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Preface

This document provides a comprehensive description of LSODE, a solver for
- initial value problems in ordinary differential equation systems. It is intended to
bring together numerous materials documenting various aspects of LSODE,
including technical reports on the methods used, published papers on LSODE,
usage documentation contained within the LSODE source, and unpublished notes
on algorithmic details.

The three central chapters—on methods, code description, and code usage—are
largely independent. Thus, for example, we intend that readers who are familiar
with the solution methods and interested in how they are implemented in LSODE
can read the Introduction and then chapter 3, Description of Code, without
reading chapter 2, Description and Implementation of Methods. Similarly, those
interested solely in how to use the code need read only the Introduction and then
chapter 4, Description of Code Usage. In this case chapter 5, Example Problem,
which illustrates code usage by means of a simple, stiff chemical kinetics problem,
supplements chapter 4 and may be of further assistance.

Although this document is intended mainly for users of LSODE, it can be used
as supplementary reading material for graduate and advanced undergraduate
courses on numerical methods. Engineers and scientists who use numerical
solution methods for ordinary differential equations may also benefit from this
document.
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Chapter 1
Introduction

This report describes a FORTRAN subroutine package, LSODE, the Livermore
Solver for Ordinary Differential Equations, written by Hindmarsh (refs. 1 and 2),
and the methods included therein for the numerical solution of the initial value
problem for a system of first-order ordinary differential equations (ODE’s). Such
a problem can be written as

= f(y®.t)

«
]
Sl

1.1)
Z(éo) = Yo = Given,

where Y, ZO’ i, and f are column vectors with N (2 1) components and & is the
independent variable, for example, time or distance. In component form equa-
tion (1.1) may be written as

N

& ®) _ F(1©re 3y ©LE)

S

yi(E_,O) = Yig = Given

The initial value problem is to find the solution function y at one or more values
of £ in a prescribed integration interval [£g,Eeqgl, where the initial value of ¥, Yo
at § = &y is given. The endpoint, E.ng, may not be known in advance as, for
example, when asymptotic values of y as § — < are required.

Initial value, first-order ODE’s arise in many fields, such as chemical kinetics,
biology, electric network analysis, and control theory. It is assumed that the



L. Introduction

problem is well posed and possesses a solution that is unique in the interval of
interest. Solution existence and uniqueness are guaranteed if, in the region of
interest, { is defined and continuous and for any two vectors y and y* in that
region there exists a positive constant & such that (refs. 3 and 4)~ -

le(x.8) - 8] = 2l - v} (1.3)

which is known as a Lipschitz condition. Here ||| denotes a vector norm (e.g.,
ref. 5), and the constant & is known as a Lipschitz constant of { with respect to y.

The right-hand side { of the ODE system must be a function of y and & only. Tt
cannot therefore involve y at previous § values, as in delay or retarded ODE’s or
integrodifferential equations. It cannot also involve random variables, as in
stochastic differential equations. A second- or higher-order ODE system must be
reduced to a first-order ODE system.

The solution methods included in LSODE replace the ODE’s with difference
equations and then solve them step by step. Starting with the initial conditions at
&y, approximations Y,,, (= Y, i = 1,...,N) to the exact solution y(&,) [= yi(€,),
i =1,...,N] of the ODE’s are generated at the discrete mesh points &, (n = 1,2,...),
which are themselves determined by the package. The spacing between any two
mesh points is called the step size or step length and is denoted by 4,,, where

h, = & — &,y (1.4)

An important feature of LSODE is its capability of solving “stiff” ODE problems.
For reasons discussed by Shampine (ref. 6) stiffness does not have a simple
definition involving only the mathematical problem, equation (1.1). However,
Shampine and Gear (ref. 7) discuss some fundamental issues related to stiffness
and how it arises. An approximate description of a stiff ODE system is that it
contains both very rapidly and very slowly decaying terms. Also, a characteristic
of such a system is that the NxN Jacobian matrix J (= 0f/dy), with element J;
defined as

Jy = afi/ayj, Lj = L...,N, (L.5)

has eigenvalues {A;} with real parts that are predominantly negative and also vary
widely in magnitude. Now the solution varies locally as a linear combination of
the exponentials {e5Ré®?}, which all decay if all Re(}; ) <0, where Re(A;) is the
real part of A;. Hence for sufficiently large & (> l/maxIRe(Z.i) , where the bars H
denote absolute value), the terms with the largest Re(A;) will have decayed to
insignificantly small levels while others are still active, and the problem would be
classified as stiff. If, on the other hand, the integration interval is limited to
1/max|Re(A;)|, the problem would not be considered stiff.
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In this discussion we have assumed that all eigenvalues have negative real
parts. Some of the Re(A;) may be nonnegative, so that some solution components
are nondecaying. However, the problem is still considered stiff if no eigenvalue
has a real part that is both positive and large in magnitude and at least one
eigenvalue has a real part that is both negative and large in magnitude (ref. 7).
Because the {A;} are, in general, not constant, the property of stiffness is local in
that a problem may be stiff in some intervals and not in others. It is also relative in
the sense that one problem may be more stiff than another. A quantitative
measure of stiffness is usually given by the stiffness ratio max[-Re(A;)]/min
[-Re(A;)]. This measure is also local for the reason given previously. Another
standard measure for stiffness is the quantity max[—Re(X,-)]|§cnd - &0‘ This
measure is more relevant than the previous one when e — &";0[ is a better
indicator of the average “resolution scale” for the problem than 1/min[-Re(A;)].
(In some cases min[-Re(A;)] = 0.)

The difficulty with stiff problems is the prohibitive amounts of computer time
required for their solution by classical ODE solution methods, such as the popular
explicit Runge-Kutta and Adams methods. The reason is the excessively small
step sizes that these methods must use to satisfy stability requirements. Because
of the approximaie nature of the solutions generated by numerical integration
methods, errors are inevitably introduced at every step. For a numerical method
to be stable, errors introduced at any one step should not grow unbounded as the
calculation proceeds. To maintain numerical stability, classical ODE solution
methods must use small step sizes of order 1/max[-Re(A;)] even after the rapidly
decaying components have decreased to negligible levels. Examples of the step
size pattern used by an explicit Runge-Kutta method in solving stiff ODE problems
arising in combustion chemistry are given in references 8 and 9. Now, the size of
the integration interval for the evolution of the slowly varying components is of
order 1/min[-Re(};)]. Consequently, the number of steps required by classical
methods to solve the problem is of order max[-Re(A;)}/min[-Re(A;)], which is
very large for stiff ODE’s.

For stiff problems the LSODE package uses the backward differentiation
formula (BDF) method (e.g., ref. 10), which is among the most popular currently
used for such problems (ref. 11). The BDF method possesses the property of stiff
stability (ref. 10} and therefore does not suffer from the stability step size constraint
once the rapid components have decayed to negligible levels. Throughout the
integration the step size is limited only by accuracy requirements imposed on the
numerical solution. Accuracy of a numerical method refers to the magnitude of
the error introduced in a single step or, more precisely, the local truncation or
discretization error. The local truncation error g, at £, is the difference between
the computed approximation and the exact solution, with both starting the
integration at the previous mesh point &,_; and using the exact solution y(§,-1)
as the initial value. The local truncation error on any step is therefore the error
incurred on that step under the assumption of no past errors (e.g., ref. 12).

The accuracy of a numerical method is usually measured by its order. A
method is said to be of order ¢ if the local truncation error varies as het!. More

3
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precisely, a numerical method is of order g if there are quantities C and h,, (> 0)
such that (refs. 3 and 13)

ld,| < cait for all 0 < h, <h, (16)

where |d,| is an N-dimensional column vector containing the absolute values of
the d; , (i = 1,....N). The coefficient vector C may depend on the function defining
the ODE and the total integration interval, but it should be independent of the step
size h, (ref. 13). Accuracy of a numerical method refers to the smallness of the
error introduced in a single step; stability refers to whether or not this error grows
in subsequent steps (ref. 7).

To satisfy accuracy requirements, the BDF method may have to use small step
sizes of order 1/max(Re [A]) in regions where the most rapid exponentials are
active. However, outside these regions, which are usually small relative to the
total integration interval, larger step sizes may be used.

The LSODE package also includes the implicit Adams method (e.g., refs. 4 and
10), which is well suited for nonstiff problems. Both integration methods belong
to the family of linear multistep methods. As implemented in LSODE these
methods allow both the step size and the method order to vary (from 1 to 12 for
the Adams method and from 1 to 5 for the BDF method) throughout the problem.
The capability of dynamically varying the step size and the method order is very
important to the efficient use of linear multistep methods (ref. 14).

The LSODE package consists of 21 subprograms and a BLOCK DATA module.
The package has been designed to be used as a single unit, and in normal
circumstances the user needs to communicate with only a single subprogram, also
called LSODE for convenience. LSODE is based on, and in many ways resembles,
the package GEAR (ref. 15), which, in turn, is based on the code DIFSUB, written
by Gear (refs. 10 and 16). All three codes use integration methods that are based
on a constant step size but are implemented in a manner that allows for the step
size to be dynamically varied throughout the problem. There are, however, many
differences between GEAR and LSODE, with the following important
improvements in LSODE over GEAR: (1) its user interface is much more
flexible; (2) it is more extensively modularized; and (3) it uses dynamic storage
allocation, different linear algebra modules, and a wider range of error types (ref.
17). Most significantly, LSODE has been designed to virtually eliminate the need
for user adjustments or modifications to the package before it can be used
effectively. For example, the use of dynamic storage allocation means that the
required total storage is specified once in the user-supplied subprogram that
communicates with LSODE; there is no need to adjust any dimension declarations
in the package. This feature, besides making the code easy to use, minimizes the
total storage requirements; only the storage required for the user’s problem needs
to be allocated and not that called for by a code using default values for parameters,
such as the total number of ODE’s, for example. The many different capabilities
of the code can be exploited quite simply by setting values for appropriate
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parameters in the user’s subprogram. Not requiring any adjustments to the code
eliminates the user’s need to become familiar with the inner workings of the code,
which can therefore be used as a “black box,” and, more importantly, eliminates
the possibility of errors being introduced into the modified version.

The remainder of this report is organized as follows: In chapter 2 we describe
the numerical integration methods used in LSODE and how they are implemented
in practice. The material presented in this chapter is based on, and closely
follows, the developments by Gear (refs. 10 and 18 to 20) and Hindmarsh (refs. 1,
2, 15, 21, and 22). Chapter 3 describes the features and layout of the LSODE
package. In chapter 4 we provide a detailed guide to its usage, including possible
user modifications. The use of the code is illustrated by means of a simple test
problem in chapter 5. We conclude this report with a brief discussion on code
availability in chapter 6.






Chapter 2
Description and Implementa-

tion of Methods

2.1 Linear Multistep Methods

The numerical methods included in the packaged code LSODE generate
approximate solutions Y,, to the ordinary differential equations (ODE’s) at discrete
points &, (n = 1,2,...). Assuming that the approximate solutions Y,,_ —j have been
computed at the mesh points &,_; (j = 1,2,...), these methods advance the solution
to the current value &, of the independent variable by using linear multistep
formulas of the type

K, K,
=20 ¥, +h, 3 By, .0
j=1 Jj=0

where the current approximate solution vector Y, consists of N components,

Y, = (YL,,,...,YN,,‘)T, (22)

and the superscript T indicates transpose. In equation (2.1), fnj [= {(Xn-] is the
approximation to the exact derivative vector at &, y(§y) [= f( ¥ (€n-))], where
for notational convenience the £ argument of f has been dropped; the coefficients
{0} and {B;} and the integers K| and K are associated with a particular method,;
and h, (=&, — &,_) is the step size to be attempted on the current step [£,_1.E,].
The method is called linear because the (Y} and {f;} occur linearly. It is called
multistep because it uses information from several previous mesh points. The
number max(K, K3) gives the number of previous values involved.

The values K} = 1 and K = ¢ — 1 produce the popular implicit Adams, or
Adams-Moulton (AM), method of order ¢:

FILMED

“ : 4}\ 1 St ot

PRECHDING PAGE BLANK (aN.«OT

11":1—-*” g



2. Description and Implementation of Methods

gq-1
Y, =Y, +h, D Bif, 23)
j=0

The method is called implicit because it uses the as yet unknown f, to compute
Y... The method order ¢ means that if equation (2.3) is solved with all past values
being exact, the resulting Y,, will differ from the exact solution y(&,) to the ODE
system by a local truncation error that is of order O(H") for small values of H =
max|hy.

The choice K; = ¢, K3 = O results in the backward differentiation formula
(BDF) method of order g:

q
Y, =, 0,Y, ;+hBof, 24)
j=1

The term “backward differentiation formula” is used to describe the method
because equation (2.4), upon division by s, and rearrangement of terms, can be
regarded as an approximation for y(E,) in terms of Y,, ¥, 1,.... Y (refs. 15
and 17).

The two methods can be written in the general form

Y, = v, + hBofy = ¥, + hBof(Y,) @.5)

where ¥ contains previously computed information and is given by

g-1
Y, =Y, +h, ) Bl (2.62)
=

for the AM method of order ¢, and

q
v =2 oY, ; (2.6b)
=

for the BDF method of order q.

The coefficients {0y} and { B;} are determined such that equations (2.3) and
(2.4) will be exact if the solution to equation (1.1) is a polynomial of degree g or
less. Stability characteristics limit g in equation (2.4) to 6 (ref. 10). In LSODE,
however, BDF’s of order up to only 5 are used because of additional stability
considerations (refs. 7 and 23). The coefficients {o;} and {B;} for the two




2.2 Corrector Iteration Methods
methods are given by Gear (ref. 10) for ¢ < 6. In equation (2.5), although the
subscript n has been attached to the step size A, indicating that h,, is the step size to
be attempted on the current step, the methods used in LSODE are based on a
constant i. When the step size is changed, the data at the new spacing required to
continue the integration are obtained by interpolating from the data at the original
spacing. Solution methods and codes that are based on variable step size have
also been developed (refs. 17, 23, and 24) but are not considered in the present
work.

2.2 Corrector Iteration Methods

If Bo = 0, the methods are called explicit because they involve only the known
values {Y,} and {fr5}, and equation (2.1) is easy to solve. If, however,
Bo # 0, the methods are called implicit and, in general, solution of equation (2.1) is
expensive. For both methods, equations (2.3) and (2.4), By is positive for each g
and because f is, in general, nonlinear, some type of iterative procedure is needed
to solve equation (2.5). Nevertheless, implicit methods are preferred because they
are more stable, and hence can use much larger step sizes, than explicit methods
and are also more accurate for the same order and step size (refs. 4, 10, and 12).
Explicit methods are used as predictors, which generate an initial guess for Y.
The implicit method corrects the initial guess iteratively and provides a reasonable
approximation to the solution of equation (2.5).

The predictor-corrector process for advancing the numerical solution to &,
therefore consists of first generating a predicted value, denoted by X,[,O], and then
correcting this initial estimate by iterating equation (2.5) to convergence. That is,
starting with the initial guess Y9, approximations Y m = 1,2,..,M) are
generated (by using one of the techniques discussed below) until the magnitude of
the difference in two successive approximations approaches zero within a specified
accuracy. The quantity X,[,’"] is the approximation obtained on the mth iteration,
the integer M is the number of iterations required for convergence, and we accept
YM] 45 an approximation to the exact solution y at £, and therefore denote it by
Y., although, in general, it does not satisfy equation (2.5) exactly.

At each iteration m the quantity h,,_Y_[,,'"], which is defined here, is computed
from Y™ by the relation

v ooy o+ Boh, Y™ 2.7)

Now, as discussed by Hindmarsh (ref. 21) and shown later in this section, if X,l,"']
- m

converges as m — oo, the limit, that is, lim Y, ', must be a solution of
m-yoo

equation (2.5) and Y™ converges to £, [= f(Y,)], the approximation to z(én).
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Hence p_ XEI'"] is the mth estimate for h,f, and lim h, XE,'"] = hpfy,. The predicted

m—rvo

value of h,f,, denoted by h, XLO], is also obtained from equation (2.7) (by setting
m =0). In practice, we terminate the calculation sequence at a finite number M of
B Y,
which is obtained from X,[,M] by using equation (2.7). Note that Xnis only an

iterations and accept as an approximation to h,f, the quantity h, Xn

approximation to f, because Y™ does not, in general, satisfy equation (2.5)
exactly (see egs. (2.5) and (2.7)). Moreover, because YIM] is defined to satisfy
the solution method, in the sense of equation (2.7), it is not necessarily equal to
f(XE,M]). Therefore XLM] and XLM 1 do not necessarily satisfy the ODE, equa-
tion (1.1). Thus, in practice, to advance the solution, the methods use the {X j }(e.g.,
see eqgs. (2.8a) and (2.8b)), rather than the { {;} as written in equation (2.1).

After convergence of the estimates Y™, we could define Y] to be equal to
f(_Y_{,,M]), so that X,EM] and XgM] satisfy the ODE exactly. However, besides being
more expensive because it will require one derivative evaluation, performing this
operation is actually less stable for stiff equations than using equation (2.7)
(ref. 25).

The predicted value at &, X,EO], is generated by a gth-order explicit formula
similar to equations (2.3) and (2.4) (refs. 18 and 20):

q
0 .
Y=Y, +h DB, (28a)
Jj=1
for the AM method of order ¢ and

q
(1] * 0
YV = Yoy, ; +hBY,, (2.8b)
j=l

for the BDF method of order g. In these two equations i’,,_ j is the approximation
to f,—; computed on the step [E,_j_1.E,_;]. The coefficients {a;} and {B;} are
selected such that equation (2.8a) or (2.8b) will be exact if the solution to
equation (1.1) is a polynomial of degree g or less.

The predictor step for the two methods can be generalized trivially as

0
Y, =y, 29)

where y* is given by the right-hand sides of equations (2.8a) and (2.8Db),
respectively, for the AM and BDF methods.

10




2.2. Corrector Iteration Methods
To correct the initial estimate given by equation (2.9), that is, to solve

equation (2.5), LSODE includes a variety of iteration techniques—functional,
Newton-Raphson, and a variant of Jacobi-Newton.
2.2.1 Functional Iteration

To derive the functional iteration technique, also called simple iteration

(refs. 11 and 26) and successive substitution (ref. 27), we rewrite equation (2.5) as
follows:

Y, = @(Y,) (2.10)
where
o(Y,) = v, + hBof(Y,) @11

The (m + 1)th estimate, Y™ (m = 0,1,...,M-1), is then obtained from
equation (2.10) by (e.g., ref. 27)

il

ym o Q(X,E””) y o+ hnBOf(X,[,m]). 2.12)

Now equation (2.7) gives the following expression for &, XE,"H” :

Y =y Bk, Y (2.13)
Comparing equations (2.12) and (2.13) gives

: [m+1] {m]
h,Y, = h"f(_Y_n ) 2.14)
for functional iteration,

We now define the vector function g(y) by

v y
g(y) = h,f(y) + _"B =, (2.15)
0

which, upon using equation (2.7), gives

11



2. Description and Implementation of Methods

(X! = (X [™) - R XL (2.16)

By using equation (2.15) we can rewrite the functional iteration equation (2.12) as
follows:

1
y [l oyl ﬁog(xf,’”’). @.17)

Finally the combination of equations (2.14) and (2.16) produces the following

functional iteration procedure for hnX n
clm+tl o [m) [m]
hY, =hY, + g(_Y_" ) (2.18)

Equation (2.17) is simple to use, but it converges only linearly (ref. 27). In
addition, for successful convergence the step size may be restricted to very small
values for stiff problems (refs. 4, 10, 12, 26, and 28), as shown here. By using
equation (2.14) we can rewrite equation (2.16) as

1) = m(xi) - m(x), (2.19)

for m = 1. Hence, equation (2.17) can be rewritten as

X’E"‘*” - X,E'"] + h,,ﬂo[ﬁ(l',[,m]) - E(X,Em_l])] (2.20)

By using the Lipschitz condition, equation (1.3), we get the following relation
from equation (2.20):
< o]

which shows that the iteration converges, that is, the successive differences

X[m] _ X’Em—ll

y oy L , @21

—r

[m+1] [m]
Xn - .Y_n
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decrease, only if .

I Bose < 1. (222)

Now stiff problems are characterized by, and often referred to as systems with,
large Lipschitz constants (e.g., refs. 4, 12, and 26), and so equation (2.22) restricts
the step size to very small values. Indeed, the restriction imposed by this
inequality on h,, is exactly of the same form as that imposed by stability requircments
on classical methods, such as the explicit Runge-Kutta method (refs. 4 and 26).
For this reason, when functional iteration is used, the integration method is
usually said to be explicit even though it is implicit (ref. 17).

2.2.2 Newton-Raphson Iteration

Newton-Raphson (NR) iteration, on the other hand, converges quadratically
and can use much larger step sizes than functional iteration (refs. 27, 29, and 30).
Rapid improvement in the accuracy of the estimates is especially important
because the corrector is iterated to convergence. The reason for iterating to
convergence is to preserve the stability characteristics of the corrector. If the
correction process is terminated after a fixed number of iterations, the stability
characteristics of the corrector are lost (refs. 4 and 12), with disastrous consequences
for stiff problems.

