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We describe the use of spectral methods in computational fluid 
dynamics. Spectral methods are generally more accurate and often 
faster than finite-differences. For example, the V2 operator in 
2 or 3 dimensions is easier to invert with spectral techniques 
because the spatial dependence of the operator separates in a 
more natural way. We warn against the use of some of the more 
common spectral expansions. Bessel series expansions of functions 
in cylindrical geometries converge poorly. However, other series 
expansions of the same functions converge quickly. We show how 
to choose basis functions that give fast convergence and outline 
the differences between Galerkin, tau, modal, collocation, and 
pseudo-spectral methods. 

INTRODUCTION 

After perfecting a numerical code, it is tempting to try and 
find every physical and astrophysical problem that one can solve 
with the code. However, in developing a code in the first place, 
one is often motivated by some particular physical or astrophysical 
calculation. If motivated by solar convection and rotation, the 
hydrodynamics appears to be easy: there is no relativity; there 
are no shocks; the flow is at low Mach number and is smooth. On 
the other hand, the numerical simulation of these flows is very 
difficult due to turbulence. In turbulence, many decades of length 
scales are excited and contribute to the dynamics. To have correct 
numerical results, it is necessary to resolve or model all of the 
physically important scales. In choosing a numerical scheme that 

is useful in computing turbulent flow, we shall need a method that 

is efficient in three dimensions (since turbulence is inherently 
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three-dimensional) and provides the greatest possible spatial re
solution. Spectral methods are ideal for these flows. 

TWO FAMILIAR EXAMPLES OF SPECTRAL METHODS 

Before giving an exact definition of a spectral method, we 
provide two examples to show that most readers have already used 
spectral techniques. 

Heat Equation 

The first example is an analytic calculation similar to a 
graduate-level electrostatics problem with boundary conditions. 
Consider the one-dimensional heat equation: 

aT a2T 
at"=K-2 (I) 

ax 

with boundary conditions: 

T(t,O) T(t,l) = 0 (2) 

and initial condition 

T(O,x) = f(x). (3) 

One way of solving the heat equation is to expand T in a sine 

series 
00 

T(t,x) I a (t) sin(m1Tx) (4) 

m=l 
m 

The sines are a natural choice because they are a complete set 
of basis functions, and each sine individually obeys the 
boundary conditions. Furthermore, the sines are eigenfunctions 
of the second derivative operator that appears on the right-hand 
side of equation (I). Fourier analyzing the initial data, we ob
tain 

f(x) I 
m=l 

£ sin(m1Tx). 
m 

Substituting T(t,x) from equation (4) into the heat equation 

(5) 

and comparing the coefficients of the sines on both sides of the 
equation [or to be more formal, multiplying both sides of the 
heat equation by sin(m'1Tx) and integrating both sides over x from 
zero to one], we obtain an infinite set of ordinary differential 
equations for the spectral coefficients ~(t): 
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aa (t) 
m 

at 
2 

Km a (t) m = 1,2, ••. 00 

m 
(6) 

Equation 

condition 

(6) can be integrated analytically using the initial 

am(O) = f m. 

a (t) = f exp(-Km2 t) m = 1,2, ... ,00 

m m 
(7) 

Equation (7) is the analytic spectral solution to the heat 

equation. To find a numerical spectral solution to the heat 

equation we simply replace T(t,x)by the discrete approximation 

TN(t,x) , 

where we have discretized by the simple truncation 

N 

(8) 

TN(x,t) - L a (t)sin(mTIX) (9) 
m=l m 

We need to know how well TN(t,x) approximates the exact 

solution of the heat equation. One way of measuring the error 

caused by the approximation is to calculate the mean-square 

error, L2' which is defined: 

L2 c[~ IT(t,x) - TN(t,x)I 2 dX]"/2 (10) 

Using equations (7) and (9), 

error becomes 

L2 =rt ~ IfmI2e-2Km2t] 

L m=N+l 

we find that the mean-square 

1/2 

(11) 

We see immediately that the error depends solely on the spectral 

coefficients that we have discarded in the truncation (i.e. ,those 

spectral coefficients am with m> N). Equation (11) shows 

that for t> 0 and K > 0 , the mean-square error decays expon

entially with increasing numerical resolution, N. The hallmark 

of a good spectral method is that the error decreases 

exponentially with increasing resolution; whereas, in a second

order accurate finite-difference method, the error (by definition) 

decreases only as the square of the spatial resolution. 

To compare directly the error due to finite-differences with 

the error due to spectral expansion, we use a spectral analysis 

to evaluate the finite-difference approximation of the second 
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derivative operator used in the heat equation. Let the initial 

temperature distribution contain only one Fourier component 

f(x) = sin(pTIX) 

Using a centered, second-order accurate finite-difference 
operator, the second derivative of sin(pTIx) at x. is 

1. 

(12) 

d 2sin(PTIx) 

d x2 

sin[pTI(x. +L1x) ]+sin[pTI(x.-L1x) ]-2sin(prrx.) 
1. 1. 1. 

X. 
1. 

(L1x) 2 

2 [ co s (pTI LIx) -1] 

L1x 2 
sin(pTIx. ) 

1. 
(13) 

Af -d sin(pTIx.) 
•• 1. 

The exact second derivative of sin(prrx) is 

d 2 
sin (prr x) Ix 

2 2 
sin(prrx. ) 

dx2 
p TI 

1. 

1. 

- A sin(p TIx.) 
exact 1. 

