
symmetryS S

Article

Description for N = 126 Isotones 210Po and 212Rn with
Particle-Hole Excited Nucleon-Pair Approximation and
Realistic Effective Interaction
Yi-Xing Wang 1, Yi-Yuan Cheng 1,* and Thomas T. S. Kuo 2

����������
�������

Citation: Wang, Y.-X.; Cheng, Y.-Y.;

Kuo, T.T.S. Description for N = 126

Isotones 210Po and 212Rn with

Particle-Hole Excited Nucleon-Pair

Approximation and Realistic Effective

Interaction. Symmetry 2022, 14, 181.

https://doi.org/10.3390/sym14010181

Academic Editors: Yu-Gang Ma,

De-Qing Fang and Fu-Rong Xu

Received: 30 September 2021

Accepted: 3 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physics, East China Normal University, Shanghai 200241, China; 51194700002@stu.ecnu.edu.cn
2 Department of Physics and Astronomy, Stony Brook University, New York, NY 11794-3800, USA;

kuo@tonic.physics.sunysb.edu
* Correspondence: yycheng@phy.ecnu.edu.cn

Abstract: In this paper, we study yrast states of two N = 126 isotones 210Po and 212Rn using the
nucleon-pair approximation with particle–hole excitations and using a low-momentum interaction
Vlow−k renormalized from the free CD-Bonn NN potential. An overall good agreement with ex-
perimental level structures, B(E2)s, and B(E3)s, is achieved. We also calculate the probabilities
of neutron particle–hole excitations in these yrast states, with a focus on negative-parity states,
which reflect the roles played by the neutron negative-parity configurations of one-particle-one-hole
excitations across the N = 126 shell gap and the negative-parity configurations of valence proton
particles involving the 0i13/2 orbit. The N = 126 shell gap is discussed in terms of energies of neutron
one-particle-one-hole excitations.

Keywords: N = 126 isotones; nucleon-pair approximation with particle–hole excitations;
low-momentum interaction Vlow−k

1. Introduction

N = 126 isotones have been of great importance and interest in both experimental and
theoretical studies. One of the key issues is the shell structure in these nuclei, i.e., the robust-
ness of the N = 126 shell gap and the existence of the foreseen Z = 92 subshell. Important
experimental progresses have been made along this line in recent years; see, e.g., [1–7].
Theoretically, characterized by large model spaces and reflections of various correlations,
the nuclei in the 208Pb region are challenging subjects. Despite the challenge, nuclear
shell-model calculations using effective interactions have been successful in describing a
large amount of low-lying states for nuclei in this region, in particular for N = 126 isotones;
see, e.g., References [8–16].

The first realistic effective interaction for this region is the Kuo–Herling (KH) inter-
action [8], which was derived from the Hamada–Johnston NN potential [17] using the
method developed by Kuo and Brown [18,19]. In Reference [9], with the KH interaction, a
good agreement with experimental data was achieved by the shell-model calculation for
low-lying states of nuclei with two to four identical particles coupled to the 208Pb core. In
Reference [10], modifications to the KH interaction were made to find the best fit to the
experimental energy spectra of A = 204–206 and 210–212 nuclei. In References [11,12],
a realistic effective interaction for the 208Pb region was derived from the Bonn-A NN
potential [20] using the Brueckner G-matrix method followed by the Q̂-box folded-diagram
method [21,22], together with which the shell-model calculation provided a good descrip-
tion for the low-lying states of 206,205,204Pb and N = 126 isotones 210Po, 211At, 212Rn. In
Reference [14], a large-scale shell-model calculation with the modified KH interaction [8,10]
gave a good description to the low-lying states of the N = 126 isotones Po-Pu. Very re-
cently, in Reference [16], a shell-model study with a realistic effective interaction derived
from the CD-Bonn potential [23] using the Vlow−k method [24–26] followed by the Q̂-box
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method [21,22], provided a good description for the low-lying states of Pb, Po, Rn, Ra, and
Th nuclei with 126 ≤ N ≤ 134.

The neutron particle–hole excitations across the N = 126 shell gap are expected to play
an important role in the low-lying states of N = 126 isotones, especially in the negative-
parity states. In Reference [13], a shell-model study for the low-lying states of the doubly
magic 208Pb nucleus, where the model space consists of particle–hole excitations up to
two-particle-two-hole excitations, well reproduced the available experimental data. Yet,
for other N = 126 isotones with Z 6= 82, the shell-model spaces including configurations
of such particle–hole excitations are too large.

