;

Teh et al. 2006).

Algorithm 2 Second stage of the Rao–Blackwellized Gibbs sampler

for the HDP object appearance model of Fig. 5. We illustrate the se-

quential resampling of all assignments kℓ of tables (category-specific

parts) to global parts for the ℓth object category, as well as the HDP

concentration parameters. For efficiency, we cache and recursively

update appearance and position statistics {Ckw, μ̂k, Λ̂k}
K
k=1 for the in-

stantiated global parts, and counts Mk of the number of tables assigned

to each part. The ⊕ and ⊖ operators update cached mean and covari-

ance statistics as features are reassigned (see Sect. 12.1)

shrink when a previously occupied table or part no longer

has assigned features. Given K instantiated global parts, the

expected time to resample N features is O(NK).

We provide high-level derivations for the sampling up-

dates underlying Algorithms 1 and 2 in Sect. 12.1. Note

that our sampler analytically marginalizes (rather than sam-

ples) the weights β , π̃ℓ assigned to global and local parts, as

well as the parameters θk defining each part’s feature distri-

bution. Such Rao–Blackwellization is guaranteed to reduce

the variance of Monte Carlo estimators (Sudderth 2006;

Casella and Robert 1996).

5 Sixteen Object Categories

To explore the benefits of sharing parts among objects, we

consider a collection of 16 categories with noticeable vi-

sual similarities. Figure 6 shows images from each category,

which fall into three groups: seven animal faces, five animal

profiles, and four wheeled vehicles. While training images

are labeled with their category, we do not explicitly mod-

ify our part-based models to reflect these coarser groupings.

As recognition systems scale to applications involving hun-

dreds of objects, the inter-category similarities exhibited by

this dataset will become increasingly common.

5.1 Visualization of Shared Parts

Given 30 training images from each of the 16 categories,

we first extracted Harris-affine (Mikolajczyk and Schmid

2004) and MSER (Matas et al. 2002) interest regions as

in Sect. 2.1, and mapped SIFT descriptors (Lowe 2004)

to one of W = 600 visual words as in Sect. 2.2. We then

used the Gibbs sampler of Algorithms 1 and 2 to fit an

HDP object appearance model. Because our 16-category
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Figure 6 Example images from a dataset containing 16 object cate-

gories (columns), available from the MIT LabelMe database (Russell

et al. 2005). These categories combines images collected via web

searches with the Caltech 101 (Fei-Fei et al. 2004) and Weizmann

Institute (Ullman et al. 2002; Borenstein and Ullman 2002) datasets.

Including a complementary background category, there are a total of

1,885 images, with at least 50 images per category

Figure 7 Mean (thick lines)

and variance (thin lines) of the

number of global parts created

by the HDP Gibbs sampler

(Sect. 4.3), given training sets of

varying size. Left: Number of

global parts used by HDP object

models (blue), and the total

number of parts instantiated by

sixteen independent DP object

models (green). Right:

Expanded view of the parts

instantiated by the HDP object

models

dataset contains approximately aligned images, the refer-

ence transformation updates of Algorithm 1, steps 3–4 were

not needed. Later sections explore transformations in the

context of more complex scene models.

For our Matlab implementation, each sampling itera-

tion requires roughly 0.1 seconds per training image on a

3.0 GHz Intel Xeon processor. Empirically, the learning pro-

cedure is fairly robust to hyperparameters; we chose Hv to

provide a weak (ν = 6 degrees of freedom) bias towards

moderate covariances, and Hw = Dir(W/10) to favor sparse

appearance distributions. Concentration parameters were as-

signed weakly informative priors γ ∼ Gamma(5,0.1), α ∼

Gamma(0.1,0.1), allowing data-driven estimation of appro-

priate numbers of global and local parts.

We ran the Gibbs sampler for 1000 iterations, and used

the final assignments (t,k) to estimate the feature appear-

ance and position distributions for each part. After an initial

burn-in phase, there were typically between 120 and 140

global parts associated with at least one observation (see

Fig. 7). Figure 8 visualizes the feature distributions defining

seven of the more significant parts. A few seem specialized

to distinctive features of individual categories, such as the

spots appearing on the leopard’s forehead. Many other parts

are shared among several categories, modeling common as-

pects such as ears, mouths, and wheels. We also show one of

several parts which model background clutter around image

boundaries, and are widely shared among categories.

To further investigate these shared parts, we used the

symmetrized KL divergence, as in (Rosen-Zvi et al. 2004),

to compute a distance between all pairs of object-specific

part distributions:

D(πℓ,πm) =

K
∑

k=1

πℓk log
πℓk

πmk

+ πmk log
πmk

πℓk

. (15)

In evaluating equation (15), we only use parts associ-

ated with at least one feature. Figure 9 shows the two-

dimensional embedding of these distances produced by

metric multidimensional scaling (MDS), as well as a den-

drogram constructed via greedy, agglomerative cluster-

ing (Shepard 1980). Interestingly, there is significant sharing

of parts within each of the three coarse-level groups (animal

faces, animal profiles, vehicles) underlying this dataset. In

addition, the similarities among the three categories of cat

faces, and among those animals with elongated faces, are

reflected in the shared parts.

5.2 Detection and Recognition Performance

To evaluate our HDP object appearance model, we con-

sider two experiments. The detection task uses 100 images

of natural scenes to train a DP background appearance

model. We then use likelihoods computed as in Sect. 12.1

to classify test images as object or background. Alterna-

tively, in the recognition task test images are classified
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Figure 8 Seven of the 135 shared parts (columns) learned by an HDP

model for 16 object categories (rows). Using two images from each

category, we display those features with the highest posterior proba-

bility of being generated by each part. For comparison, we show six of

the parts which are specialized to the fewest object categories (left, yel-

low), as well as one of several widely shared parts (right, cyan) which

seem to model texture and background clutter. The bottom row plots

the Gaussian position densities corresponding to each part. Interest-

ingly, several parts have rough semantic interpretations, and are shared

within the coarse-level object groupings underlying this dataset
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Figure 9 Two visualizations of

learned part distributions πℓ for

the HDP object appearance

model depicted in Fig. 8. Top:

Two-dimensional embedding

computed by metric MDS, in

which coordinates for each

object category are chosen to

approximate pairwise KL

distances as in (15). Animal

faces are clustered on the left,

vehicles in the upper right, and

animal profiles in the lower

right. Bottom: Dendrogram

illustrating a greedy,

hierarchical clustering, where

branch lengths are proportional

to inter-category distances. The

four most significant clusters,

which very intuitively align with

semantic relationships among

these categories, are highlighted

in color

as either their true category, or one of the 15 other cate-

gories. For both tasks, we compare a shared model of all

objects to a set of 16 unshared, independent DP models

trained on individual categories. We also examine simpli-

fied models which ignore the spatial location of features,

as in earlier bag of features approaches (Sivic et al. 2005;

Csurka et al. 2004). We evaluate performance via the area

under receiver operating characteristic (ROC) curves, and

use nonparametric rank-sum tests (DeLong et al. 1988) to

determine whether competing models differ with at least

95% confidence.

In Fig. 7, we illustrate the number of global parts instanti-

ated by the HDP Gibbs sampler. The appearance-only HDP

model learns a consistent number of parts given between 10

and 30 training images, while the HDP model of feature po-

sitions uses additional parts as more images are observed.

Such data-driven growth in model complexity underlies

many desirable properties of Dirichlet processes (Sudderth

2006; Jordan 2005; Ishwaran and Zarepour 2002). We also

show the considerably larger number of total parts (roughly

25 per category) employed by the independent DP models

of feature positions. Because we use multinomial appear-

ance distributions, estimation of the number of parts for the
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Figure 10 Performance of Dirichlet process object appearance mod-

els for the detection (left) and recognition (right) tasks. Top: Area

under average ROC curves for different numbers of training images

per category. Middle: Average of ROC curves across all categories

(6 versus 30 training images). Bottom: Scatter plot of areas under ROC

curves for the shared and unshared models of individual categories

(6 versus 30 training images)

DP appearance-only model is ill-posed, and very sensitive

to Hw; we thus exclude this model from Fig. 7.

Figure 10 shows detection and recognition performance

given between 4 and 30 training images per category. Likeli-

hoods are estimated from 40 samples extracted across 1000

iterations. Given 6 training images, shared parts significantly

improve position-based detection performance for all cat-

egories (see scatter plots). Even with 30 training images,

sharing still provides significant benefits for 9 categories

(for the other seven, both models are extremely accurate).

For the bag of features model, the benefits of sharing are

less dramatic, but still statistically significant in many cases.

Finally, note that with fewer than 15 training images, the

unshared position-based model overfits, performing signif-

icantly worse than comparable appearance-only models for

most categories. In contrast, sharing spatial parts provides

superior performance for all training set sizes.

For the recognition task, shared and unshared appearan-

ce-only models perform similarly. However, with larger

training sets the HDP model of feature positions is less ef-

fective for most categories than unshared, independent DP

models. Confusion matrices (not shown) confirm that this

small performance degradation is due to errors involving

pairs of object categories with similar part distributions (see

Fig. 9). Note, however, that the unshared models use many

more parts (see Fig. 7), and hence require additional compu-

tation. For all categories exhibiting significant differences,

we find that models incorporating feature positions have sig-

nificantly higher recognition accuracy.

5.3 Comparison to Fixed-Order Object Appearance

Models

We now compare the HDP object model to the parametric,

fixed-order model of Sect. 3.2. Images illustrating the parts
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learned by the fixed-order model, which we exclude here

due to space constraints, are available in Sect. 5.4 of (Sud-

derth 2006). Qualitatively, the fixed-order parts are similar

to the HDP parts depicted in Fig. 8, except that there is more

sharing among dissimilar object categories. This in turn

leads to more overlap among part distributions, and inferred

object relationships which are semantically less sensible

than those found with the HDP (visualized in Fig. 9).

Previous results have shown that LDA can be sensi-

tive to the chosen number of topics (Blei et al. 2003;

Teh et al. 2006; Griffiths and Steyvers 2004; Fei-Fei and

Perona 2005). To further explore this issue, we examined

fixed-order object appearance models with between two and

thirty parts per category (32–480 shared parts versus 16 un-

shared 2–30 part models). For each model order, we ran a

collapsed Gibbs sampler (see Sect. 12.2) for 200 iterations,

and categorized test images via probabilities based on six

posterior samples. We first considered part association prob-

abilities πℓ learned using a symmetric Dirichlet prior:

(πℓ1, . . . , πℓK) ∼ Dir(ᾱ, . . . , ᾱ) = Dir(ᾱK). (16)

Our experiments set ᾱ = 5, inducing a small bias towards

distributions which assign some weight to each of the K

parts. Figure 11 shows the average detection and recognition

performance, as measured by the area under the ROC curve,

for varying model orders. Even with 15 training images

of each category, shared models with more than 4–6 parts

per category (64–96 total parts) overfit and exhibit reduced

accuracy. Similar issues arise when learning finite mixture

models, where priors as in (16) may produce inconsistent

parameter estimates if K is not selected with care (Ishwaran

and Zarepour 2002).