We see that the finite-difference operator 

eigenfunction but an incorrect eigenvalue. 

we can Taylor expand the finite-difference 

by determine the fractional er~or 

I A -A [ 2 2 2 f. -d. exact ;:;; TI P L1x 
A 12' 

exact 

(14) 

gives the exact 

If L1x is small, 
eigenvalue and there-

(15) 

If we want the eigenvalue correct to within one percent we 

require that 

p L1x <0.11 (16) 

Since there are p/2 wavelengths of f(x) between 0 and 1 

and since there are l/L1x finite-difference grid points between 

o and 1, equation (16) tells us that we need approximately 

20 grid points per wavelength in order to achieve one percent 
accuracy. This factor of 20 should be compared to the fact 
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that we need only one Fourier mode per wavelength to get perfect 

accuracy in the numerical second derivative eigenvalue when the 

derivatives are computed spectrally. 

The suspicious reader can argue that the preceding comparison 

is unfair because our spectral expansion of f(x) uses basls 

functions that are the exact analytic eigenfunctions of the 

second derivative operator. However, we shall show soon 

that expanding f(x) in any other set of suitable basis func

tions require only three or four modes per wavelength to obtain 
one percent accuracy; whereas, second-order finite difference 

methods always need approximately 20 grid points per wavelength 

to obtain the same accuracy. Furthermore, choosing the basis 

functions to be the set of analytic eigenfunctions of the 

second derivative operator is not always wise. We show later 

that solving the heat equation in cylindrical coordinates with 

an expansion in the eigenfunctions of the second derivative 

operator has disastrous conseC;uences . 

Quadrature 

As a second example of a spectral method, we consider 

numerical quadrature. One method of numerically integrating a 

function is to use a Newton-Cotes quadrature formula. These 

formulae are really just finite-difference methods. Let f(x) 

be a function that is tabulated at equally spaced intervals xi' 

where xi+l - xi= 6x. We numerically integrate f(x) from 

xi-l to xi+i by replacing the function f (x) in the interval 

[Xi-l,xi+ll with the parabola that passes throu~h the three 

points (Xi-l,f(x._ l », (xi,f(xi» and (Xi+l,f(xi+l»' 
Analytic integration of the parabola gives Simpson's rule: 

x i + l 

f f(x) dx 
x i _ l 

6; (f(xi + l ) + 4f(xi ) + f(x i _ l » + e16XS) 

(17) 

To see that Simpson's rule is really a second-order finite 

difference method, we expand f(x) in a Taylor series about 

x = xi' Integrating the Taylor serie~ from xi-l to xi+l we 

obtain 

f(x)dx 

x.+6x 

lJ 
x.-6x 

l 

2 
, x 

(f(x.)+xf(x.) + -2 fll(x.) + ... )dx = 
l l l 

363 



364 P. S. MARCUS 

(18) 

In order to evaluate this integral, we need to determine f"(x.). 
If we substitute the second-order centered finite difference 1 

f" (x.) 
1 

into equation (18), then we recover Simpson's rule. 

(19) 

An alternative approach to quadrature is Gauss's method. 
In Gaussian quadrature, we abandon the constraint of equally 
spaced sampling points. The numerical integral of f(x) from 
-1 to 1 is approximated by a linear sum of weights, wi' multi
plied by f(x) evaluated at the sampling points. 

1y 
f(x)dx 

-1 

N 

I 
i=O 

f(x.)w. 
1 1 

(20) 

In equation (20) there are 2(N+l) unknown quantities: (N+l) x. 's 
and (N+l) w. 'so To determine these unknowns we impose 2(N+l)1 
equations: 1equation (20) must be satisfied exactly for f(x) = 1, 
f(x) = x, f(s) = x2, ... , f(x) = x2N , f(x) = x2N+l. Equivalently, 
the quadrature formula in equation (20) must be exact for all 
polynomials of order (2N+l) or less. The well-known solution to 
this problem is that the xi are roots of the Legendre polynomial 
of order N+l. 

o i O,N (21 ) 

What are we really doing when we use Gaussian quadrature? 
We are actually replacing f(x) with the spectral approximation, 

fN(x) 

N 

- I a P (x) 
o n n 

(22) 

where the P (x) are Legendre polynomials and where the coefficients 
a , are detgrmined by the method of least squares (cf. Dahlquist, 
e¥ al., 1979). The quadrature formula in equation (20) is the re
sult of an analytic integration of fN(x). 



DESCRIPTION AND PHILOSOPHY OF SPECTRAL METHODS 

DEFINITIONS OF SPECTRAL METHODS - SELECTION OF BASIS FUNCTIONS 

Spectral methods are useful in numerical calculations be
cause they allow us to represent a continuous function, f(x), 
as a discrete approximation, fN(x). The approximation is written 
as a finite sum of basis functions multiplied by coefficients. 

N 

f(x) ~ f (x) =.L a.~.(x) 
N ~=l ~ ~ 

(23) 

365 

The basis functions, ~i(x), are arbitrary and do not have to be 
eigenfunctions or orthogonal. The two tasks of the numericist are 
to: (1) select a set of basis functions ~ .(x) and (2) compute the 
coefficients, a .• Both the basis function§ and the method of 
computing the c6efficients should be chosen so that the boundary 
and initial conditions are easily satisfied, the spectral sum con
verges quickly, and both the numericist and computer have a mini
mal amount of work to perform. The choice of basis functions and 
the manner of computing the coefficients determines a method's 
name, such as modal, Galerkin, spectral, tau, collocation, pseudo
spectral, or Rayleigh-Ritz. 

Fourier Series and the 9 % Solution. 