To derive the NR iteration procedure, we rewrite equation (2.5) as

R(Y,) = ¥, - v - hBof(Y,) = 0, (2.23)

so that solving equation (2.5) is equivalent to finding the zero of R. The quantity
R(X,[,"‘]) is the residual vector on the mth iteration; that is, it is the amount by
which X,[,”’] fails to satisfy equation (2.5). To obtain the (m + 1)th estimate, we
expand equation (2.23) in a Taylor series about the mth estimate, neglect the
second and higher derivatives, and set R(X},’"*”) = 0 because we seek a ﬂm+l]
that produces this result (e.g., ref. 27). Performing these operations and then
rearranging terms give the following relation for the NR iteration technique:

p(xn”’*” - X,E'"]) = —B[X,E””) —y o+ h,,Boi(X,[,m]) -y
(2.24)
where the NxN matrix P is given by

P=0RAY =1 —hB,J. (2.25)
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In equation (2.25), 1 is the NxN identity matrix and J is the Jacobian matrix,
equation (1.5). Comparing equations (2.15) and (2.23) shows that

R(Y) = -Bog(¥), (226)

so that equation (2.24) can be rewritten as follows:

+1 -
ym oy g ‘g(x,{’"]). 227

The NR iteration procedure for &, X”is derived by subtracting equation (2.7)
from equation (2.13) and then using equation (2.27). The result is

- [m+1] ., [m] -1 lml
Y, =hY™ +P g(ln ) (2.28)

This iteration will converge provided that the predicted value is sufficiently
accurate (refs. 4 and 12). The prediction method, equation (2.9), provides a
sufficiently accurate initial estimate that the average number of iterations per step
is less than 1.5 (ref. 7). In fact, the predictor is generally as accurate as the
corrector, which is nonetheless needed for numerical stability. However, much
computational work is required to form the Jacobian matrix and to perform the
linear algebra necessary to solve equation (2.27). Now, because the Jacobian does
not appear explicitly in the ODE’s, equation (1.1), or in the solution method,
equation (2.5), J need not be very accurate. Therefore, for problems in which the
analytical Jacobian matrix is difficult or impossible to evaluate, a fairly crude
approximation such as the finite-difference quotient

Jy = Al + AAY;;J) - fi(Yf), Pj = Lo, (229)

is adequate. In equation (2.29), AY; is a suitable increment for the jth component
of Y.

Inaccuracies in the iteration matrix may affect the rate of convergence of the
solution but not the solution if it converges (refs. 4 and 21). Hence this matrix
need only be accurate enough for the iteration to converge. This beneficial fact
can be used to reduce the computational work associated with linear algebra, as
described in chapter 3.

14




2.2, Corrector Iteration Methods
2.2.3 Jacobi-Newton Iteration

Jacobi-Newton (JN) iteration (ref. 31), also called Jacobi iteration (ref. 32), is
obtained from Newton-Raphson iteration by neglecting all off-diagonal elements
of the Jacobian matrix. Hence for JN iteration

J _ 0 i 230
i = \aghy, i=i (230)

This technique is as simple to use as functional iteration because it does not
require any matrix algebra. Also, it converges faster than functional iteration but,
in general, not as fast as NR iteration.

A method closely resembling JN iteration is implemented as a separate method
option in LSODE. It is like JN iteration in that it uses a diagonal approximation D
to the Jacobian matrix. However, the diagonal elements D;; are, in general,
different from J;; and are given by the difference quotient

b - F+ AY) - (D)
1 AY,

,  i=1,.,N, (2.31)

where the increment vector AY = 0.1 g(X,[,O]). If J is actually a diagonal matrix,
Di=Ji;+ O(AY,~2), but, in general, D;; effectively lumps together the various
elements {J;;} in row i of J.

2.2.4 Unified Formulation

The different iteration methods can be generalized by the recursive relations

1 _
O b @3
and
o [m+1] (] -1 [rm]
hY, = h Y, +P§@n) (233)

where P depends on the iteration method. For functional iteration P =1, and for
NR and JN iterations P is given by equation (2.25), where J is the appropriate
Jacobian matrix, equation (1.5), (2.30), or (2.31).
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The combination of equations (2.32) and (2.33) gives

1 ) v | y
e - LA v (234)

which shows that if Y™ converges as m — oo, s0 does XE,'"]. Equation (2.32)
shows that if X,[,'"] converges (to Y,;) as m — oo, g(X,[,'”]) — 0, and therefore we
see from equations (2.15) and (2.16), respectively, (1) that the converged solution
satisfies equation (2.5) and (2) that XE,’"] - X)) =1,

The predictor-corrector methods can be summarized as follows:

Predictor:
0]
Y =y
(235
[0]
) Y L
[0] =n =
hY, = Bo n
Corrector:
g(Yi™) = hat(¥i) - Y1
ylm+l = ylml ﬁop—lg(x,gml) m=0,1,...M—1.
L = Y+ P Yi)
(2.36)
Y, = YV
(2.37)

hni = hn.Y_yEM]'

n




2.3 Matrix Formulation

2.3 Matrix Formulation

The implementation of linear multistep methods is aided by a matrix formulation
(ref. 21). This formulation, constructed by Gear (ref. 18), is summarized here.

To solve for Y, and &, Y by using equations (2.35) to (2.37), we need, and
Yot Y g
and h, Xn_q for the AM method of order ¢, or Y1, Yy-2,.-, Xp—g> and h, Xn_l

for the BDF method of order g. Hence for the AM method of order ¢ we define
the NxL history matrix w,_q atE,_; by

therefore must have saved, the L=g + 1 column vectors Y,,_y, &, Y

Waot = (Yoot nXpop hn Y g e Yo ) (2.38a)
that is,
’ . . .
Yl,n—l hn}"l,n—-l hn)ﬁ,n—Z e hn)'/l,n-q
Y2,n—1 hnYZ,n——I hnYZ,n—Z e, hn YZ,n—q
Wa = | ' ' Tl @39
YN,n—l hnYN,n—l hy YN,n—2 et hn)}N,n—q
The updated matrix
= (X n X X oo B X g (2.402)

is then constructed at each step &,,. The predicted matrix w[O] at &, is given by

[0}

widl = (Y[O]hY h,,Xn_l,...,h,,Xn_qH). 2.41a)

For the BDF method of order g these matrices take the form

Wpoy = ( novhn Y, 1Y, _2,...,Xn_q), (2.38b)

(2.40b)

%
I

n (Xnvhnzm_Y_n—l’-'-»Xn_qﬂ)q
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2. Description and Implementation of Methods
and

(0]
W%O] = (XE;O]vhn Xn vXn-'I1~n, Xn—q-l’l)' (2.41b)

The matrix formulations for wl%) and w,, are derived as follows: Substituting
the expression for Y91 equation (2.8a) or (2.8b), into that for hnXE,O], equa-
tion (2.35), and then using equation (2.6a) or (2.6b) give

*

o (BB B, -
mYD =N Y, o+ LR Y (242a)

& "By By "
Jj=1

for the AM method of order g and

4 (o’ - a, *
01 _ J J B,
h Y —E _— Y_j+—BO

n—n BO —-n h’l X"_] (242b)
j=1

for the BDF method of order q. Equations (2.8a) and (2.42a), or (2.8b) and
(2.42b), that is, the prediction process, can be rewritten as the matrix equation

will=w B, (243)

where the LxL matrix B depends on the solution method. For the AM method of
order g, it is given by

1 0 00 00
B J B_o P10 00
B P2 B_o P2 gy 00
B =] : o - (244a)
) I
* ﬁ*_] - Bq_l
B, ——A— 0 0 0 1
q-1 Bo
. B,
B, B 00 00

18




2.3 Matrix Formulation

and for the BDF method of order g,

(1*—(1

o —L—1 1900 0
Bo

B, B 000 0
B
a*—a

o, 22 010 0
Bo
(X*—(X

oy i3 90 I 0
Bo

B=1 | . (244b)

1
* (X*__—(I_

a,, 41 g ¢ 9 1
Bo
a*—a

o, 4% o000 0

Bo )

The corrector equation, equation (2.36), can be expressed in matrix form as

n

wimth ol pet g(z,[,’"’ ) b, (245)
where w,[™, the history matrix on the mth iteration, is given by
wiml =(Y B, Y B Y, Y ) (2.46a)

n—=n—-q+l1

for the AM method and by
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wim =( Y XY, e Y ) (246b)

for the BDF method, k is the L-dimensional vector

b= (BO,I,O,...,O), (247)

and P depends on the iteration technique, as described in section 2.2.4.
The matrix formulation of the methods can be summarized as follows:

Predictor:

wl=w B (248)

n

Corrector:

1) (X" ) -, 3"

m=0,1,. . M-1. (249)
w£m+1] _ wy[:n} N P_lg(X,[,m])‘g

w, =wiMl (2:50)

n

2.4 Nordsieck’s History Matrix

Instead of saving information in the form w,_j, equation (2.38a) or (2.38b),
Gear (ref. 18) suggested making a linear transformation and storing the matrix
Z,1 given by )

z,1 = ¥v,,Q (251)

where the LxL transformation matrix Q is nonsingular. In particular, Q is chosen
such that the matrix representation suggested by Nordsieck (ref. 33) is obtained:

. B )
Z,1+= Xn—l’hnzn_lv'zi' Xn—]v---v# X,‘_l , (252)
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2.4 Nordsieck's History Matrix
that is, the NXL matrix z,,_ is given by

; hi @
Yl,n—l hnY],n—l L _n|_ Yl,n—l
. hd ?
Y2,n—l hnYZ,n—l (T _an )é.n—l
Zp-1 = (2.33)
YN,n—l hnYN,n-l . . . . . . . 7'1’ N,n-1

In equation (2.53),Y(‘,i,)n_1 is the jth derivative of the approximating polynomial for
Y;n1. Because scaled derivatives h,{X(’,),_llj! are used, Q is independent of the
step size. However, Q depends on the solution method. The N rows of z,_ are
numbered from 1 to N, so that the ith row (i = 1,...,N) contains the g + 1 scaled
derivatives of the ith component, Y; 1, of Y,_1. The g + 1 columns are, however,
numbered from O to g, so that the column number corresponds to the order of the
scaled derivative stored in that column. Thus the jth column (j = 0,1,....9), which
we denote by the vector z,—1(j), contains the vector h,J,'X(Q_llj I. The Nordsieck
matrix formulation of the method is referred to as the “normal form of the
method” (ref. 10).

Applying the appropriate transformation matrix Q to the predictor equation,
equation (2.48), gives

[4) 0 _
29 = w%Q = w,_BQ = 2,,Q7'BQ = z,_A, (2.54)
where

q )]
Bn 2.55)

‘—n

2
29 = |y g O hy

—n’n—n’2!

) G

is the predicted NxL Nordsieck history matrix at €, and
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2. Description and Implementation of Methods
A = Q'BQ. (2.56)
The LXL prediction matrix A provides a gth-order approximation to z,EOl in terms

of z,_; and is therefore the lower-triangular Pascal triangle matrix (ref. 10), with
element A; given by

0, i<j
Aij = i i,j = 0,1,..,q, 2.57)
I . .
('j, ‘ 2 J
J
where (;) is the binomial coefficient, defined as

(".) =" (258)

J Jla=-pr
Hence
1 0 o [+ T 0 0 ¢
1 1 0 S
1 2 S
1 3 3 1 0
A=
2.59)
1 _2 (q-2Xq-3) (g-2Xg-3Xg—-4) I
q BT T
_ (g-1Mg9-2) (g-IMg-2Xq-3) -1 I
vooerd 2 T -b
i 2q-1 2q-Mg-2 aq-n .
q o ETmE R o

The principal advantage of using the Nordsieck history matrix is that the matrix
multiplication implied by equation (2.54) can be carried out solely by repeated
additions, as shown by Gear (ref. 10). Hence computer multiplications are
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2.4 Nordsieck's History Matrix
avoided, resulting in considerable savings of computational effort for large
problems. Also A need not be stored and z,Eo] overwrites z,_i, thereby reducing

memory requirements.
i+1) _ [ i i
(1) = (i) + () (260

Because
and A;; = Ao = 1 for all i, the product zA is computed as follows (refs. 10 and 15):

For k=0,1,..,q—1, do:
{For j=g¢.q-1,..k+1, do:

Z‘-,j_l(—zi'j’i'zi,j_], l=]$---5N'

(2.61)

In this equation the subscripts 7 and n—1 have been dropped because the z values
do not indicate any one value of £ but represent a continuous replacement process.
At the start of the calculation procedure given by equation (2.61), z =z,_;; and at
the end z = z[%. The arrow “« denotes the replacement operator, which means
overwriting the contents of a computer storage location. For example,

Zi3¢Zia+ i3

means that z; 4 is added to z; 3 and the result replaces the contents of the location
z; 3. The total number of additions required in equation (2.61) is Ng(q + 1)/2. The
predictor step is a Taylor series expansion about the previous point £,_; and is
independent of both the integration method and the ODE.

Another important advantage of using Nordsieck’s formulation is that it makes
changing step size easy. For example, if at £, the step size is changed from hj, to
rhy, the new history matrix is obtained from

z, «z,C (2.62)

where the LxL diagonal matrix C is given by

C= , . (263)
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2. Description and Implementation of Methods

The rescaling can be done by multiplications alone, as follows:

R=1
For j=1,..,q, do:
R« 1R 264
z;; € 2Ri=1.,N. (264
The corrector equation corresponding to equation (2.49) is given by
) =) Qi Q- gy b =i gyt
(2.65)
where z[™, the Nordsieck history matrix on the mth iteration, is given by
) [yt yim P iml B i@
z, = Xn Y, ,7 Y, ,...,—qTX_n (2.66)
and
1=kQ @67)
is an L-dimensional vector
0=(0p.0 8, (2.68)

For the two solution methods used in LSODE the values of { are derived in
references 21 and 22 and reproduced in tables 2.1 and 2.2. Methods expressed in
the form of equations (2.54) and (2.65) are better described as multivalue or L-
value methods than multistep methods (ref. 10) because it is the number L of
values saved from step to step that is significant and not the number of steps
involved.

The two matrix formulations described here are related by the transformation
equations (2.51), (2.54), and (2.65) and are therefore said to be equivalent
(ref. 10). The equivalence means that if the step {€,_1.Ex] is taken by the two
methods with equivalent past values w,_; and z,-j, that is, related by equa-
tion (2.51) through Q, then the resulting solutions w, and z, will also be related
by equation (2.51) through Q, apart from roundoff errors (ref. 21). The
transformation does not affect the stability properties or the accuracy of the
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TABLE 2.1.—METHOD COEFFICIENTS FOR ADAMS-MOULTON METHOD IN NORMAL FORM OF ORDERS 1 TO 12

I

Lad 2]
—fe—

5040

1440

o
™My
O

-
P~

479001600

39916800
6652800

7257600

207360

11

120960

272160

21
10831
9676800

1

193536

7513
1209600

1903

4354560 201600

242537

8591
207360

341693
1814400
139381
604800

84095

145152
341747
518400

177133
151200
151200

190553

7381
5040
83711
55440

26842253
95800320
4777223

17418240



2. Description and Implementation of Metheds
TABLE 2.2.—METHOD COEFFICIENTS FOR BACKWARD

DIFFERENTIATION FORMULA METHOD IN
NORMAL FORM OF ORDERS 1 TO 6

q 20 24 29 L L4 25 g
1 1 1
2 3 1
213 3 3
.8 |1 (& (&
11 11 11 11
Lz [0 [ (1 |1
50 50 50 50 50
5 | 120 | 274 ] 226 86 |15 | _1
274 274 274 274 274 274
8 720 1764 1824 735 175 21 1
1764 1764 1764 1764 1764 1764 1764

method, but roundoff properties and computational effort depend on the
representation used, as discussed by Gear (ref. 10).

The first two columns of z, and w,, are identical (see egs. (2.38a), (2.38b), and
(2.52)), and so £y = PBo and ¢; = 1. For the same reason the corrector iteration
procedures for Y, and hnin remain unchanged (see eqgs. (2.45), (2.47), and
(2.65)). However, to facilitate estimation of the local truncation error, a different
iteration procedure than that given by equation (2.65) is used. To derive the new

formulation, zI™*! is written as

g [l = g Il 2 4 glm 2m Ty g ) + 2

or

m i .
zflmm =ZE.0] +Z(z,[lf+ll _z'['ﬂ ) (2.69)
j=0

Substituting the difference z,?”] - z,[,’—l obtained from equation (2.65) into equa-
tion (2.69) produces

n

m .
SRR Y o 1) AR e
j=0

where el™! is defined as
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2.4 Nordsieck's History Matrix
m .
el =y p! g(y_,[,’ ]) : @71)
=0

It is clear from this equation that

-n n

Sl _ lml | pol g(y_‘,,’"]]. @2.72)
Equation (2.70) can be used to rewrite E_(X,[,'"]), equation (2.16), as follows:

g(X,[.m]) =h,.£(x£"") ~m, Y e, @73)

because {; = 1.

Finally, because only the first two columns of z, enter into the solution of equa-
tion (2.5), the successive corrections can be accumulated and applied to the
remaining columns of z, after convergence. Clearly, not updating all columns of
the Nordsieck history matrix after each iteration results in savings of computational
effort, especially when a high-order method is used and/or the number of ODE’s
is large. For additional savings of computer time the history matrix is updated
only if both (1) the iteration converges and (2) the converged solution satisfies
accuracy requirements.

The predictor-corrector formulation utilized in LSODE can be summarized as
follows:

Predictor:
Oy A
(274)
9’[10] =0.
Corrector:
o2 )= {0 g el
et =l +P_1§(Xg,m]) L =0, M~ 1. 275)
X,[,mm =Y—r[10] + g ggmll
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2. Description and Implementation of Methods

(2.76)

2.5 Local Truncation Error Estimate and Controll

The local truncation error is defined to be the amount by which the exact
solution Y (&) to the ODE system fails to satisfy the difference equation of the
numerical method (refs. 4, 10, 12, and 26). That is, for the linear multistep
methods, equation (2.1), the local truncation error vector d, at €, is the residual in
the difference formula when the apgroximations {Y;} and {{;} are replaced by the
exact solution and its derivative.” In LSODE, however, the basic multistep
formula is normalized by dividing it by

KZ
2B
j=0

lAlthough the corrector convergence test is performed before the local truncation error
test (which is done only if the iteration converges), we discuss the accuracy test first
because the convergence test is based on it.

2As discussed in chapter 1, another commonly used definition for the local truncation
error is that it is the error incurred by the numerical method in advancing the approximate
solution by a single step assuming exact past values and no roundoff errors (refs. 12, 13,
and 21). That is, d,, is the difference between the numerical approximation Y# obtained by
using exact past values (i.e., { y (€,)} and { y (§,-)}) and the exact solution y (&,):

d, = X:, -yE,) (277

where, for example,

Y, = ia e )+ hnBot(x:) | @78)
j=1

for the BDF method of order g. For an explicit method the local truncation error given by
equation (2.77) and that obtained by using the definition given in the text above (i.e., the
residual of eq. (2.1)) have the same magnitude. However, for an implicit method the two
quantities are only approximately proportional to one another (ref. 4), although they agree
asymptotically in the limit of small step size.
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2.5 Local Truncation Error Estimate and Control

for reasons given by Henrici (ref. 29) and Gear (ref. 10); however, see Lambert
(ref. 4). For example, the BDF method of order g, equation (2.4), can be
expressed in this form as

9 (o,
0= =LY, ;+hf, 2.79)
j=0 BO .

where ap = — 1. The local truncation error for this method is then given by

9 ,
d, = Z(ﬁjz(’én_ i)+ 3(En) (280)
j=o\Po

where d,, consists of N components

d, =(d1_n,...,dN'n)T.r (281)

If we assume that each y; (i = 1,...,N) possesses derivatives of arbitrarily high
order, each y;(E_,,,_j) (i=1,..,N; j=1,..,9) in equation (2.80) can be expanded in a
Taylor series about &,. Upon collecting terms the resulting expression for d,, can
be stated compactly as

O k()
dy =D Chy ¥ O (E,), (282)
k=0
where the {Cy} are constants (e.g., ref. 10). A method is said to be of order g if
Co=C1=..=C;=0,and Cyy; #0. The local truncation error is then given by
d, = Couhd*y@*D(E,) + O(ng*2), (2.83)

where the terms C,.j and Cq+lh,§’+l y@*D(E,) are, respectively, called the error
constant and the principal local truncation error (ref. 4). In particular, for the BDF
method of order g in the normalized form given by equation (2.79) (refs. 22
and 29)

Cppy=— (2.84a)

For the implicit Adams method of order ¢ in normalized form (ref. 22)
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2, Description and Implementation of Methods

o =[lola+D-1(a) (2.84b)

where {y(g) and fo(q + 1) are, respectively, the zeroth component of the coefficient
vectors for the AM method in normalized form of orders ¢ and (g + 1).