In some applications of the LDA model, the number of

topics K is determined via cross-validation (Blei et al. 2003;

Griffiths and Steyvers 2004; Fei-Fei and Perona 2005). This

approach is also possible with the fixed-order object appear-

ance model, but in practice requires extensive computational

effort. Alternatively, model complexity can be regulated by

the following modified part association prior:

(πℓ1, . . . , πℓK) ∼ Dir

(

α0

K
, . . . ,

α0

K

)

= Dir(α0). (17)

For a fixed precision α0, this prior becomes biased towards

sparse part distributions πℓ as K grows large (Sudderth

2006). Figure 11 illustrates its behavior for α0 = 10. In

contrast with the earlier overfitting, (17) produces stable

recognition results across a wider range of model orders K .

As K → ∞, predictions based on Dirichlet priors scaled

as in (17) approach a corresponding Dirichlet process (Teh

et al. 2006; Ishwaran and Zarepour 2002). However, if we

apply this limit directly to the model of Fig. 3, objects as-

ymptotically associate features with disjoint sets of parts,

and the benefits of sharing are lost. We see the beginnings of

this trend in Fig. 11, which shows a slow decline in detection

Figure 11 Performance of fixed-order object appearance models with

varying numbers of parts K . Part association priors are either biased

towards uniform distributions πℓ ∼ Dir(ᾱK) (left block, as in (16)), or

sparse distributions πℓ ∼ Dir(α0) (right block, as in (17)). We compare

detection and recognition performance given 4 (top row) or 15 (bottom

row) training images per category
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performance as K increases. The HDP elegantly resolves

this problem via the discrete global measure G0, which ex-

plicitly couples the parts in different categories. Comparing

Figs. 10 and 11, the HDP’s detection and recognition per-

formance is comparable to the best fixed-order model. Via

a nonparametric viewpoint, however, the HDP leads to effi-

cient learning methods which avoid model selection.

6 Contextual Models for Fixed Sets of Objects

The preceding results demonstrate the potential benefits

of transferring information among object categories when

learning from few examples. However, because the HDP

model of Fig. 5 describes each image via a single reference

transformation, it is limited to scenes which depict a single,

dominant foreground object. In the following sections, we

address this issue via a series of increasingly sophisticated

models for visual scenes containing multiple objects.

6.1 Fixed-Order Models for Multiple Object Scenes

We begin by generalizing the fixed-order object appearance

model of Sect. 3.2 to describe multiple object scenes (Sud-

derth et al. 2005). Retaining its parametric form, we assume

that the scene sj depicted in image j contains a fixed,

known set of object categories. For example, a simple of-

fice scene might contain one computer screen, one keyboard,

and one mouse. Later sections consider more flexible scene

models, in which the number of object instances is also un-

certain.

As summarized in Fig. 12, the scene transformation

ρj provides a reference frame for each of L objects. For

simplicity, we focus on scale-normalized datasets, so that

ρj is a 2L-dimensional vector specifying each object’s

image coordinates. Scene categories then have different

Gaussian transformation distributions ρj ∼ N (ζsj ,Υsj ),

with normal-inverse-Wishart priors (ζs,Υs) ∼ R. Because

these Gaussians have full, 2L-dimensional covariance ma-

trices, we learn contextual, scene-specific correlations in the

locations at which objects are observed.

Visual scenes are also associated with discrete distrib-

utions βs specifying the proportion of observed features

generated by each object. Features are generated by sam-

pling an object category oji ∼ βsj
, and then a corresponding

part zji ∼ πoj i
. Conditioned on these assignments, the

discrete appearance wji of each feature is independently

sampled as in Sect. 3.2. Feature position vji is determined

by shifting parts relative to the chosen object’s reference

transformation:

wji ∼ ηzj i
,

(18)
vji ∼ N (μzj i

+ ρjℓ,Λzj i
), oji = ℓ.

Here, ρjℓ is the subvector of ρj corresponding to the refer-

ence transformation for object ℓ. Marginalizing unobserved

assignments zji of features to parts, we find that each ob-

ject’s appearance is defined by a different finite mixture

Figure 12 A parametric model for visual scenes containing fixed sets

of objects. The j th image depicts visual scene sj , which combines L

object categories at locations determined by the vector ρj of reference

transformations. Each object category is in turn defined by a distrib-

ution πℓ over a common set of K shared parts. The appearance wji

and position vji of visual features, relative to the position of asso-

ciated object oji , are then determined by assignments zji ∼ πoji
to

latent parts. The cartoon example defines L = 3 color-coded object

categories, which employ one (blue), two (green), and four (red) of

the shared Gaussian parts, respectively. Dashed ellipses indicate mar-

ginal transformation priors for each object, but the model also captures

higher-order correlations in their relative spatial positions
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model:

p(wji, vji |ρj , oji = ℓ)

=

K
∑

k=1

πℓkηk(wji)N (vji;μk + ρjℓ,Λk). (19)

For scenes containing a single object, this model is equiv-

alent to the fixed-order model of Sect. 3.2. More generally,

however, (19) faithfully describes images containing sev-

eral objects, which differ in their observed locations and

underlying part-based decompositions. The graph of Fig. 12

generalizes the author-topic model (Rosen-Zvi et al. 2004)

by incorporating reference transformations, and by not con-

straining objects (authors) to generate equal proportions of

image features (words).

6.2 Gibbs Sampling for Fixed-Order Visual Scenes

Learning and inference in the scene-object-part hierarchy

of Fig. 12 is possible via Monte Carlo methods similar

to those developed for the HDP in Sect. 4.3. As sum-

marized in Algorithm 3, our Gibbs sampler alternatively

samples assignments (oji, zji) of features to objects and

parts, and corresponding reference transformations ρj . This

method, whose derivation is discussed in Sect. 12.2, gen-

eralizes a Gibbs sampler developed for the author-topic

model (Rosen-Zvi et al. 2004). We have found sampling

reference transformations to be faster than our earlier use

of incremental EM updates (Sudderth et al. 2005; Sudderth

2006).

Given a training image containing N features, a Gibbs

sampling update of every object and part assignment re-

quires O(NLK) operations. Importantly, our use of Gaus-

sian transformation distributions also allows us to jointly

resample the positions of L objects in O(L3) operations.

We evaluate the performance of this contextual scene model

in Sect. 9.1.

7 Transformed Dirichlet Processes

To model scenes containing an uncertain number of object

instances, we again employ Dirichlet processes. Section 4

adapted the HDP to allow uncertainty in the number of parts

underlying a set of object categories. We now develop a

transformed Dirichlet process (TDP) which generalizes the

HDP by applying a random set of transformations to each

global cluster (Sudderth et al. 2006b). Section 8 then uses

the TDP to develop robust nonparametric models for struc-

tured multiple object scenes.

7.1 Sharing Transformations via Stick-Breaking Processes

To simplify our presentation of the TDP, we revisit the hi-

erarchical clustering framework underlying the HDP (Teh

et al. 2006). Let θ ∈ Θ parameterize a cluster or topic

distribution F(θ), and H be a prior measure on Θ . To

more flexibly share these clusters among related groups,

we consider a family of parameter transformations τ(θ;ρ),

indexed by ρ ∈ ℘ as in Sect. 3.1. The TDP then employs

distributions over transformations ρ ∼ Q(ϕ), with densities

q(ρ|ϕ) indexed by ϕ ∈ Φ . For example, if ρ is a vector

defining a translation as in (3), ϕ could parameterize a zero-

mean Gaussian family N (ρ;0, ϕ). Finally, let R denote a

prior measure (for example, an inverse-Wishart distribution)

on Φ .

We begin by extending the Dirichlet process’ stick-

breaking construction, as in (9), to define a global measure

relating cluster parameters θ to transformations ρ:

G0(θ, ρ) =

∞
∑

ℓ=1

βℓδ(θ, θℓ)q(ρ|ϕℓ),

β ∼ GEM(γ ), θℓ ∼ H, ϕℓ ∼ R.

(20)

Note that each global cluster θℓ has a different, continuous

transformation distribution Q(ϕℓ). As in the HDP, we then

independently draw Gj ∼ DP(α,G0) for each of J groups

of data. Because samples from DPs are discrete with proba-

bility one, the joint measure for group j equals

Gj (θ, ρ) =

∞
∑

t=1

π̃j tδ(θ, θ̃j t )δ(ρ,ρj t ),

π̃ j ∼ GEM(α), (θ̃j t , ρj t ) ∼ G0.

(21)

Each local cluster in group j has parameters θ̃j t , and cor-

responding transformation ρj t , derived from some global

cluster. Anticipating our later identification of global clus-

ters with object categories, we let oj t ∼ β indicate this cor-

respondence, so that θ̃j t = θoj t
. As summarized in Fig. 13,

each observation vji is independently sampled from the

transformed parameters of some local cluster:

(θ̄ji, ρ̄ji) ∼ Gj , vji ∼ F(τ(θ̄ji; ρ̄ji)). (22)

As with standard mixtures, (22) can be equivalently ex-

pressed via a discrete variable tji ∼ π̃ j indicating the trans-

formed cluster associated with observation vji ∼

F(τ(θ̃j tj i
;ρj tj i

)). Figure 13 also shows an alternative graph-

ical representation of the TDP, based on these explicit

assignments of observations to local clusters, and local clus-

ters to transformations of global clusters.

As discussed in Sect. 4.2, the HDP models groups by

reusing an identical set of global clusters in different pro-

portions. In contrast, the TDP modifies the shared, global
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Given a previous reference transformation ρj
(t−1), and object and part assignments (oj

(t−1), zj
(t−1)) for the Nj features in

an image depicting scene sj = s:

1. Set (oj , zj ) = (oj
(t−1), zj

(t−1)), and sample a random permutation τ(·) of the integers {1, . . . ,Nj }. For i ∈

{τ(1), . . . , τ (Nj )}, sequentially resample feature assignments (oji, zji) as follows:

(a) Remove feature (wji, vji) from the cached statistics for its current part and object:

Msℓ ← Msℓ − 1, ℓ = oji,

Nℓk ← Nℓk − 1, k = zji,

Ckw ← Ckw − 1, w = wji,

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊖ (vji − ρjℓ
(t−1)).

(b) For each of the L · K pairs of objects and parts, determine the predictive likelihood

fℓk(wji = w,vji) =

(

Ckw + λ/W
∑

w′ Ckw′ + λ

)

·N (vji − ρjℓ
(t−1); μ̂k, Λ̂k).

(c) Sample new object and part assignments from the following L · K-dim. multinomial distribution:

(oji, zji) ∼

L
∑

ℓ=1

K
∑

k=1

(Msℓ + γ /L)

(

Nℓk + α/K
∑

k′ Nℓk′ + α

)

fℓk(wji, vji)δ(oji, ℓ)δ(zji, k).