In this work, we calculate the low-lying states of the N = 126 isotones 210Po and 212Rn
using the nucleon-pair approximation with particle–hole excitations [27], together with the
low-momentum interaction Vlow−k [24–26] derived from the free CD-Bonn potential [23]. The
configurations of neutron particle–hole excitations across the N = 126 shell gap are included.
We focus on the negative-parity states and study the roles played by the negative-parity
configurations of valence protons involving the 0i13/2 orbit and the neutron negative-parity
configurations of one-particle-one-hole excitations across the N = 126 shell gap.

The nucleon-pair approximation (NPA) [28,29] is a pair-truncation scheme of the shell
model based on the technique of calculating the commutators between coupled fermion
clusters [30,31]. Such a pair-truncation scheme with optimized pair structures is shown
to be able to give a good description to low-lying states of semi-magic nuclei, transitional
nuclei, and well-deformed nuclei; see, e.g., References [32–44]. For a comprehensive review,
see Reference [45]. In recent years, the NPA with isospin symmetry [46], the version with
particle–hole excitations [27], and the versions considering pairs in the M-scheme [47,48]
have been developed. In the NPA with particle–hole excitations [27], a particle–hole “mixed”
representation is adopted, where the particle–hole conjugate transformation is applied to
the operators of the lower major shell while the operators of the upper major shell remain
unchanged, so that three types of collective pairs, i.e., particle–particle, hole–hole, and
particle–hole pairs, are equally treated in technique.

This paper is organized as follows. In Section 2, we briefly introduce the pair configura-
tion space of particle–hole excitations and the shell-model Hamiltonian we use. In Section 3,
we present and discuss our calculated results of energy levels, B(E2)s, and B(E3)s, in com-
parison with experimental data, as well as probabilities of neutron particle–hole excitations
in the discussed states. We also discuss the N = 126 shell gap in terms of energies of
neutron one-particle-one-hole excitations. In Section 4, we summarize the paper.

2. Theoretical Framework
2.1. Pair Configuration Space of Particle–Hole Excitations

The vacuum state in our particle–hole mixed representation corresponds to the state of
the fully filled lower major shell in the particle representation. In the mixed representation,
the operators that create collective particle–particle (pp), hole–hole (hh), and particle–hole
(ph) pairs are all in the same form as below:

A(r)† ≡ A(r)†
µ = ∑

j1 j2

y(j1 j2r)A(r)†(j1 j2) ,

A(r)†(j1 j2) ≡ A(r)†
µ (j1 j2) =

(
a†

j1 × a†
j2

)(r)
µ

. (1)

Here, A(r)†(j1 j2) is a non-collective pair, and
(

a†
j1
× a†

j2

)(r)
µ

= ∑m1m2
Crµ

j1m1 j2m2
a†

j1m1
a†

j2m2

with Crµ
j1m1 j2m2

the Clebsch–Gordan coefficient. We denote the creation operator of the orbit

associated with quantum numbers (n, l, j, m) by using a†
jm ≡ a†

nljm. The collective pair A(r)†

is given by a linear combination of all non-collective pairs with spin r, and y(j1 j2r) is the
so-called structure coefficient.
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Let us use j1, j2, ..., jn to label orbits in the upper major shell and jn+1, jn+2, ..., jn+m to
label orbits in the lower major shell, and then the structure-coefficient matrices of the pp,
hh, ph pairs are in the following form:

ypp =

 An×n 0

0 0

, yhh =

 0 0

0 Bm×m

, yph =

 0 Cn×m

0 0

, (2)

where the subscripts “pp”, “hh”, and “ph” refer to pp, hh, and ph pairs, respectively.
Note that the particle–hole pair acting on the vacuum state in the mixed representation
corresponds to the phonon excitation with respect to the fully filled lower major shell in the
particle representation.

Pair basis states are constructed by collective pair creation operators coupled succes-
sively and acting on the vacuum state. In this work, we consider neutron particle–hole
excitations across the N = 126 shell gap up to two-particle-two-hole (2p2h) excitations,
and construct such neutron configuration spaces using low-lying particle–hole pairs. Thus,
neutron basis states in this work are in the forms as below:

0p0h :|0〉 , 1p1h :A(r)†
ph |0〉 , 2p2h :[A(r1)†

ph × A(r2)†
ph ](J)|0〉 , (3)

where the subscript “ph” refers to the ph pair.