We first consider the task of choosing basis functions that 
make up the spectral series. The simplest choice of a Fourier 
series with ~ (x) = e ikx • We remind the reader of an important 
theorem aboutkfourier series: if f(x) is a continuous, piece
wise function over the domain 0 to 2n, where f(x) is of bounded 
variation, and if Fourier coefficients, ak , are defined by 

_ I 2n -ikx 
ak = """2 J f (x) e dx, 

n 0 

and if the spectral sum g(x) is defined by 

g(x) _ 

then 

ikx 
e 

(24) 

(25) 

(26) 

This theorem means that if f(x) is a continuous function, then 
the Fourier series, g(x), is equal to f(x) at every point. If 
there is a discontinuity in the function, then g(x) is equal 
to the arithmetic mean of f(x) at the discontinuity. It is 
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important to realize that for a numericist this theorem has no 
practical value. In numerical approximations we calculate the 
partial sums fN(x) 

N ikx 
fN(x) = 1. ak e 

k=-N 

(27) 

The preceding theorem does not guarantee that fN(x) converges 
uniformly to g(x) or f(x) as N approaches infin~ty. In fact, 
near a discontinuity, fN(x) never uniformly converges to f(x) or 
g(x). This lack of convergence is well-known to anyone who has 
Fourier analyzed a step function and calculated the Gibbs over
shoot of approximately 9 % at the discontinuity. If more Fourier 
modes are included in the partial sum, the 9 % error does not de
crease. If the function, f(x), is itself continuous but has a 
discontinuity in one of its derivatives, then fN(x) may converge 
to f(x) but the rate of convergence will be poor. One way of 
measuring the convergence rate is to examine the mean square 
error, L2(N) of the Nth partial sum: 

2 1 1/2 
If(x)-fN(x) I dXJ 

I 
Ikl=N+l 

(28) 

(29) 

To evaluate the error, we must first determine how the Fourier 
coefficients, ak , depend on k. Integrating equation (24) by parts 
we obtain 

_ if(x)e- ikx ]2.71 
- . + 

271k • 
o 

1 

i271k 

271 

J 
-ikx 

f' (x) e dx (30) 

o 

The surface term in equation (30) vanishes if f(x) is continuous 
and periodic. If all of the derivatives of f(x) are continuous, 
then further integration by parts produces no surface terms. 
Integration by parts of equation (24) m times gives 

(31 ) 

m 
From equation (31), we see that ak falls off as 11k for all 
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functions whose first (m-l) derivatives are continuous and 
periodic. Equation (29 shows that the mean-square error, L2(N), 
decreases at least as fast as l/Nm- l • If f(x) is a c~ function, 
then the Fourier coefficients and mean-square error decrease 
exponentially with N. Therefore, the convergence of the partial 
Fourier sums of a Coo periodic function is exponential. This 
exponential rate of convergence should be compared to second
order finite difference methods where (by definition) the rate 
of convergence is only quadratic. 

If f(x) has a discontinuity at xo ' then integration by 
parts of equation (24) gives 

i -ikx [J a =--e 0 f + 
k 21Tk 

1 2 

21Tik J 
o 

-ikx 
f' (x)e dx (32) 

when [f] is the discontinuity in f. The surface term in equation 
(32) is not zero. No matter how many times we integrate equation 
(32) by parts, there will always be a contribution to the Fourier 
coefficient, ak , that decreases slowly as l/k. To see how the 
discontinuity affects the convergence, we write the error in the 
Fourier partial sum as 

ikx 
~ a k e 

iki=N+l 

(33) 

In estimating the sum of the series in equation (33), we can 
argue that if all the terms have random phases (say, far away 
from the discontinuity), then the sum is approximately equal 
to the leading term in the series, a , which decreases as liN. 
If the terms in equation (33) are innphase (say, near the dis
continuity) then the error in equation (33) is of order unity. 
The 9 % Gibbs overshoot in the truncated sum made from the 
Fourier transforms of a square wave is an example of an error 
of order unity near a discontinuity. Far from the discontinuity 
the error in the Fourier sum is much smaller and is of order liN. 

In general, if the lowest order derivative of f(x) that 
has a discontinuity or non-periodicity is the mth derivative, 
then the convergence of the partial Fourier sums is of order 
(l/N)m+l far from the discontinuity and is of order (l/N)m 
near the discontinuity. To illustrate this convergence rate, 
consider the heat equation with an inhomogeneous source term 
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Clf 

Clt 

Let f(x) be defined over the domain [O,lJ with boundary 

conditions 

f(O) = f(l) = 0 

Expanding both f(x) and 1 in a Fourier sine series, 
00 

f(t,x) = I fk(t) sin(kTIx) 
k=l 

1 L k~ sin(kTIx) 
k=l, k=odd 

and substituting into equation (34), we obtain an ordinary 

differential equation for each Fourier coefficient fk(t). 
Inter,rating these equations we find 

(34) 

(35) 

(36) 

(37) 

_k2TI 2 t 
fk(t) = fk(O) e for k even 

(38) 

for k odd 

We see explicitly that the spectral coefficients do not decrease 

exponentially with k; instead, we find that they decrease only 

as (1/k)3. The convergence is not exponential; it is cubic. 

\vhy doesn't the series converge any faster? To understand the 

poor rate of convergence we examine the Fourier coefficients of 

f(t,x) which are defined 

1 

fk(t) =.= 2 ! f(t,x) sin(kTIx)dx (39) 

o 

A first integration by parts yields 

1 
f () -2f(t,x) (k) J +2 

k t = k cos TIx kTI 
TI 0 

1 

f f' (t,x)cos(kTIx)dx 
o (40) 

The surface term in equation (40) vanishes because f(t,x) 
vanishes at 0 and 1 due to the boundary conditions. A 

second integration by parts gives 

J1 ? 

sin (kTIx) - ~ 
o k TI 

f ( ) = 2 f ' (t , x) 
k t 2 2 

k TI 

1 
! f"(t,x)sin(kTIx)dx 
o (41) 
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The surface term vanishes again, not due to any property 
of f(t,x) or its derivatives, but because the sine vanishes 

at 0 and 1. A third integration by parts gives 

f (t) = 2f" (t ,x) cos (krrx) ]1 _ 2 J f'" (t ,x) cos (krrx)dx (42) 

k k3rr3 0 k3rr3 0 

This time the surface term is non-zero. The surface term and 

fk(t) both decrease as (1/k)3. This is the reason that the 
convergence rate is cubic and not exponential. 