(d) Add feature (wji, vji) to the cached statistics for its new object and part:

Msℓ ← Msℓ + 1, ℓ = oji,

Nℓk ← Nℓk + 1, k = zji,

Ckw ← Ckw + 1, w = wji,

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊕ (vji − ρjℓ
(t−1)).

2. Fix (oj
(t), zj

(t)) = (oj , zj ), and sample a new reference transformation ρj
(t) as follows:

(a) Remove ρj
(t−1) from cached transformation statistics for scene s:

(ζ̂s, Υ̂s) ← (ζ̂s, Υ̂s) ⊖ ρj
(t−1).

(b) Sample ρj
(t) ∼ N (χj ,Ξj ), a posterior distribution determined via (52) from the prior N (ρj ; ζ̂s, Υ̂s), cached part

statistics {μ̂k, Λ̂k}
K
k=1, and feature positions vj .

(c) Add ρj
(t) to cached transformation statistics for scene s:

(ζ̂s, Υ̂s) ← (ζ̂s, Υ̂s) ⊕ ρj
(t).

3. For each i ∈ {1, . . . ,Nj }, update cached statistics for part k = zji as follows:

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊖ (vji − ρjℓ
(t−1)),

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊕ (vji − ρjℓ
(t)),

ℓ = oji .

Algorithm 3 Rao–Blackwellized Gibbs sampler for the fixed-order

visual scene model of Fig. 12. We illustrate the sequential resampling

of all object and part assignments (oj , zj ) in the j th training image,

as well as that image’s coordinate frame ρj . A full iteration of the

Gibbs sampler applies these updates to all images in random order.

For efficiency, we cache and recursively update statistics {ζ̂s , Υ̂s}
S
s=1

of each scene’s reference transformations, counts Msℓ, Nℓk of the fea-

tures assigned to each object and part, and statistics {Ckw, μ̂k, Λ̂k}
K
k=1

of those features’ appearance and position. The ⊕ and ⊖ operators

update cached mean and covariance statistics as features are added or

removed from parts (see Sect. 12.1)
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Figure 13 Directed graphical representations of a transformed Dirich-

let process (TDP) mixture model. Left: Each group is assigned an

infinite discrete distribution Gj ∼ DP(α,G0), which is sampled from a

global distribution G0(θ, ρ) over transformations ρ of cluster parame-

ters θ . Observations vji are then sampled from transformed parameters

τ(θ̄ji; ρ̄ji). Center: Illustration using 2D spatial data. G0 is composed

of 2D Gaussian distributions (green covariance ellipses), and corre-

sponding Gaussian priors (blue dashed ellipses) on translations. The

observations vj in each of three groups are generated by transformed

Gaussian mixtures Gj . Right: Chinese restaurant franchise represen-

tation of the TDP. Each group j has infinitely many local clusters

(tables) t , which are associated with a transformation ρj t ∼ Q(ϕoj t
)

of some global cluster (dish) oj t ∼ β . Observations (customers) vji

are assigned to a table tji ∼ π̃ j , and share that table’s transformed

(seasoned) global cluster τ(θzji
;ρj tji

), where zji = oj tji

clusters via a set of group-specific stochastic transforma-

tions. As we later demonstrate, this allows us to model richer

datasets in which only a subset of the global clusters’ prop-

erties are naturally shared.

7.2 Gibbs Sampling for Transformed Dirichlet Processes

To develop computational methods for learning transformed

Dirichlet processes, we generalize the HDP’s Chinese

restaurant franchise representation (Teh et al. 2006). As in

Sect. 4.2, customers (observations) vji sit at tables tji ac-

cording to the clustering bias of (13), and new tables choose

dishes via their popularity across the franchise (see (14)). As

shown in Fig. 13, however, the dish (parameter) θoj t
at table

t is now seasoned (transformed) according to ρj t ∼ Q(ϕoj t
).

Each time a dish is ordered, the recipe is seasoned dif-

ferently, and each dish θℓ has different typical seasonings

Q(ϕℓ).

While the HDP Gibbs sampler of Sect. 4.3 associated a

single reference transformation with each image, the TDP

instead describes groups via a set of randomly transformed

clusters. We thus employ three sets of state variables: as-

signments t of observations to tables (transformed clusters),

assignments o of tables to global clusters, and the transfor-

mations ρ associated with each occupied table. As summa-

rized in Algorithm 4, the cluster weights β , π̃ j are then

analytically marginalized.

In the TDP, each global cluster ℓ combines transforma-

tions with different likelihood parameters θℓ. Thus, to ade-

quately explain the same data with a different cluster oj t , a

complementary change of ρj t is typically required. For this

reason, Algorithm 4 achieves much more rapid convergence

via a blocked Gibbs sampler which simultaneously updates

(oj t , ρj t ). See Sect. 12.3 for discussion of the Gaussian

integrals which make this tractable. Finally, note that the

TDP’s concentration parameters have intuitive interpreta-

tions: γ controls the expected number of global clusters,

while α determines the average number of transformed clus-

ters in each group. As in the HDP sampler, Algorithm 4

uses auxiliary variable methods (Escobar and West 1995;

Teh et al. 2006) to learn these statistics from training data.

7.3 A Toy World: Bars and Blobs

To provide intuition for the TDP, we consider a toy world

in which “images” depict a collection of two-dimensional

points. As illustrated in Fig. 14, the training images we con-

sider typically depict one or more diagonally oriented “bars”

in the upper right, and round “blobs” in the lower left. As in

more realistic datasets, the exact locations of these “objects”

vary from image to image. We compare models learned

by the TDP Gibbs sampler of Algorithm 4 and a corre-

sponding HDP sampler. Both models use Gaussian clusters

θℓ = (μℓ,Λℓ) with vague normal-inverse-Wishart priors H .

For the TDP, transformations ρ then define translations of
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Given previous table assignments tj
(t−1) for the Nj observations in group j , and transformations ρj

(t−1) and global cluster

assignments oj
(t−1) for that group’s Tj tables:

1. Set tj = tj
(t−1), oj = oj

(t−1), ρj = ρj
(t−1), and sample a random permutation τ(·) of {1, . . . ,Nj }. For each i ∈

{τ(1), . . . , τ (Nj )}, sequentially resample data assignment tji as follows:

(a) Decrement Nj tj i
, and remove vji from the cached statistics for its current cluster ℓ = oj tj i

:

(μ̂ℓ, Λ̂ℓ) ← (μ̂ℓ, Λ̂ℓ) ⊖ (vji − ρj tj i
).

(b) For each of the Tj instantiated tables, determine the predictive likelihood

ft (vji) = N (vji − ρj t ; μ̂ℓ, Λ̂ℓ), ℓ = oj t .

(c) For each of the L instantiated global clusters, determine the marginal likelihood

gℓ(vji) = N (vji; μ̂ℓ + ζ̂ℓ, Λ̂ℓ + Υ̂ℓ).

Also determine the marginal likelihood gℓ̄(vji) of a potential new global cluster ℓ̄.

a) Sample a new table assignment tji from the following (Tj + 1)-dim. multinomial distribution:

tji ∼

Tj
∑

t=1

Nj tft (vji)δ(tji, t) +
α

γ +
∑

ℓ Mℓ

[

L
∑

ℓ=1

Mℓgℓ(vji) + γgℓ̄(vji)

]

δ(tji, t̄).

(e) If tji = t̄ , create a new table, increment Tj , and sample

oj t̄ ∼

L
∑

ℓ=1

Mℓgℓ(vji)δ(oj t̄ , ℓ) + γgℓ̄(vji)δ(oj t̄ , ℓ̄).

If oj t̄ = ℓ̄, create a new global cluster and increment L.

(f) If tji = t̄ , also sample ρj t̄ ∼ N (χj t̄ ,Ξj t̄ ), a posterior distribution determined via (57) from the prior N (ρj t̄ ; ζ̂ℓ, Υ̂ℓ)

and likelihood N (vji; μ̂ℓ + ρj t̄ , Λ̂ℓ), where ℓ = oj t̄ .

(g) Increment Nj tj i
, and add vji to the cached statistics for its new cluster ℓ = oj tj i

:

(μ̂ℓ, Λ̂ℓ) ← (μ̂ℓ, Λ̂ℓ) ⊕ (vji − ρj tj i
).

2. Fix tj
(t) = tj . If any tables are empty (Nj t = 0), remove them and decrement Tj .

3. Sample a permutation τ(·) of {1, . . . , Tj }. For each t ∈ {τ(1), . . . , τ (Tj )}, jointly resample (oj t , ρj t ):

(a) Decrement Moj t
, and remove all data at table t from the cached statistics for cluster ℓ = oj t :

(μ̂ℓ, Λ̂ℓ) ← (μ̂ℓ, Λ̂ℓ) ⊖ (v − ρj t ) for each v ∈ vt � {vji |tji = t}.

a) For each of the L instantiated global clusters and a potential new cluster ℓ̄, determine the marginal likelihood gℓ(vt )

via the Gaussian computations of (58).

(c) Sample a new cluster assignment oj t from the following (L + 1)-dim. multinomial distribution:

oj t ∼

L
∑

ℓ=1

Mℓgℓ(vt )δ(oj t , ℓ) + γgℓ̄(vt )δ(oj t , ℓ̄).

If oj t = ℓ̄, create a new global cluster and increment L.

Algorithm 4 Gibbs sampler for the TDP mixture model of

Fig. 13. For efficiency, we cache and recursively update statistics

{μ̂ℓ, Λ̂ℓ, ζ̂ℓ, Υ̂ℓ}
L
ℓ=1 of each global cluster’s associated data and refer-

ence transformations, and counts of the number of tables Mℓ assigned

to each cluster, and observations Nj t to each table. The ⊕ and ⊖ oper-

ators update cached mean and covariance statistics (see Sect. 12.1)
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(d) Sample a new transformation ρj t ∼ N (χj t ,Ξj t ), a posterior distribution determined via (57) from the prior

N (ρj t ; ζ̂ℓ, Υ̂ℓ) and likelihood N (v; μ̂ℓ + ρj t , Λ̂ℓ), where ℓ = oj t̄ and v ∈ vt .

(e) Increment Moj t
, and add all data at table t to the cached statistics for cluster ℓ = oj t :

(μ̂ℓ, Λ̂ℓ) ← (μ̂ℓ, Λ̂ℓ) ⊕ (v − ρj t ) for each v ∈ vt .

4. Fix oj
(t) = oj , ρj

(t) = ρj . If any global clusters are unused (Mℓ = 0), remove them and decrement L.

5. Given gamma priors, resample concentration parameters γ and α using auxiliary variables (Escobar and West 1995;

Teh et al. 2006).

Algorithm 4 (continued)

Figure 14 Learning HDP and TDP models from toy 2D spatial data.