The (g + Dth derivative at &,, y@*D(,), is estimated as follows: As discussed
in section 2.4, at each step the solution method updates the Nordsieck history
matrix z,:

2 q
[Y h X,,,h Y, -h—Y,(f)). (2.85)
21— q =

For either method of order g the last column of z,, z,(g), contains the vector
hIY,Dig), which is the approximation to A y @(&,)/q!. Now the prediction step
being a Taylor series method of order g does not alter the last column of z,_j,

namely the vector th(q),/q‘ Hence the last column of z,EO], zE,O](q) contains the
vector h7Y'?,/q!. The difference, 29 - 2% g, is given by

v@ My _ hi*!

2,(9) 2y (@) = ,_,, - Aoy eo(h?) @8

,—n

by using the mean value theorem for derivatives. However, equation (2.76) gives
the following expression for z,(q) — z[O](q)

| z,,(q)—zg?](q) ={.e, 287

Equating equations (2.86) and (2.87) gives the following approximation for
h,‘{*‘x,gq*‘) if higher-order terms are neglected:

R Y 2 g e, (2.88)

Substituting this equation into equation (2.83) and neglecting higher-order terms
give the following estimate for d,;:

d, = q+1q!0q§". (289)

In order to provide for user control of the local truncation error, it is normalized

by the error weight vector EWT, , with element EWT; , defined by
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2.5 Local Truncation Error Estimate and Control

EWT, , = RTOL,.|Y,._,,_1

+ATOL,, (290)

where the user-supplied local relative (RTOL,;) and absolute (ATOL,) error toler-
ances for the ith solution component are discussed in chapter 4. The solution Xy,
is accepted as sufficiently accurate if the following inequality is satisfied:

dl= lN di,n 21 9
4] = ﬁg{ EWT,, <l 291

where |J+|| denotes the weighted root-mean-square (rms) norm, which is used for
reasons discussed by Hindmarsh (ref. 15). Equation (2.91) can be rewritten as

2

1 z” en V1 1
- n_
lea] = Nizl{EWT,.J ch+1q!aq' @92

by using equation (2.89). If we define the test coefficient 7(q,g) as

1
wg.q9)=—"7> 293)
Cor1d' ) .
the accuracy test, equation (2.92), becomes
?
lea] < a0 294)
If we further define the quantity D, by
e
D, = 2 , (295)
4. 9)
the accuracy test reduces to
?
D, <1 (2.96)

The reason for using two variables in the definition for T will become apparent
when we discuss step size and method order selection in section 2.7.

31



2. Description and Implementation of Methods
2.6 Corrector Convergence Test and Control

The test for corrector convergence is independent of both the integration
method and the iteration technique and is determined by the magnitude of the
successive differences hniim] —hniim_”. To provide for user control of the
convergence process, the difference hnXLm] —hnﬂ,""” is normalized by the

error weight vector EWT, , equation (2.90). Now, equation (2.33) provides the
following expression for A, iE;M] —h, XE,'"'”:

Y™ g,y N 5 (297)

where we have replaced P! g(l,[lm‘”) by 8/™. Now, because

m
[m+1] _ [
= - Z §n
=0

?
(see eq. (2.71)) and the test on lg,,l is IQ,,I < 1(q.q), equation (2.94), the following
test for convergence

N [m]
en= 1Y 8 | 1 aq)
mSANSEWT, | T 20+2)

i=l

(2.98)

is consistent with the local truncation error test. The empirical factor 2(g + 2) in
equation (2.98) guarantees that the implicit equation (2.5) is solved to greater
accuracy than that required of the numerical solution (refs. 22 and 25).

To increase computational efficiency, especially when the iteration is clearly
not converging, LSODE uses the following convergence test instead of equa-
tion (2.98):

o < M99 (2.99)
T 2g+2)

The quantity €,, is related to g,, by
£, =€, min(l,1.5c, ), (2.100)
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2.7 Step Size and Method Order Selection and Change
where

¢,, =max(02c (2.101)

m—l’cm)

and
o (2.102)

is the estimated convergence rate (refs. 22 and 25). Clearly at least two iterations
are required before ¢, can be computed. For the first iteration ¢y, is set equal to
the last value of c,, from the previous step. For the first iteration of the very first
step and, in the case of NR or JN iteration, after every update of the Jacobian
matrix, c,, is set equal to 0.7. Equation (2.100) assumes that the iteration
converges linearly, that is, lim (g,,41/€,,) = finite constant ¢, and essentially
anticipates the magnitude o'ﬂ,,, one iteration in advance (ref. 15). Equation
(2.101) shows that the convergence rate of the latest iteration is given much more
weight than that of the previous iteration. The rationale for this decision is
discussed by Shampine (ref. 25), who examined various practical aspects of
implementing implicit methods.

2.7 Step Size and Method Order Selection
and Change

Periodically the code attempts to change the step size and/or the method order
to minimize computational work while maintaining prescribed accuracy. To
minimize complications associated with method order and step size selection, the
new order g’ is restricted to the values g — 1, ¢, and g + 1, where ¢ is the current
order. For each g’ the step size h'(q’) that will satisfy exactly the local error bound
is obtained by assuming that the highest derivative remains constant. The method
order that produces the largest &’ is used on the next step, along with the
corresponding k', provided that the k' satisfies certain restrictions described in
chapter 3.

For the case q' = g, h'(q) is computed by setting Dy(h") (= value of D, for step
size b)) = 1 (see eq. (2.96)), so that the local accuracy requirement is satisfied
exactly. Then because d,, varies as h,‘{” (see eq. (2.83)), we get

q+1
Bq— ) ( hn ]
1 \r
1

B’ 1 )a+
Tsame = h(q) = [_] , (2.103)
n

or

D,
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2. Description and Implementation of Methods
where r is the ratio of the step size to be attempted on the next step to its current
value. The subscript “same” indicates that the same order used on the current step

is to be attempted on the next step.
For the case ¢'= g — 1, d,(g — 1) is of order g, where the variable g— 1 indicates
the method order for which the local truncation error is to be estimated, and

d,(@-1=Chl yPE,). (2.104)

where C,; = |00(q) — Qg(g — 1)| for the AM method and 1/g for the BDF method
(refs. 22 and 29). Now, the last column of z,, z,(¢), contains the vector th,,q)/q!
(see eq. (2.85)), and so d,(g — 1) is easily calculated. On using the rms norm,
equation (2.91), the error test for ¢'= g — 1 becomes

<1 (2.105)

1N
W o,

If we define the test coefficient 1(g,q — 1) as 1/C,q!, equation (2.105) can be
written as

g 2
hn (q)
N iLn
I ) B
Ni=l EWT, , 2 Zzn(‘l)
?
D .= = <1, (2.106)
9-1 g.q-1) r<q, —1)

where z; o(q) is the ith element of z,(g). The first variable in the definition for T
gives the method order used on the current step. The second variable indicates the
method order for which the local truncation error is to be estimated.
The step size h'(g — 1) to be attempted on the next step, if the order is reduced to
— 1, is obtained by using exactly the same procedure that was utilized for the
case g’ = g, that is, by setting Dq_ (k) = 1. Because d,(q — 1) varies as hf, the
resulting step size ratio rgown is given by

al
_hg-1) ( 1 Jq. (2.107)
-1

r =
down
hn

The subscript “down” indicates that the order is to be reduced by 1.
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2.7 Step Size and Method Order Selection and Change
For the case g’ =g + 1 the local truncation error d,(¢q + 1) is of order g + 2 and is
given by

2 2
d,(g+1)= Cq+2h,‘f+ z(‘” )(i,,), (2.108)

where Cgyp = |0(q +2) - lo(g + 1)| for the AM method and 1/(g + 2) for the BDF
method (refs. 22 and 29). This case is more difficult than the previous two cases
because equation (2.108) involves the derivative of order g + 2. The derivative
y(q+2)(l’;,,) is estimated as follows. Equation (2.88) shows that the vector qu,, is
approximately proportional to A3*'Y{4*Digl. We difference the quantity ¢
over the last two steps and use the mean value theorem for derivatives to get

I
._Qe =

+ hq+l
Xflq+l) __n Y(‘I*")

LVen=lien—Yign = q! g 1
hq+2
= _n'_zr‘f"z) +o(hf,+3). (2.109)
q.

IA =
-~

(2.110)

where we have again used the rms norm and Ve; , is the ith component of Vg,,. If
we define the test coefficient 1(q,g + 1) as 1/(Cgs2q! 04), the error test, equa-
tion (2.110), can be rewritten as

2
Li Ve,
Ni_I EWT,.’n ?
D, = <1 (2.111)
Ug.q+1)

To solve for k(g + 1), we use the same procedure as for h'(g) and h(g — 1). The
resulting ratio 7 is given by
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2. Description and Implementation of Methods

1

' q+2
k@ | 1 jer? 2112)
+1

w= D,

The subscript “up” indicates that the order is to be increased by 1.
After a suitable value for the step size ratio r has been computed, the step size
h' to be attempted next is calculated:

h'=rh,. (2.113)

If the step size and/or the method order is changed, the Nordsieck history
matrix has to be modified. For the case qg'= g and ' # h,, the g + 1 columns of z,,
are scaled, as described in section 2.4 (see eqs. (2.62) to (2.64)). For the case
q'=gq - 1 and h'# h,, the same scaling is performed on the first g columns; the last
column of the old z,, is ignored because it is not needed on subsequent steps.

If ({' = c{ + 1, z,, must be augmented by a column containing the vector
#Y*1Y$9*D1g + 1)!. The column addition is done in two stages. First, by using
equation (2.88) we derive the following expression for A7 Y9+ Dycq + 1)!:

h:er (g+1) = qmqgn — qun

Yy, V= (2.114)
(g+1)! (g+1)! g+1
and the new column, z,(g + 1), is given by
le
+1y="21= 2.115
z,(g+1) Py (2.115)

Second, in order to account for any change in the step size, all g + 2 columns of z,
are rescaled as before.

Another factor that must be considered if the step size and/or method order is
changed is that the iteration matrix P, equation (2.25), may be altered even if the
Jacobian matrix is current. To minimize convergence failures caused by an
inaccurate P, it must be updated if the coefficient A}y has changed significantly
since the last evaluation of P.

2.8 Interpolation at Output Stations

It frequently happens that the user requires the solution at values &oy 1,
Eout,2,-.- of the independent variable other than the internally generated {€,}. Ttis
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2.8 Interpolation at Output Stations
therefore important that in implementing the solution method provision be made
for the efficient computation of the solution at the required output stations.
Moreover, the procedure used for these computations should not adversely affect
the efficiency of the integration beyond the output station. Such a situation arises,
for example, if the method has to adjust the step size to “hit” the output station
exactly. Because the Nordsieck history array is used to store past history
information, the solution can be generated at the output stations quite easily, as
described next.

For each £, the integration is continued until the first mesh point n for which
£, 2 Eou, and then the solution at &y is obtained by interpolation. Now the
solution and its scaled derivatives up to order g’ are available at £,,. Here g'11
is the order to be attempted on the next step, that is, [§,,€,41]. Hence the solution
at Eouts Y(Eour) is computed by using a (gp41)th-order Taylor series expansion
about &, and is given by

Y(Eout) = Y, + (Eou —&n )Y Ji‘—;’—)z Y,
N M Y - ""‘f‘(&_"‘“.:g_")i Y®. @116
(@1} k=0 K
If we define the quantity r by
y=2ou =5 @117)

hn+l

where k', is the step size to be attempted on the next step, equation (2.116) can
be rewritten as

k
N
Y(Eou ) = ig}l r* L’kl")— y®, @118)

Now

(h'n+1)k Y(k)
Ko "

is the kth column z,(k) of z,,, and so equation (2.118) can be expressed compactly
as
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2. Description and Implementation of Methods

Eout) Z z, (k). (2.119)

Because the solution is accurate to order g',4 at &, and a (g',,)th-order Taylor
series expansion is used to compute Y(E,,), the latter is also accurate to order

q'n+1-
The solution at &y, equation (2.119), can be evaluated by additions and
multiplications alone by using Homner’s rule (ref. 13):

Y(E—'out) :n(qn-l»l) i=1.,N

gout — gn
how1

For k=1,..,q',, do: (2.120)

ry =

k= qn+1 k
Y(Bow) € zat®)+rH(Ey)  i=L..N

The Taylor series expansion method can be used to compute the solution
derivative of any order (up to g'5,1) at Eqy. For example, the pth-derivative at

Eoutr Y (Eouo), is given by

.
Xm)(§out)=Y“" +&ou — & )Y”H” +(§°‘“ g") yl7m)

- (q'n+l - }L)! "
q’n+l , k— - (k)
= Z:’l(’“—“)’(h"“) Y, (2.121)

upon using equation (2.117). Substituting ‘_{f,k) = k!z,,(k)/(h',,+|)k into equa-
tion (2.121) produces

Y¥(E,,) = 2 2,0 (2.122)
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2.9 Starting Procedure

2.9 Starting Procedure

At the outset of the integration, information is available at only the initial point
Eo. Hence multistep methods cannot be used on the first step. The difficulty at
the initial point is resolved easily by starting the integration with a single-step,
first-order method. The Nordsieck history matrix zg at &g is constructed from the
initial conditions yo and the ODE’s as follows:

200=Yy =y, (2.123)

and
zo()=hy Y = hyflyg.E). (2.124)

where hy is the step size to be attempted on the first step.

As the integration proceeds, the numerical solutions generated at the points &;,
€2,... provide the necessary values for using multistep methods. Hence, as the
numerical solution evolves, the method order and step size can be adjusted to
their optimal values by using the procedures described in section 2.7.
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Chapter 3
Description of Code

3.1 Integration and Corrector Iteration Methods

The packaged code LSODE has been designed for the numerical solution of a
system of first-order ordinary differential equations (ODE’s) given the initial
values. Tt includes a variable-step, variable-order Adams-Moulton (AM) method
(suitable for nonstiff problems) of orders I to 12 and a variable-step, variable-
order backward differentiation formula (BDF) method (suitable for stiff problems)
of orders 1 to 5. However, the code contains an option whereby for either method
a smaller maximum method order than the default value can be specified.

Irrespective of the solution method the code starts the integration with a first-
order method and, as the integration proceeds, automatically adjusts the method
order (and the step size) for optimal efficiency while satisfying prescribed accuracy
requirements. Both integration methods are step-by-step methods. That is,
starting with the known initial condition y(&p) at &y, where y is the vector of
dependent variables, & is the independent variable, and & is its initial value, the
methods generate numerical approximations Y, to the exact solution y(&,) at the
discrete points &, (n = 1,2,...) until the end of the integration interval is reached.
At each step [E,,_1,E,] both methods employ a predictor-corrector scheme, wherein
an initial guess for the solution is first obtained and then the guess is improved
upon by iteration. That is, startin with an initial guess, denoted by X_,[lO],
successively improved estimates X,[,'” (m=1,...,M) are generated until the iteration
converges, that is, further iteration produces little or no change in the solution.
Here Y is the approximation computed on the mth iteration, and M is the
number of iterations required for convergence.

A standard explicit predictor formula—a Taylor series expansion method devised
by Nordsieck (ref. 33)—is used to generate the initial estimate for the solution. A
range of iteration techniques for correcting this estimate is included in LSODE.
Both the basic integration method and the corrector iteration procedure are identified
by means of the method flag MF. ‘By definition, MF has the two decimal digits

METH and MITER, and |
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3. Description of Code

TABLE 3.1—SUMMARY OF INTEGRATION METHODS INCLUDED IN LSODE
AND CORRESPONDING VALUES OF METH,
THE FIRST DECIMAL DIGIT OF MF

METH Integration method
1 Variable-step, variable-order, implicit Adams method of orders 1 to 12
2 Variable-step, variable-order, implicit backward differentiation formula
method of orders 1 to §

TABLE 3.2—CORRECTOR ITERATION TECHNIQUES AVAILABLE IN LSODE
AND CORRESPONDING VALUES OF MITER,
THE SECOND DECIMAL DIGIT OF MF

MITER Corrector iteration technique
0 Functional iteration
1 Modified Newton iteration with user-supplied analytical Jacobian
2 Modified Newton iteration with internally generated numerical Jacobian
3 Modified Jacobi-Newton iteration with internally generated numerical
Jacobian?
b4 Modified Newton iteration with user-supplied banded Jacobian
bs Modified Newton iteration with internally generated banded Jacobian

*Modified Jacobi-Newton iteration with user-supplied analytical Jacobian can be
performed by specifying MITER = 4 and ML = MU = 0 (i.c., a banded Jacobian
with bandwidth of 1).

bThe user must specify the lower (ML) and upper (MU) half-bandwidths of the
Jacobian matrix.

MF =10 x METH + MITER, 3.1

where the integers METH and MITER indicate, respectively, the integration
method and the corrector iteration technique to be used on the problem. Table 3.1
summarizes the integration methods included in LSODE and the appropriate
values for METH. The legal values for MITER and their meanings are given in
table 3.2. The iteration procedures corresponding to MITER = 1 to 5 are
described as modified Newton iteration techniques because the Jacobian matrix is
not updated at every iteration.

3.2 Code Structure

The double-precision version of the LSODE package consists of the main core
integration routine, LSODE, the 20 subprograms CFODE, DAXPY, DDOT,
DGBFA, DGBSL, DGEFA, DGESL, DSCAL, DIMACH, EWSET, IDAMAX,
INTDY, PREPJ, SOLSY, SRCOM, STODE, VNORM, XERRWYV, XSETF, and
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3.2 Code Structure

XSETUN, and a BLOCK DATA module for loading some variables. The single-
precision version contains the main routine, LSODE, and the 20 subprograms
CFODE, EWSET, INTDY, ISAMAX, PREPJ, RIMACH, SAXPY, SDOT,
SGBFA, SGBSL, SGEFA, SGESL, SOLSY, SRCOM, SSCAL, STODE,
VNORM, XERRWYV, XSETF and XSETUN. The subprograms DDOT,
DIMACH, IDAMAX, ISAMAX, RIMACH, SDOT, and VNORM are function
routines—all the others are subroutines. The subroutine XERRWYV is machine
dependent. In addition to these routines the following intrinsic and external
routines are used: DABS, DFLOAT, DMAX1, DMINI, DSIGN, and DSQRT
by the double-precision version; ABS, AMAXI1, AMINI1, FLOAT, SIGN, and
SQRT by the single-precision version; and MAX0, MINO, MOD, and WRITE
by both versions.

Table 3.3 lists the subprograms in the order that they appear in the code and
briefly describes each subprogram. Among these, the routines DAXPY, DDOT,
DGBFA, DGBSL, DGEFA, DGESL, DSCAL, IDAMAX, ISAMAX, SAXPY,
SDOT, SGBFA, SGBSL, SGEFA, SGESL, and SSCAL were taken from the
LINPACK collection (ref. 34). The subroutines XERRWV, XSETF, and
XSETUN, as used in LSODE, constitute a simplified version of the SLATEC
error-handling package (ref. 35).

The structure of the LSODE package is illustrated in figure 3.1, wherein a line
connecting two routines indicates that the lower routine is called by the upper one.
For subprograms that have different names in the different versions of the code,
both names are given, with the double-precision version name listed first. Also,
the names in brackets are dummy procedure names, which are used internally and
passed in call sequences. The routine F is a user-supplied subroutine that computes
the derivatives dyy/dt (i = 1,...,N), where y; is the ith component of y and N is the
number of ODE’s. Finally, the user-supplied subroutine JAC computes the
analytical Jacobian matrix J (= 9f/0y), where = dy/dE,

The code has been arranged as much as possible in a “modular” fashion, with
different subprograms performing different tasks. Hence the number of
subprograms is fairly large. However, this feature aids in both understanding and,
if necessary, modifying the code. To enhance the user’s understanding of the
code, it contains many comment statements, which are grouped together in blocks
and describe both the task to be performed next and the procedure to be used. In
addition, each subprogram includes detailed explanatory notes, which describe
the function of the subprogram, the means of communication (i.e., call sequence
and/or common blocks), and the input and output variables.

Each subprogram contains data type declarations for all variables in the routine.
Such declarations are useful for debugging and provide a list of all variables that
occur in a routine. This list is useful in overlay situations. For each data type the
variables are usually listed in the following order: variables that are passed in the
call sequence, variables appearing in common blocks, and local variables, in
either alphabetical order or the order in which they appear in the call sequence and
the common blocks.
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TABLE 3.3.—DESCRIPTION OF SUBPROGRAMS USED IN LSODE

Subprogram Description
Double- Single-
precision precision
version version

LSODE LSODE Main core integration routine. Checks legality of input,
sets work array pointers, initializes work arrays, com-
putes initial integration step size, manages solutions
of ODE’s, and returns to calling routine with solution
and errors.

INTDY INTDY Computes interpolated values of the specified derivative

of the dependent variables.

STODE STODE Advances the solution of the ODE’s by one integration
step. Also, computes step size and method order to be
attempted on the next step.

CFODE CFODE Sets method coefficients for the solution and test con-
stants for local error test and step size and method order
selection.

PREP} PREP] Computes the iteration matrix and ‘either manages the
subprogram call for its LU-decomposition or computes
its inverse.

SOLSY SOLSY Manages solution of linear system arising from chord
iteration.

EWSET EWSET Sets the error weight vector.

VNORM VNORM Computes weighted root-mean-square norm of a vector.

SRCOM SRCOM Saves and restores contents of common blocks LS0001
and EHOOOI.

DIMACH RIMACH Computes unit roundoff of the computer.