Now that we understand why the rate of convergence is slow 
we can accelerate it. The surface term from the first inte
gration by parts in equation (40) vanishes because f(x) is 
zero at the boundaries. The surface term vanishes after the 

second integration by parts because sin(krrx) vanishes at 0 and 

1. The surface term from the third inte~ration by parts does 

not vanish because f"(O) and f"(l) are not equal to zero. In 

fact, from the inhomogeneous heat equation (34) we see that 

f" (0) = f" (1) = - 1 (43) 

To improve our rate of convergence we forgo expanding f(x) in a 

sine series and follow the procedure of Gottlieb and Orsza?, 

(1977). Fourier expand a new function ~(t,x), where 

x(x-l) 
g(t,x)= f(t,x) + 2 (44) 

We have defined g(t,x) so that the boundary conditions on g 
and g" are homogeneous: 

g(t,O) = g(t,l) = g"(t,O) = g"(t,l) = 0 (45) 

In fact, by using equations (34) and (44) we find 

g(t,O) (2n) = g(t,l) (2n)= 0 for n=0,1,2, ... ,00 (46) 

When we compute the Fourier coefficients of g(t,x) by inte

gration by parts, we find that all of the surface terms vanish. 
The Fourier sine series expansion of g(x) converges exponen

tially. Equivalently, the partial sums 

x (x-l) 

2 

N 

+ I fk(t) sin (krrx) 
k=l 

(47) 

converge exponentially to the exact solution of the inhomogeneous 

heat equation which is: 
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f(t,x) 

where 

x(x-1) 

2 
+ 

rr 
J [f(t=O,x) + X(;-l) ] sin(krrx)dx 

o 

f(x,t)-fN(t,x) is 

P. S. MARCUS 

(48) 

(49) 

Ihe leading term of the error, 
f N+1 (0)sin[(N+1)1Tx]e-1T2 (N+1)2t 

N for t> O. 
which decays exponentially in 

Polynomial Basis Functions 

In approximating a non-periodic function with a Fourier sum, 
we often find that including an appropriate polynomial in the 
spectral sum improves the rate of convergence. The method of 
selecting an appropriate polynomial depends on the boundary 
conditions of the function that is being approximated. We would 
like to discuss a more general method of finding polynomials to 
use in spectral approximations so that the rate of convergence 
does not explicitly depend on boundary conditions. We abandon 
sines and cosines as basis functions; instead we use the eigen
function {~n(x)}, of a Sturm-Liouville operator: 

where 

p(x) > 0 

w(x) > 0 

q(x) > 0 

a< x < b 

(50) 

(51) 

(52) 

(53) 

(54) 

Here, the A are the eigenvalues assocrated with ~n(x) and 
w(x) is thenweighting function that is used to define the inner 
product. The eigenfunctions are complete and orthonormal with 
respect to these weighting functions 

b 

f w(x)~ (x)¢ (x) dx 
n m 

o 
nm 

(55) 

a 
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We can express f(x) as an infinite series in ¢ (x) and 

approximate f(x) with the partial sum fN(x). The m~an square 

error of the approximation with respect to the weighting function 

w(x) is L2 (N). 

f(x) L a ¢(x) 

n=O 
n 

(56) 

N 

fN(x) L a ¢ (x) 

n=O 
n 

(57) 

[Jl 

2 
] 1/2 

L2 (N) I a I 
n 

(58) 

where 

b 

a J f(x)¢ (x)w(x)dx 
n n 

(59) 

a 

The error is the square of the truncated spectral coefficients. 

To show how L2(N) and aN decrease with N we follow the 

procedure of Lanczos (1956), and integrate equation (59) twice 

by parts to obtain 

1 
p(x) [(¢n 

df _ f 
d¢ r a r- --E. ) 

n dx dx 
n a 

(60) 

1 
b 

J¢ (x)h(x)w(x)dx 
A n 

n a 

where hex) is defined 

hex) 
1 d ( df) q(x)f(x) 

-
w(x) dx P dx w(x) 

(61) 

The surface term in equation (60) vanishes regardless of the 

values of f(x) and its derivatives at the boundaries (as long 

as they remain nonsingular) if pea) = pCb) = O. When 

pea) = pCb) = 0 we call the Sturm-Liouville operator singular. 

For singular operators,each time equation (60) is integrated by 

parts the surface terms vanish as long as the higher derivatives 

of f(x) remain bounded. Integrating equation (60) by parts 2p times, 

shows that the spectral coefficient an is of order (l/A )P. 
n 
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the spectral series, fN(x) converges exponentially. 

As an example of a singular operator we consider the 
Chebyshev polynomials, T (x). The Sturm-Liouville equation that 
generates the Chebyshev Fo1ynomia1s has 

p(x) = ~1_x2' (62) 

w(x) l/~L-X2' (63) 

q(x) 0 (64) 

It 
2 

n 
n 

(65) 

-1 < x < 1 (66) 

One way to convince ourselves that the Chebyshev polynomials 

really do have exponential convergence is to approximate a sine 
function with a Chebyshev series (cf. Gottlieb and Orszag, 1977). 
Computing the spectral coefficients from equation (59) we find 

sin(m1Tx) 2 L 
n=l 
n=odd 

(67) 

Only the odd Chebyshev polynomials enter the sum in equation (67) 
because sin(m1Tx) is an odd function of x. The coefficients of the 
Chebyshev series are proportional to Bessel functions, J (m1T). 

Bessel functions of low order behave like sines, but wheR their 

order becomes greater than their argument they exponentially 
decay. Therefore, for n > m1T the Chebyshev spectral coefficients 
decay exponentially, and the convergence of the partial sums is 
exponential. Between -1 and 1, sin(m1Tx) has m wavelengths. Since 
m1T Chebyshev polynomials are required for exponential convergence, 
we conclude that approximately 1T Chebyshev polynomials are needed 

per wavelength of the function being approximated. This factor 
of 1T should be compared to the requirements of second-order 
finite difference methods where we found that approximately 20 

grid points per wavelength are needed to obtain 1% accuracy. 