2.2. Shell-Model Hamiltonian with the Effective Interaction

In the particle representation, the shell-model Hamiltonian with the effective interac-
tion can be expressed to be the sum of the proton part, neutron part and proton–neutron
part as below:

H = ∑
σ=π,ν

Hσ + Hπν,

Hσ = ∑
j

ε j(nj)σ + ∑
j1≤j2

∑
j3≤j4

∑
J

VJT=1(j1 j2 j3 j4)√
(1 + δj1 j2)(1 + δj3 j4)

Ĵ
(
(A(J)†(j1 j2))σ × (Ã(J)(j3 j4))σ

)(0)
,

Hπν = −∑
j1 j2

∑
j3 j4

∑
J

Vπν
J (j1 j2 j3 j4) Ĵ

(
((a†

j1)π × (a†
j2)ν)

(J) × ((ãj3)π × (ãj4)ν)
(J)
)(0)

,

Vπν
J (j1 j2 j3 j4) =

1
2
(
VJT=1(j1 j2 j3 j4) + VJT=0(j1 j2 j3 j4)

)√
(1 + δj1 j2)(1 + δj3 j4). (4)

Here, Ĵ =
√

2J + 1; nj = ∑m a†
jmajm, and A(J)†(j1 j2) is given in Equation (1); ãjm is

the time-reversed operator of the single-particle destruction, and we use the convention
ãjm = (−)j−maj,−m. We use ε j to denote the single-particle energy, use VJT=1(j1 j2 j3 j4)
to denote the normalized two-body matrix element of the isovector interaction, and use
VJT=0(j1 j2 j3 j4) to denote the normalized two-body matrix element of the isoscalar interaction.

In the NPA calculation we further express Hπν in terms of proton–neutron multipole–
multipole interactions as follows: Denoting (j1)π ≡ jπ , (j2)ν ≡ jν, (j3)π ≡ j′π , (j4)ν ≡ j′ν,

Hπν = ∑
jπ j′π

∑
jν j′ν

∑
k

(
∑

J
(−)J+jν+j′π (2J + 1)

{
jπ jν J
j′ν j′π k

}
Vπν

J (jπ jν j′π j′ν)

)
×

(−)k k̂
(

Q(k)(jπ j′π)×Q(k)(jν j′ν)
)(0)

, (5)

where Q(k)
κ (jj′)=(a†

j × ãj′)
(k)
κ . We first calculate the reduced matrix elements 〈‖Qk(jπ j′π)‖〉

and 〈‖Qk(jν j′ν)‖〉, and then calculate the matrix element of
(

Q(k)(jπ j′π)×Q(k)(jν j′ν)
)(0)

.
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In the NPA with particle–hole excitations, we first transform the shell-model Hamilto-
nian in the particle representation (in the form as above) into the one in the particle–hole
mixed representation. Then, we calculate the matrix elements of the Hamiltonian between
pair basis states in the mixed representation.

3. Results and Discussions

In this work, we perform calculations for the yrast states of 210Po and 212Rn using
the nucleon-pair approximation with particle–hole excitations [27], together with the low-
momentum interaction Vlow−k [24–26]. We consider valence proton particles in the (0h9/2,
1 f7/2, 1 f5/2, 2p3/2, 2p1/2, 0i13/2) major shell, and neutron particle–hole excitations across
the N = 126 shell gap with holes in the (0h9/2, 1 f7/2, 1 f5/2, 2p3/2, 2p1/2, 0i13/2) major shell
and particles in the (0i11/2, 1g9/2, 1g7/2, 2d5/2, 2d3/2, 3s1/2, 0j15/2) major shell.

Here, the low-momentum interaction Vlow−k [24–26] is renormalized from the CD-
Bonn NN potential [23], with the decimation momentum Λ = 2.3 fm−1. For the two-body
interaction matrix elements in the harmonic-oscillator single-particle basis, the parameter
h̄ω is set to be 6.88 MeV according to the formula h̄ω = 45A−1/3 − 25A−2/3 [49] with
A = 208. As we consider neutron particle–hole excitations across the N = 126 shell gap
in this work, the shell-model effective Hamiltonian is for valence particles outside the
Z = 82, N = 82 core. We use the two-body matrix elements of Vlow−k as our two-body
effective interaction. Regarding single-particle energies with respect to the Z = 82, N = 82
core (denoted as ε j), which, together with monopoles of 〈|Vlow−k|〉s, give corresponding
single-particle energies with respect to the Z = 82, N = 126 core (denoted as ej) as follows,
we fix ε js to give ejs that are consistent with those shown in Figure 1 of Reference [10].