XERRWYV XERRWV Handles error messages.

XSETF XSETF Resets print control flag.

XSETUN XSETUN Resets logical unit number for error messages.

DGEFA SGEFA Performs LU-decomposition of a full matrix by Gaussian
elimination.

DGESL SGESL Solves a linear system of equations using a previously
LU-decomposed full matrix.

DGBFA SGBFA Performs LU-decomposition of a banded matrix by
Gaussian elimination.

DGBSL SGBSL Solves a linear system of equations using a previously
LU-decomposed banded matrix.

DAXPY SAXPY Forms the sum of one vector and another times a
constant.

DSCAL SSCAL Scales a vector by a constant.

DDOT SDOT Computes dot product of two vectors.

IDAMAX ISAMAX Identifies vector component of maximum absolute value.
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3. Description of Code
3.3 Internal Communication

Communication between different subprograms is accomplished by means of
both call sequences and the two common blocks EHO0O1 and LS0001. The
reason for using common blocks is to avoid lengthy call sequences, which can
significantly deteriorate the efficiency of the program. However, common blocks
are not used for variables whose dimensions are not known at compilation time.
Instead, to both eliminate user adjustments to the code and minimize total storage
requirements, dynamic dimensioning is used for such variables.

The common blocks, if any, used by each subprogram are given in tables 3.4
and 3.5 for the double- and single-precision versions, respectively. These tables
also list all routines called and referenced (e.g., an external function) by each
subprogram. Also, to facilitate use of LSODE in overlay situations, all routines
that call and reference each subprogram are listed. Finally, for each subprogram
the two tables give dummy procedure names (which are passed in call sequences
and therefore have to be declared external in each calling and called subprogram)
in brackets.

The variables included in the two common blocks and their dimensions, if
different from unity, are listed in table 3.6. The common blocks contain variables
that are (1) local to any routine but whose values must be preserved between calls
to that routine and (2) communicated between routines. The structure of the block
L.S000! is as follows: All real variables are listed first, then all integer variables.
Within each group the variables are arranged in the following order: (1) those
local to subroutine LSODE, (2) those local to subroutine STODE, and (3) those
used for communication between routines. It must be pointed out that not all
variables listed for a given common block are needed by each routine that uses it.
For this reason some subprograms may use dummy names, which are not listed in
table 3.6.

To further assist in user understanding and modification of the code, we have
included in table 3.6 the names of all subprograms that use each common block.
For the same reason we provide in tables 3.7 and 3.8 complete descriptions of the
variables in EH000!1 and LS0001, respectively. Also given for each variable are
the default or current value, if any, and the subprogram (or subprograms) where it
is set or computed. The length LENWM of the array WM in table 3.8 depends on
the iteration technique and is given in table 3.9 for each legal value of MITER.

3.4 Special Features

The remainder of this chapter deals with the special features of the code and its
built-in options. We also describe the procedure used to advance the solution by
one step, the corrective actions taken in case of any difficulty, and step size and
method order selection. In addition, we provide detailed flowcharts to explain the
computational procedures. We conclude this chapter with a brief discussion of the
error messages included in the code.
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TABLE 3.4—ROUTINES WITH COMMON BLOCKS, SUBPROGRAMS, AND
CALLING SUBPROGRAMS IN DOUBLE-PRECISION
VERSION OF LSODE

Subprogram Common blocks Subprograms Calling
[Dummy used called and subprograms
procedure name] referenced
LSODE L.S0001 DIMACH EWSET
F INTDY JAC
PREPJ SOLSY
STODE VNORM
XERRWV
CFODE STODE
DAXPY DGBFA DGBSL
DGEFA DGESL
DDOT DGBSL DGESL
DGBFA DAXPY DSCAL PREPJ
IDAMAX
DGBSL DAXPY DDOT SOLSY
DGEFA DAXPY DSCAL PREPJ
IDAMAX
DGESL DAXPY DDOT SOLSY
DSCAL DGBFA DGEFA
DIMACH LSODE
EWSET LSODE
IDAMAX DGBFA DGEFA
INTDY LS0001 XERRWV LSODE
PREPJ LS0001 DGBFA DGEFA STODE
[PJAC] F JAC VNORM
SOLSY LS0001 DGBSL DGESL STODE
[SLVS]
SRCOM EH0001 LS0001
STODE LS0001 CFODE F JAC LSODE
PREP] SOLSY
VNORM
VNORM LSODE PREPJ
STODE
XERRWV EHO0001 LSODE INTDY
XSETF EHO0001 :
XSETUN EHO0001
BLOCK DATA EHO0001 LS0001
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TABLE 3.5.—ROUTINES WITH COMMON BLOCKS, SUBPROGRAMS, AND
CALLING SUBPROGRAMS IN SINGLE-PRECISION

VERSION OF LSODE
Subprogram Common blocks Subprograms Calling
[Dummy used called and referenced . subprograms

procedure name]
LSODE LS0001 EWSET F INTDY

JAC PREPJ

RIMACH SOLSY

STODE VNORM

XERRWV
CFODE STODE
EWSET LSODE
INTDY LS0001 XERRWV LSODE
ISAMAX SGBFA SGEFA
PREPJ LS0001 F JAC SGBFA STODE
[PJAC] SGEFA VNORM
RIMACH LSODE
SAXPY SGBFA SGBSL

SGEFA SGESL

SDOT SGBSL SGESL
SGBFA ISAMAX SAXPY PREPJ

SSCAL
SGBSL SAXPY SDOT SOLSY
SGEFA ISAMAX SAXPY PREPJ

SSCAL
SGESL SAXPY SDOT SOLSY
SOLSY LS0001 SGBSL SGESL STODE
[SLVS]
SRCOM EHO001 1LS0001
SSCAL SGBFA SGEFA
STODE LS000t CFODE F JAC LSODE

PREPJ SOLSY

VNORM
VNORM LSODE PREPJ

STODE

XERRWV EHO0001 LSODE INTDY
XSETF EH0001
XSETUN EHO0001
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TABLE 3.6—COMMON BLOCKS WITH VARIABLES AND

UROUND ILLIN INIT LYH
LEWT LACOR LSAVF LWM
LIWM MXSTEP MXHNIL
NHNIL NTREP NSLAST
NYH IALTH IPUP LMAX
MEO NQNYH NSLP ICF
IERP] IERSL JCUR IJSTART
KFLAG L METH MITER
MAXORD MAXCOR MSBP
MXNCF N NQ NST NFE
NJE NQU

SUBPROGRAMS WHERE USED
Common Variables (dimension) Subprograms where
block used
EHO0001 MESFLG LUNIT SRCOM XERRWYV
XSETF XSETUN
BLOCK DATA®
L.S0001 CONIT CRATE EL(13) LSODE INTDY
ELCO(13, i2) HOLD RMAX PREP] SOLSY
TESCO(3, 12) CCMAX ELO SRCOM STODE
H HMIN HMXI HU RC TN BLOCK DATA"

2Double-precision version only.

TABLE 3.7.—DESCRIPTION OF VARIABLES IN COMMON BLOCK EH0001,
THEIR CURRENT VALUES, AND SUBPROGRAMS WHERE THEY ARE SET

Variable Description Current Subprogram where
value variable is set

MESFLG | Integer flag, which controls ] BLOCK DATA in
printing of error messages from double-precision version
code and has following values and XERRWYV in single-
and meanings: precision version
0 No error message is printed.
1 All error messages are printed.

LUNIT Logical unit number for messages 6 BLOCK DATA in

from code

double-precision version
and XERRWY in single-
precision version




TABLE 3.8 —DESCRIPTION OF VARIABLES IN COMMON BLOCK LS000t, THEIR
CURRENT VALUES, IF ANY, AND SUBPROGRAMS WHERE
THEY ARE SET OR COMPUTED? -

Variable

Description

Current value,
if any

Subprograms where
variable is set or
computed

CONIT

CRATE

ELCO

HOLD

RMAX

TESCO

CCMAX

HU

Empirical factor, 0.5/(NQ + 1)
used in convergence test (see
eq. (2.99)

Estimated convergence rate of
iteration

Method coefficients in norma!
form {{;} (see eq. (2.68)), for
current method order

Method coefficients in normal
form for current method of
orders 1 to MAXORD

Step size used on last success-
ful step or attempted on last
unsuccessful step

Maximum factor by which step
size will be increased when
step size change is next
considered

Test coefficients for current
method of orders 1 to
MAXORD:; used for testing
convergence and local
accuracy and selecting new
step size and method order

Maximum relative change
allowed in HXELO before
Jacobian matrix is updated

Method coefficient §; (see
eq. (2.68)) for current method
and current order

Step size either being used on
this step or to be attempted
on next step

Minimum absolute value of step
size to be used on any step

Inverse of maximum absolute
value of step size to be used
on any step

Step size used on last success-
ful step

Normally 10; 10* for very
first step size increase
for problem if no dif-
ficulty encountered; 2
after a failed converg-
ence or local error test

0.3

0.0

0.0

STODE

STODE

STODE

CFODE

STODE

STODE

CFODE

LSODE

STODE

LSODE
STODE

LSODE

STODE

"Note that some variables appear in the table before they are defined.
YDefault value for this variable can be changed by the user, as described in table 4.6.
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TABLE 3.8.—Continued.

Variable Description Current value, Subprograms where
if any variable is set or
computed
RC Relative change in HXELO | —————mmr STODE
since last update of Jacobian
matrix
TN Value of independent variable | -—-——ormmmemvomenee STODE
to which integrator either has
successfully advanced solution
or will do so after next step
UROUND | Unit roundoff of computer e — DIMACH in
double-precision
version and
RIMACH in
single-precision
version
ILLIN Number of consecutive times e e e Initialized in
LSODE has been called with BLOCK DATA
illegal input for current (double-precision
problem version) and
LSODE (single-
precision version).
Updated in LSODE
in both versions.
INIT Integer flag (= 0 or 1) that ——————————— — LSODE
denotes if initialization of
LSODE has been performed
(INIT = 1) or not (INIT = 0)
LYH Base address for Nordsieck 21 LSODE
history array YH of length
NYHx(MAXORD + [}
LEWT Base address for error weight LWM + LENWM® LSODE
vector EWT of length N
LACOR Basc address for array ACOR LEWT + 2N LSODE
(of length N) containing local
errors on last successful step
LSAVF Base address for an amay LEWT + N LSODE
SAVF (of length N), used for
temporary storage
LWM Base address for aray WM (of LYH + LSODE

length LENWMC), required

for linear algebra associated
with Jacobian and iteration

matrices

NYHx(MAXORD + 1)

°The length LENWM of the aray WM depends on the iteration technique and is given in

table 3.9.
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TABLE 3.8.—Continued.

Variable Description Current value, Subprograms where
S if any variable is set or
computed
LIWM Base address for ‘integer work i LSODE
array IWM T . .
MXSTEP® | Maximum number of steps ~ 500 LSODE
allowed on any one call to
LSODE . :
MXHNIL? | Maximum number of times that 10 LSODE
warning message that step -
size is so small that TN'+
H = TN for neéxt step is -
printed .
NHNIL Number of times that this dif- ——————e——— LSODE
ficulty with small step size
has been encountered so far
for problem o
NTREP Number of conseculive times an |  ~—--evre——————- | Initialized in
initialization or "first" call BLOCK DATA
(see table 4.3) has been made (double-precision
to LSODE with same initial version) and
and final values for integra- LSODE (single-
tion interval precision
version). Updated
in LSODE in
both versions.
NSLAST | Number of steps used for- —— LSODE
problem prior to current call
to LSODE; used to check that
the limit of MXSTEP steps is
not excecded
NYH Maximum number of ODE's to —————— — LSODE
be solved for current problem
(This number is equal to the
number of ODE's specified on
first call to LSODE.)
IALTH Integer counter, related to step ———re e STODE
size and method order
changes, with following
values and meanings:
0 Select optimal step size and
mecthod order.
1 ¥ NQU < MAXORD, save
vector ¢ (see eqgs. (2.76) and
(2.111)) so that an order
increase can be considered
on the next step.
>1 Neither of these two oper-
ations is to be performed.
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TABLE 3.8.—Continued.

Variable

Description

Current value,
if any

Subprograms where
variable is set or
computed

LMAX

NQNYH

NSLP

ICF

IERPJ

Integer flag, related to Jacobian
matrix update, with following
values and meanings:

0 Jacobian matrix is either

to be updated.

>0 Jacobian matrix must be
updated before corrector
iteration.

Maximum number of columns
of Nordsieck history array

Integration method specified on
previous call to LSODE

Number of elements of
Nordsieck history array that
are changed by predictor

Step number when Jacobian
matrix was last updated

An integer flag, related to iter-
ation convergence, with fol-
lowing values and meanings:

0 Solution converged.

1 Convergence test failed and
Jacobian matrix is not
current.

2 Convergence test failed and
Jacobian matrix is either
current or not needed.

Integer flag, related to singular-
ity of iteration matrix, with
following values and
meanings:

0 Iteration matrix was suc-
cessfully LU-decomposed
(MITER = 1, 2, 4, or 5) or
inverted (MITER = 3) (scc
table 3.2)

1 Tteration matrix was found
to be singular.

Integer flag, related to singular-
ity of interation matrix modi-
fied to account for new
(HxELO) for MITER = 3 (ses
table 3.2). IERSL has fol-
fowing values and meanings:

0 Modified iteration matrix
was successfully inverted
and oorrections computed.

1 New matrix was found to be

singular.

not needed or does not have

STODE

STODE

STODE

STODE

STODE

STODE

PREP]

SOLSY
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TABLE 3.8.—Continued.

Variable

Description

Current value,
if any

Subprograms where
variable is set or
computed

JCUR

JSTART

MAXORDP

MAXCOR

MSBP

Integer flag, related to state of
Jacobian matrix, with fol-
lowing values and meanings:
0 Jacobian matrix is not cur-

rent and may need to be
updated later.

1 Matrix is current.

Integer flag, used to communi-
cate state of calculation to
STODE, with following
values and meanings:

O This is the first step for the
problem.

1 Continue normal calculation
of problem. (This is the value
retuned by STODE to
facilitate continuation.)

—1 Take the next step with new
values for H, MAXORD, N,
METH (see table 3.1),
MITER (see table 3.2),
and/or matrix parameters.

A completion code from
STODE with following valucs
and meanings:

0 Step was successful.

-1 Requested local accuracy in
solution could not be
achieved.

~2 Repeated convergence test
failures occumred.

Number of columns of

Nordsieck array

Integration method to be used

on next step

Iteration technique to be used

on next step

Maximum method order to be

used for problem

Maximum number of corrector
iterations to be attempted on
any one step

Maximum number of steps for
which same Jacobian matrix is
used

12 for Adams-Moulton
method and 5 for
backward different-
iation formula method

3

20

PREPJ
STODE

LSODE
STODE

STODE

STODE

LSODE

LSODE

LSODE

LSODE

LSODE

YDefault valuc for this variable can be changed by the user, as described in table 4.6.
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TABLE 3.8.—Concluded.

Variable Description Current value, Subprograms where
if any variable is set or
computed

MXNCF Maximum number of corrector 10 LSODE
convergence failures allowed
on any one step

N Number of ODE’s to be solved e —
on next step

NQ Method order either being tried ——— STODE
on this step or to be attempted
on next step

NST Total number of integration —— LSODE
steps used so far for problem STODE

NFE Total number of derivative —_ LSODE
evaluations required so far for STODE
probiem

NJE Total number of Jacobian —— LSODE
matrix evaluations (and PREP]
iteration matrix LU-
decompositions or inversions)
required so far for problem

NQU Method order used on last suc- ———— STODE
cessful step.

TABLE 3.9.—LENGTH LENWM
OF ARRAY WM IN TABLE 3.8
FOR ITERATION TECHNIQUES

INCLUDED IN CODE
MITER® LENWM?
0 0
12 N2+ 1
3 N+2
45 (ML + MU + )N + 2

2See table 3.2 for description of
MITER.

N is the number of ODE’s and ML
and MU are defined in table 3.2.
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3. Description of Code

The main routine, LSODE, controls the integration and serves as an interface
between the calling subprogram and the rest of the package. A flowchart of this
subroutine is given in figure 3.2. In this figure ITASK and ISTATE are user-
specified integers that specify, respectively, the task to be performed and the state
of the calculation, that is, if the call to LSODE is the first one for the problem or a
continuation; if the latter, ISTATE further indicates if the continuation is a normal
one or if the user has changed one or more parameters since the last call to
LSODE (see chapter 4 for details). On return from LSODE the value of ISTATE
indicates if the integration was performed successfully, and if not, the reason for
failure. The integer JSTART is an internally defined variable used for
communicating the state of the calculation with the routine STODE. The variables
T(=&),H, and Y are, respectively, the independent variable, the step size to be
attempted on the next step, and the numerical solution vector. TOUT is the §
value at which the solution is next required. Finally, TCRIT is the & value that
the integrator must not overshoot. This option is useful if a singularity exists at or
beyond TCRIT and is discussed further in chapter 4.

The subroutine STODE advances the numerical solution to the ODE’s by a
single integration step [€,_1,5,]. It also computes the method order and step size
to be attempted on the next step. The efficiency of the integration procedure is
increased by saving the solution history, which is required by the multistep
methods used in the code, in the form suggested by Nordsieck (ref. 33). The
Nx(g + 1) Nordsieck history matrix z,_; at §,_| contains the numerical solution
Y, i and the g scaled derivatives h,],Xg{_llj 1§ =1...9), where b, (=§, - &,_1) and
q are, respectively, the current step size and method order and YV = d’Y/dEl.

The flowchart of STODE is presented in figure 3.3. In this figure NCF is the
number of corrector convergence failures on the current step, KFLAG is an
internally defined integer used for communication with LSODE, NQ (= gq) is the
method order to be attempted on the current step, and the integer counter IALTH
indicates how many more steps are to be taken with the current step size and
method order. The (NQ + 1)-dimensional vector { contains the method coefficients
and depends on both the integration method and the method order; {; is the zeroth
component of { (see eq. (2.68)). The matrix z,Em is the predicted Nordsieck
history matrix at &,, and the NxN iteration matrix P is given by equation (2.25).
The variable R is the ratio of the step size to be attempted next to its current
value, RMAX is the maximum R allowed when a step size change is next
considered, and HMIN and HMAX are user-supplied minimum and maximum
absolute values for the step size to be tried on any step. The ratios RHDN,
RHSM, and RHUP are factors by which the step size can be increased if the new
method order is NQ — 1, NQ (the current value), and NQ + I, respectively.
Finally, NQMAX is the maximum method order that may be attempted on any
step, and the vector g, (= h, i’n - XE;O]) is proportional to the local truncation
error vector at £, (see egs. (2.87) and (2.89)).
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3.4 Special Features
3.4.1 Imitial Step Size Calculation

An important feature of LSODE is that it will compute the step size hg to be
attempted on the first step if the user does not provide a value for it. The
calculation procedure attempts to produce an Ag such that the numerical solution
Y generated at the first internal mesh point &; will satisfy the local error test.
Now with either solution technique the code starts the integration with a first-
order method. Hence the asymptotic local truncation error d; | in the ith solution
component at &; will be equal to (1/2)h|y,(§1) for both the AM and BDF methods
of order 1. Here k| is the step size successfully used on the first step, and y(&1) is
the second derivative of the ith component of y at &;. To pass the local error test,
equation (2.91), the weighted local error vector, that is, {d; /EWT;}, must
satisfy the inequality

i 2
5"125,‘(51)

Ng; EWT,

< 1, 32)

where EWT;; is the ith component of the error weight vector for the first step (see
eq. (2.90)):

EWT, , = RTOL i|)g'0| +ATOL,. (33)

In this equation RTOL; and ATOL; are, respectively, the user—supplied local
relative and absolute error tolerances for the ith solution component, ;¢ is the ith
solution component at &y, and the vertical bars | denote absolute value.