Left: Eight of fifty training “images” containing diagonally oriented

bars and round blobs. Upper right: Global distribution G0(θ, ρ) over

Gaussian clusters (solid) and translations (dashed) learned by the TDP

Gibbs sampler. Lower right: Global distribution G0(θ) over the much

larger number of Gaussian clusters (intensity proportional to probabil-

ity βℓ) learned by the HDP Gibbs sampler

global cluster means, as in Sect. 3.1, and R is taken to be

an inverse-Wishart prior on zero-mean Gaussians. For both

models, we run the Gibbs sampler for 100 iterations, and

resample concentration parameters at each iteration.

As shown in Fig. 14, the TDP sampler learns a global

distribution G0(θ, ρ) which parsimoniously describes these

images via translations of two bar and blob-shaped global

clusters. In contrast, because the HDP models absolute fea-

ture positions, it defines a large set of global clusters which

discretize the range of observed object positions. Because a

smaller number of features are used to estimate the shape of

each cluster, they less closely approximate the true shapes

of bars and blobs. More importantly, the HDP model cannot

predict the appearance of these objects in new image posi-

tions. We thus see that the TDP’s use of transformations is

needed to adequately transfer information among different

object instances, and generalize to novel spatial scenes.

7.4 Characterizing Transformed Distributions

Recall that the global measure G0 underlying the TDP

(see (20)) defines a discrete distribution over cluster para-

meters θℓ. In contrast, the distributions Q(ϕℓ) associated

with transformations of these clusters are continuous. Each

group j will thus create many copies θ̃j t of global cluster θℓ,

but associate each with a different transformation ρj t . Ag-

gregating the probabilities assigned to these copies, we can

directly express Gj in terms of the distinct global cluster

parameters:

Gj (θ, ρ) =

∞
∑

ℓ=1

πjℓδ(θ, θℓ)

[

∞
∑

s=1

ωjℓsδ(ρ, ρ̌jℓs)

]

,

πjℓ =
∑

t |oj t=ℓ

π̃j t .

(23)
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In this expression, we have grouped the infinite set of

transformations which group j associates with each global

cluster ℓ:

{ρ̌jℓs |s = 1,2, . . .} = {ρj t |oj t = ℓ}. (24)

The weights ωjℓ = (ωjℓ1,ωjℓ2, . . .) then equal the propor-

tion of the total cluster probability πjℓ contributed by each

transformed cluster π̃j t satisfying oj t = ℓ. The following

proposition provides a direct probabilistic characterization

of the transformed measures arising in the TDP.

Proposition Let G0(θ, ρ) be a global measure as in (20),

and Gj (θ, ρ) ∼ DP(α,G0(θ, ρ)) be expressed as in (23).

The marginal distributions of Gj with respect to parameters

and transformations then also follow Dirichlet processes:

Gj (θ) ∼ DP(α,G0(θ)), G0(θ) =

∞
∑

ℓ=1

βℓδ(θ, θℓ), (25)

Gj (ρ) ∼ DP(α,G0(ρ)), G0(ρ) =

∞
∑

ℓ=1

βℓQ(ϕℓ). (26)

Alternatively, given any discrete parameter θℓ from the

global measure, we have

Gj (ρ|θ = θℓ) ∼ DP(αβℓ,Q(ϕℓ)). (27)

The weights assigned to transformations of θℓ thus follow a

stick-breaking process ωjℓ ∼ GEM(αβℓ).

Proof See Sect. 6.2.2 of the doctoral thesis (Sudderth

2006). �

Examining (25), we see that the TDP induces discrete mar-

ginal distributions on parameters exactly like those arising

in the HDP (Teh et al. 2006). The HDP can thus be seen

as a limiting case of the TDP in which transformations are

insignificant or degenerate.

As the concentration parameter α becomes a large, a

Dirichlet process DP(α,H) approaches the base measure

H by distributing small weights among a large number of

discrete samples (see Sect. 4.1). The result in (27) thus

shows that parameters θℓ with small weight βℓ will also

have greater variability in their transformation distributions,

because (on average) they are allocated fewer samples. In-

tuitively, the concentration parameters {αβℓ}
∞
ℓ=1 associated

with transformations of all global clusters sum to α, the

overall concentration of Gj about G0.

7.5 Dependent Dirichlet Processes

The HDP is a special case of a very general dependent

Dirichlet process (DDP) (MacEachern 1999) framework for

introducing dependency among multiple DPs. DDPs have

been previously used to model spatial data, by using a sin-

gle “global” stick-breaking process to mix an infinite set of

Gaussian processes (Gelfand et al. 2005) or linear (ANOVA)

models (De Iorio et al. 2004). However, applied to the spa-

tial data considered in this paper, these approaches would

learn feature models which depend on absolute image co-

ordinates. As discussed in Sect. 3.1, such approaches are

poorly matched to the structure of visual scenes.

Viewing cluster parameters and transformations as one

augmented parameter vector, TDPs are also a special case

of the DDP framework. However, this perspective obscures

the interplay between the discrete and continuous portions

of the TDP base measure, and the manner in which transfor-

mations modify parameters to achieve a very rich class of

dependencies.

8 Modeling Scenes with Unknown Numbers of Objects

The transformed Dirichlet process developed in Sect. 7

defines global clusters via a parametric, exponential fam-

ily F(θ). As suggested by the toy example of Fig. 14,

this approach could be directly used to construct simple,

weakly structured models of object geometry (Sudderth et

al. 2006b). However, realistic objects have complex inter-

nal structure, and significant local appearance variations. We

thus extend the basic TDP of Fig. 13 to learn richer, part-

based models for object categories.

8.1 Transformed DP Models for Objects and Parts

As in the single-object HDP of Sect. 4.2, each part θℓk =

(ηℓk,μℓk,Λℓk) of object category ℓ has a Gaussian position

distribution N (μℓk,Λℓk), and a multinomial appearance

distribution ηℓk . Letting H = Hw × Hv denote a prior mea-

sure on part parameters, Fℓ ∼ DP(κ,H) is then an infinite

discrete measure representing the potentially infinite set of

parts underlying the ℓth visual category:

Fℓ(θ) =

∞
∑

k=1

εℓkδ(θ, θℓk),

εℓ ∼ GEM(κ), (ηℓk,μℓk,Λℓk) = θℓk ∼ H.

(28)

The Gaussian parameters (μℓk,Λℓk) associated with each

part model feature positions in an object-centered coordi-

nate frame. In the visual scenes considered by Sect. 9, we

expect there to be little direct overlap in the appearance of

different categories. For simplicity, (28) thus describes cat-

egories using independent parts, rather than hierarchically

sharing parts as in Sect. 4.2.

The TDP model of Sect. 7.1 employed a global measure

G0 modeling transformations ρ of an infinite set of cluster
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Figure 15 TDP model for 2D

visual scenes (left), and cartoon

illustration of the generative

process (right). Global mixture

G0 describes the expected

frequency and image position of

visual categories, whose internal

structure is represented by

part-based appearance models

{Fℓ}
∞
ℓ=1. Each image

distribution Gj instantiates a

randomly chosen set of objects

at transformed locations ρ.

Image features with appearance

wji and position vji are then

sampled from transformed

parameters τ(θ̄ji; ρ̄ji)

corresponding to different parts

of object ōji . The cartoon

example defines three

color-coded object categories,

which are composed of one

(blue), two (green), and four

(red) Gaussian parts,

respectively. Dashed ellipses

indicate transformation priors

for each category

parameters. Generalizing this construction, we allow infi-

nitely many potential visual categories o, and characterize

transformations of these part-based models as follows:

G0(o,ρ) =

∞
∑

ℓ=1

βℓδ(o, ℓ)q(ρ|ϕℓ),

β ∼ GEM(γ ), ϕℓ ∼ R.

(29)

In this distribution, the random variable o indicates the part-

based model, as in (28), corresponding to some category.

The appearance of the j th image is then determined by a set

of randomly transformed objects Gj ∼ DP(α,G0), so that

Gj (o,ρ) =

∞
∑

t=1

π̃j tδ(o, oj t )δ(ρ,ρj t ),

π̃ j ∼ GEM(α), (oj t , ρj t ) ∼ G0.

(30)

In this expression, t indexes the set of object instances

in image j , which are associated with visual categories oj t .

Each of the Nj features in image j is independently sampled

from some object instance tji ∼ π̃ j . This can be equiva-

lently expressed as (ōji, ρ̄ji) ∼ Gj , where ōji is the global

category corresponding to an object instance situated at

transformed location ρ̄ji . Finally, parameters corresponding

to one of this object’s parts generate the observed feature:

(η̄ji, μ̄ji, Λ̄ji) = θ̄ji ∼ Fōj i
, wji ∼ η̄ji,

vji ∼ N (μ̄ji + ρ̄ji, Λ̄ji).
(31)

In later sections, we let kji ∼ εōj i
indicate the part underly-

ing the ith feature. Focusing on scale-normalized datasets,

we again associate transformations with image-based trans-

lations.

The hierarchical, TDP scene model of Fig. 15 employs

three different stick-breaking processes, allowing uncer-

tainty in the number of visual categories (GEM(γ )), parts

composing each category (GEM(κ)), and object instances

depicted in each image (GEM(α)). It thus generalizes the

parametric model of Fig. 12, which assumed fixed, known

sets of parts and objects. As κ → 0, each category uses a

single part, and we recover a variant of the simpler TDP

model of Sect. 7.1. Interestingly, if α → 0 and transforma-

tions are neglected, we recover a single-object model related

to the recently (and independently) developed nested Dirich-

let process (Rodriguez et al. 2006).

8.2 Gibbs Sampling for TDP Models of Visual Scenes

To learn the parameters of the visual scene model depicted

in Fig. 15, we generalize the TDP Gibbs sampler of Al-

gorithm 4. We maintain a dynamic list of the instantiated

object instances t in each image j , representing each in-

stance by a transformation ρj t of global visual category oj t .

Each feature (wji, vji) is then assigned to a part kji of some

instance tji . Via blocked Gibbs resampling of these four sets

of variables (o,ρ, t,k), we then simultaneously segment and

recognize objects.

Section 12.4 describes the form of this sampler in more

detail. In the first stage, we fix the object instances (oj ,ρj )
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in each image and jointly resample the part and instance

(kji, tji) assigned to each feature. The resulting updates

combine aspects of our earlier TDP (Algorithm 4, steps 1–2)

and fixed-order scene (Algorithm 3, step 1) Gibbs samplers.

In the second stage, we fix assignments tj of features to

object instances, effectively segmenting images into inde-

pendent objects. We may then jointly resample the location

ρj t , visual category oj t , and part assignments {kji |tji = t}

associated with each table by adapting the single-object

HDP sampler of Algorithms 1–2. Note that this second

stage approximates the infinite set of potential parts for cat-

egory ℓ (see (28)) by the Kℓ parts to which at least one

feature is currently assigned. This can be seen as a dynamic

version of the stick-breaking truncations underlying certain

other DP sampling algorithms (Ishwaran and James 2001;

Rodriguez et al. 2006).