As a second example of polynomial expansions, we use the 

Legendre polynomials as a set of basis functions. The Legendre 
polynomials are eigenfunctions of a Sturm-Liouville equation 
with: 
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p(x) 
2 

(l-x ) 

w(x) 1 

q(x) o 

A 
n 

n(n+l) 

- 1 < x < 1 

Again, expressing sin (mrrx) as a spectral sum we obtain 

sin (m'ITx) 
\ [(2n+l) (-1) (n-l)/2 1 
L 1/2 I n+ l / 2 (m'IT) Pn(x) 

n=l (2m) 

n=odd 

(68) 

(69) 

( 70) 

(71) 

(72) 

(73) 

The coefficients multiplying the Legendre polynomials are Bessel 

functions of half integral order; they decrease exponentially 

when their order is greater than their argument. Again, we need 

on the order of 'IT polynomials per wavelength to obtain ex

ponential convergence. 

One way to heuristically see the resolution properties of a 

spectral sum is to examine the spacings between zero-crossings 

of the basis functions. Fourier series have equally spaced 

zeroes which make them well-suited for approximating periodic 

functions. A truncated Fourier series resolves boundary layers 

poorly. Legendre and Chebyshev polynomials have more zero 

crossings near the boundaries at -1 and 1 than they do at 

the interior of their domain. near O. Near the interior PN (x) 

and TN (x) both have an average separation between zero cross

ings of 'IT/N. Near the boundaries, the average spacing reduces 

to 'lT2/2N2. Partial sums of PN(x) or Tn(x) are well suited 

for approximation function with boundary-layers. If a boundr72 
layer has thickness of order 8 , then approxjmately (1/8) 
terms are needed in the spectral sum to resolve the boundary layer. 

As our last example of choosing basis functions, we consider 

the one-dimensional axisymmetric heat equation in cylindrical 

coordinates with an inhomogeneous forcing term: 

n = K (L + 1 -L) T + 1 (74) 
at ar2 r ar 
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with boundary conditions T(t,r=l) = 0, T(t,r=O) finite, and 

initial conditions T(t=O,r) = fer). An apparently obvious choice 
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of basis functions are the Bessel functions of index zero 

¢ (r) _ Iz 
n 

JOUOnr) 

J l (jOn) 
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(75) 

where j is the nth root of J O' The eigenfunctions are 

normaliz~ to obey equation (55) with weighting function 

w(2) = r. The JO(jOnr) Bessel function is &n eigenfunction of 

( () + 1 ()) h' h' S L' 'II ' h ()r 2 r- ar w 1C 1S a turm- 10UV1 e operator W1t 

p(r) = r and eigenvalue jon. Because the ¢n(r) are complete, 

obey the same homogeneous boundary conditions as T(t,x), and 

are eigenfunctions of the differential operator on the right

hand-side of equation (74), they are the natural basis functions 

for this problem, 

T(t,x) 

The exact 

T(t,x) 

where 

f 
n 

00 

= 'i a (t)¢ (x) 

n=l 
n n 

solution to equation 

00 

[fn 

-jonK t 

'i e 

n=l 

1 

f¢ (r)f(r)r dr 
o n 

(76) 

(74) is 

12 
-

K(jon)2 
1 ¢n (r) (77) 

(78) 

The solution expanded in terms of the Bessel functions does not 

converge exponentially. From the asymptotic behavior of jan' 

jon - TI (n - 1/4), (79) 

we see that the exact solution converges as l/n2 far from the 

boundary and as lin near the boundary. The slow convergence 

is due to the fact that p(r) # 0 at the boundary and the 

Sturm-Liouville operator is not singular. For this problem, 

second-order accurate finite differences are more efficient than 

a Bessel expansion. Spectral methods can still be used, but 

Chebyshev or Legendre polynomials should be employed. Although 

Chebyshev or Legendre functions do not appear to be "natural" 

choices for cylindrical geometry, they converge rapidly and work 

well (Marcus, 1983), 
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IMPLEMENTATION OF SPECTRAL METHODS 

Galerkin's Method 

Once the spectral numericist has decided on a set of basis 
functions, his second task is to compute efficiently the spectral 

coefficients. Generally, this task requires solving a large 
set of coupled ordinary differential equations. The most 

straight-forward of all spectral techniques is a modal or Galer

kin method. In Galerkin's method each hasis function obeys the 

same boundary conditions as the function that is being approxi

mated. Consider the combined initial value, boundary-value 

problem 

dU ~ - = (u) 
dt 

(80) 

where ~ is some arbitrary spatial operator. We impose homo

geneous boundary conditions on both u and the basis functions, 

<P. (x) 
1 

u(t,x -1) u(t,x=l) o (81) 

<P (-1) = <P (1) = 0 for all n, 
n n 

(82) 

As usual, the partial sum uN is defined 

N 

L 
n=l 

a (t)<P (x). 
n n 

(83) 

The easiest case that can be solved with Galerkin's method 

occurs when ~ is a linear differential operator with constant 
coefficients and where the <Pn(x) are eigenfunctions of ~ 
In this case, substitution of equation (83) into equation (80) 

results in a set of N, non-coupled ordinary differential 

equations which can be solved easily for the a (t). 
n 

In a slightly more complicated case, we still restrict ,J{' 
to be a linear differential operator with constant coefficients, 

but we no longer require that the <Pn(x) be eigenfunctions oJ 

-:{' For example, we cons ider the wave equation wi th ~ = dx 

(84) 

with - 1 < x < 1, and with boundary condition, 
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u(l) = O. (85) 

Using the basis functions, 

~ (x) = [P (x) - 1] 
n n 

(86) 

to expand u(t,x), substituting the series in equation (84), 
and taking the inner product of both sides of the resulting 

equation with respect to ~n(x), we obtain a set of coupled 

ordinary differential equations for the spectral coefficients 

an(t). Let a be the column vector whose nth element is an(t). 

