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Abstract

We perform a statistical analysis of user’s reaction time
to a new discussion thread in online debates on the popu-
lar news site Slashdot. First, we show with Kolmogorov-
Smirnov tests that a mixture of two log-normal distributions
combined with the circadian rhythm of the community is
able to explain with surprising accuracy the reaction time of
comments within a discussion thread. Second, this charac-
terization allows to predict intermediate and long-term user
behavior with acceptable precision. The prediction method
is based on activity-prototypes, which consist of a mixture
of two log-normal distributions, and represent the average
activity in a particular region of the circadian cycle.

1. Introduction

Human communication behavior has experienced impor-
tant changes during the last decades. The daily use of email,
chats, discussion forums, blogs, etc. has changed the way
we interact with each other. It has never been easier for
an ordinary person to reach a large and growing audience.
Nevertheless, there are some underlying principles in our
communication behavior that remain invariant and can be
observed without considering semantic issues. E.g. the re-
action and inter-event times of human communication seem
to be governed by heavy-tailed distributions [26]. This fact
has been reported for modern communication forms such
as email [14], online chats [6] and forum discussions [15]
as well as traditional communication in form of letters [22].
For more examples see [28] and references therein. How-
ever, which type of heavy-tailed distribution provides the
best explanation of the data is still an open problem. Some
favor power-law distributions [21] while others incline more
to log-normal (LN) distributions [18]. See for example the
discussion over an email dataset between Barabasi [2] and
Stouffer et al. [27] and the remarks of Mitzenmacher [20]
about similar controversies in other areas of science.
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In this work we analyze the reaction time of many-to-
many communication in form of online debates at the pop-
ular technology-news website Slashdot!. The site, created
in 1997, publishes frequently short news posts and allows
its readers to comment on them, which provokes online-
discussions that may trail for days. A moderation system
upholds the quality of discussions by discouraging spam
and offensive comments [16]. In [15] it was shown that the
distribution of the time differences between a post and its
comments, i.e. the post-comment-interval (PCI), fits well a
LN distribution, but the quality of the fit strongly depends
on the circadian rhythm of the site.

Here we use the same dataset as in [15], which represents
one year of activity on Slashdot and consists of about 10*
news posts which received more than 2 - 10 comments (see
[15] for more details on the dataset) and extend this previous
work in two directions. First, we improve the approxima-
tion quality of the PCIs by using distributions which dimin-
ish the dependency on the circadian cycle. This is either
achieved by the use of double log-normal (DLN) distribu-
tions, as for example used in [27] to explain the waiting time
in email conversation, or by multiplying a LN distribution
with a periodic function. The best results are obtained if
both methods are combined.

Although Slashdot holds much closer ties to web mes-
sage boards and newsgroups, we can find some related stud-
ies about the comments to posts on weblogs [19, 8]. The
amounts of comments per post and per blog follow heavy-
tailed distributions, but only 30% of the blogs (15% percent
of the posts) received comments [19]. According to Duarte
et al. [8], 55% of the discussions appearing in these blogs
can be classified as many-to-many communication. Among
other temporal patterns of the comments, their study also
analyzes the aggregate of all PCI-distributions, which is fit
by a Weibull distribution.

In the second part of this work we propose a method to
predict the activity generated on Slashdot. Our goal is to
approximate how many comments a given post will receive
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using only the first few minutes/hours of the activity it gen-
erates as evidence. This is related to the problem of predic-
tive inference of future responses, for which in the case of
LN models several analytical studies [9, 11] found estima-
tors of the single future response density (i.e. the probability
of the next comment) using a subset of the data.

There exists extensive literature concerning the predic-
tion of Internet traffic or, in particular, web traffic demand
(see [10, 23, 1, 25, 3] for just a few examples). The most
elaborated approaches apply multi-resolution analysis us-
ing wavelet transform decompositions to characterize the
data at different temporal resolutions [23, 1]. The resulting
components are then used to model a time dependent func-
tion, from which short lookahead predictions (from one up
to five minutes), or long term trends can be obtained. Sev-
eral methods have been proposed to model such functions.
Some of them rely on time series analysis techniques [4].
Especially the auto-regressive integrated moving average
model or variants are widely used [10, 23], although other
function approximation techniques, spanning from linear
fits [3] to recurrent neural networks [1], have been applied
as well to obtain predictions. Direct applications of those
methods cover dynamic resource allocation [24], conges-
tion control [12], or security issues [13].