The test given by equation (3.2) cannot be applied at the start of the step [Eg, &;]
because y(E_,l) is not known. We therefore modify this test by using y(&o) as
follows: ‘We first define a weighted principal error function at order 1, ¢ with
element ¢; given by

i J’,(an)
o= — , 34
where
Wi =EW I“/TOL, 3.5)
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3. Description of Code

and the scalar tolerance quantity TOL, which is to be determined, is such that W;is
a suitable weight for Y;, the ith component of Y. The step size and the local error
are then together required to satisfy the inequality

nglo] < ToL, (36)

where ||¢|| represents a suitable norm. We have used a different symbol for the
initial step size than in equation (3.2) to indicate that this quantity is not known
and must be computed. Because a first-order method will be used on this step, for
a sufficiently small step size the numerical approximation ¥ at &; will not be
significantly different from ¥(&p), and use of the latter quantity is therefore
reasonable. The rationale for introducing TOL will become apparent shortly.
The second derivative ¥(Eg) is not generally available, and so the following
empirical procedure is used to estimate it. We consider the dominant eigenvalue
(= A) of the ODE system and model this component with the simple scalar ODE

=2y, (3.7

.
n
|

where | A | >> 1. For this problem, ¢ = (1/2)§/W = (1/2)A%y/W. Now, if TOL is
chosen such that y/W is of order unity, ¢ can be approximated by (y/W)?
[= (Xy/W)Z],which is known. For the scalar ODE this condition is obtained by
setting TOL = RTOL and ATOL = 0 (see egs. (3.3) and (3.5)). The quantity yIw
may be regarded as the weighted principal error function for a “zeroth order”
method. We use this empirical rule to replace each ¢; by ( y;/ W) so that equation
(3.6) can be written as

N

5 [( fi_OIWi)z] < TOL, (338)

1

where f; o [=fi(Yo, E0)] is the first derivative of the ith component at €. Because
the weighted root-mean-square (rms) norm is used in the local error test, equa-
tion (3.2), for convenience, we use the following criterion for initial step size

control:

2l 1= fio ’
% ﬁz;[_w,_] < TOL. (39)

Equations (3.5) and (3.9) together show that hg (o INTOL) is a decreasing
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3.4 Special Features

function of TOL. To produce a reliable estimate for kg, we therefore select a TOL
erring on the high side. A suitable value is given by

TOL = max(RTOL,). (3.10)
I

This expression cannot be used if all RTOL; =0. In this case an appropriate value
for TOL is given by

ATOL.
TOL = max S

; |Y | for ¥, #0. @311
i,0

L

In any case the value of TOL is constrained to be within reasonable bounds as
follows:

1004 < TOL < 1073, (3.12)

where u is the unit roundoff of the computer or the machine epsilon (ref. 13). Itis
the smallest positive number such that 1 +u > 1.

Equation (3.9) cannot be used to compute Ay if either each f; o is equal to zero
or the norm is very small. To produce a reasonable hg in such an event, we
include the independent variable & as the zeroth component yg of y and modify
equation (3.9) as follows: B

L)
2 i,0
0 i=1 !

where we have used the fact that yg = 1. To be consistent with the other W;,
which are of order Y;, the weight Wy should be of order &p; however, we use

W, = max(|§0|; Eout] (3.14)

to ensure that it is not equal to zero. In equation (3.14), Eoy 1 is either the first (or
only) value of the independent variable at which the solution is required or, as
discussed in chapter 4, a value that gives both the direction of integration (i.e.,
increasing or decreasing &) and an approximate scale of the problem. If the
quantity &oye, 1 — o is not significantly different from zero, an erTor exit occurs.
Equation (3.13) gives a reasonable value for kg (= Wp NTOL) if fo = 0.
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3. Description of Code
The calculation procedure used for kg is therefore given by

by = TOL (3.15)

N 2
_ 1 f'o
W2e— =2
\ ’ NE(W)

Several restrictions apply to the step size given by equation (3.15). It is not
allowed to be greater than the difference [Eqye 1 — &g Hence

By < min{ g, o 1 ~ o) (3.16)
In addition, if the user has supplied a value for hp,y, the maximum step size to be
used on any step, hg is restricted to

hy < min(hg, k) @17

However, no comparison of kg is made with hAp;y,, the user-supplied minimum
step size to be used on any step, so that hy is allowed to be less than A, Finally
the sign of A is adjusted to reflect the direction of integration.

3.4.2 Switching Methods

Another useful feature of LSODE is that different integration methods and/or
different iteration techniques can be used in different subintervals of the problem.
This option is useful when the problem changes character and is stiff in some
regimes and nonstiff in others as, for example, in combustion chemistry. Indeed,
because stiff problems are usually characterized by a nonstiff initial “transient”
region, the ability to switch integration methods is a desirable feature of any ODE
package. During the course of solving a problem the method flag MF may be
changed both whenever and as many times as desired. As described in chapter 4
changing methods is quite straightforward.

3.4.3 Excessive Accuracy Specification Test

At each integration step [,_1, &;] LSODE checks that the user has not requested
too much accuracy for the precision of the machine. This condition is said to
occur if the criterion

?
d,, <ul, (3.18)

is true for all N solution components. In equation (3.18), d;,, is the estimated
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3.4 Special Features

local truncation error in Y; ,, the ith solution component at £,.. Now the numerical
solution Y, at &, is judged to be sufficiently accurate if the following inequality is
satisfied (see chapter 2):

V&4, Y
b= 3

i=1

?
<L 291)

The quantity EWT;, is the ith component of the error weight vector, equa-
tion (2.90), for this step. Equations (3.18) and (2.91) together imply that if the
quantity TOLSF (tolerance scale factor) defined as

2
1o Yin

TOLSF=u_|— E —_— (3.19)
N EW Ii,n

i=1

is greater than 1, the test for excessive accuracy requirement is passed. This test is
quite inexpensive, but it can be applied only after the solution at &, is produced. It
is, however, wasteful to generate a solution only to discover that excessive
accuracy has been required, either because TOLSF is greater than 1 or because
repeated convergence failures or error test failures occur. The computational cost
can be significant if any difficulty is encountered because of the corrective
actions—described later in this section—performed by the code. Even if the step
is successful, the solution is not meaningful because of roundoff errors.

To avoid these difficulties, the calculation procedure for TOLSF uses Y,j,
which is known, so that the test can be applied at the start of each step, including
the first. Thus the code ascertains inexpensively if excessive accuracy has been
requested before attempting to advance the solution by the next integration step.
The value of TOLSF may be used to adjust the local error tolerances so that this
condition does not recur. For example, scaling up the {RTOL;} and {ATOL;}
values by a minimum factor of TOLSF should produce satisfactory values for the
local error tolerances if the same type of error control is to be performed (see
chapter 4 for details).

3.4.4 Calculation of Method Coefficients

The integration method coefficients and test constants used to check corrector
convergence and local accuracy, as well as to select method order and step size,
are computed in subroutine CFODE. The calculation procedure uses the generating
polynomials discussed by Hindmarsh (refs. 21 and 22) to increase portability of
the code. The coefficients corresponding to all method orders are computed and
stored both at the start of the problem and whenever the user changes the
integration method. This feature avoids the computational cost associated with
recomputing these quantities whenever the method order is changed.
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3.4.5 Numerical Jacobians

If Newton-Raphson (NR) or Jacobi-Newton (JN) iteration is selected, the code
will generate elements of the Jacobian matrix by finite-difference approximations
if the user chooses not to provide an analytical Jacobian. For the iteration
procedures corresponding to MITER = 2 (full Jacobian matrix) and 5 (“banded”
Jacobian matrix, i.e., a matrix with many zero entries and all nonzero elements
concentrated near the main diagonal), the element Jj; (= dfi/dy;) at &, is estimated
by using the approximation

() wsgan | &) -5 ({0} 2.)

Ji = , i=1,..,N, (320)

y ij

where Y[E],, is the kth component of Y, ,EO], 8yj is the Kronecker symbol,

0, k#j
6,.=<¢" 21
& {1’ k=], (321

and the increment AY; in the jth solution component is selected as follows: The
standard choice for AY; is

AYj=«/;

Yj{?}l (322)

This equation cannot be used if )/[]0}[ is either equal to zero or very small.
Therefore an alternative value, based on noise level, is deduced as follows: Now
the error in each f; due to roundoff is of order ulfil. Hence in replacing df;/dy; by
the difference quotient, equation (3.20), the resulting element J;; has an error of
order ulfil/r;, where for clarity in presentation we have replaced AY; by r;. Finally
because the method coefficient Bg (= {g) is of order unity (see tables 2.1 and 2.2),
the error 8P;; in the element Py of the iteration matrix P, equation (2.25), is
approximately

8P, = |Hlu |£|/r;- (323)
If we introduce the N-dimensional column vector g, with element s; defined as
s.=Ur, j=1.,N, (324)
the matrix 8P containing the errors {3P;;} is given by
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8P = [Hf u s, (325)

where | f|is an N-dimensional column vector containing the absolute values of the
fi (i = 1,....,N) and the superscript T indicates transpose. A suitable increment rjis
obtained by bounding [3P|, as discussed next.

To be consistent with the corrector convergence test, equation (2.98), and the
local error test, equation (2.91), we use the weighted rms norm, which for an
arbitrary N-dimensional column vector X is given by

(3.26)

i=1,.,N, 327

it is easily verified that

I =] ./ N, (328)

where ||+[|z is the Euclidean norm, defined for x as

(329)
Now the norm of P is given by
[6P] = max [or] : (330)
=
where
fops) = A« "] aan

because 8P is of rank 1. Hence
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L I
ol = b s = Wi e

oo e, B}
= Wl et P = e b,

EWT;
< vl mes 2

which can be rewritten as
l"! uN ||
B < . 332
“ P“ min|7 [EWT, 32)
]

To establish the maximum allowable error in P, we consider the linear system
Px = b, which is the form of the equation to be solved at each Newton iteration,
equation (2.24). To first order, the error 8x in X due to the error 8P in P is given by
(e.g., ref. 13)

“IT—:‘“ﬂ < “P““ 33! (333)

The norm | p! | is not known but is expected to be of order unity because P > I,
the identity matrix of order N, when h — 0 and P ~ —hByJ when h — oo (sce
eq. (2.25)). Therefore, a reasonable strategy is to bound | 5P | alone by selecting a
suitably small value for the relative error that can be tolerated in the Newton
correction vector. By using a value of 0.1 percent for this error, we obtain from
equations (3.32) and (3.33)

min(]—av;#Tf] >10° o] uN |t = - (334)

i

For additional safety rgis reset to 1 if it is equal to zero. Finally the increment AY;
in the jth variable used to estimate the {Ji;} is given by
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[0]
Yiu

AY = max[\/;

7o EWTM). (335)

For a full Jacobian matrix the above procedure will require (N + 1) derivative
evaluations and can therefore become much more expensive than the use of an
analytical Jacobian, especially for large N. Now f(XLO], €, is required by the
corrector (see eq. (2.36)), irrespective of the iteration technique. Hence the use of
MITER = 2 requires the evaluation of only N additional derivatives.

In generating the finite-difference banded Jacobian matrix (MITER = 5) the
code exploits the bandedness of the matrix for efficiency. The number of additional
derivative evaluations required to form the Jacobian matrix is only ML + MU + 1,
where ML and MU are, respectively, the lower and upper half-bandwidths of the
Jacobian matrix.

If N iteration with MITER = 3 is used, the N diagonal clements J;; (i = 1,...,N)
are estimated by using the approximation

[0 0
f,-(X,,]ﬂ“AX, 5,,]-)?(\_(["]’ é,,)
J; = - , i=1,..N, (336
¢

which requires only one additional derivative evaluation. The increment AY; is
selected as follows: Now equation (2.17) shows that if functional iteration were

used, the correction X,[,” - X,EO] that would be obtained on the first iteration is
equal to the quantity Bo g (X,[P]), where the vector function g is given by equa-
tion (2.16). The increment vector AY is taken to be 10 percent of this correction:

0 .
AY, =0.1 ﬁog‘.(X[n ]), i=1,..N. (337)

Hence the diagonal matrix approximation, equation (3.36), resembles a directional
derivative of f taken in the same direction as the correction vector above. Also,

this approximation gives the correct Jacobian if it is a constant diaronal matrix. If

0
the magnitude of AY;is less than 0.1uBo EWT;, that is, if |8; (XE, ]) <uEWT;, J;; is
set equal to zero.

3.4.6 Solution of Linear System of Equations
If NR iteration is used for the problem, a linear system of the form Px = b must

be solved for the correction vector X at each iteration (see eq. (2.24)). The linear
algebra necessary to solve this equation is performed by the LU method (e.g.,
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refs. 5 and 36), rather than by explicitly inverting the iteration matrix, which will
require prohibitive amounts of computer time (ref. 13). In the LU method the
iteration matrix is factored into the product of two triangular matrices L and U.
Solving equation (2.24) then requires the fairly simple solution of two triangular
linear systems in succession.

LSODE also includes special procedures for the LU-decomposition of the
iteration matrix and the solution of equation (2.24) when the matrix is known to
be banded. Compared to a full matrix, it is significantly less expensive to form a
banded matrix, perform its LU-decomposition, and solve the linear system of
equations (refs. 5, 25, 26, and 36). An important advantage of LU-decomposing a
banded matrix over inverting it is that, besides being faster, the triangular factors
L and U lie within nearly the same bands as the original matrix, whereas the
inverse is a full matrix (ref. 36). This feature makes the computation of the
correction vector significantly faster with the LU method than by premultiplying
the right-hand side of equation (2.24) with the inverse of the matrix.

If MITER = 3 is used for the problem, the resulting iteration matrix is diagonal
(see eq. (3.36)). Its inverse can therefore be obtained trivially and is used to
compute the corrections.

3.4.7 Jacobian Matrix Update

The difficulty with Newton-Raphson iteration is the computational cost
associated with forming the Jacobian matrix and the linear algebra required to
solve for the correction vector at each iteration. However, as discussed in chap-
ter 2, the iteration matrix need not be very accurate. This fact is exploited to
reduce the computational work associated with linear algebra by not updating P at
every iteration. For additional savings it is updated only when the iteration does
not converge. Hence the iteration matrix is only accurate enough for the solution
to converge, and the same matrix may be used over several steps. It is also
updated if three or more error test failures occur on any step. Now P may be
altered if the coefficient A is changed (see eq. (2.25)) because a new step size
and/or method order is selected. In order to minimize convergence failures
caused by an inaccurate P, the code updates P and performs its LU-decomposition
(or inversion if MITER = 3) if hj has changed by more than 30 percent since the
last update of P. In addition, for MITER = 3, because P! can be generated
inexpensively, it is first modified to account for any change in hfg since its last
update, before the corrections are computed. The reevaluation and LU-
decomposition or inversion are also done whenever the user changes any input
parameter required by the code. Finally the same P is used for a maximum
number of 20 steps, after which it is reevaluated and LU-decomposed or inverted.

3.4.8 Corrector Iteration Convergence and Corrective Actions

Irrespective of the solution method and the corrector iteration technique, the
maximum number of corrector iterations attempted on any step is set equal to 3,
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based on experience that a larger number increases the computational cost without
a corresponding increase in the probability of successful convergence (refs. 19,
21, 22, and 25). In addition to performing the convergence test, equation (2.99),
at each iteration, STODE examines the value of the convergence rate c,,, equa-
tion (2.102). If ¢, is greater than 1, the iteration is clearly not converging.
STODE exploits this fact by abandoning the iteration if c,, is greater than 2 after
the second iteration.

If convergence is not obtained because either (1) equation (2.99) is not satisfied
after three iterations or (2) c¢,, > 2 after the second iteration, the following
corrective actions are taken: For NR and JN iterations, if P is not current, it is
updated at y = X,[,O] and LU-decomposed or inverted, and the step is retried with
the same ste_p size. However, if either P is current or functional iteration is used, a
counter of convergence failures on the current step is increased by 1, the step size
is reduced by a factor of 4, and the solution is attempted with the new step size.
The same corrective actions are taken in the event of a singular iteration matrix.

This procedure is repeated until either convergence is obtained or the integration
is abandoned because either (1) 10 convergence falures have occurred or (2) the
step size has been reduced below a user-supplied minimum value hpg,. In the
event of an error exit the index of the component with largest magnitude in the
weighted local error vector is returned to the subprogram calling LSODE.

3.4.9 Local Truncation Error Test and Corrective Actions

After successful convergence STODE performs the local truncation error test,
equation (2.96). If the error test fails, the step size is reduced and/or the method
order is reduced by 1 by using the procedures outlined in section 3.4.10, and the
step is retried. After two consecutive failures the step size is reduced by at least a
factor of 5, and the step is retried with either the same or a reduced order. After
three or more failures it is assumed that the derivatives that have accumulated in
the Nordsieck history matrix have errors of the wrong order. Therefore the first
derivative is recomputed and the method order is set equal to 1 if it is greater than
1. Then the step size is reduced by a factor of 10, the iteration matrix is formed
and either LU-decomposed or inverted, and the step is retried with a new z,,; that
is constructed from Y,y and Y, = f(Y,,- ).

This procedure is repeated until either the error test is passed or an error exit is
taken because either (1) 10 error test failures have occurred or (2) the step size has
been reduced below Api,. In the event of an error exit LSODE returns the index of
the component with the largest magnitude in the weighted local error vector to the
calling subprogram.

If the accuracy test is passed, the step is accepted as successful, and the
Nordsieck history matrix z, and the estimated local truncation error vector d,, at&,
are computed by using equations (2.76) and (2.89), respectively. Irrespective of
whether the step was successful or not, STODE saves the value of the most recent
step size attempted on the step so that the user may, if desired, change it.
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3.4.10 Step Size and Method Order Selection

In addition to advancing the solution STODE periodically computes the method
order and step size that together maximize efficiency while maintaining prescribed
accuracy. As discussed in chapter 2, this result is accomplished by selecting the
method order that maximizes step size. To simplify the algorithm, the code
considers only the three method orders g — 1, ¢, and g + 1, where ¢ is the current
method order. For each method order the step size that will satisfy exactly the
local error bound is computed by assuming that the highest derivative remains
constant, The resulting step size ratios (defined as the ratio of the step size to be
attempted on the next step to the current value k) are given by equations (2.107),
(2.103), and (2.112), respectively, for method orders g — 1, g, and g + 1. These
equations are, however, modified by using certain safety factors (1) to produce a
smaller step size than the value that satisfies the error bound exactly, because the
error estimates are not exact and the highest derivative is not usually constant, and
(2) to bias the order-changing decision in favor of not changing the order at all,
because any change in order requires additional work, and then in favor of
decreasing the order, because an order reduction results in less work per subsequent
step than an order increase. The formulas used in STODE to calculate the step
size ratios are as follows:

Tdown = 1 ) (3.38)
13 (D, )¢ +107
1
Fame = : , (339)
12 (Dq)ﬁ +107
1 .
ro=— . (3.40)

up 1
14)(D,,)e+2 +107

In equations (3.38) to (3.40) the factors 1.2, 1.3, 1.4, and 1078 are strictly
empirical. The subscripts “down,” “same,” and “up” indicate, respectively, that
the method order is to be reduced by 1, left unchanged, and increased by 1.

To prevent an order increase either after a failed step or when ¢ = gmax the
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maximum order allowed for the solution method, ryp is set equal to zero in such
cases. Similarly, if g =1, rgown i set equal to zero to avoid an order reduction.

The maximum step size ratio r = max (¥gown, "same> 7up) and the corresponding
method order are selected to be attempted on the next step if r > 1.1 after a
successful step. Changes in both step size and method order are rejected if the
step size increase is less than 10 percent because it is not considered large enough
to justify the computational cost required by either change (refs. 10 and 22). After
a failed step the method order is decreased if rgown > 7same; however, r = max
{rdown> Tsame) is Teset to 1 if it is greater than 1. Several additional tests, given
next, are performed on r, if r > 1.1 after a successful step, but irrespective of the
value of r after a failed step, before the step size h' (= rh,) to be attempted next is
selected. .

If the maximum step size A,y to be attempted on any step has been specified
by the user, r is restricted to

h
r e min(r, ﬂ"-) (341)
hn

Similarly if the user has specified a minimum step size A, that may be attempted
on any step, r is restricted to

h .
r ¢« max(r, ;““ ) (3.42)

n
Finally r must satisfy the inequality
rsr (343)

where the variable ry,x is normally set equal to 10. However, for the very first
step size increase for the problem, if no convergence or error test failure has
occurred, rpax is set equal to 10* 10 compensate for the small step size attempted
on the first step. For the first step size increase following either a corrector
convergence failure or a truncation error test failure, g is set equal to 2 to
inhibit a recurrence of the failure.

To avoid numerical instability caused by frequent changes in the step size,
method order and step size changes are attempted only after S successful steps
with the same method order and step size, where S is normally set equal to g + 1.
However, if an unsuccessful step occurs, this rule is disregarded and the step size
and/or the method order may be reduced. Following a failed error test or a failed
convergence test with either functional iteration or NR and JN iteratjons if P is
current, § is set equal to ¢ + 1. If three or more error test failures occur on any one
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step, § is set equal to 5 even though the method order is reduced to 1. Finally
following a step for which step size and method order changes are rejected
because r < 1.1, § is set equal to 3.

After every S — 1 successful steps STODE saves the vector g, if ¢ < gmax, In
order to estimate Vg, which is required to compute ryp (see egs. (2.109) to
(2.112)). To minimize storage requirements, g, is saved as the gmaxth, that is, the
last, column of z,,.

3.5 Error Messages

The code contains many error messages—too numerous to list here. Every
input parameter is tested for legality and consistency with the other input variables.
If an illegal input parameter is discovered, a detailed message is printed. Each
error message is self-explanatory and complete. It not only describes the mistake
but in some instances tells the user how to fix the problem. Any difficulty
encountered during execution will result in an error exit. A message giving the
reason for termination will also be printed. If the computation stops prematurely,
the user should look for the error message near the end of the output file
corresponding to the logical unit number LUNIT (see chapter 4).
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Chapter 4
Description of Code Usage

To use the LSODE package, the following subprograms must be provided: (1) a
routine that manages the calls to subroutine LSODE, (2) a routine that computes
the derivatives {f; = dy/dE} for given values of the independent variable & and the
solution vector ¥, and (3) if an analytical Jacobian matrix J (= aﬂay) is required
by the corrector iteration technique selected by the user, a routine that computes
the elements of this matrix. In addition, some modifications, discussed below, to
the LSODE source itself may be necessary.