The equations for the spectral coefficients can be written in 

matrix form: 

. 
P a M a (87) 

The dot above the vector ~ imples that each element is dif-

ferentiated with respect to time The elements of M and P 

are easily written in terms of inner products. 

P 
mn 

M 
mn 

(88) 

(89) 

In practice, we would never directly use the matrix equation 

(87) to solve for an(t). Matrix arithmetic (multiplication 

or inversion) requires of order N2 or N3 operations (where 

N is the number ot terms in the spectral sum). Usually P and 

M are sparse or have a special form due to the fact that = ~ 
Tmplies a recursion relationship among the spectral coefficients. 

By exploiting the sparsity or symmetry of ~ ,equation (87) can 

often be solved in only N operations per timestep. 

If ~ is a nonlinear differential operator or linear diff

erential operator with non-constant coefficients, then Galerkin's 

method becomes unwieldy. As an example, consider the nonlinear 

wave equation 

au = _ 
at 

d 
u - u 

dX 

over the domain 0 < x < TI and with boundary condition 

(90) 
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u(t,x=O) = 0 

Writing u(t,x) 

over 0 < x ~ TI) 

N 

I 
n=l 

a (t)sin(nTIx) 
n 

N-l N-n 

as a Fourier sine series 
equation (90) becomes 

= -[ I ak(t)Sin(kTIX)j 
k=l 

2N N 
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(91 ) 

(which is complete 

n \ \ rna a sin(nnx)- ~2 "2 L L m n+m 
n=l m=l n=l 

I \ sgn(n-m)ma a I I sin(nnx) 
L m m--n 

m=n-N 
m>O (93) 

wheresgnCn-m) is the signof (n-m) and is equal tozero if (n-m)=O. 

The right-hand side of equation (9 3) is a convolution product. 
The convolution leads to three problems: first, it couples all 
of the ordinary differential equations for an(t); second, the 
convolution:rroduct is expensive to compute - it requires (on the 
order of) N nultiplications; thirdly, the convolution product of 

two partial sums of spectral modes generates spectral modes that 

are not included in or spanned by the original finite set of 
basis functions. The convolution of a sine series with N modes 

and its derivative produces a product containing 2N sine modes. 

In previous cases we found that when a linear differential 
operator with constant coefficients operates on a finite sum of 

basis functions,the output is itself spanned by this same finite 
set of basis functions; in these cases we say that the finite 
set of basis functions is closed with respect to that operator. 

In general, a finite set of basis functions is not closed with 

respect to a nonlinear operator. The lack of closure requires 

us to project the output of;!{ back onto the initial set of 
basis functions. In the example in equation (93), projection 

is done by setting all of the spectral coefficients an with 

n> N equal to zero. Galerkin' s method uses truncation to 

proj ect the output of X. Other spectral methods use other 

types of projection. From equation (93), we see that the set 

of all sine functions is closed under ~ ; liO cosines are 
produced. On the other hand, the set of cosines are not closed 

under ~; ~ operating on a cosine series produces a sine 
series. The closure or lack of closure of an infinite set of 

sines or cosines is due to the spatial symmetry properties of 

~. ~ is anti-reflection symmetric about x = 0 and so are 

the sines; th.erefore, the set of sines is cloZ9d. The cosines 
do not have the anti-reflection symmetry of 'j and therefore 
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they are not closed. In general, for every incomplete or sparse 
set of basis functions that is closed with respect to an opera
tor, there is a physical symmetry common to the operator and the 
sparse set. It is to the numericist's advantage to exploit the 
fact that some equations together with their boundary and initial 
conditions have a symmetry. The clever numericist will choose a 
sparse set of basis functions that shares the symmetry. For 
example, if we use Ga1erkin's method to compute thermal convection 
in a star and ·if we are interested only in convective cells with 
duodecahedra1 symmetry (i.e., the convective cells tesse1ate the 
stellar surface in a soccer ball pattern), then using a set of 
basis functions with duodecahedra1 symmetry is more efficient 
than using the spherical harmonics as basis functions. A cal
culation of duodecahedra1 convection that uses a spectral sum 

with all spherical harmonics, Yt,m with Iml<~ and 0 ~ ~ ~ 32 
(1089 modes) can also be done wlth a much smaller series contain
ing only 19 duodecahedra1 harmonics to obtain the identical 
spatial resolution. Each convolution with the smaller set of duo
decahedra1 harmonics is approximately 10,000 times faster than 
the convolution with the larger set of spherical harmonics. 

Tau Method 

Ga1erkin's method cannot be used to approximate a function 
f(x) if the basis functions do not obey the same homogeneous 
boundary conditions as f(x) or if f(x) has inhomogeneous boundary 
conditions. For these boundary-value problems we use the tau 
method, developed by Lanczos (1956). Again, consider the heat 
equation (equation I) over the domain -1 < x < 1 with boundary 
conditions 

T(t,-l) = Ci. (94) 

T(t,L) (3 (95) 

This time, we write T(t,x) as a spectral sum of Legendre poly
nomials 

T(t,x) 
N 

L a~(t) P~(x) 
£=0 

(96) 

The Legendre polynomials do not obey the inhomogeneous boundary 
conditions of T(t,x); instead, they obey 

£ 
P (-1) = (-1) 

£ 
(97) 
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(98) 

Substituting equation (96) into equation (1), multiplying both 
sides of equation (1) by P (x), and integrating the resulting 
equation from -1 to 1, we gbtain (N+l) equations for the (N+l) 
unknown spectral coefficients, a , n=O,J, •.• N. However, to 
satisfy the two boundary equatioNs, (94) - (95), we also require 
that 

N N R, 
I aR,(t)PR,(-l) I aR,(t) (-1) = a. 