Our work differs from those approaches in many ways.
For instance, the temporal data considered in those studies
consists of aggregated traffic measurements from web, Eth-
ernet, or IP backbone traces, with different data protocols
or applications merged in one common traffic stream. In
contrast, the post induced activity existing in Slashdot oc-
curs at a higher logical level. Moreover, the stationarity and
linearity assumptions usually made by time series methods
are clearly not valid in our case. The LN temporal profile
is highly non-stationary and has a transient temporal nature.
Nevertheless, since we know the trigger of enhanced activ-
ity (i.e. the publishing of a post) and the underlying gen-
erative model, we can extrapolate the future activity. But,
instead of a simple parameter estimation of a truncated LN
distribution, which is very sensitive to small fluctuations in
the data and thus not the best technique for prediction pur-
poses, we use different prototypes of posts, each of them
representing the average behavior in different regions of the
circadian cycle, rescale these prototypes to adjust best the
initial activity of a given new post, and take the remaining
part of the prototype as prediction.

2. Approximations of the User Activity

In this section we compare the quality of different types
of approximations of the PCI-distribution of a post. First we
explain in detail the four different probability distributions
used to approximate the data and the statistical test applied
to compare their performance.
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Figure 1. Transformation of LN into LNxC.

2.1. Statistical Preliminaries

Since we model discrete data with minute precision we
use discretized versions of the following probability density
functions (pdf). The simplest distribution used is the log-
normal (LN) distribution whose pdf is:

A CUOET

We also use a double log-normal (DLN) distribution which
is a mixture of two independent log-normals. Its pdf is thus:

fin(tp, o) =

forn(t;6)
where 0 =

kfon(tpa,o1) + (1 — k) fon(t; pa, 02)
(1,01, k, pi2,02). )

The third and forth distributions used are generated from
the previous ones by point-wise multiplication of their pdfs
with a periodic continuation of an “ad hoc” circadian cycle?
as shown in Figure 1b. The cycle is approximated by the
normalized mean number of comments per hour of the day,
which is then linearly interpolated to achieve minute resolu-
tion. Alternatively, higher dimensional interpolation could
be used, but the differences are negligible for our purposes.

The starting point of the periodic function coincides with
the moment the post is published. After the multiplication
we have to normalize to obtain the final pdf. We denom-
inate the two resulting probability distributions LNxC and
DLNxC. This procedure is visualized in Figure 1. Figure 1a
shows an example of a LN-pdf. After multiplying it with the
periodic continuation of the circadian activity cycle (Figure
1b) and renormalizing we obtain the LNxC-pdf (Figure 1c).

2In the calculation of the cycle we account for the daylight saving time,
an effect which has been neglected in [15].
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Figure 2. Approximation with LN (dashed line) and DLNxC (dashed doted) of the PCl-distribution
(solid lines and bars). (a) Comments per minute (bin-with=2) for the first 1000 minutes after the
post’s publishing. (b) Same as (a) but in logarithmic scale. (c) The cumulative distribution of the data
shown in (a). Inset shows a zoom on the first 2000 minutes. (d) Same as (c) but in logarithmic scale.

To find the optimal parameters of these distributions for
a given post we use maximum likelihood estimation [5],
which is performed by minimizing the negative logarithm of
the likelihood function with fminsearch in MATLAB.

To test whether for a given post its PCIs are distributed
according to one of the above described distributions, we
use the Kolmogorov-Smirnov (KS) test with the following
hypotheses:

Hy: The PCl is a sample of distribution F'.
H,: The hypothesis Hj is not true.

F stands for the tested probability distribution (either LN,
LNxC, DLN or DLNxC). The test is based on finding
the maximal difference between the cumulative distribu-
tion functions (cdf) of data and approximation. With this
maximum and the number of samples (i.e. the number of

comments in our case) we can calculate the p-value of the
KS-test. It gives us the probability of obtaining a result as
different from F' as the data. In other words: the greater the
p-value, the closer is the fit with the test distribution. The
hypothesis Hj is accepted if the p-value is greater than the
chosen level of significance o (usually set to 0.05 or 0.01).
For more details see for example [5].