4.1 Code Installation

4.1.1 BLOCK DATA Variables

The user may wish to reset the values for the integer variables MESFLG (cur-
rently 1) and LUNIT (currently 6), which are both set either in the BLOCK DATA
module (double-precision version) or in subroutine XERRWYV (single-precision
version). The variable MESFLG controls the printing of error messages from the
code, and LUNIT is the logical unit number for such output (see table 3.7).
Setting MESFLG = 0 will switch off all output from the code and therefore is not
recommended.

The single-precision version of the code loads initial values for the common
block LS0001 variables ILLIN and NTREP (see table 3.8) through a DATA state-
ment in subroutine LSODE. The same procedure is used in subroutine XERRWV
for the common block EH000! variables MESFLG and LUNIT (see table 3.7).
However, on some computer systems initial values for common block elements
cannot be defined by means of DATA statements outside a BLOCK DATA
subprogram. In this case the user must provide a separate BLOCK DATA
subprogram, to which the two DATA statements from subroutines LSODE and
XERRWYV must be moved. The BLOCK DATA subprogram must also contain
the two common blocks EH0001 and LS0001 (see table 3.6).
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4.1.2 Modifying Subroutine XERRWY

The subroutine XERRWYV, which prints error messages from the code, is
machine and language dependent. Therefore the data type declaration for the
argument MSG, which is a Hollerith literal or integer array containing the message
to be printed, may have to be changed. The number of Hollerith characters stored
per word is assumed to be 4, and the value of NMES, which is the length of, that
is, number of characters in, MSG is assumed to be a multiple of 4, and at most 60.
However, the routine describes the necessary modifications for several machine
environments. In particular, the user must change a DATA statement and the
format of statement number 10. The routine assumes that all errors are either (1)
recoverable, in which case control returns to the calling subprogram, or (2) fatal,
in which case the run is aborted by passing control to the statement STOP, which
may be machine dependent. If a different run-abort command is needed, the line
following statement number 100, which is located near the end of the routine,
must be changed.

4.2 Call Sequence
The call sequence to subroutine LSODE is as follows:

CALL LSODE (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK, ISTATE,
IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)

All arguments in the call sequence are used on input, but only Y, T, ISTATE,
RWORK, and IWORK are used on output. Also, Y and T are set only on the first
call to LSODE; the other arguments may, however, have to be reset on subsequent
calls. The arguments to LSODE are defined as follows:

F The name of the user-supplied subroutine that computes the derivatives
of the dependent variables with respect to the independent variable.
This name must be declared EXTERNAL in the subprogram calling
LSODE. The requirements of subroutine F are described in section
43.

NEQ The number of first-order ordinary differential equations (ODE’s) to
be solved. (The code allows the user to decrease the value of NEQ
during the course of solving the problem. This option is useful if
some variables can be discarded as the solution evolves as, for example,
in chemical kinetics problems for which the reaction mechanism is
reduced dynamically.) As discussed later, NEQ can be specified as an
array. In this case NEQ(1) must give the number of ODE’s to be
solved, and the subprogram calling LSODE must contain a dimension
statement for NEQ.
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TOUT

ITOL

4.2 Call Sequence
A vector of length NEQ (or more) containing the dependent variables.
The subprogram calling LSODE must include a dimension statement
for Y if it contains more than one component. On the first call to
LSODE this vector must be set equal to the vector of initial values of
the dependent variables. Upon every return from LSODE, Y is the
solution vector either at the desired value (TOUT or TCRIT, see
below) of the independent variable or that generated at the end of the
previous integration step. In case of an error exit Y contains the
solution at the last step successfully completed by the integrator.

The independent variable. On the first call to LSODE, T must give
the initial value of this variable. On every return from LSODE, T is
either the independent variable value (TOUT or TCRIT, see below) at
which the solution is desired or the independent variable value to
which the numerical solution was advanced on the previous integration
step. If an error exit occurs, T gives the value of the farthest point (in
the direction of integration) reached by the integrator.

The next value of the independent variable at which the solution is
required, if ITASK = 1, 3, or 4 (see table 4.1). For ITASK =2 or 5,
LSODE uses TOUT on the first call to determine the direction of
integration and, if necessary, to compute the step size to be attempted
on the first step; on subsequent calls TOUT is ignored. LSODE
permits integration in either direction of the independent variable.

A flag that indicates the type of local error control to be performed.
The legal values that can be assigned for ITOL and their meanings are

TABLE 4.1 —VALUES OF ITASK USED IN LSODE

aby Compute output values of Y(E) at § = £, but without over-

AND THEIR MEANINGS
ITASK Description
! Compute output values of Y(§) at £ = §_,, by overshooting and
interpolation.
2 Advance the solution to the ODE’s by one step and retumn to
calling subprogram.
3 Stop at the first internal mesh point at or beyond § = §_, and

return to calling subprogram.

shooting § = £ .
b5 Advance the solution to the ODE’s by one step without passing
E =& 4 and retum to calling subprogram.

*User must supply value for £, (= TOUT).
ser must supply value for £ ;, (= TCRIT). This option is useful if the
problem has a singularity at or beyond § =& ;..
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RTOL

ATOL

ITASK

ISTATE
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TABLE 4.2.—-VALUES OF ITOL USED
IN LSODE AND THEIR MEANINGS

ITOL Description
1 Scalar RTOL and scalar ATOL
2 Scalar RTOL and array ATOL
3 Array RTOL and scalar ATOL
4 Array RTOL and array ATOL

given in table 4.2. The variables RTOL and ATOL are described next.

The local relative error tolerance parameter for the solution. This param-
eter can be specified either as a scalar, so that the same tolerance is used
for all dependent variables, or as any array of length NEQ, so that
different tolerances are used for different variables. In the latter case the
subprogram calling LSODE must contain a dimension statement for
RTOL.

The local absolute error tolerance parameter for the solution. This
parameter can also be specified either as a scalar, so that the same
tolerance is used for all dependent variables, or as an array of length
NEQ, so that different tolerances are used for different variables. In
the latter case the subprogram calling LSODE must contain a dimension
statement for ATOL.

An index that specifies the task to be performed. This flag controls
when LSODE stops the integration and returns the solution to the
calling subprogram. The legal values for ITASK and their meanings
are given in table 4.1. IfTTASK =4 or 5, the input variable TCRIT (=
independent variable value that the integrator must not overshoot, see
table 4.1) must be passed to LSODE as the first element of the array
RWORK (defined below).

An index that specifies the state of the calculation, that is, if the call to
LSODE is the first one for the problem or if it is a continuation. The
legal values for ISTATE that can be used on input and their meanings
are given in table 4.3. The option ISTATE = 3 allows changes in the
input parameters NEQ, ITOL, RTOL, ATOL, IOPT, MF, ML, and MU
and any optional input parameter, except HO, discussed in the
descriptions of RWORK and IWORK. The integer variables IOPT,
MF, ML, and MU are defined below. The parameters ITOL, RTOL,
and ATOL may also be changed with ISTATE = 2, but LSODE does
not then check the legality of the new values. On return from LSODE,
ISTATE has the values and meanings given in table 4.4.




TABLE 4.3.—VALUES OF ISTATE THAT CAN BE USED ON

INPUT TO LSODE AND THEIR MEANINGS

ISTATE Description

1 This is the first call for the problem.

2 This is not the first call for the problem, and the calculation is to
be continued normally with no change in any input parameters
except possibly &, and ITASK

3 This is not the first call for the problem, and the calculation is to

be continued normally, but with a change in input parameters
other than & and ITASK *

#See table 4.1 for description of ITASK.

TABLE 4.4—VALUES OF ISTATE RETURNED BY LSODE

AND THEIR MEANINGS

ISTATE

Meaning

-2

-3

-5

Nothing was done because TOUT = T on first call to LSODE.
(However, an internal counter was set to detect and prevent
repeated calls of this type.)

The integration was performed successfully,

Excessive amount of work was done on this cal] (i.e., number of
steps exceeded MXSTEP? on this call), but the integration was
successful as far as the value returned in T.

Too much accuracy was requested for the computer being used, but
the integration was successful as far as the value returned in T.
(If this error is detected on the first call 1o LSODE (i.e., before
any integration is done), an illegal input error (ISTATE = -3, see
below) occurs instead.)

lllegal input was specified. The error message is detailed and self-
explanatory.

Repeated error test failures occurred on one¢ step, but the integration
was successful as far as the value retumed in T.

Repeated convergence test failures occurred on one step, but the
integration was successful as far as the value returned in T,

Some component, EWT,, of the error weight vector EWT®
vanished, so that the local error test cannot be applied, but the
integration was successful as far as the value retumed in T. (This
condition arises when pure relative error control (ie., ATOL,-
= Ob) was specified for a variable whose magnitude is now zero.)

See table 4.6,
bSee chapter 2.
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IOPT . An integer flag that specifies if any optional input is being used on
this call. The legal values for JOPT together with their meanings are
given in table 4.5. The optional input parameters that may be set by
the user are given in table 4.6. For each such input variable this table
lists its location in the call sequence, its meaning, and its default
value. The quantities RWORK and IWORK are work arrays described

below.

TABLE 4.5.—VALUES OF TOPT THAT CAN BE USED ON
INPUT TO LSODE AND THEIR MEANINGS

1OPT Meaning
0 The user has not set a value for any optional input parameter.”
(Defanlt values will be used for all these parameters.)
1 Values have been specified for one or more optional input
parameters.”

25ee table 4.6 for a list of these parameters.

TABLE 4.6 —OPTIONAL INPUT PARAMETERS THAT CAN BE SET BY USER
AND THEIR LOCATIONS, MEANINGS, AND DEFAULT VALUES

Optional Location Meaning Default value
input
parameter
HO RWORK(S) | Step size to be attempted on Computed by LSODE
the first step
HMAX RWORK(S) | Absolute value of largest step o0

size (in magnitude) to be
used on any step

HMIN RWORK(7) | Absolute value of smallest 0
step size (in magnitude) to
be used on any step®
MAXORD [WORK(5) | Maximum method order to be 12 for Adams-Moulton

used on any step method and 5 for
backward differenti-
ation formula method
MXSTEP TWORK(6) | Maximum number of integra- 500

tion steps allowed on any
one call to LSODE
MXHNIL [WORK(7) | Maximum number of times 10
that warning message that
step size is getting to0 small
is printed

*This value is ignored on the first step and on the final step to reach TCRIT when
ITASK = 4 or 5 (see table 4.1).
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4.2 Call Sequence -

RWORK A real work array used by the integrator. The subprogram calling

LRW

IWORK

LIW

JAC

LSODE must include a dimension statement for RWORK. IfITASK =
4 or 5, the user must set RWORK(1) = TCRIT (see table 4.1) to
transmit this variable to LSODE. If any optional real input parameters
are used, their values are also passed in this array to LSODE; the
address for each of these parameters is given in table 4.6. Upon return
from LSODE, RWORK contains several optional real output
parameters. For each such output variable table 4.7 Iists its location in
RWORK and its meaning. In addition, the Nordsieck history array at
the current value of the independent variable (TCUR in table 4.7) and
the estimated local error vector in the solution incurred on the last
successful step can be obtained from RWORK. Table 4.8 lists the
names used for these two quantities and their locations in RWORK.
In this table NYH is the value of NEQ on the first call to LSODE, and
NQCUR and LENRW are both defined in table 4.7, which also gives
their locations in the array IWORK (see below).

Length of the real work array RWORK. Its minimum value depends
on the method flag MF (see below) and is given in table 4.9 for each
legal value of MF. In this table the integer MAXORD is the maximum
method order (default values = 12 and § for the AM and BDF methods,
respectively) to be used. The integers ML and MU are the lower and
upper half-bandwidths, respectively, of the Jacobian matrix if it is
declared to be banded (see table 3.2).

An integer work array used by the integrator. The subprogram calling
LSODE must include a dimension statement for IWORK. If MITER
(= second decimal digit of MF, defined below) =4 or 5 (table 3.2), the
user must set IWORK(1) =ML and IWORK(2) =MU (see descriptions
above) to transmit these variables to LSODE. If any optional integer
input parameters are used, their values are also passed in this array to
LSODE,; the address for each of these parameters is given in table 4.6.
Upon return from LSODE, IWORK contains several optional integer
output parameters. For each such output variable table 4.7 lists its
location in IWORK and its meaning,.

Length of the integer work array IWORK. Its minimum value depends
on MITER (table 3.2) and is given in table 4.10 for each legal value of
MITER. '

The name of the user-supplied subroutine that computes the elements
of the Jacobian matrix. This name must be declared EXTERNAL in
the subprogram calling LSODE. The form and description of sub-
routine JAC are given in section 4.4,
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TABLE 4.7.—OPTIONAL OUTPUT PARAMETERS RETURNED BY LSODE
AND THEIR LOCATIONS AND MEANINGS

Optional Location Meaning
output

parameter

HU RWORK(11) Step size used on last successful step

HCUR RWORK(12) | Step size to be attempted on next step

TCUR RWORK(13) Cutrent value of independent variable. The
integrator has successfully advanced the
solution to this point.

TOLSF RWORK(14) A tolerance scale factor, greater than 1.0, that
is computed when too much accuracy is
requested (ISTATE = —2 or -3, see table 4.4).
To continue integration with the same ITOL,
the local error tolerance parameters RTOL
and ATOL must both be increased by at
least a factor of TOLSF.

NST IWORK(11) Number of integration steps used so far for
problem

NFE IWORK(12) Number of derivative evaluations required so
far for problem

NIE TWORK(13) Number of Jacobian matrix evaluations (and
iteration matrix LU-decompositions or
inversions) so far for problem

NQU TWORK(14) Method order used on last successful step

NQCUR TWORK(15) Method order to be attempted on next step

IMXER IWORK(16) Index of component with largest magnitude in
weighted local error vector (e/EWT,, sec
chapter 2). This quantity is computed when
repeated convergence or local error test
failures occur.

LENRW TWORK(17) Required length for array RWORK

LENIW TWORK(18) Required length for array IWORK

TABLE 4.8 —USEFUL INFORMATIONAL QUANTITIES REGARDING INTEGRATION
THAT CAN BE OBTAINED FROM ARRAY RWORK
AND THEIR NAMES AND LOCATIONS

Quantity Name Location
Nordsieck history array for problem YH RWORK(21) to
RWORK(20 + NYH(NQCUR + 1))
Estimated local error in solution on ACOR | RWORK(LENRW - NEQ + Dto
last successful step RWORK(@ENRW)
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4.3 User-Supplied Subroutine for Derivatives (F)

TABLE 4.9.—MINIMUM LENGTH REQUIRED BY REAL WORK
ARRAY RWORK (i.e., MINIMUM LRW) FOR EACH MF

MF Minimum LRW?*
10,20 20 + NYH(MAXORD + 1) + 3 NEQ
11,1221,22 | 22 + NYH(MAXORD + 1) + 3 NEQ + (NEQ)?
13,23 22 + NYH(MAXORD + 1) + 4 NEQ
14,1524,25 | 22 + NYH(MAXORD + 1) + (2 ML + MU + 4)NEQ

*NYH is the number of ODE’s specified on first call to LSODE,
MAXORD is the maximum method order to be used for problem,
NEQ is the number of ODE’s specified on current call to LSODE,
and ML and MU are, respectively, the lower and upper half-
bandwidths of the banded Jacobian matrix.

TABLE 4.10.—MINIMUM
LENGTH REQUIRED BY
INTEGER WORK ARRAY
IWORK (i.e., MINIMUM
LIW) FOR EACH MITER

MITER?* Minimum LIW®

0 20
1,2 20 + NEQ
3 20
45 20 + NEQ

"See table 3.2 for description
of MITER.

l’NEQ is the number of ODE’s
specified on current call to
LSODE.

Method flag that indicates both the integration method and corrector
iteration technique to be used. MF consists of the two decimal digits
METH, which specifies the integration method, and MITER, which
specifies the iteration technique (eq. (3.1)). Equation (3.1) and
tables 3.1 and 3.2 show that MF has the following 12 legal values—
10,11, 12, 13, 14, 15, 20, 21, 22, 23,24,and 25. IfMF = 14, 15, 24, 0r
25, the values of ML and MU must be passed to LSODE as the first
and second elements, respectively, of the array IWORK (see above).

4.3 User-Supplied Subroutine for Derivatives (F)

Irrespective of the solution method or corrector iteration technique selected to
solve the problem, the user must provide a sub-outine that computes the derivatives
;} for given values of the independent variable and the solution vector. The
name (F) of this subroutine is an argument in the call vector to LSODE and must
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4. Description of Code Usage
therefore be declared EXTERNAL in the subprogram calling LSODE. The
derivative subroutine F should have the form

SUBROUTINE F (NEQ, T, Y, YDOT)
DIMENSION Y(1), YDOT(1) in FORTRAN 66
or DIMENSION Y(#), YDOT(+) in FORTRAN 77

In addition, if NEQ is an array, the subroutine F should include a DIMENSION
statement for it. The routine F should not alter the values in T, NEQ (or NEQ(1),
if NEQ is an array), or the first N elements in Y, where N is the current number of
ODE’s to be solved. The derivative vector should be returned in the array YDOT,
with YDOTQ) = dy/dt (i=1), evaluatedat =T, y =Y.

If the calculation of {f;} involves intermediate quantities whose current values,
that is, at & = &, (or Eour), ar€ required externally to LSODE, a special calculation,
such as a call to the routine F, must be made. The results of the last call from the
package to the routine F should not be used because they correspond to a’Y value
that is different from Y [or Y(¢ou) and a & value that may be different from &,
(or Eow). Here g, is the independent variable value to which the numerical
solution was advanced on the previous integration step and &qy = TOUT. Ifa
special call to subroutine F is made, to reduce the storage requirement, the
YDOT argument may be replaced with RWORK(LSAVF), the base address of an
N-dimensional array, SAVF (see table 3.8), used for temporary storage by LSODE;
LSAVF is the 224th word (6th integer word after 218 real words) in the common
block LS0001 (table 3.6). If the derivative Xn is required, it can be obtained by
calling subroutine INTDY, as explained in section 4.8.

4.4 User-Supplied Subroutine for Analytical
Jacobian (JAC)

If the corrector iteration technique selected by the user requires a Jacobian
matrix, we recommend that a routine that computes an analytical Jacobian be
provided. The name (JAC) of this routine is an argument in the call vector to
LSODE and must therefore be declared EXTERNAL in the subprogram calling
LSODE. The Jacobian subroutine JAC should have the form

SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)

DIMENSION Y(1), PD (NROWPD, 1} in FORTRAN 66
DIMENSION Y(+), PD (NROWPD, #) in FORTRAN 77

Here ML and MU are, respectively, the (user-supplied) lower and upper half-
bandwidths of the Jacobian matrix if it is banded; and NROWPD, which is set by

84




4.5 Detailed Usage Notes
the code, is the number of rows of the Jacobian matrix PD. For a banded matrix
NROWPD is equal to the extended bandwidth (= 2ML + MU + 1), and for a ful]
matrix it is equal to the current number N of ODE’s. If NEQ is an array, the
subprogram JAC must include a DIMENSION statement for jt.

This routine should not alter the values in NEQ (or NEQ(1), if NEQ is an
array), T, ML, MU, or NROWPD. However, the Y array may, if necessary, be
altered. For a full Jacobian matrix (MITER = 1) the element PDAN) (I =1,.N;

J'= 1.N) must be loaded with 3y, g=Ty=v(=Lj=J). In this case the

arguments ML and MU are not needed. If the Jacobian matrix is banded (MITER

=4), the element dfifdy; (i=1,...N; i =ML <J < i+ MU) must be loaded into PD
I-J+MU+ 1,1 = i;J = j). Thus each band of the Jacobian matrix must be

to subroutine F with the same arguments NEQ, T, and Y, To improve computationa]
efficiency, intermediate quantities needed by both routines may be saved by

necessary, even the derivatives at T can be accessed by JAC by means of this
method,

If functional iteration (MITER = 0) or an internally generated Jacobian matrix
(MITER = 2, 3, or 5) is used, a dummy version of JAC may nonetheless be
required to satisfy the loader. This version may be given simply as follows:

SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD)
RETURN
END

4.5 Detailed Usage Notes

It is apparent from the description of the call sequence to LSODE that the code
has many capabilities and therefore requires the user to set values for several
parameters. To further clarify code usage and assist in selecting values for user-
set parameters, we provide here a somewhat detailed guide. We first summarize
how we expect the code to be normally used and then give detailed usage notes.
Additional insight into code usage can be obtained from the discussions by Byrne
and Hindmarsh (ref, 17), who examined in some detail the solution of 10 example
problems representing a variety of problem types, and by Radhakrishnan
(ref. 37), who studied the effects of various user-set parameters on the solution of

stiff ODE’s arising in combustion chemistry.
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4. Description of Code Usage
4.5.1 Normal Usage Mode

The normal mode of communication with LSODE may be summarized as
follows:

(1) Set initial valuesin Y.

(2) SetNEQ, T, ITOL, RTOL, ATOL, LRW, LIW, and MF.

(3) Set TOUT = first output station, ITASK = 1, ISTATE = 1, and IOPT = 0.
(4) Call LSODE.