9 Street and Office Scenes

To evaluate our hierarchical models for multiple object

scenes, we use the two datasets depicted in Fig. 4. The

first set contains 613 street scenes depicting four “objects”:

buildings, cars (side views), roads, and trees. To align with

the assumptions underlying our 2D scene models, images

were normalized so that cars appear at comparable scales.

As shown in Fig. 4, some of these street scenes have labels

for all four categories, while others are only partially seg-

mented. The second dataset includes 315 pictures of office

scenes containing four objects: computer screens (frontal

views), keyboards, mice, and background clutter. In this

case, images were normalized so that computer screens ap-

peared at comparable scales, and all object instances were

labeled.

For both datasets, we represent training and test images

by the three types of interest regions described in Sect. 2.1.

We estimated a separate appearance dictionary for each

dataset, which after expansion to encode region shape (see

Sect. 2.2) contained W = 1600 visual words.

9.1 Fixed-Order Scene Models

We begin by examining the fixed-order visual scene model

of Fig. 12, and learn parameters via the Gibbs sampler of

Algorithm 3. For training, we used 400 street scenes and

250 office scenes; the remaining images then provide a seg-

mented test set. To estimate model parameters, we first ran

the Gibbs sampler for 500 iterations using only the training

images. We incorporate manual segmentations by fixing the

object category assignments oji of labeled features. For un-

labeled features, object assignments are left unconstrained,

and sampled as in Algorithm 3. Each scene model used

thirty shared parts, and Dirichlet precision parameters set

as γ = 4, α = 15 via cross-validation. The position prior

Hv weakly favored parts covering 10% of the image range,

while the appearance prior Dir(W/10) was biased towards

sparse distributions.

9.1.1 Visualization of Learned Parts

Figure 16 illustrates learned, part-based models for street

and office scenes. Although objects share a common set

of parts within each scene model, we can approximately

count the number of parts used by each object by thresh-

olding the posterior part distributions πℓ. For street scenes,

cars are allocated roughly four parts, while buildings and

roads use large numbers of parts to uniformly tile regions

corresponding to their typical size. Several parts are shared

Figure 16 Learned contextual,

fixed-order models for street

scenes (left) and office scenes

(right), each containing four

objects. Top: Gaussian

distributions over the positions

of other objects given the

location of the car (left) or

computer screen (right).

Bottom: Parts (solid) generating

at least 5% of each category’s

features, with intensity

proportional to probability. Parts

are translated by that object’s

mean position, while the dashed

ellipses indicate each object’s

marginal transformation

covariance
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between the tree and building categories, presumably due to

the many training images in which buildings are only par-

tially occluded by foliage. The office scene model describes

computer screens with ten parts, which primarily align with

edge and corner features. Due to their smaller size, key-

boards are described by five parts, and mice by two. The

background clutter category then uses several parts, which

move little from scene to scene, to distribute features across

the image. Most parts are unshared, although the screen and

keyboard categories reuse a few parts to describe edge-like

features.

Figure 16 also illustrates the contextual relationships

learned by both scene models. Intuitively, street scenes have

a vertically layered structure, while in office scenes the

keyboard is typically located beneath the monitor, and the

mouse to the keyboard’s right.

9.1.2 Segmentation of Novel Visual Scenes

To analyze test images, we fix the part and object assign-

ments corresponding to the final Gibbs sampling iteration

on the training set. To avoid local optima, we then run the

test image Gibbs sampler for 20 iterations from each of

ten different random initializations. Given reference trans-

formations sampled in this fashion, we use (50) to estimate

the posterior probability that test features were generated by

each candidate object category. Averaging these probabil-

ities provides a confidence-weighted segmentation, which

we illustrate by fading uncertain features to gray.

Figure 17 shows segmentations for several typical test

street scenes, and transformed parts from the highest like-

lihood sampling iteration. Segmentations of building and

road features are typically very accurate, as the contextual

model learns the vertical layering inherent in street scenes.

Figure 17 Feature segmentations produced by a contextual, fixed-

order model of street scenes containing cars (red), buildings (magenta),

roads (blue), and trees (green). For five test images (second row), we

compare segmentations which assign features to the most probable

object category for the contextual model (third row) and a baseline

bag of features model (first row). We also show model parts translated

according to each image’s reference transformation (fourth row), and

color-coded assignments of features to the different parts associated

with cars (fifth row)
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Figure 18 Feature segmentations produced by a contextual, fixed-

order model of office scenes containing computer screens (red),

keyboards (green), mice (blue), and background clutter (gray). For

six test images (second row), we compare segmentations which assign

features to the most probable object category for the contextual model

(third row) and a baseline bag of features model (first row). We also

show model parts translated according to each image’s reference trans-

formation (fourth row), and color-coded assignments of features to the

different parts associated with computer screens (fifth row)

Note that a number of test images violate our parametric

model’s assumption that scenes depict a single instance of

each object. To partially correct for this, the model learns

horizontally elongated car parts which extend beyond an

average car. Although this better segments adjacent cars,

nearby background clutter is often mislabeled. In images

containing widely separated cars, one car is usually missed

entirely. The assumption that every image contains one tree

is also problematic, since some features are typically classi-

fied as foliage even when no trees are present.

Figure 18 shows similar segmentation results for office

scenes. Because most test images do indeed contain a single

computer screen, the model’s use of a fixed-order trans-

formation causes fewer errors for office scenes. Contextual

information is especially important for detecting computer

mice (see Fig. 18). Very few features are detected in the

region corresponding to the mouse, and they are often not

distinctive. However, as screens can be reliably located, this

provides a strong constraint on the expected location of the

mouse. In fact, for test images in which no mouse is present

the system often hallucinates one in other appropriately po-

sitioned clutter.

For comparison, Figs. 17 and 18 also show segmentation

results for a bag of features model (Sivic et al. 2005), derived

from the full contextual model of Fig. 12 by ignoring feature

positions, and thus reference transformations. As confirmed

by the ROC curves of Fig. 19, the appearance-only model is
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Figure 19 ROC curves summarizing segmentation performance for

the features composing street scenes (left) and office scenes (right).

We compare the full TDP scene model of Fig. 15 (solid, colored) to

a simplified, single-part TDP model (dashed, colored), a fixed-order

contextual scene model (dash-dotted, black) as in Fig. 12, and a base-

line bag of features model (dotted, black)

significantly less accurate for all categories except trees. For

street scenes, the full, position-based model recognizes car

features reasonably well despite employing a single refer-

ence position, and roads are very accurately segmented. For

office scenes, it exploits contextual relationships to detect

mice and keyboards with accuracy comparable to the more

distinctive computer screens. These improvements highlight

the importance of spatial structure in visual scene under-

standing.

9.2 Transformed Dirichlet Process Scene Models

We now examine our TDP scene models via the training and

test images used to evaluate the fixed-order model. To esti-

mate model parameters, we first ran the Gibbs sampler of

Sect. 8.2 for 500 training iterations using only those fea-

tures with manually specified object category labels. For

street scenes, we then ran another 100 Gibbs sampling itera-

tions using all features. Empirically, this sequential training

converges faster because it initializes visual categories with

cleanly segmented objects. For each dataset, we compare

the full TDP scene model of Fig. 15 to a simplified model

which constrains each category to a single part (Sudderth et

al. 2006b). This single-part TDP is similar to the model in

Fig. 13, except that visual categories also have multinomial

appearance distributions.

During training, we distinguish the manually labeled ob-

ject categories from the visual categories composing the

TDP’s global distribution G0. We restrict the Gibbs sam-

pler from assigning different objects to the same visual

category, but multiple visual categories may be used to de-

scribe different forms of a particular object. When learning

TDP scene models, we also distinguish rigid objects (e.g.,

computer screens, keyboards, mice, and cars) from textural

objects such as buildings, roads, trees, and office clutter. For

rigid objects, we restrict all features composing each labeled

training instance to be associated with the same transformed

global cluster. This constraint, which is enforced by fixing

the table assignments tji for features of rigid objects, en-

sures that the TDP learns descriptions of complete objects

rather than object pieces. For textural categories, we allow

the sampler to partition labeled training regions into trans-

formed object instances, and thus automatically discover

smaller regions with consistent, predictable structure.

One of the strengths of the TDP is that the learning

process is reasonably insensitive to the particular values

of the hyperparameters. The prior distribution H charac-

terizing object parts was set as in Sect. 9.1, while the

inverse-Wishart transformation prior R weakly favored

zero-mean Gaussians covering the full image range. The

concentration parameters defining the numbers of visual

categories γ ∼ Gamma(1.0,0.1) and parts per category

κ ∼ Gamma(1.0,0.1) were then assigned vague gamma

priors, and resampled during the learning process. To en-

courage the learning of larger global clusters for textural

categories, the concentration parameter controlling the num-
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ber of object instances was more tightly constrained as

α ∼ Gamma(1.0,1.0).

9.2.1 Visualization of Learned Parts

Figure 20 illustrates the global, visual categories that were

learned from the dataset of street scenes. The single-part

TDP uses compact global categories, and many transformed

object instances, to more uniformly spread features across

the image. Buildings, roads, and trees are each split into

several visual categories, which describe different character-

istic structural features. The full TDP scene model creates a

more detailed, 9-part car appearance model. It also learns

extended, multiple-part models of the large building and

road regions which appear in many training images. The

full part-based model thus captures some of the coarse-scale

structure of street scenes, while the simpler single-part TDP

is limited to modeling local feature dependencies.

As shown in Fig. 21, the single-part TDP model of office

scenes is qualitatively similar to the street scene model: im-

ages are described by large numbers of compact transformed

clusters. The multiple-part TDP, however, reveals interesting

differences in the global structure of these scene categories.

Due to their internal regularities, computer screens and key-

boards are each described by detailed visual categories with

many parts. To model background clutter, the TDP learns

several small clusters of parts which uniformly distribute

features within image regions. Because the TDP currently

lacks an explicit occlusion model, it also defines a frame-

like visual category which captures the background features

often found at image boundaries.

9.2.2 Segmentation of Novel Visual Scenes

To analyze test images, we fix the part and object assign-

ments from the final training Gibbs sampling iteration, and

then run the test image Gibbs sampler for 50 iterations from

each of ten initializations. Given the transformed object in-

stances created at each test iteration, we use (59) to estimate

the posterior probability that test features were generated by

each category, and average the probabilities from different

samples to produce segmentations.

Figure 22 illustrates feature segmentations for several

typical test street scenes, and transformed object instances

corresponding to one iteration of the Gibbs sampler. In con-

trast with the fixed-order model of Sect. 6, TDPs allow each

object category to occur at multiple locations within a single

image. This allows the TDP to correctly find multiple cars

in several scenes where the fixed-order model only detects

a single car. Conversely, because the TDP does not model

object relationships, it sometimes incorrectly detects cars

in textured regions of buildings. The fixed-order model’s

contextual Gaussian prior suppresses these false alarms by

forcing cars to lie beneath buildings.