2.2. Two example Posts

Before we compare the results of all four distributions
explained in the previous section we examine the fit of two
example posts with either a LN or a DLNxC-distribution in
detail. The simpler one, the LN, was already used in [15]
and gave good results for posts published between 6am and
16pm. Figure 2 shows such a post. We observe that the
PClI-distribution is fit well by both distributions. In Fig-
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Figure 3. DLNxC improves the fit for a post published late at night. Description as in Figure 2.

ure 2a, which shows only the first 1000 minutes of activ-
ity provoked by this posts, it is hard to decide which of
the two approximations is better. Nevertheless, we notice
that in logarithmic scale® (Figure 2b) the oscillations of the
PCI-distribution are better approximated by a DLNxC (gray
dashed-doted line). The same effect can be observed in the
PCI-cdf (Figure 2c and Figure 2d) where a small bump af-
ter about 1000 minutes is adjusted well by a DLNxC. This
is reflected by the KS-test, which accepts the LN-fit with
a p-value of 0.637 and the DLNxC-fit with p = 0.918. Al-
though both p-values are far greater than the usual threshold
of arg = 0.05 for acceptance of the null hypothesis, they in-
dicate that the DLNxC-fit is much closer to the data.
Moreover, the DLNxC leads to excellent results even for
those cases where the KS-test rejects the LN-hypothesis.
An example of such a post, which was published late at
night and suffers thus distortions due to the circadian cycle
is shown in Figure 3. Here the LN-hypothesis is rejected
with a very low p-value (< 10719). However, a DLNxC-

3Note that the bin-width in log-scale increases with time, which causes
different locations of the peak of activity in Figures 2a, 2b and 3a, 3b.

fit would be accepted with a p-value of 0.509. Already in
linear scale (Figure 3a) it becomes clearly visible that the
DLNxC is much closer to the data. This impression is en-
hanced by the PCI-distribution in logarithmic scale (Figure
3b) and the corresponding PCI-cdf (Figures 3c and 3d). The
DLNxC-fit adapts well to the oscillations of activity.

We will show in section 2.4 that the hour a post is pub-
lished determines whether it can be approximated well by
only a single LN or needs either a DLN or a DLNxC.

2.3. Approximation of all posts

After these two examples, we perform a KS-test for all
posts and all types of distributions presented in section 2.1
to analyze their approximation quality. The cdf of the p-
values of these tests are shown in Figure 4. The previously
used LN-approach (dashed line) gives the worst results. A
significant improvement is achieved if we use a LN plus cir-
cadian cycle (LNxC)-distribution (black continuous line).
But the best results are obtained for the two types of double
log-normal distributions. Both DLN and DLNxC-fits have



o | 0.01 0.05

LN 16.68%  25.62%
LNxC 4.80%  9.88%
DLN 0.44%  0.96%
DLNxC | 0.11%  0.33%

Table 1. Percentage of rejected 0-Hypotheses

p-values much higher than their log-normal counterparts.
Now the improvement achieved by using the circadian cycle
is much smaller, the curves of DLNxC (dashed-dotted line)
and DLN-curve (gray continuous line with circles) nearly
coincide. If we fix the level o with either 0.01 or 0.05
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Figure 4. Results of KS-tests on all posts

(shown as gray areas in Figure 4), we can quantify the per-
centage of posts for which the KS-test rejects the null hy-
pothesis (see Table 1). While a single LN-distribution only
explains in 83% of the cases, both double log-normal vari-
ants are a valid model of the data for more than 99% of all
posts. The best results are obtained for DLNxC which is
only rejected for 11 of 10016 posts (ag = 0.01).

The small difference between the outcome of the KS-
tests for DLN- and DLNxC-distributions suggests that the
DLN-fit might already account for the main part of the vari-
ations caused by the circadian rhythm. This is confirmed by
Figure 5 which shows the dependence of the p-values on the
publishing hour of the posts. The left panel compares LN
(dark gray) and DLN-approximations (light gray) and the
right panel their oscillating extensions. Clearly, the quality
of LN and LNxC-approximation depends on the hour of the
day a post is published, although this dependence dimin-
ishes for the case of LNxC. On the contrary, both types of
double log-normal distributions show only minor variations
due to the publishing hour of the post, but again DLNxC is
slightly more constant than DLN.