(5) Exitif ISTATE < 0.

(6) Do desired output of Y.

(7) Exitif problem is finished.

(8) Reset TOUT to next print station and return to step (4).

This procedure will result in LSODE (2) computing the step size to be attempted
on the first step, (b) continuing the integration with step sizes generated internally
until the first internal mesh point at or, more usually, just beyond TOUT, and (c)
computing the solution at TOUT by interpolation. The returned value T will be
set equal to TOUT exactly, and Y will contain the solution at TOUT. Because the
normal output value of ISTATE is 2, it does not have to be reset for normal

continuation.
4.5.2 Use of Other Options

The calling subprogram may also make use of other options included in the
package. For example, in step (8) ISTATE could be reset to 3 to indicate that at
TOUT some parameters, such as NEQ or MF, have been changed. The task to be
performed, indicated by the value of ITASK, can, however, be changed without
resetting ISTATE. In the event of integration difficulties parameter values may
also be changed in step (5), followed by a return to step (4), if the new values will
prevent a recurrence of the indicated trouble.

4.5.3 Dimensioning Variables

Irrespective of the options selected, the subprogram calling LSODE must
include DIMENSION statements for all call sequence variables that are arrays.
Such variables include Y, RTOL, ATOL, RWORK, TWORK, and, as discussed
below, possibly NEQ. The solution vector Y may be declared to be of length NEQ
or greater. The first NEQ elements of the Y array must be the variables whose
ODE's are to be solved. The remaining locations, if any, may be used to store
other real data to be passed to the routines F and/or JAC. The LSODE package

accesses only the first NEQ elements of Y; the remaining elements are unchanged

by the code.
The parameter NEQ is usually a scalar quantity. However, an array NEQ may
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4.5 Detailed Usage Notes
be used to store and pass integer data to the routines F and/or JAC. In this case the
first element of NEQ must be set equal to the number of ODE’s. The LSODE
package accesses only NEQ(1). However, NEQ is used as an argument in the
calls to the routines F and JAC, so that these routines, and the MAIN program,
must include NEQ in a DIMENSION statement.

4.5.4 Decreasing the Number of Differential Equations (NEQ)

In the course of solving a problem the user may decrease (but not increase) the
number of ODE’s. This option is useful if some variables reach steady-state
values while others are still varying. Dropping these constant quantities from the
ODE list decreases the size of the system and hence increases computational
efficiency. To use this option, upon return from LSODE at the appropriate time,
the calling subprogram must reset the value of NEQ (or NEQ(1)); set ISTATE = 3;
reset the values of all other parameters that are either required to continue the
integration, such as TOUT if ITASK = 1, 3, or 4 (table 4.1), or are changed at the
user’s option; and then call LSODE again. If the Jacobian matrix is declared to be
banded (MITER = 4 or 5, table 3.2) and reductions can be made to the half-
bandwidths ML and MU, they will also produce efficiency increases. The option
of decreasing the number of ODE’s may be exercised as often as the user wishes.
Of course, each time the size of the ODE system is decreased the changes
discussed above should be made and the resulting number of ODE’s can never be
less than 1. However, the LRW and LIW values need not be reset.

If, at any time, the number of ODE’s is decreased from N to N’, LSODE will
drop the last N — N’ ODE's from the system and integrate the first N' equations. It
is therefore important in formulating the problem to order the variables carefully
and make sure that it is indeed the last N — N” variables that attain steady-state
values. In continuing the integration LSODE will access only the first N’ elements
of Y. However, the remaining N — N, or more, elements can be accessed by the
user, and so no special programming is needed in either routine F or JAC.

4.5.5 Specification of Output Station (TOUT)

The argument TOUT must be reset every time LSODE is called if the option
given by ITASK = 1, 3, or 4 is selected. For the other two values of ITASK (i.e., 2
and 5), TOUT need be set only on the first call to LSODE. Irrespective of the
value of ITASK, the TOUT value provided on the first call to LSODE is used to
determine the direction of integration and, if the user has not supplied a value for
it, to compute the step size to be attempted on the first step. Therefore unless the
user specifies the value for the initial step size, it is recommended that some
thought be given to the value used for TOUT on the first call to LSODE.

On the first call to LSODE, that is, with ISTATE = I, TOUT may be set equal to
the initial value of the independent variable. In this case LSODE will do nothing,
and so the value ISTATE = 1 will be returned to the calling subprogram; however,
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4. Description of Code Usage

an internal counter will be updated to prevent repeated calls of this nature. If such
a “first” call is made more than four times in a row, an error message will be
issued and the execution terminated.

On the second and subsequent calls to LSODE there is no requirement that the
TOUT values be monotonic. However, a value for TOUT that “backs up” is
limited to the current internal interval [(TCUR - HU),TCUR], where TCUR is the
current value of the independent variable and HU is the step size used on the
previous step.

4.5.6 Specification of Critical Stopping Point (TCRIT)

In addition to TOUT a value must be specified for TCRIT if the option
ITASK = 4 is selected. TCRIT may be equal to TOUT or beyond it, but not
behind it, in the direction of integration. The integration is not permitted to
overshoot TCRIT, so that the option is useful if, for example, a singularity exists
at or beyond TCRIT. This variable is also required with the option ITASK=5. In
either case the first element of the array RWORK (i.e., RWORK(1)) must be set
equal to TCRIT. If the solver reaches TCRIT within roundoff, it will return
T = TCRIT exactly and the solution at TCRIT is returned in Y. To continue
integrating beyond TCRIT, the user must reset either ITASK or TCRIT. Ineither
case the value of ISTATE need not be reset. However, whenever TCRIT is
changed, the new value must be loaded into RWORK(1).

4.5.7 Selection of Local Error Control Parameters (ITOL, RTOL, and
ATOL)

Careful thought should be given to the choice of ITOL, which together with
RTOL and ATOL determines the nature of the error control performed by LSODE.
The value of ITOL dictates the value of the local error weight vector EWT, with
element EWT; defined as

EWT, = RTOL |¥|+ ATOL;, (4.0

where RTOL,; and ATOL; are, respectively, the local relative and absolute error
tolerances for the ith solution component Y; and the bars [+ denote absolute value.
The solver controls the estimated local errors {d;} in {Y;} by requiring the root-
mean-square (rms) norm of d/EWT; to be 1 or less.

Pure relative error control for the ith solution component is obtained by setting
ATOL; = 0; RTOL; is then a measure of the number of accurate significant fig-
ures in the numerical solution. This error control is generally appropriate when
widely varying orders of magnitude in ¥; are expected. However, it cannot be
used if the solution vanishes because relative error is then undefined. Pure
absolute error control for the ith solution component is obtained by setting
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4.5 Detailed Usage Notes
RTOL,; = 0; ATOL; is then a measure of the largest number that may be neglected.

Both RTOL and ATOL ¢an be specified (1) as scalars, so that the same error
tolerances are used for all variables, or (2) as arrays, so that different tolerances
are used for different variables. The value of the user-supplied parameter ITOL
indicates whether RTOL and ATOL are scalars or arrays. The legal values that
can be assigned to ITOL and the corresponding types of RTOL and ATOL are
given in table 4.2. If RTOL and/or ATOL are arrays, the calling subprogram must
include an appropriate DIMENSION statement. A scalar RTOL is generally
appropriate if the same number of significant figures is acceptable for all
components of Y. A scalar ATOL is generally appropriate when all components of
Y, or at least their peak values, are expected to be of the same magnitude.

In addition to ITOL, RTOL and ATOL should be selected with care. Now the
code controls an estimate of only the local error, that is, an estimate of the error
committed on taking a single step, starting with data regarded as exact. However,
what is of interest to the user is the global truncation error or the actual deviation
of the numerical solution from the exact solution. This error accumulates in a
nontrivial manner from the local errors and is neither measured nor controlled by
the code. It is therefore recommended that the user be conservative in choosing
values for the local error tolerance parameters. However, requesting too much
accuracy for the precision of the machine will result in an error exit (table 4.4). In
such an event the minimum factor TOLSF by which RTOL and ATOL should both
be scaled up is returned by LSODE (see table 4.7). Some experimentation may be
necessary to optimize the tolerance parameters, that is, to determine values that
produce sufficiently accurate solutions while minimizing the execution time. The
global errors in solutions generated with particular values for the local error
tolerance parameters can be estimated by comparing them with results produced
with smaller tolerances. In reducing the tolerances all components of RTOL and
ATOL, and hence of EWT, should be scaled down uniformly.

There is no requirement that the same values for ITOL, RTOL, and ATOL be
used throughout the problem. If during the course of the problem any of these
parameters is changed, the user should reset ISTATE = 3 before calling LSODE
again. (ISTATE need not be reset; however, LSODE will not then check the
legality of the new values.) This option is useful, for example, if the solution
displays rapid changes in a small subinterval but is relatively smooth elsewhere.
To accurately track the solution in the rapidly varying region, small values of
RTOL and ATOL may be required. However, in the smooth regions these
tolerances could be increased to minimize execution time.

4.5.8 Selection of Integration and Corrector Iteration Methods (MF)
The choice of the method flag MF may also require some experimentation. The
user should consider the nature of the problem and storage requirements. The

primary consideration regarding MF is stiffness. If the problem is not stiff, the
best choice is probably MF = 10 (Adams-Moulton (AM) method with functional
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iteration.) If the problem is stiff to a significant degree, METH should be set
equal to 2 (table 3.1), and MITER (table 3.2) depends on the structure of the
Jacobian matrix. If the Jacobian is banded, MITER = 4 (user-supplied analytical
Jacobian) or 5 (internally generated Jacobian by finite-difference approximations)
should be used. For either of these two MITER values the user must set values for
the lower (ML) and upper (MU) half-bandwidths of the Jacobian matrix. The first
and second elements of the integer work array IWORK must be set equal to ML
and MU, respectively; that is, IWORK(1) = ML and IWORK(2) = MU. For a full
matrix MITER should be set equal to 1 (analytical Jacobian) or 2 (internally
generated Jacobian). If the matrix is significantly diagonally dominant, the choice
MITER = 3, that is, Jacobi-Newton (JN) iteration using an internally generated
diagonal approximation for the Jacobian matrix, can be made. To use this
iteration technique with an analytical Jacobian, set MITER =4 and ML = MU =0.

If the problem is only mildly stiff, the choice METH = 1 (i.e., the AM method)
may be more efficient than METH = 2 (i.e., the backward differentiation formula
(BDF) method). For this case experimentation would be necessary to identify the
optimal METH. If the user has no a priori knowledge regarding the stiffness of
the problem, one way to determine its nature is to try MF = 10 and examine the
behavior of both the solution and step size pattern. (It is recommended that some
upper limit be set for the total number of steps or derivative evaluations to avoid
excessive run times.) If the typical values of the step size are much smaller than
the solution behavior would appear to require, for example, more than 100 steps
are taken over an interval in which the solution changes by less than 1 percent, the
problem is probably stiff. The degree of stiffness can be estimated from the step
sizes used and the smoothness of the solution.

Irrespective of the integration method selected, the least effective iteration
technique is functional iteration, given by MITER = 0, and the most effective is
Newton-Raphson (NR), given by MITER =1 or 2 (4 or 5 for a banded Jacobian
matrix). Generally IN iteration is somewhere in between. However, storage
requirements increase in the same order as the effectiveness of the iteration
technique (see table 4.9), and so trade-off considerations are necessary. For
reasons of computational efficiency the user is encouraged to provide a routine for
computing the analytical Jacobian, unless the system is fairly complicated and
analytical expressions cannot be derived for the matrix elements. The accuracy of
the Jacobian calculation can be checked by comparison with the J internally
generated with MITER = 2 or 5. Jacobi-Newton iteration requires considerably
less storage and execution time per iteration but will be effective only if the
Jacobian matrix is significantly diagonally dominant.

The importance of supplying an analytical Jacobian matrix, especially for large
problems, is illustrated by Radhakrishnan (ref. 37), who studied 12 test problems
from combustion kinetics. The problems covered a wide range of reaction
conditions and reaction mechanism size. The effects on solution efficiency of
(1) METH, (2) the first output station, and (3) optimizing the local error tolerances
were also examined.
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4.6 Optional Input
4.5.9 Switching Integration and Corrector Iteration Methods

The user may specify different values for MF in different subintervals of the
problem. This option is useful if the problem changes character and is nonstiff in
some regions and stiff elsewhere. Because stiff problems are usually characterized
by a nonstiff initial “transient” region, one could use MF = 10 in the initial region
and then switch to MF = 21 (the BDF method with NR iteration using an
analytical Jacobian matrix) in the later stiff regime. It is very straightforward to
change integration methods and corrector iteration techniques. Upon return from
LSODE the user simply resets MF to the desired new value. The other action
required is to reset ISTATE = 3 before calling LSODE again. The lengths LRW
and LIW, respectively, of the arrays RWORK and IWORK depend on MF (see
tables 4.9 and 4.10). If different methods are to be used in the course of solving a
problem, storage corresponding to at least the maximum values of LRW and LIW
must be allocated. That is, the dimensions of RWORK and IWORK must be set
equal to at least the largest of the LRW and LIW values, respectively, required by
the different methods to be used.

4.6 Optional Input

In addition to the input parameters whose values are required by the code, the
user can set values for several other parameters to control both the integration and
the output from the code. These optional input parameters are given in table 4.6,
together with their locations and default values. If any of these parameters are
used, the user must set IOPT = 1 to relay this information to the solver, which will
examine all optional input parameters and select only those for which nonzero
values are specified. A value of zero for any parameter will cause its default value
to be used. Thus to use a subset of the optional inputs, set RWORK(I) = 0.0 and
IWORK() =0 (I = 5 to 7), and then set parameters of interest to the desired
(nonzero) values. The variable HO, the step size to be attempted on the first step,
must indicate the direction of integration. That is, HO must be a positive quantity
for integration in the forward direction (increasing values of the independent
variable) and negative otherwise. All other input parameters must be positive
numbers; otherwise, an error exit will occur.

To reset any optional input parameter on a subsequent call to LSODE, ISTATE
must be set equal to 3. IOPT is not altered by LSODE and therefore need not be
reset. Also because the code does not alter the values in RWORK (5) to RWORK
(7) and IWORK(5) to IWORK(7), only parameters for which new values are
required need to be reset. To specify a default value for any parameter for which a
nondefault value had previously been used, simply load the appropriate location
in RWORK or IWORK with a zero. Of course, if all variables are to have default
values, simply reset IOPT = 0.
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4.6.1 Initial Step Size (H0)

The sign of the step size HO must agree with the direction of integration;
otherwise, an error exit will occur. Also, its magnitude should be considerably
smaller than the average value expected for the problem because the code starts
the integration with a first-order method. Of course, the integrator tests that the
given step size does produce a solution that satisfies the local error test and, if
necessary, decreases it (in magnitude). The only test made on the magnitude of
HO prior to taking the first step is that it does not exceed the user-supplied value
for HMAX, the maximum absolute step size allowed for the problem.

4.6.2 Maximum Step Size (HMAX)

The user may have to specify a finite value for HMAX (default value, o) if the
solution is characterized by rapidly varying transients between long smooth
regions. If the step size is too large, the solver may skip over the fine detail that
the user may be (primarily) interested in. An example of this behavior is the
buildup of ozone and oxygen atom concentrations in the presence of sunlight
(ref. 17).

4.6.3 Maximum Method Order (MAXORD)

The optional input parameter MAXORD, the maximum method order to be
attempted on any step, should not exceed the default value—I12 for the AM
method and 5 for the BDF method. If it does, it will be reduced to the default
value. Also, in the course of solving the problem, if MAXORD is decreased to a
value less than the current method order, the latter quantity will be reduced to the
new MAXORD.

The maximum method order has to be restricted to a value less than the default
value for stiff problems when the eigenvalues of the Jacobian matrix are close to
the imaginary axis; that is, the solution is highly oscillatory. In such a situation
the BDF method of high order (= 3) has poor stability characteristics and, as the
stability plots in Gear (ref. 10) show, the unstable region grows as the order is
increased. For this reason MAXORD should be set equal to 3 unless the
eigenvalues are imaginary; that is, Re(A;) = 0 and Im(A;) # 0, where Re(A,) and
Im(};) are the real and imaginary parts of A;, the ith eigenvalue. In this case the
value MAXORD = 2 should be used.

4.7 Optional Output

The user is usually primarily interested in the numerical solution and the
corresponding value of the independent variable. These quantities are always
returned in the call variables Y and T. In addition, several optional output
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quantities that contain information about the integration are returned by LSODE.
These quantitites are given in tables 4.7 and 4.8, together with their locations.
Some of these quantities give a measure of the computational work required and
may, for example, help the user decide if the problem is stiff or if the right method
is being used. Other output quantities will, in the event of an error exit, help the
user either set legal values for some parameters or identify the reason for repeated
convergence failures or local error test failures.

4.8 Other Routines

To gain additional capabilities, the user can access the following subroutines
included in the LSODE package: INTDY, SRCOM, XSETF, and XSETUN.
Among these, only INTDY is used by LSODE.

4.8.1 Interpolation Routine (Subroutine INTDY)

The subroutine INTDY provides derivatives of Y, up to the current order, at a
specified point T and may be called only after a successful return from LSODE.
The call to this routine takes the form

CALL INTDY (T, K, RWORK(21), NYH, DKY, IFLAG)

where T, K, RWORK(21), and NYH are input parameters and DKY and IFLAG
are output parameters. The arguments to INTDY are defined as follows:

T Value of independent variable at which the results are required.
For the results to be valid T must lie in the interval [(TCUR —
HU),TCUR], where TCUR and HU are defined in table 4.7.

K Integer that specifies the desired derivative order and must satisfy
0 < K < current method order NQCUR (see table 4.7 for location
of this quantity). Now, because the method order is never less
than 1, the first derivative dY/d€ can always be obtained by
calling INTDY.

RWORK(21) Base address of the Nordsieck history array (see table 4.8).

NYH Number of ODE’s used on the first call to LSODE. If the number
of ODE’s is decreased during the course of the problem, NYH
should be saved. An alternative way of obtaining NYH is to
include the common block LS0001 in the subprogram calling
INTDY. LSODE saves NYH in L.S0001 as the 232nd word—the
14th integer word after 218 real words (see table 3.6).
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DKY Array of length N that contains the Kth derivative of Y at T. The
subprogram calling INTDY must include a DIMENSION statement
for DKY if NYH > 1. Alternatively, to save storage, DKY can be
replaced with RWORK(LSAVF)—see section 4.3.

IFLAG An error flag with following values and meanings:
' 0 Both T and K were legal.
~1 Tllegal value was specified for K.
-2 Illegal value was specified for T.

4.8.2 Using Restart Capability (Subroutine SRCOM)

The subroutine SRCOM is useful if one is either alternating between two or
more problems being solved by LSODE or interested in interrupting a run and
restarting it later. The latter situation may arise, for example, if one is interested in
steady-state values with no a priori knowledge of the required integration interval.
The run may be stopped periodically, the results examined and, if necessary, the
integration continued. This procedure is clearly more economical than making
repeated runs on the same problem with, say, increasing values of TOUT. To
exploit the capability of stopping and then continuing the integration, the user
must save and then restore the contents of the common blocks LS0001 and
EHOO001. This information can be stored and restored by calling SRCOM. The
call to this routine takes the form

CALL SRCOM (RSAV, ISAV, JOB)

where RSAV must be declared as a real array of length 218 or more in the calling
subprogram and ISAV as an integer array of length 41 or more and JOB is an
integer flag whose value (= I or 2) indicates the action to be performed by
SRCOM as follows: JOB = 1 means “save the contents of the two common
blocks,” and JOB = 2 means “restore this information.”

Thus to store the contents of EHO001 and LS0001, SRCOM should be called as
follows:

CALL SRCOM (RSAV, ISAV, 1)

Upon return from SRCOM, RSAV and ISAV will contain, respectively, the 218
real and 39 integer words that together make up the common block LS0001. The
40th and 41st elements of ISAV will contain the two integer words MESFLG and
LUNIT in the common block EHOOO1 (table 3.6). The lengths and contents of the
arrays RWORK and IWORK must also be saved. The lengths LENRW and
LENIW required for the arrays RWORK and IWORK are saved by LSODE as the
17th and 18th elements, respectively, of the array IWORK (see table 4.7).

To continue the integration, the arrays RWORK and TWORK and the contents
of the common blocks LS0001 and EHO001 must be restored. The common block
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contents are restored by using the previously saved arrays RSAV and ISAV and
calling the routine SRCOM as follows:

CALL SRCOM (RSAV, ISAY, 2)

The user should then set values for the input parameters required by LSODE, and
the integration can be continued by calling this routine. Note, in particular, that
ISTATE must be set equal to 2 or 3 to inform LSODE that the present call is a
continuation one for the problem (see table 4.3).

4.8.3 Error Message Control (Subroutines XSETF and XSETUN)

To reset the value of the logical unit number LUNIT for output of messages
_ from the code, the routine XSETUN should be called as follows:

CALL XSETUN (LUN)

where LUN is the new value for LUNIT. Action is taken only if the specified
value is greater than zero.