We show similar segmentation results for office scenes

in Fig. 23. Computer screens are typically reliably detected,

particularly by the multiple-part TDP model. Perhaps sur-

prisingly, mice are also detected with reasonable accuracy,

although there are more false alarms than with the con-

textual model. In addition to accurately segmenting screen

features, the part-based TDP model correctly associates a

single transformed object cluster with most screen instances.

In contrast, the weaker appearance model of the single-

part TDP causes it to create several transformed clusters for

many computer screens, and thereby incorrectly label adja-

cent background features.

As confirmed by the ROC curves of Fig. 19, both TDP

models improve significantly on the bag of features model.

For large, rigid objects like computer screens and keyboards,

including parts further increases recognition performance.

The two TDP models perform similarly when segmenting

cars, perhaps due to their lower typical resolution. However,

the street scene interpretations illustrated in Fig. 22 show

that the part-based TDP does a better job of counting the

true number of car instances depicted in each image. While

including parts leads to more intuitive global models of tex-

tural categories, for these simple datasets it does not improve

segmentation accuracy.

Comparing the TDP’s performance to the fixed-order

scene model (see Fig. 19), we find that their complemen-

tary strengths are useful in different situations. For example,

the fixed-order model’s very strong spatial prior leads to im-

proved building and road detection, but worse performance

for the less structured features composing trees. The TDP

more cleanly segments individual cars from the background,

but also makes additional false alarms in contextually im-

plausible regions of buildings; the overall performance of

the two models is comparable. Mouse detection perfor-

mance is also similar, because the rigid contextual prior

cannot find mice which are not to the right of a computer

screen. For computer screens, however, the TDP’s allowance

for multiple instances, and creation of additional parts to

form a stronger appearance model, leads to significant per-

formance improvements. Finally, we emphasize that the

TDP also estimates the number of objects composing each

scene, a task which is beyond the scope of the fixed-order

model.

10 Discussion

The hierarchical models developed in this paper are de-

signed to capture the complex structure of multiple object

scenes. We provide a framework for integrating spatial re-

lationships with “bag of features” models, and show that

this leads to significant gains in recognition performance.

In addition, by coupling transformations with nonparametric
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Figure 20 Learned TDP models for street scenes containing cars

(red), buildings (magenta), roads (blue), and trees (green). Top: Sim-

plified, single-part TDP in which the shape of each visual category is

described by a single Gaussian (solid ellipses). We show the 11 most

common visual categories at their mean positions, and also plot their

transformation covariances (dashed ellipses). Bottom: Multiple-part

TDP in which the number of parts (solid ellipses, intensity proportional

to probability) underlying each category is learned automatically. We

again show the 11 most probable categories, and their Gaussian trans-

formation distributions (dashed ellipses)
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Figure 21 Learned TDP models for office scenes containing com-

puter screens (red), keyboards (green), mice (blue), and background

clutter (black). Left: Simplified, single-part TDP in which the shape

of each visual category is described by a single Gaussian (solid el-

lipses). We show the 7 most common visual categories at their mean

positions, and also plot their transformation covariances (dashed el-

lipses). Right: Multiple-part TDP in which the number of parts (solid

ellipses, intensity proportional to probability) underlying each category

is learned automatically. We show the 10 most probable categories, and

their Gaussian transformation distributions (dashed ellipses)

prior distributions, the transformed Dirichlet process (TDP)

allows us to reason consistently about the number of ob-

jects depicted in a given image. By addressing these issues

in a generative framework, we retain an easily extendable,

modular structure, and exploit partially labeled datasets.

Furthermore, our nonparametric approach leads to expres-

sive part-based models whose complexity grows as more

images are observed.

Interestingly, the pair of scene models analyzed by this

paper have complementary strengths. The fixed-order model

learns contextual relationships among object categories and

uses parts to describe objects’ internal structure, but assumes

that the number of parts and objects is known. In contrast,

the TDP models unknown numbers of visual categories,

object instances, and parts, but ignores contextual relation-

ships. Our experimental results suggest that a model which

balances the TDP’s flexibility with additional global struc-

ture would prove even more effective.

More generally, the TDP framework can accommodate

far richer classes of transformations. Natural candidates

include spatial rotation and scaling, and also appearance

transformations, which could be used to account for light-

ing or texture variations. In recent work building on this

paper, we developed a variant of the TDP which infers three-

dimensional scene structure from the predictable geometry

of known objects (Sudderth et al. 2006a). Nonparametric

methods may also play an important role in the design of
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Figure 22 Feature segmentations produced by TDP models of street

scenes containing cars (red), buildings (magenta), roads (blue), and

trees (green). We compare a simplified TDP model which describes

object shape via a single Gaussian cluster (top rows) to the full,

multiple-part TDP model (bottom rows) of Fig. 15. Row 4: Five test

images. Rows 3 & 5: Segmentations for each model, in which features

are assigned to the object category with the highest posterior proba-

bility. Rows 2 & 6: Parts corresponding to the objects instantiated at a

single Gibbs sampling iteration. Rows 1 & 7: Color-coded assignments

of features to different parts and instances of the car category
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Figure 23 Feature segmentations produced by TDP models of office

scenes containing computer screens (red), keyboards (green), mice

(blue), and background clutter (gray). We compare a simplified TDP

model which describes object shape via a single Gaussian cluster (top

rows) to the full, multiple-part TDP model (bottom rows) of Fig. 15.

Row 4: Six test images. Rows 3 & 5: Segmentations for each model,

in which features are assigned to the object category with the highest

posterior probability. Rows 2 & 6: Parts corresponding to the objects

instantiated at a single Gibbs sampling iteration (background clutter

not shown). Rows 1 & 7: Color-coded assignments of features to dif-

ferent parts and instances of the screen category
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models which share more expressive, multi-layer structures

among object categories.

Acknowledgements The authors thank Josh Tenenbaum, Daniel

Huttenlocher, and the anonymous reviewers for helpful suggestions.

This research supported in part by MURIs funded through AFOSR

Grant FA9550-06-1-0324 and ARO Grant W911NF-06-1-0076.

Appendix 1 Learning with Conjugate Priors

Let f (x|θ) denote a family of probability densities, para-

meterized by θ , and h(θ |λ) a corresponding prior for the

generative process. This prior is itself a member of some

family with hyperparameters λ. Such priors are conjugate

to f (x|θ) if, for any N independent observations {xi}
N
i=1

and hyperparameters λ, the posterior distribution remains in

the same family:

p(θ |x1, . . . , xN , λ) ∝ h(θ |λ)

N
∏

i=1

f (xi |θ) ∝ h(θ |λ̄). (32)

The posterior distribution is then compactly described by an

updated set of hyperparameters λ̄. Conjugate priors exist for

any regular exponential family f (x|θ) of probability distri-

butions (Gelman et al. 2004; Sudderth 2006), and lead to

efficient learning algorithms based on sufficient statistics of

observed data.

11.1 Dirichlet Analysis of Multinomial Observations

Let x be a discrete random variable taking one of K cate-

gorical values, and πk � Pr[x = k]. A set of N independent

samples {xi}
N
i=1 then follow the multinomial distribution:

p(x1, . . . , xN |π1, . . . , πK) =
N !

∏

k Ck!

K
∏

k=1

πk
Ck ,

Ck �

N
∑

i=1

δ(xi, k).

(33)

Counts Ck of the frequency of each category provide suf-

ficient statistics for maximum likelihood (ML) parameter

estimates π̂k = Ck/N . However, such unregularized esti-

mates may be inaccurate unless N ≫ K . The Dirichlet

distribution (Gelman et al. 2004) is the multinomial’s conju-

gate prior:

Dir(π;α) =
Ŵ(

∑

k αk)
∏

k Ŵ(αk)

K
∏

k=1

πk
αk−1, αk > 0. (34)

The Dirichlet’s mean is Eα[πk] = αk/α0, where α0 �
∑

k αk .

Its variance is inversely proportional to this precision para-

meter α0. We sometimes use Dir(α0) to denote a Dirichlet

prior with symmetric parameters αk = α0/K . When K = 2,

the Dirichlet is equivalent to the beta distribution (Gelman

et al. 2004).

Given N observations from a multinomial distribution

with Dirichlet prior π ∼ Dir(α), the parameters’ posterior

distribution is Dir(α1 + C1, . . . , αK + CK), where Ck are

counts as in (33). In the Monte Carlo algorithms developed

in this paper, the predictive likelihood of a new observation

x̄ ∼ f (x|π) is used to reassign visual features to objects or

parts:

p(x̄ = k|x1, . . . , xN , α) =

∫

�

f (x̄|π)p(π |x1, . . . , xN , α)dπ

=
Ck + αk

N + α0
. (35)

This prediction smooths the raw frequencies underlying

the ML estimate by the pseudo-counts contributed by the

Dirichlet prior. More generally, the predictive likelihood

of multiple categorical observations can be expressed as

a ratio of gamma functions (Griffiths and Steyvers 2004;

Gelman et al. 2004).

11.2 Normal-Inverse-Wishart Analysis of Gaussian

Observations

Consider a continuous-valued random variable x taking val-

ues in R
d . A Gaussian or normal distribution (Gelman et al.

2004) with mean μ and positive definite covariance matrix

Λ equals

N (x;μ,Λ)

=
1

(2π)d/2|Λ|1/2
exp

{

−
1

2
(x − μ)T Λ−1(x − μ)

}

. (36)

The sums of observations and their outer products, or equiv-

alently the sample mean and covariance, provide sufficient

statistics of Gaussian data. The conjugate prior for the co-

variance of a zero-mean Gaussian is the inverse-Wishart

W(ν,�), a multivariate extension of the scaled inverse-χ2

density (Gelman et al. 2004). Its strength is determined by

the degrees of freedom ν > d , interpreted as the size of a

pseudo-dataset with covariance �. If a Gaussian’s mean μ is

also uncertain, we take Λ ∼ W(ν,�) and μ ∼ N (ϑ,Λ/κ).

Here, ϑ is the expected mean, for which we have κ pseudo-

observations on the scale of observations x ∼ N (μ,Λ). The

resulting normal-inverse-Wishart prior (Gelman et al. 2004)

equals

NW(μ,Λ;κ,ϑ, ν,�)

∝ |Λ|−( ν+d
2 +1)

× exp

{

−
1

2
tr(ν�Λ−1) −

κ

2
(μ − ϑ)T Λ−1(μ − ϑ)

}

.

(37)
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Note that the mean and variance parameters (μ,Λ) are

dependent, so that means which differ significantly from

ϑ typically have larger associated variance (Gelman et al.

2004; Sudderth 2006).

Given N observations xi ∼ N (μ,Λ) from a Gaussian

with prior (μ,Λ) ∼ NW(κ,ϑ, ν,�), the posterior distrib-

ution is also normal-inverse-Wishart, with updated hyperpa-

rameters (κ̄, ϑ̄, ν̄, �̄):

κ̄ϑ̄ = κϑ +

N
∑

i=1

xi, κ̄ = κ + N, (38)

ν̄�̄ = ν� +

N
∑

i=1

xix
T
i + κϑϑT − κ̄ϑ̄ ϑ̄T , ν̄ = ν + N.