2.4. Two waves of activity

The fact that a combination of two LN distributions (LN
and LN5) allows a good approximation of the PCI suggests
that the activity provoked by a post consists of two major
waves. The first one starts directly after the post is pub-
lished and the second one after the next increase of the cir-
cadian cycle. To verify this claim we combine all posts
of our dataset which have been published during the same
hour of the day into an aggregate post. For example, to ob-
tain the first aggregate post we sum the PCI-distributions
of all posts published between lam and 2am. In this way
we obtain 24 aggregate posts, which we approximate with
DLN-distributions. The normalized PCI-cdfs of the 24 ag-
gregates (black solid lines) and their DLN-approximations
(gray dashed lines) are shown in Figure 6d.

The parameters of these 24 DLN-approximations can be
observed in the top three subplots of Figure 6. We notice
that ¢1 and o (continuous lines in Figure 6a and 6c) of
the first LN-distribution (LN ) experience only minor vari-
ations due to the posting hour. LN; corresponds to the
first wave of activity. The mixing parameter k, uo and oo
(dashed lines), on the other hand, vary significantly. Fig-
ure 6b shows that k£ experiences a cyclic behavior, simi-
lar to the circadian activity cycle (Figure 1b). The loca-
tion in time of the maximum and minimum of both cycles
approximately coincide. The value of k reaches its maxi-
mum around 3pm, which indicate that for posts published
at this time of the day most of the activity can be modelled
by LN;. At the same time po reaches its maximum and o
its minimum. The difference between the medians exp(1)
and exp(p2) of LN; and LN is of about 16 hours, which
tells us that LN models the activity of those users which
comment the post during the following day, i.e. during the
next high-phase of the circadian cycle. For publishing times
later than 15pm the value of k decreases successively, while
o9 increases, which implies that the proportion of the to-
tal number of comments received during this second wave
of activity increases as well. Parallel to this rise, po de-
cays as the time-difference between the publishing of the
post and the next rise of activity decreases. This trend is
stopped around 5am in the morning when the proportion of
comments provided by the first wave of activity increases
again. Between 9am and 14pm, during the high-phase of
activity, the values of p; and ps are very similar making a
separation of the two waves very difficult. The activity can
be approximated well during this time window with only
a single LN distribution. A DLN leads here only to minor
improvements, which makes its parameters hard to interpret
during this interval.

The gray areas in Figure 6d, representing the activity
within exp(um + 0’1,2) centered around the medians pi;
and po of the two LN-distributions, visualize the influ-
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ence of above described two waves of activity in the DLN-
approximation.

This analysis gives us further insight why the post of Fig-
ure 2 published around 2pm can be approximated well by a
single LN distribution, while the post of Figure 2, published
at around midnight needs a DLN or (a DLNxC) to account
for the two waves of activity.

3. Prediction of user activity

After having successfully approximated the user activity
in the previous section, we apply these findings to predict
the activity a post provokes.

3.1. Task description and error measure

We want to solve the following problem: at time ¢ we
want to predict the comment activity in the following s min-
utes of a post that has been published x minutes ago and has
received until now N comments. This means we take as ev-
idence for our prediction a data window [t — x, t] and pre-
dict the number of comments M in the prediction window
(t,t + s]. If we are interested in the total number of com-
ments, we just set the upper bound of the prediction win-
dow equal to the length of the time window a post is open
to receive comments (about 14 days). Although the average
duration of activity of a post is of about 5.57 (stdv=3.86)
days, this overestimation increases the error only by a small
amount since 97% of all comments are received within the
first 2 days after a post has been published. Compare with
Figure 6d.