The value of the flag MESFLG, which controls whether messages from the
code are printed or not, may be reset by calling subroutine XSETF as follows:

CALL XSETF (MFLAG)

where MFLAG is the new value for MESFLG. The legal values for MFLAG are
0 and 1. Specifying any other value will result in no change to the current value
of MESFLG. Setting MFLAG =0 does carry the risk of losing valuable information
through error messages from the integrator.

4.9 Optionally Replaceable Routines

If none of the error control options included in the code are suitable, more
general error controls can be obtained by substituting user-supplied versions of
the routines EWSET and/or VNORM (table 3.3). Both routines are concerned
with measuring the local error. Hence any replacement may have a major impact
on the performance of the code. We therefore recommend that modifications be
made only if absolutely necessary, and that too with great caution. Also the effect
of the changes and the accuracy of the programming should be studied on some
simple problems.

4.9.1 Setting Error Weights (Subroutine EWSET)

The subroutine EWSET sets the array of error weights EWT, equation (4.1).
This routine takes the form

95



4. Description of Code Usage
SUBROUTINE EWSET (N, ITOL, RTOL, ATOL, YH, EWT)

where N is the current value of the number of ODE’s; ITOL, RTOL, ATOL, and
EWT have been defined previously; and YH contains the current Nordsieck
history array, that is, the current solution vector YCUR and its NQ scaled
derivatives, where NQ is the current method order. On the first call to EWSET
from the routine LSODE, YCUR is the same as the Y array (which then contains
the initial values supplied by the user); thereafter the two arrays may be different.

The error weights {EWT,} are used in the local truncation error test, which
requires that the rms norm of d/EWT; be 1 or less. Here, d; is the estimated local
error in Y;. The above norm is computed in the routine VNORM (discussed in
section 4.9.2) to which the EWT array is passed.

If the user replaces the current version of EWSET, the new version must return
in each EWT; (i = 1,...,N) a positive quantity for comparison with 4;. This routine
is called by the routine LSODE only (tables 3.4 and 3.5). However, in addition to
its use in the local truncation error test (which is performed in the routine
STODE), EWT is used (1) by the routine LSODE in computing the initial step
size HO and the optional output integer IMXER (table 4.7) and (2) by the routine
PREPJ in computing the increments in solution vector for the difference quotient
Jacobian matrix (MITER = 2 or 5, table 3.2) and for the diagonal approximation
to the Jacobian matrix (MITER = 3). The base address for EWT in the array
RWORK is LEWT, which is the 222nd word (the 4th integer word after 218 real
words) in the common block 1.S0001.

If the user’s version of EWSET uses current values of the derivatives of Y, they
can be obtained from YH, as described later. Indeed, derivatives of any order, up
to NQ, can be found from YH, whose base address in RWORK is LYH (= 21), the
221st word (the 3rd integer word past 218 real words) in LS0001. The array YH is
of length NYH(NQ + 1), where NYH is the value of N on the first call to LSODE.
The first N elements correspond exactly to the YCUR array. The remaining terms
contain scaled derivatives of YCUR. For example, the N elements JJ'NYH + 1 to
JsNYH + N (J =0,1,...,NQ) contain the Jth scaled derivative H'Y"/J!, where H is
the current value of the step size. On the first call to EWSET, before any
integration is done, H is (temporarily) set equal to 1.0. Thereafter its value may be
determined from L.S0001, where it is the 212th real word. This common block
also contains NYH as the 232nd word (the 14th integer word past 218 real words)
and NQ as the 253rd word (the 35th integer word past 218 real words). Thus if the
user wishes to use the Jth derivative in EWSET, it may be obtained by including
the following statements:

SUBROUTINE EWSET (N, ..., YH, .., EWT)

REAL (or DOUBLE PRECISION) YH, EWT, RLS, H, ...
INTEGER N, ILS, NQ, NYH, ...

DIMENSION YH(1), EWT(1), ... in FORTRAN 66
DIMENSION YH(»), EWT(+), ... in FORTRAN 77
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COMMON/LS0001/RI1.S(218), ILS(39)
NQ =1ILS(35)

NYH =1LS(14)

H=RLS(212)

The Jth derivative (0 < J <NQ) is then given by

n YH(J * NYH+1)
HJ

Y= , I=1,.,N, (42)

where YI(D is the Jth derivative of Yy. The routine must include a data type
declaration and a DIMENSION statement for X(J). To save on storage, these
values may be stored temporarily in the vector EWT.

4.9.2 Vector-Norm Computation (Function VNORM)

The real (or double precision) function routine VNORM computes the weighted
root-mean-square (rms) norm of a vector. It is used as follows:

D = VNORM (N, V, W)

where N is the length of the real arrays V, which contains the vector, and W, which
contains the weights. Upon return from VNORM, D contains the weighted rms-
norm

This routine is used by STODE to compute the weighted rms norm of the
estimated local error. STODE also uses information returned by VNORM to
perform the corrector convergence test and to compute factors that determine if
the method order should be changed. Other routines that access VNORM are
LSODE, to compute the initial step size HO, and PREPJ, to compute the increments
in the solution vector for generating difference quotient Jacobians (MITER =2 or
5, table 3.2).

If the user replaces the routine VNORM, the new version must return a positive
quantity in VNORM, suitable for use in local error and convergence testing. The
weight array W can be used as needed, but it must not be altered in VNORM. For
example, the max-norm, that is, maxIV/W|{, satisfies this requirement, as does a
norm that ignores some components of V. The latter procedure has the effect of
suppressing error control on the corresponding components of Y.
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4.10 Overlay Situation

If LSODE is to be used in an overlay situation, the user must declare the
variables in the call sequence to LSODE and in the two internal common blocks
L.S0001 and EHO000! in the MAIN program to ensure that their contents are
preserved. The common block LS0001 is of length 257 (218 real or double-
precision words followed by 39 integer words), and EH0001 contains two integer
words (see table 3.6).

4.11 Troubleshooting

In this section we present a brief discussion of the corrective actions that may
be taken in case of difficulty with the code. If the execution is terminated
prematurely, the user should examine the error message and the value of ISTATE
returned by LSODE (table 4.4). We therefore recommend that the current value of
MESFLG not be changed, at least until the user has gained some experience with
the code. The legality of every input parameter, both required and optional, is
checked. Ifillegal input is detected by the code, it returns to the calling subprogram
with ISTATE = -3. The error message will be detailed and will make clear what
corrective actions to take. If the illegal input is caused by a request for too much
accuracy, the user should examine the value of TOLSF returned in RWORK(13)
(table 4.7) and make necessary adjustments to RTOL and ATOL, as described in
section 4.5.7. If an excessive accuracy requirement is detected during the course
of solving the problem, the value ISTATE = -2 is returned. To continue the
integration, make the adjustments mentioned above, set ISTATE = 3, and call
LSODE again.

Another difficulty related to accuracy control may be encountered if pure
relative error control for, say, the ith variable is specified (i.e., ATOL; = 0). If this
solution component vanishes, the error test cannot be applied. In this situation the
value ISTATE = —6 is returned to the calling subprogram. The error message
identifies the component causing the difficulty. To continue integrating, reset
ATOL for this component to a nonzero value, set ISTATE = 3, and call LSODE
again.

If more than MXSTEP (default value, 500) integration steps are taken on a
single call to LSODE without completing the task, the error return ISTATE =-11is
made. The problem might be the use of an inappropriate integration method or
iteration technique. The use of MF = 10 (or 20) on a stiff problem is one example.
The user should, as described previously under the selection of MF (section
4.5.8), verify that the value of MF is right for the problem. Very stringent accuracy
requirements may also cause this difficulty. Another possibility is that pure
relative error control has been specified but most, or all, of the IYI are very small
but nonzero. Finally, the solution may be varying very rapidly, forcing the
integrator to select very small step sizes, or the integration interval may be very
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long relative to the average step size. To continue the integration, simply reset
ISTATE =2 and call LSODE again—the excess step counter will be reset to zero.
To prevent a recurrence of the error, the value of MXSTEP can be increased, as
described in section 4.6. If this action is taken between calls to LSODE, ISTATE
must be set equal to 3 before LSODE is called again. Irrespective of when
MXSTEP is increased, JOPT should be set equal to 1 before the next call to
LSODE.

If the integrator encounters either repeated local error test failures or any local
error test failure with a step size equal to the user-supplied minimum value HMIN
(table 4.6), LSODE returns with ISTATE = —4. The difficulty could be caused by
a singularity in the problem or by inappropriate input. The user should check
subroutines F and JAC for errors. If none is found, it may be necessary to monitor
intermediate quantities. The component IMXER causing the error test failure is
returned as IWORK(16) (table 4.7). The values Y(IMXER), RTOL(IMXER),
ATOL(IMXER), and ACOR(IMXER) (see table 4.8) should be examined. If pure
relative error control had been specified for this component, very small but
nonzero values of Y(IMXER) may cause the difficulty.

These checks should also be made if the integration fails because of either
repeated corrector convergence test failures or any such failure with a step size
equal to HMIN. In this case LSODE returns the value ISTATE = —5 along with a
value for IMXER defined above. If an analytical Jacobian is being used, it should
be checked for errors. The accuracy of the calculation can also be checked by
comparing J with that generated internally. Another reason for this failure may be
the use of an inappropriate MITER, for example, MITER = 3 for a problem that
does not have a diagonally dominant Jacobian. It may be helpful to try different
values for MITER and monitor the successive corrector estimates stored as the Y
array in subroutine STODE.

In addition to the error messages just discussed, a warning message is printed if
the step size H becomes so small that T + H = T on the computer, where T is the
current value of the independent variable. This error is not considered fatal, and
so the execution is not terminated nor is a return made to the calling subprogram.
No action is required by the user. The warning message is printed a maximum
number of MXHNIL (default value, 10) times per problem. The user can change
the number of times the message is printed by resetting MXHNIL, as discussed in
section 4.6. To indicate the change to LSODE, the parameter IOPT must be set
equal to 1 before LSODE is called.
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Chapter 5
Example Problem

5.1 Description of Problem

In this chapter we demonstrate the use of the code by means of a simple stiff
problem taken from chemical kinetics. The test case, described elsewhere (refs.
17, 28, and 38), consists of three chemical species participating in three irreversible
chemical reactions at constant density and constant temperature;

kl

§ — 8, (GR))]
k2

8,483 = §+8,, (5.2)
k3

S, +8, = §;+8,, 53)

with kg = 4x1072, ky = 10%, and k3 = 1.5x107. In reactions (5.1) to (5.3), & is the
chemical symbol for the ith species, the arrows denote the directions of the
reactions (the single arrow for each reaction means that it takes place in the
indicated direction only), and the {k;} are the specific rate coefficients for the
reactions. The units of k; depend on reaction type (e.g., ref. 39). If y; denotes the
molar concentration of species i, that is, moles of species i per unit volume of
mixture, the governing ODE’s are given by
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L2
dt

PRECADING PAGE BLANK NOT FILMED o
pAGE MO0 INTENTIONALLY BLANK 101

= 0.04y, —10%y,y, -3x107y,y,, (5.5)



5. Example Problem

d

where ¢ is time in seconds. The initial conditions are
)’1(t=0)=1; )’2(t=0)=)’3(t=0)=0- (57

The example problem is interesting because the reaction rate coefficients vary
over nine orders of magnitude. Also it can be quite easily verified that at steady
state, that is, as f — oo, yj— 0, y; = 0, and y3 — 1. To study the evolution of the
chemical system, including the approach to the final state, we integrate the ODE’s
up to £ = 4x10'° s, generating output at £ = 0.4x10" s (n = 0,1,...,11).

5.2 Coding Required To Use LSODE

5.2.1 General

All of the coding required to solve the example problem with LSODE is
included (in the form of comment statements) in the package supplied to the user.
The MAIN program that calls LSODE and manages output is given in figure 5.1.
Figure 5.2 lists the subroutine that computes the derivatives. Because a value of
MITER = 1 is used (fig. 5.1), a routine that computes the analytical Jacobian
matrix is required. This routine is given in figure 5.3. The names used for the
derivative and Jacobian matrix subroutines are, respectively, FEX and JEX.
Therefore these names are used as arguments in the call to LSODE and declared
EXTERNAL in the MAIN program (fig. 5.1).

5.2.2 Selection of Parameters

Because the problem is stiff, the choice METH = 2 is made. For the same
reason functional iteration, that is, MITER =0, is rejected. It is straightforward to
compute the analytical Jacobian matrix, which should be used for reasons of
efficiency. In any case, the choice MITER = 3, that is, Jacobi-Newton iteration,
must not be made because the Jacobian matrix is not diagonally dominant. The
choice MITER =4 with ML = 1 and MU = 2 could be made but will require more
storage than MITER = 1 (see table 4.9). More importantly the computational
overhead for the LU-decomposition of the iteration matrix is more for MITER =4
than for MITER = 1. Hence the value MF =21 is used.

The number NEQ of ODE's is equal to the number (= 3) of chemical species.
To minimize storage, the lengths LRW and LIW of the work arrays RWORK and
IWORK are set equal to their minimum required values. According to the
formulas given in tables 4.9 and 4.10 for MF = 21, these lengths are as follows:
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20
40
60

80
90

and

5.2 Coding Required To Use LSODE

EXTERNAL FEX, JEX
DOUBLE PRECISION ATOL, RWORK, RTOL, T, TOUT, Y
DIMENSION Y(3), ATOL(3) RNORK(SB) IHORK(23)

'IDO
= 0.D0
= 0.D0

T « 0. oo
TOUT = .
ITOL = 2
RTOL = 1.D-4
ATOL(1) =
ATOL(2) =
ATOL(3) =
ITASK = 1
ISTATE = 1
I0PT = 0
LRV = 58
LIV = 23
MF = 21
DO 40 IOUT = 1,12

CALL LSODE(FEX,NEQ,Y,T,TOUT, ITOL,RTOL,ATOL, ITASK, ISTATE,
1 10PT, RWORK, LRW, IWORK, LTW, JEX, HF)

WRITE(3,20)T, Y(1).Y(2), Y(3)

FORMAT(7H AT'T = JE12.4.6H Y =,3E15.7)

IF (ISTATE .LT. 0) 60 To 80

TOUT = TOUT*10.D0
WRITE(3,60) IWORK(11) , IWORK (12) , INORK(13)
FORMAT (/12H NO. STEPS =,14,11H NO. F-S =,I4,11H NO. J-S =,14)
STOP
WRITE(3,90) ISTATE
FORHAT(///ZZH ERROR HALT.. ISTATE =,13)
STOP
END

Figure 5.1.—Listing of MAIN program for example problem.

SUBROUTINE FEX (NEQ, T, Y, YDOT)
DOUBLE PRECISION T, Y DOT
DIMENSION Y(3), YDOT )

VDOTglE = - 04D0*V(1) + 1.D4*Y(2)*Y(3)

YDOT(3) = 3.D7*Y(2)*Y(2)
YDOT(2) = -YDOT(1) - YDOT(3)
RETURN

END

Figure 5.2.—Listing of subroutine (FEX) that
computes derivatives for example problem.

LRW=22+3(5+1)+3(3)+3%=58

=20+3=23

Selection of the error tolerances requires some explanation. A scalar RTOL is
used because the same number of significant figures is acceptable for all
components. However, because y; is expected to be much smaller than both y;
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SUBROUTINE JEX (NEQ, T, Y ML, MU, PD, NRPD)
DOUBLE PRECISION PD, T,
DIMENSION Y(3), PD(NRPD 3)
PD(1,1

PD 1,2 - D4“Y 3;

PD(1,3) = D4"Y 2

PD(2,1) =

PD(2,3) = -PD(l 3)

PD(3,2) = 6.D7*Y(2)

p0{2,2) = -PD(1,2) - PD(3,2)
RETURN

END

Figure 5.3.—Listing of subroutine (JEX) that computes
analytical Jacoblan matrix for example problem.

and y3, an array ATOL, with ATOL(2) much smaller than both ATOL(1) and
ATOL(3), is used. For these choices of the RTOL and ATOL types, table 4.2 gives
ITOL = 2. Pure relative error control cannot be used because the initial values of
both y, and ys are zero and, as ¢ — o, y; — 0 and y, — 0. Pure absolute error
control should not be used because of the widely varying orders of magnitude of
the {y;}. Note that because a scalar RTOL is used, the MAIN program does not
require a DIMENSION statement for this variable.

The remainder of the program calling LSODE is straightforward and self-
explanatory. Because the output value for ISTATE is equal to 2 for a normal
return from LSODE and no parameter (except TOUT) is reset between calls to
LSODE, ISTATE does not have to be reset.

5.3 Computed Results

The output from the program, obtained on the Lawrence Livermore Laboratory’s
CDC-7600 computer using single-precision arithmetic, is given in figure 5.4. In
addition to the results at the specified times, values for the following parameters,
which give a measure of the computational work required to solve the problem,
are printed at the end: total number of integration steps (STEPS), total number of
derivative evaluations (F-S), and total number of Jacobian matrix evaluations and
LU-decompositions of the iteration matrix (J-S).

AT T = 4.0000E-01 Y = 9.851726E-01 3.386406E-05 1.479357E-02
AT T = 4.0000E400 Y = 9,055142E-01 2.240418E-05 9.446344E-02
AT T = 4,0000E+01 Y = 7,158050E-01 9.184616E-06 2.841858E-01
AT T = 4,0000E402 Y = 4,504846E-01 13,222434E-06 5.495122E-01
AT T = 4,0000E403 Y = 1,831701E-01 8,940379E-07 8.168290E-01
AT T = 4,0000E+04 Y = 3.897016E-02 1.621193E-07 9.610297E-01
AT T = 4.0000E+05 Y = 4,935213E-03 1.983756E-08 9,950648E-01
AT T = 4.0000E+06 Y = 5.159269E-04 2.064759E-09 9.994841E-01
AT T = 4.0000E+07 Y = 5,306413E-05 2.122677E-10 9.999469E-01
AT T = 4,0000E+08 Y = 5.404520E-06 2.197824E-11 9.999945E-01
AT T = 4.0000E+09 Y = 5,129458E-07 2.051784E-12 9.999995E-01
AT T = 4,0000E+10 Y = -7,170592E-08 -2.868236E-13 1.000000E+00

NO. STEPS = 330 NO. F-S = 405 NO. J-S =

69

Figure 5.4.—Output from program for example problem.




Chapter 6
Code Availability

The present version of LSODE, dated March 30, 1987, is available in single or
double precision. The code has been successfully executed on the following
computer systems: Lawrence Livermore Laboratory’s CDC-7600, Cray-1, and
Cray-X/MP; NASA Lewis Research Center’s IBM 370/3033 using the TSS
operating sytem (OS), Amdahl 5870 using the VM/CMS OS and the UTS OS,
Cray-X/MP/2/4 using the COS and UNICOS operating sytems and the CFT and
CFT77 compilers, Cray-Y/MP/8/6128 using UNICOS 6.0 and CFT77, Alliant
FX/S, Convex C220 minicomputer using the Convex 8.0 OS, and VAX
11/750, 11/780, 11/785, 6320, 6520, 8650, 8800, and 9410; NASA Ames Research
Center’s Cray-2 and Cray-Y/MP using the UNICOS operating system and the
CFT77 compiler; the Sun SPARCstation 1 using the Sun 4.0 OS; the IBM RISC
System/6000 using the AIX 3.1 OS and the XLF and F77 compilers; several IRIS
workstations using the IRIX 4.0.1 OS and F77 compiler; and various personal
computers under various systems.

The LSODE package is one of five solvers included in the ODEPACK collection
of software for ordinary differential equations (ref. 2). The official distribution
center for ODEPACK is the Energy Science and Technology Software Center at
Oak Ridge, Tennessee. (ESTSC supersedes NESC, the National Energy Software
Center at Argonne National Laboratory, in this activity.) Both single- and double-
precision versions of the collection are available. Additional details regarding
code availability and procurement can be obtained from

Energy Science and Technology Software Center
P.O. Box 1020

Oak Ridge, TN 37831-1020

Telephone: (615) 576-2606

The ODEPACK solvers can also be obtained through electronic mail by accessing
the NETLIB collection of mathematical software (ref. 40). Both single- and
double-precision versions of ODEPACK are contained in NETLIB. Detailed
instructions on how to access and use NETLIB are given by Dongarra and Grosse
(ref. 40).
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1. Onpage 1, second line Past equation (1.2), there should be a commga after Yo

2. Onpage?, Paragraph 3, line 3, delete the comma after Y,

3. Inthe third part of €quation (2.75) on page 27, “;é’"*”” should be “g,[l"'*”". The
€quation should read as follows:

X)), 40 _ o

el _  Im +P"§(xf,’"’) m=0,1,.,M-1. (2.75)

n

[m+1] [0} [m+1]
Xn =Xn +£O§n

4. Inequation (2.121) on page 38,
[ ‘,,_ ~H,, . . '," “K,
(éout - §n)q ! should be (§°m - };n )q 1 F

5. The two halves of figure 3.3 on pages 60 and 61 are misaligned. In order 1o
make the connections between the two halves, the bottom half on page 61
should be viewed a5 being moved to the left by approximately .25 in,, so that
the rightmost vertical lines on the two halves are aligned,

6. Onpage 71, paragraph 3, line 2, replace “falures” with “failures”,
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