(39)

To robustly determine these posterior parameters, we cache

the observations’ sum (see (38)), and the Cholesky de-

composition of the sum of observation outer products

(see (39)). Marginalizing over posterior uncertainty in the

true Gaussian parameters, the predictive likelihood of a

new observation x̄ ∼ N (μ,Λ) is multivariate Student-t

with (ν̄ − d + 1) degrees of freedom (Gelman et al. 2004).

Assuming ν̄ ≫ d , this density is well approximated by a

moment-matched Gaussian (Sudderth 2006):

p(x̄|x1, . . . , xN , κ,ϑ, ν,�)

≈ N

(

x̄; ϑ̄,
(κ̄ + 1)ν̄

κ̄(ν̄ − d − 1)
�̄

)

. (40)

The predictive likelihood thus depends on regularized esti-

mates of the sample mean and covariance.

Appendix 2 Posterior Inference via Gibbs Sampling

This appendix provides partial derivations for the Gibbs

samplers used in earlier sections of this paper. Our al-

gorithms combine and generalize previous Monte Carlo

methods for Gaussian hierarchical models (Gelman et al.

2004), variants of LDA (Griffiths and Steyvers 2004; Rosen-

Zvi et al. 2004), DP mixtures (Escobar and West 1995;

Neal 2000), and the HDP (Teh et al. 2006).

12.1 Hierarchical Dirichlet Process Object Appearance

Model

We first examine the HDP object appearance model of

Sect. 4.2, and use the HDP’s Chinese restaurant franchise

representation (Teh et al. 2006) to derive Algorithms 1–2.

To avoid cumbersome notation, let zji = koj tj i
denote the

global part associated with feature (wji, vji). Note that zji

is uniquely determined by that feature’s table assignment

tji = t , and the corresponding table’s part assignment kℓt .

Table Assignment Resampling Consider the table assign-

ment tji for feature (wji, vji), given all other variables.

Letting t\ji denote all table assignments excluding tji , Fig. 5

implies that

p(tji |t\ji,k,w,v,o,ρ)

∝ p(tji |t\ji, oj )p(wji |t,k,w\ji)

× p(vji |t,k,v\ji,ρ). (41)

Because samples from the Dirichlet process are exchange-

able (Pitman 2002), we evaluate the first term by thinking

of tji as the last in a sequence of Nj observations, so that

it follows the Chinese restaurant franchise predictive rule of

(13). The second and third terms of (41) are the predictive

likelihood of the ith feature’s appearance wji and position

vji . For existing tables t , the appearance likelihood is deter-

mined via counts Ckw of the number of times each visual

word w is currently assigned to global part k = kℓt (see

Sect. 11.1). The position likelihood instead depends on sta-

tistics of the relative displacements of image features from

the current reference transformations:

p(vji |zji = k, t\ji,k,v\ji,ρ)

=

∫∫

Hv(μk,Λk)

×
∏

j ′i′|zj ′i′=k

N (vj ′i′; τ(μk,Λk;ρj ′))dμkdΛk

∝

∫∫

Hv(μk,Λk)

×
∏

j ′i′|zj ′i′=k

N (τ̃ (vj ′i′;ρj ′);μk,Λk)dμkdΛk. (42)

Here, the data transformation of (2) allows us to describe

all observations of part k in a common coordinate frame.

Because Hv is normal-inverse-Wishart, the predictive likeli-

hood of (42) is multivariate Student-t . We approximate this

via a Gaussian N (vji; μ̂k, Λ̂k), with parameters determined

via regularized moment-matching of transformed observa-

tions τ̃ (vji;ρj ) as in (40). For compactness, we define

(μ̂k, Λ̂k) ⊕ vji to be an operator which updates a normal-

inverse-Wishart posterior based on a new feature vji (see

(38, 39)). Similarly, (μ̂k, Λ̂k) ⊖ vji removes vji from the

posterior statistics of part k. Algorithm 1 uses these op-

erators to recursively update likelihood statistics as table

assignments and transformations change.

When computing the likelihood of new tables, Algo-

rithm 1 marginalizes over potential global part assign-

ments (Teh et al. 2006). If a new table is instantiated

(tji = t̄), we also choose a corresponding global part kℓt̄ .

Exchangeability again implies that this assignment is biased

by the number of other tables Mk assigned to each global

part, as in the Chinese restaurant franchise of (14).
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Reference Transformation Resampling Fixing all assign-

ments (t,k), each feature is associated with a unique global

part. While marginalization of part parameters (μk,Λk) im-

proves efficiency when resampling feature assignments, it

complicates transformation resampling. We thus employ an

auxiliary variable method (Neal 2000), and sample a single

position parameter from the posterior of each part associated

with at least one observation:

(μ̂k, Λ̂k) ∼ p(μk,Λk|{(vji − ρj )|zji = k}),

k = 1, . . . ,K. (43)

Sampling from these normal-inverse-Wishart distributions

(see Sect. 11.2) is straightforward (Gelman et al. 2004).

To determine the current transformation prior for object

category oj = ℓ, we similarly sample (ζ̂ℓ, Υ̂ℓ) given fixed

transformations {ρj ′ |oj ′ = ℓ} for all other images of ob-

ject ℓ.

Given these auxiliary part parameters, and assuming

transformations are chosen to translate image features as in

(3), the posterior distribution for transformation ρj factors

as follows:

p(ρj |oj = ℓ, t,k,v, {μ̂k, Λ̂k}
K
k=1, ζ̂ℓ, Υ̂ℓ)

∝N (ρj ; ζ̂ℓ, Υ̂ℓ)

K
∏

k=1

∏

i|zj i=k

N (vji − ρj ; μ̂k, Λ̂k). (44)

Reference transformations for other images induce a Gauss-

ian prior on ρj , while feature assignments in image j effec-

tively provide Gaussian observations. The posterior trans-

formation distribution is thus also Gaussian, with mean χj

and covariance Ξj expressed in information form (Gelman

et al. 2004):

Ξj
−1 = Υ̂ −1

ℓ +

K
∑

k=1

∑

i|zj i=k

Λ̂−1
k ,

Ξj
−1χj = Υ̂ −1

ℓ ζ̂ℓ +

K
∑

k=1

∑

i|zj i=k

Λ̂−1
k (vji − μ̂k).

(45)

Note that Ξj
−1 adds one multiple of Λ̂−1

k for each fea-

ture assigned to part k. After resampling ρj ∼ N (χj ,Ξj ),

the auxiliary part and transformation parameters are dis-

carded. Because our datasets have many training images,

these auxiliary variables are well approximated by modes

of their corresponding normal-inverse-Wishart posteriors.

For simplicity, Algorithm 1 thus directly uses the Gaussian

parameters implied by cached statistics when resampling

transformations.

Global Part Assignment Resampling We now consider the

assignments kℓt of tables to global parts, given fixed as-

sociations t between features and tables. Although each

category ℓ has infinitely many tables, we only explicitly

sample assignments for the Tℓ tables occupied by at least

one feature (Nℓt > 0). Because kℓt determines the part for

all features assigned to table t , its posterior distribution

depends on their joint likelihood (Teh et al. 2006). Let

wℓt = {wji |tji = t, oj = ℓ} denote the appearance features

for table t , and w\ℓt all other features. Defining vℓt and v\ℓt

similarly, we have

p(kℓt |k\ℓt , t,w,v,ρ)

∝ p(kℓt |k\ℓt )p(wℓt |t,k,w\ℓt )p(vℓt |t,k,v\ℓt ,ρ). (46)

Via exchangeability, the first term follows from the Chinese

restaurant franchise of (14). The joint likelihood of wℓt is

determined by those features assigned to the same part:

p(wℓt |kℓt = k, t,k\ℓt ,w\ℓt )

∝

∫

p(ηk|{wj ′i′ |zj ′i′ = k, tj ′i′ �= t})

×
∏

j,i|tj i=t

p(wji |ηk)dηk. (47)

As discussed in Sect. 11.1, this likelihood has a closed form

for conjugate Dirichlet priors. The likelihood of vℓt has a

similar form, except that part statistics are determined by

transformed feature positions as in (42). Evaluating these

likelihoods for each of the K currently instantiated parts, as

well as a potential new global part k̄, we may then resam-

ple kℓt as summarized in Algorithm 2.

Concentration Parameter Resampling The preceding sam-

pling equations assumed fixed values for the concentration

parameters γ and α defining the HDP’s stick-breaking pri-

ors (see (9, 10)). In practice, these parameters noticeably

impact the number of global and local parts learned by

the Gibbs sampler. As with standard Dirichlet process mix-

tures (Escobar and West 1995), it is thus preferable to choose

weakly informative gamma priors for these concentration

parameters. Auxiliary variable methods may then be used

to resample α and γ following each Gibbs iteration (Teh et

al. 2006).

Likelihoods for Object Detection and Recognition To use

our HDP object model for recognition tasks, we compute the

likelihood that a test image j is generated by each candidate

object category oj . Because images are independently sam-

pled from a common parameter set, we have

p(wj ,vj |oj ,J )

=

∫

p(wj ,vj |oj ,π , θ ,ϕ)p(π , θ,ϕ|J )dπdθdϕ.
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In this expression, J denotes the set of training images,

θ = {ηk,μk,Λk}
∞
k=1 the part position and appearance pa-

rameters, and ϕ = {ζℓ,Υℓ}
L
ℓ=1 the reference transformation

parameters. The Gibbs samplers of Algorithms 1 and 2

provide samples (t(a),k(a),ρ(a)) approximately distributed

according to p(t,k,ρ|J ). Given A such samples, we ap-

proximate the test image likelihood as

p(wj ,vj |oj ,J )

≈
1

A

A
∑

a=1

p(wj ,vj |oj ,π
(a), θ (a),ϕ(a)). (48)

Here, (π (a), θ (a),ϕ(a)) denote parameters sampled from the

posterior distributions induced by (t(a),k(a),ρ(a)), which

have simple forms (Sudderth 2006; Teh et al. 2006; Ishwaran

and James 2001).

In practice, we approximate the infinite stick-breaking

process of (7) by only sampling parameters for the K(a)

global parts to which (t(a),k(a)) assigns at least one feature.

Ignoring reference transformations, image features are then

conditionally independent:

p(wj ,vj |oj = ℓ,π (a), θ (a))

=

Nj
∏

i=1

K(a)
∑

k=1

π̂ℓk η̂k(wji)N (vji; μ̂k, Λ̂k). (49)

Here, θ (a) = {η̂k, μ̂k, Λ̂k}
K(a)

k=1 , and π̂ℓk indicates the total

weight assigned to global part k by the tables of object ℓ,

as in (11). This expression calculates the likelihood of Nj

features in O(NjK
(a)) operations. To account for reference

transformations, we run the Gibbs sampler of Algorithm 1

on the test image, and then average the feature likelihoods

implied by sampled transformations.