To measure the quality of the prediction we use a stan-
dard relative error measure ¢, which is defined in the fol-
lowing way:

€= ’ (Mpredicted - Mreal) / Mreal‘ 3)

3.2. Prediction algorithm

Since the PCI-distribution can be well approximated,
one would expect that the prediction task just reduces to
a problem of parameter estimation using only a truncated
version of the PCl-distribution. However, since we deal
with heavy-tailed distributions, a great part of the proba-
bility mass, decisive to determine the parameters in noisy
data, lies outside of the truncated region. This implies that
parameter estimation is extremely prone to small fluctua-
tions in truncated data, especially in the case of DLN distri-
butions. Even if we use only a simple LN distribution, the



results are not very promising due to this reason (data not
shown). We therefore use instead the following technique
which overcomes this problem.

In analogy to the 24 aggregate posts of section 2.4, we
create 24 activity prototypes, one for every hour of the day.
To calculate them, we choose the oldest 10% of all the
posts (published between 26-08-05 and 05-10-05), which
represent the “training” set of the prediction.* This allows
us to simulate the prediction of a post using only data of
older posts. The first prototype is represented by the DLN
approximation® of the aggregate of all training-posts pub-
lished between 1am and 2am. The remaining 23 prototypes
are obtained in an analogous way. The prediction of a post
simply consists in rescaling the prototype corresponding to
the post’s publishing hour in such a way that the cdf of the
comments in the data window is best approximated.

19-1 190 hours 19‘ 192
Data Window
700/| post1 id=1216245, publ.: 08:55
——data used x=150 min
— prediction with prototype #8
6007 post2 id=2353200, publ.: 01:59
——data used x=150 min
., 500¢ — prediction with prototype #1
c
[
£ 400t
3 Data Window s=24h
* 300+
2001
100-
0
10° 10’ ? ° 10*

time since post was published in minutes

Figure 7. Two examples of prediction with
predefined prototypes of activity.

3.3. Illustrating Examples

Two prediction examples are shown in Figure 7. We use
here the first 150 minutes of the activity (dark gray-lines in
gray area) as evidence to estimate the comments the post
will receive afterwards. The two prototypes used for the
prediction (black lines) are chosen according to the pub-
lishing time of the post and rescaled to adjust best the in-
put data. The PCI (light gray continuous line) of postl is

4Other sizes of the training set lead to very similar results as long as
they contain at least a minimal amount of data for all 24 classes. In this
case they contain between 11 and 77 posts, distributed similar as the cir-
cadian activity cycle.

5As an alternative we could use DLNxC, but as in the case of the PCI-
approximation, the results are not significantly better and the circadian cy-
cle is harder to estimate with less posts.

predicted quite well by the prototype, whereas the proto-
type of post2 (dashed continuous line) predicts well only
the following first 8 hours, afterwards the activity is overes-
timated. Table 2 shows the exact values of the error mea-
sure € for different lengths of the prediction window. It is
interesting to note that the error for a short prediction win-
dow length of 30 minutes is higher than for an intermediate
length of 8 hours. This shows the sensitivity of the error
measure to small fluctuations, which are more noticeable
when the number of predicted messages is small, i.e. the
shorter the prediction window is.

S ‘ 30min 1h 8h 24h total
postl | 18.42% 10.64% 0.99% 0% 0.92%
post2 | 14.29% 0% 9.59% 36.67% 44.91%

Table 2. Error ¢ of the posts of Figure 7.

3.4. Performance of the prediction

In this section we analyze the quality of the prediction.
We compare the mean and the 90% quantile of the error ¢
of all posts for different lengths of data and prediction time-
windows in Figure 8. The best results are obtained for a 24
hour prediction (dash-dotted lines with squares), for which
the average error is around 36% and the 90%-quantile is
situated at about 70%. This values look quite high at first
sight, but are much lower than those of a simple approxima-
tion which assumes that every post causes more or less the
same amount of activity, i.e. using the mean activity caused
by the posts as representative for all posts. Under these cir-
cumstances the mean error would be situated between 150%
and 200% (gray dashed line with V-markers), which in ab-
solute numbers corresponds to 100 and 50 comments re-
spectively®, and the 90% quantile lies between 370% and
440% (data lies outside of the scale of Figure 8b). Glob-
ally, the performance of our method is reasonable. Only in
the case of a short length of the prediction window s = 1h
combined with a long data window (x > 120min) the per-
formance decays, which becomes visible in the 90% quan-
tile and is caused by a large number of posts with a very low
number of comments in the prediction window.