R,=O R,=O 
(99) 

and 

N N 
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I aR,(t)PR,(l) = 1. aR,(t) f3 (100) 
R,=O R,=O 

This presents the dilemma that we have (N+3) equations and only 
(N+l) unknowns. To solve this problem, we must first examine 
the second derivative operator in more detail. Writing the 
second derivative of T in terms of the Legendre sum in equation 
(96) we obtain 

d 2 
-2 T(x, t) -
dx 

N 

I 
n=O 

b (t)P (x) 
n n 

N 

I 
n=O 

a 
n 

d2 
-2 P (x) 
dx n 

(101) 

The second derivative of P (x) is a linear combination of Legendre 
polynomials whose order isnless than or equal to (n-2). The second 
derivative operator is a lowering operator; it maps the set of 
basis functions {p (x) : n=O, ••• ,N} intozthe set {p (x) : n=O, ••• , 
N-2}. Furthermore~ since the operator d preserv~s parity, 
the second derivative of a Legendre pol~mial of even (or odd) 
order is a sum of Legendre polynomials of even (or odd) order. 
We can write down a relationship between the b and a of equa-
tion (101) as the vector equation n n 
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bO 0 0 x 0 x 0 x 0 x a O 

b l 0 0 0 x 0 x 0 x 0 a l 

b 2 0 0 0 0 x 0 x 0 x a 2 

b 3 0 0 0 0 0 x 0 x 0 a 3 

bN_ 3 0 0 0 0 0 0 0 x 0 a N_ 3 

bN_ 2 0 0 0 0 0 0 0 0 x a N_ 2 

bN_ l 0 0 0 0 0 0 0 0 0 a N_ l 

bN 0 0 0 0 0 0 0 0 0 aN 

(102) 

or equivalently 

b = D2 
~ (103 ) 

where x stands for any non-zero matrix element. Note that 

D2 is singular because the last two rows are zero. 

that D2 is non-invertible is due to the fact that 

The fact 

d 2 can
dxZ 

not be inverted unless two boundary conditions are supplied. 

1ve can try to solve the spectral heat equation ~ KD2 a 

with a forward Euler integration in time, or 

a (t+L'It) ~(t) + K(.6. t) 'g2 ~(t) ( 104) 

In solving the heat equation explicitly,we avoid having to invert 

the singular matrix D2. Unfortunately, in the explicit equation 

(104), the last two r~ws of D2 make aN(t) = aN(O) and 

aN-let) ~·aN-l (0) for all time. This is undesirable. Furthe~ 

more, after one timestep, the an(t) no longer satisfy the 
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boundary conditions. The remedy to all of these problems is 

to modify the matrix D2 in the heat equation so that the bottom 

two rows are replaced DY the boundary conditions of equations 

(99) - (100). 

a O 0 0 x 0 0 0 x 0 x a O 

a l 0 0 0 0 0 x 0 x 0 a l 

a 2 0 0 0 0 x 0 x 0 x a 2 

a 3 0 0 0 0 0 x 0 x 0 a 3 

~-3 
0 0 0 0 0 0 0 x 0 a N_ 3 

~-2 
0 0 0 0 0 0 0 0 x aN_ 2 

B 1 1 1 1 1 1 1 1 1 aN_ l 

a 1 -1 1 -1 1 -1 1 -1 1 
~ 

(105) 

Notice that the matrix on the right-hand side of equation (105) 

is invertible; if we integrate ai (t) forward in time with a 

stable implicit method, then the matrix can be inverted at each 

timestep. Using a backwards Euler method to solve equation 

(105), we obtain 

1. ~(t) + ~(B,a) (106) 

" 
where D is the matrix on the ri~ht-hand side of equation (105), 

where Y is the identity with the last two rows replaced by 

zeroes and where x(a,B)is a column vector whose elements are 
all zero except for the last two which are B and a respec

tively. 
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Using equation (106) ~ the an(t) exactly satisfy the 

boundary conditions for all time, but do they still satisfy the 

heat equation? We evaluate the mean-square error that arises 

from approximating a function f(x) with boundary conditions 

f(l) = Sand f(-l) = a by using the tau method. In a Le~endre

tau method we approximate f(x) with fN(x), 

where 

N 

I 
n=O 

a P (x). 
n n 

Writing f(x) exactly as an infinite series 

00 

f(x) I 
n=O 

c P (x) 
n n 

The mean-square error is 

]
1/2 

dx 

With the tau method we evaluate the first (N-2) 

coefficients of an by takin~ inner products of 

Pn (x) or 

a 
n 

1 

J f(x)P (x)dx 
-1 n 

c for 0 < n < N-2 
n 

(10?) 

(108) 

(109 ) 

(110) 

spectral 

f (x) with 

(111) 

The last two spectral coefficients are not determined from inner 

products; instead, they come from the boundary conditions (99)

(100). The mean-square error becomes 

I c I 
n 

2 ] 1/2 
~112) 

The last term on the right-hand side of equation (112) is the 

same error that arises with Galerkin's method and is exponentially 
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small if f (x) is sufficienttY smooth. l-le must show that the 

additional two terms laN-cNI and /aN_1-cN_112 are also 
exponentially small. The exact function f(x) obeys the exact 
boundary conditions 

383 

f(-l) = I c (_l)N = a 
n=O n 

(i13) 

00 

f (1) L c 
n=O n 

Comparing equation (99) with equation (113) 

(100) with equation (114) ,we see that 

and 

N-1 N 
(-1) a + (-1) a = 

N-1 N 

a._ + a = 
N-1 N 

00 

L 
n=N-1 

c . 
n 

The solution to equations (-115) - (116) is 

~= 

~-1 

00 

I CN+2k 
k=O 

00 

I CN-1+2k' 
k=O 

(114) 

and equation 

(115 ) 