12.2 Fixed-Order Models for Objects and Scenes

In this section, we extend methods developed for the author-

topic model (Rosen-Zvi et al. 2004) to derive a Gibbs

sampler for the fixed-order visual scene model of Sect. 6.1.

A special case of this sampler, as summarized in Algo-

rithm 3, is also used for learning in the fixed-order, single

object model of Sect. 3.2.

To improve convergence, we develop a blocked Gibbs

sampler which jointly resamples the object oji and part

zji associated with each feature. Fixing transformations ρj ,

Fig. 12 implies that

p(oji, zji |o\ji, z\ji,w,v, s,ρ)

∝ p(oji |o\ji, sj )p(zji |z\ji, oji)p(wji |z,w\ji)

× p(vji |z,v\ji,o,ρ). (50)

Because βs ∼ Dir(γ ) is assigned a Dirichlet prior, (35)

shows that the first term depends on the number Msℓ of

features that o\ji assigns to object ℓ in images of scene s.

Similarly, because πℓ ∼ Dir(α), the second term depends

on the number Nℓk of features simultaneously assigned to

object ℓ and part k. Finally, the appearance and position like-

lihoods are identical to those in the HDP object model (see

Sect. 12.1), except that each object ℓ has its own reference

location ρjℓ. Note that features associated with different ob-

jects contribute to a common set of K shared parts.

We resample reference transformations ρj via an exten-

sion of the auxiliary variable method of Sect. 12.1. Given

sampled parameters for parts {μ̂k, Λ̂k}
K
k=1 and the 2L-dim.

reference prior distribution (ζ̂s, Υ̂s), the posterior distribu-

tion of ρj factors as follows:

p(ρj |sj = s,o, z,v, {μ̂k, Λ̂k}
K
k=1, ζ̂s, Υ̂s)

∝N (ρj ; ζ̂s, Υ̂s)

K
∏

k=1

∏

i|zj i=k

N (vji − ρjoj i
; μ̂k, Λ̂k). (51)

Each feature vji provides a Gaussian observation of the sub-

vector of ρj corresponding to its assigned object oji . Trans-

formations thus have a Gaussian posterior, with mean χj

and covariance Ξj :

Ξj
−1 = Υ̂ −1

sj
+ blkdiag

{

∑K
k=1

∑

i|zj i=k

oj i=1

Λ̂−1
k , . . . ,

∑K
k=1

∑

i|zj i=k

oj i=L

Λ̂−1
k

}

,

Ξj
−1χj = Υ̂ −1

sj
ζ̂sj

+

[

K
∑

k=1

∑

i|zj i=k

oj i=1

Λ̂−1
k (vji − μ̂k), . . . ,

K
∑

k=1

∑

i|zj i=k

oj i=L

Λ̂−1
k (vji − μ̂k)

]T

.

(52)

By caching statistics of features, we may then sample a

new reference transformation ρj ∼ N (χj ,Ξj ) in O(L3) op-

erations. As in Sect. 12.1, Algorithm 3 approximates the

auxiliary variables underlying this update by modes of the

Gaussian parameters’ normal-inverse-Wishart posteriors.

12.3 Transformed Dirichlet Process Mixtures

We now generalize the HDP Gibbs sampler of Sect. 12.1 to

learn parameters for the TDP mixture model of Sect. 7.1.

As summarized in Algorithm 4, we first fix assignments oj t

of tables to global clusters, and corresponding transforma-
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tions ρj t . From the graphical TDP representation of Fig. 13,

we have

p(tji |t\ji,o,v,ρ) ∝ p(tji |t\ji)p(vji |t,o,v\ji,ρ). (53)

As in the HDP Gibbs sampler of Sect. 12.1, the Chinese

restaurant process (see (13)) expresses the first term via the

number Nj t of other observations currently assigned to each

table. For existing tables, the likelihood term may then be

evaluated by using the data transformation τ̃ (vji;ρj tj i
) to

describe observations in a common coordinate frame. This

approach is analogous to (42), except that the TDP indexes

reference transformations by tables t rather than images j .

For new tables t̄ , we improve sampling efficiency by

integrating over potential assignments oj t̄ to global clus-

ters (Teh et al. 2006). As in Sects. 12.1 and 12.2, we assume

fixed transformation parameters ϕ̂ℓ and observation parame-

ters θ̂ℓ for each of the L instantiated global clusters; these

may either be sampled as auxiliary variables (Neal 2000), or

approximated by corresponding posterior modes. Marginal-

izing over transformations ρj t̄ , the overall likelihood of a

new table equals

p(vji |tji = t̄ ,o, θ̂, ϕ̂)

∝
∑

ℓ

p(oj t̄ = ℓ|o)

∫

℘

f (τ̃ (vji;ρ)|θ̂ℓ)q(ρ|ϕ̂ℓ)dρ. (54)

The prior probability of each global cluster follows from the

Chinese restaurant franchise prediction rule (see (14)). The

integral of (54) is tractable when θ̂ℓ = (μ̂ℓ, Λ̂ℓ) parameter-

izes a Gaussian distribution, and ϕ̂ℓ = (ζ̂ℓ, Υ̂ℓ) a Gaussian

prior on translations (see Sect. 3.1). We then have

∫

℘

N (vji − ρ; μ̂ℓ, Λ̂ℓ)N (ρ; ζ̂ℓ, Υ̂ℓ)dρ

= N (vji; μ̂ℓ + ζ̂ℓ, Λ̂ℓ + Υ̂ℓ). (55)

For more complex transformations, numerical or Monte

Carlo approximations may be needed.

A related approach is used to jointly resample assign-

ments oj t of tables to global clusters, and corresponding

transformations ρj t , given fixed associations t between ob-

servations and tables:

p(oj t = ℓ,ρj t |o\j t ,ρ\j t , t, θ̂ , ϕ̂) ∝ p(oj t = ℓ|o\j t )q(ρj t |ϕ̂ℓ)

×
∏

i|tj i=t

f (τ̃ (vji;ρj t )|θ̂ℓ). (56)

Suppose again that θ̂ℓ = (μ̂ℓ, Λ̂ℓ), ϕ̂ℓ = (ζ̂ℓ, Υ̂ℓ) parame-

terize Gaussian distributions. Conditioning on this table’s

assignment to some global cluster oj t = ℓ, the posterior

distribution of the transformation ρj t is Gaussian as in

Sect. 12.1, with mean χj t and covariance Ξj t equaling

Ξj t
−1 = Υ̂ −1

ℓ +
∑

i|tj i=t

Λ̂−1
ℓ ,

(57)

Ξj t
−1χj t = Υ̂ −1

ℓ ζ̂ℓ +
∑

i|tj i=t

Λ̂−1
ℓ (vji − μ̂ℓ).

Using standard manipulations of Gaussian random vari-

ables, we may then marginalize ρj t to determine the overall

likelihood that oj t = ℓ:

p(oj t = ℓ|ρ\j t , t, θ̂ , ϕ̂)

∝

(

|Ξj t |

|Λ̂ℓ|
Nj t |Υ̂ℓ|

)1/2

× exp

{

−
1

2

∑

i|tj i=t

(vji − μ̂ℓ)
T Λ̂−1

ℓ (vji − μ̂ℓ)

−
1

2
ζ̂ T
ℓ Υ̂ −1

ℓ ζ̂ℓ +
1

2
χj t

T Ξj t
−1χj t

}

. (58)

Note that we evaluate this expression with a different

(χj t ,Ξj t ), computed as in (57), for each candidate global

cluster ℓ. Step 3 of Algorithm 4 first uses this marginalized

likelihood to choose oj t , and then samples a corresponding

transformation ρj t from the Gaussian of (57).

12.4 Transformed DP Models for Objects and Scenes

This section generalizes the TDP Gibbs sampler of Sect. 12.3

to learn parameters for the full TDP scene model of

Sect. 8.1. Because visual categories are defined by differ-

ent sets of parts, blocked resampling of instance and part

assignments (tji, kji) is necessary. Figure 15 implies that

p(tji, kji |t\ji,k\ji,w,v,o,ρ)

∝ p(tji |t\ji)p(kji |k\ji, t,o)p(wji |t,k,o,w\ji)

× p(vji |t,k,o,v\ji,ρ). (59)

The first term encourages assignments to object instances t

associated with many other features Nj t , as in (13). Sim-

ilarly, the second term is derived from the stick-breaking

prior εℓ ∼ GEM(κ) on the probabilities associated with

each visual category’s parts:

p(kji |tji = t, oj t = ℓ,k\ji, t\ji,o\j t )

∝

Kℓ
∑

k=1

Bℓkδ(kji, k) + κδ(kji, k̄). (60)

Here, Bℓk denotes the number of other features currently as-

signed to each of the Kℓ instantiated parts of object ℓ, and

k̄ a potential new part. The appearance likelihood is as in
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Sect. 12.1, except that we maintain counts Cℓkw of the num-

ber of times appearance descriptor w is assigned to each

instantiated category ℓ and part k. Finally, our position like-

lihood computation extends the scheme of Algorithm 4 to

cache statistics (μ̂ℓk, Λ̂ℓk) of the transformed features for

each category and part. To sample from (59), we evaluate

these likelihoods for every existing part, and a potential new

part, of each object instance. We also determine the like-

lihood of creating a new object instance by marginalizing

potential category assignments and transformations as in

(54), (55).

The second phase of our Gibbs sampler fixes object

assignments t, and considers potential reinterpretations of

each instance t using a new global object category oj t . Be-

cause parts and transformations are defined differently for

each category, blocked resampling of (oj t , ρj t , {kji |tji = t})

is necessary. As in Sect. 12.3, we resample transformations

by instantiating auxiliary parameters for parts (η̂ℓk, μ̂ℓk, Λ̂ℓk)

and category-specific transformation priors (ζ̂ℓ, Υ̂ℓ). Sup-

pose first that oj t = ℓ is fixed. Due to the exponentially

large number of joint assignments of this instance’s fea-

tures to parts, the marginal distribution of ρj t is intractable.

However, given ρj t , part assignments kji have conditionally

independent posteriors as in (41). Alternatively, given fixed

part assignments for all features, ρj t follows the Gaussian

posterior of (44), which arose in the single-object HDP sam-

pler. Intuitively, fixing t effectively segments the scene’s

features into independent objects.

For each candidate visual category oj t , we first per-

form a small number of auxiliary Gibbs iterations which

alternatively sample part assignments {kji |tji = t} and the

transformation ρj t . Fixing the final ρj t , part assignments are

then marginalized to compute the likelihood of oj t . Typi-

cally, the posterior distribution of ρj t is tightly concentrated

given fixed t, and 3–5 auxiliary iterations provide an ac-

curate approximation. Combining this likelihood with the

global DP clustering bias of (14), we resample oj t , and then

conditionally choose (ρj t , {kji |tji = t}).
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