The mean proportions over all posts of the number
of comments received during different lengths of data
(columns) and prediction windows (lines) are shown in Ta-
ble 3. We observe that, for example, if we use a data win-
dow length of 30min which corresponds in the mean to
only 15% of the activity we are able to predict with rea-
sonable accuracy the remaining parts of activity. It is even

Note that a greater relative error corresponds to a lower absolute error,
since the number of comments in the prediction window is lower for longer
data windows. Compare with Table 3.
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Figure 8. Mean and 90% quantiles of the prediction error of different approaches.
T 30min 60min 90min 120min 150min 300min

[0, ] 15.0% (£07.5)  26.9% (£10.9) 35.8% (£12.7) 42.6% (+13.7) 48.0% (+14.3) 64.1% (£14.8)
[,z + 1h] 20.8% (£07.5)  15.7% (£05.5) 12.2% (+£04.5)  9.7% (£03.9)  8.0% (+03.5)  3.9% (£+02.5)
[, 2 + 8h] 60.1% (+£11.0)  49.2% (£10.2) 41.4% (£09.9) 35.6% (+£09.7) 31.1% (+£09.6) 19.1% (+09.2)
[x,x + 24h] | 78.5% (£07.8) 66.8% (£10.1) 58.1% (£11.4) 51.5% (£12.2) 46.2% (+12.6) 30.9% (£12.7)
% of lifetime | 0.73% (£0.97) 1.46% (+1.95) 2.18% (£2.92) 2.91% (+3.89) 3.64% (+4.87) 7.28% (£9.74)

Table 3. Mean (+ stdv) proportions of activity for different data (columns) and prediction windows
(rows). Last row: mean proportion of data window length compared to the total lifetime of activity.

more surprising that the time-span used for prediction in this
case corresponds to less than 1% of the duration of activity.
These values are shown in last line of Table 3.

To calculate a lower bound for our prediction method,
we use the fact that the prediction error is caused by a com-
bination of two rather different circumstances: (i) proto-
types that do not fit well the shape of a particular PCI-
distribution and (ii) wrong rescaling factors. To quantify
the latter influence we assume that we know the parameters
of the DLN-distribution which approximates best the entire
PClI-distribution at forehand and only have to adjust it with
the data in the prediction window. The result of this min-
imum possible error caused only by rescaling is shown in
Figure 8 as gray continuous line with A-markers. It is situ-
ated around 10% (Figure 8a) and is lower than 20% for 90%
of the posts (Figure 8b).

We also notice that the prediction quality increases with
the number of comments of the post, since fluctuation er-
rors are more important with a small number of comments,
as Figure 9 illustrates. We plot the mean error for all posts
which receive more than a certain number of comments (the
x-axis) in the prediction window. The prediction error first

decreases successively and stabilizes then at a minimum er-
ror of approximately 30%.” The same effect can be ob-
served in the 90% quantiles which decrease to less than 60%
or for the number of comments in the data window. Rea-
sonable accuracy can be obtained if it contains more than
5 comments (data not shown). We thus conclude that the
length of the windows is less important for prediction accu-
racy than the number of comments they contain.

How strong is the dependence of these results on the
data used to generate the prototypes? To answer this we
compare the DLN-prototypes (calculated with 10% of the
posts) and the DLN fit of the aggregates of all posts (shown
in Figure 6d). First, we measure the accuracy of the two
fits to model the aggregate posts by rescaling the DLN-fits
according to the total number of comments in the aggregate
and calculate then the “prediction” error € of the number of
comments in a [z, + 24h] window®. The mean of these

"The increase of the curve for a data window length of 300 (gray con-
tinuous with circles) is an artifact caused by the low number of samples
with more than 70 comments in the prediction window in this case.

8 Although this is formally no prediction-error it gives a good estimate
of the quality of the approximation.
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Figure 9. Dependence of the mean error on
the number of future comments.

errors over all 24 classes are compared in the lower two
rows of Table 4. As expected the errors of the DLNs of
the prototypes are slightly bigger than those of the DLNs of
the aggregates. However, if we calculate the same measure
for the individual posts instead of the aggregates (upper two
rows of Table 4), we observe nearly no difference in using
the entire data or only a sufficient large subset to calculate
the prototypes, whose performance can thus be considered
as quite stable to variations.