(117) 

(118) 

Equations (117)-(118) show that the second contribution to L2 
in equation (112) is exponentially small: 

00 

2 I L 
k=O 

00 2 

+ 2 I I CN+2k I . 
k=O 

(119) 

The right-hand side of equation (119) decreases exponentially 

with N. 
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Pseudo-Spectral Methods 

Our last example of a technique for computing the spectral 

coefficients is known as the pseudo-spectral method, the col

location method or the method of selected points. It is used in 

nonlinear equations or linear equations with non-constant co

efficients. Its purpose is to avoid a convolution product. The 

method exploits the fact that spectral differentiation is more 

accurate than finite-differences, but that multiplication of 

two functions which are tabulated at a set of selected points 

(or collocation points) is faster than spectral convolution. In 

the pseudo-spectral methods, all differentiation and quadrature 

is done with spectral approximations; all multiplication and 

division are done on a grid of points. The representation of 

the function goes back and forth between spectral and physical 

space by use of discrete (and fast) transforms. When transform

ing a function with N spectral coefficients from spectral 

space to physical space, the user should sample the function at 

M = N grid points. Over-sampling with M > N is wasteful; 

under-"sampling with M < N loses information and prohibits 

reconstruction of the spectral coefficients from the M sampled 

points. Problems arise in the pseudo-spectral method due to 

accidental under-sampling. The user can inadvertently under

sample a function if there are nonlinear or non-constant coef-

ficient terms. 

To see how under-sampling might arise, consider again the 

nonlinear wave equation 

dU 

dt 
- u 

dU 

dX 

with periodic boundary conditions 

u(t ,x=O) u(t,x=l) 

(120) 

(121) 

Initially, u and ~~ are represented in spectral space as sine 

series (sines are complete over the interval): 

N 

uN(t ,x) L a (t)sin'IT nx 

n=O 
n 

~122) 

dUN N 

(t ,x) ='lTL a (t)cos'ITnx 
dX 

n=O 
n 

(123) 
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Fourier transforming and 

obtain tabulations of the two functions 

into physical space,we 

dUN 
uN(t,xi) and ---(t,x.) 

dX 1 

h 11 . . _(i-I). 1 N A h· . 
at t e co ocat10n p01nts xi = -N- , 1=,. t t 1S step 1n 

the pseudo-spectral method we have enough information to re

construct the spectral coefficients an and (nrran) from the 

tabulated functions. The product -u ~ is tabulated at the 
dX 

collocation point in the obvious way: 
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dUN 
(t ,x.)= - uN(t,xi ) 

dUN 
(t ,x.) -u --

N d x 1 dX 1 
(124) 

Now the product 

were to represent 

would require 2N 

dUN 
is tabulated at N points, but if we 

d X 

it spectrally (by a convolution product) it 

terms (see equation 93): 

:r bn sin(nrrx) (125) 

n=l 

We have accidentally under-sampled because the function 
dUN 

- uN ax 
ulated 

has 2N 

~ 
-uN dX 

spectral coefficients but we have only tab-

at N points. If we had used Galerkin's 

method to compute the convolution product,we would project the 

2N spectral coefficients of the product back onto an N

dimensional spectral space by explicitly setting the bn = 0 
for all n > N and keeping the coefficients bn unchanged for 

all 0 < n < N. With the pseudo-spectral method the under-
dUN 

sampled product, -uN~' is also projected back onto an N-

dimensional spectral space when we naively inverse transform 

the tabulated product back into Fourier space. The discrete 

inverse transform not only sets the coefficients bn equal to 

zero for all n > N, but also mixes the spectral coefficient 

bn with 0< n < N with the spectral coefficients with n > N. 

The mixing is called aliasing. It is due to the fact that the 

discrete Fourier transform with N points is unable to tell the 

difference between Fourier modes of wavenumber n and wave

number 2N-n. For example, sin (nrrx) evaluated at the grid 

points xi = (i~l) i=l,N is indistinguishable from 

-sin[(2N-n)rrx] evaluated at thA same grid points. It should 

not be surprising that the inverse transform contaminates the 
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nth spectral coefficient with the (2N_n)th coefficient. There 

is never contamination or aliasing error if the number of sampling 
points of a function is greater than or equal to the number of 
spectral components of the function. 

The aliasing error can be avoided 
methods. One way of removing the alias 

dUN 
evaluate un' -ax' and the product at 

or reduced by several 
in equation (121) is to 

3 11 . . 2 N co ocat~on po~nts. 

The discrete inverse transform of the product will have no aliasing 
errors in the first N spectral coefficients. Often, aliasing errors 
can be ignored with no harmful effects. The reason is that aliasing 
contaminates the exact solution with the spectral coefficients b 
with n > N. If N is chosen sufficiently large, then the spectraln 

coefficients with n > N are exponentially small and the aliasing 
error is exponentially small. For example, aliasing errors in the 
Navier-Stokes equation can usually be ignored if the equation is 
solved in a way such that the aliasing error does not violate 
energy or momentum conservation. 

DISCUSSION 

There are more types of spectral methods than those discussed 
in this paper. Most of the other techniques are hybrids of those 
outlined here. All good spectral methods share the property that 
their convergence is exponential and are therefore more economical 
than finite differences. Spectral methods require approximately 7 
times fewer degrees of freedom (grid points or modes) per spatial 
dimension than do second-order finite-differences. Therefore, in 
2 or 3 dimensional calculations, spectral methods are often the 
only practical way of obtaining adequate spatial resolution. In 
the future, as astrophysicists increasingly want to extend their 
numerical calculations to 2 and 3 dimensions, spectral methods 
will increasingly become part of the astrophysicist's standard 
numerical tools. 
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