T \ 30min  60min  120min  150min ‘
s =24h Mean of accuracy on all posts
DLN-Protot. 6.93% 10.30% 16.04% 18.29%
DLN-Aggreg. | 6.99% 10.11% 15.34% 17.41%
s = 24h Accuracy on aggregate of all posts
DLN-Protot. 2.36%  3.85%  4.95%  5.30%
DLN-Aggreg. | 0.52%  0.84% 1.12%  1.15%

Table 4. Accuracy of DLN-prototypes.

4. Conclusions

In the first part of this study we compare the quality of
four different approximations of the PCI-distribution. We
observe that DLN distributions provide an excellent expla-
nation for the discussion activity provoked by a post on
Slashdot. The quality of the fit is independent of the pub-
lishing hour of the post, contrary to what is is observed if
only a single LN distribution is used [15]. We can conclude
that a post provokes two major waves of activity, which cor-
respond to two LN distributions. The first wave starts di-
rectly after the post is published and the second one after

the next increase of the circadian cycle. Since more such
oscillations with smaller amplitudes occur during the life-
time of a discussion, a slight improvement of the fit can be
achieved with a combination of DLN distributions and the
circadian cycle.

DLN distributions were used as well in [27] to explain
waiting times in email conversation. It seems thus that the
observed phenomenon is quite general and we would expect
to find it as well in other aspects of human communication.
For instance, in the access-distributions of news-posts [7],
a damped periodic pattern similar to the one analyzed here
has been reported. As in many other studies, a power-law
model is assumed, without being contrasted with the LN
hypothesis. A recent study [2] proposed a model to explain
this waiting or reaction times under the premise that they
fit power-law distributions. However, to achieve reasonable
accuracy of those fits, the heads and tails of the distribu-
tions were not considered, while a DLN fit of the same data
allowed a characterization of the entire dataset without the
need of cutoffs [27]. We believe that a theoretical under-
standing of the presented phenomena is thus still an open
question and further research towards a (double) LN model
for human communication behavior is needed.

A second question we investigated here is whether the
approximation of the PCI-distributions can be used to pre-
dict the reaction a post will provoke in the community. The
proposed method stores several prototypes of activity, each
of them covering the entire life-time of a post, and consists
in rescaling a prototype, which is determined by the pub-
lishing hour of a post. This technique is fast and flexible
in the sense that one can predict at an arbitrary moment in
the lifetime of a post the expected number of comments it
will receive afterwards during a time window of likewise
arbitrary length.

The transient profile of in the PCI-cdfs (e.g. the sharp
initial raise) makes accurate prediction nearly impossible
using standard time-series methods. Nevertheless, although
its average error is relatively high, our approach predicts the
magnitude of the expected reaction to a post already after a
short time-period, when only a small fraction of its total
number of comments has been received. The method could
allow, for instance, dynamic pricing or placing of online
advertisements according to the expected reaction to a post,
or early adaptation of online marketing campaigns. using
the viral marketing concept [17].

It should be easy to build a real-time system which pre-
dicts the total writing activity of the site. Such a system
would consist of as many predictors as active posts which
are updated every At minutes. At every updating event all
the predictors would first incorporate their evidences (the
number of comments received within the last A¢ minutes)
and recalculate their predicted activity by rescaling their
corresponding prototype properly. Eventually, some predic-



tors could be removed if their posts had been “closed” in the
meantime and then included in the training set to generate
improved prototypes. Other predictors could be incorpo-
rated if new posts had appeared within the last At minutes.
Such a system might provide estimates of the total activity
by just summing up the predictions of all the existing posts.

It seems natural to apply this approach as well on page
request data to predict server loads, where it should lead to
better results since its error decreases for larger datasets. We
expect the number of readers per minute to follow approx-
imately the same distribution as the number of comments
but in a larger scale. This is supported by a study of visits
of news-pages on an Hungarian website [7], which revealed
patterns quite similar to the PCI-distribution on Slashdot.
Unfortunately we do not have access to the server-logs of
Slashdot to verify this claim, but we are optimistic to be
able to apply our technique soon on similar data.
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