ejπ = ε jπ +
1

2jπ + 1 ∑
jν0

∑
J
(2J + 1)〈jπ jν0 J|Vlow−k|jπ jν0 J〉,

ejν = ε jν +
1

2jν + 1 ∑
jν0

∑
J
(2J + 1)(1 + δjν0,jν)〈jν0 jν J|Vlow−k|jν0 jν J〉, (6)

where jπ represents an orbit in the proton 82− 126 major shell, jν0 represents an orbit in
the lower neutron major shell below N = 126, and jν represents an orbit either in the lower
neutron major shell or in the higher neutron major shell.

To eliminate in low-lying states the contributions of the spurious states arising from the
center-of-mass motion, we use the Gloeckner–Lawson method [50], where a center-of-mass
Hamiltonian was added to push up the expectation energies of the spurious states as follows:

H = HSM + β

(
HCM −

3
2

h̄ω

)
, HCM =

P̃2

2mA
+

1
2

mAω2R̃2 , (7)

where HSM is the shell-model Hamiltonian; A is the mass number of the calculated nucleus,
and P̃ and R̃ are the center-of-mass momentum and coordinate, respectively. In our
calculation, the parameter βh̄ω/A is set to be 5 MeV.

For the configuration space of 210Po, we adopt the full space of valence proton particles,
and construct the neutron configuration space consisting of particle–hole excitations up
to two-particle-two-hole (2p2h) excitations using the low-lying particle–hole pairs (i.e.,
the phonons with respect to the N = 126 closed shell in the particle representation)
with negative parity and with spin 2, 3, 4, 5, 6, 7, 8, respectively. For 212Rn, we construct
the proton configuration space using the five low-lying positive-parity pairs with spin
0, 2, 4, 6, 8, respectively, as well as the ten low-lying negative-parity pairs with spin 2, 3, ..., 11,
respectively. According to our calculation the contributions of neutron 2p2h configurations
in the discussed low-lying states of 210Po are negligible; thus, for 212Rn, we consider the
neutron configuration space consisting of the N = 126 closed-shell state and the one-
particle-one-hole (1p1h) configurations constructed using the same particle–hole pairs as
those adopted for 210Po.
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Now, we present and discuss our calculated results. In Figure 1, we present the calculated
energy levels of 210Po in the upper panel and those of 212Rn in the lower panel, in comparison
with experimental data [4,51]. One can see in Figure 1 that our calculated results agree
with experimental data reasonably. We shall compare our theoretical energy levels with
experimental ones in detail later. In Table 1, we present the calculated transition probabilities
B(E2)s and B(E3)s, in comparison with experimental data [51]. Regarding effective charges,
for E2 transitions, we adopt eπ(E2) = 1.5e and eν(E2) = 0.5e, and for E3 transitions we
adopt eπ(E3) = 2.0e and eν(E3) = 1.0e. One sees in Table 1 that a very good agreement with
available experimental transition probabilities is achieved by our calculation.
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Figure 1. Calculated energy levels of 210Po are in the upper panel and those of 212Rn are in the lower
panel, in comparison with experimental data [4,51]. In the calculation, we use the low-momentum
interaction Vlow−k [24–26] renormalized from the CD-Bonn potential [23], as our two-body effective
interaction. The adopted single-particle energies with respect to the Z = 82, N = 82 core, together
with monopoles of 〈|Vlow−k|〉s, give corresponding single-particle energies with respect to the Z = 82,
N = 126 core, as well as the N = 126 shell gap, consistent with Figure 1 of Reference [10]. We classify
the discussed yrast states into three cases which are drawn in black, red, and blue, respectively. See
the texts for details.

In Figure 2, we present the probability of neutron 1p1h excitations across the N = 126
shell gap in the yrast states, as well as the probability of the N = 126 closed-shell state. In
our calculation, the contributions of neutron 2p2h configurations in the discussed low-lying
states of 210Po are all negligible. According to the results of Figure 2, we classify the yrast
states into three cases as follows and present them in three colors in Figure 1.

• Case 1: the yrast states drawn in black, which are dominated by the configurations of
valence proton particles coupled to the N = 126 closed shell.
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• Case 2: the yrast states drawn in red, which are dominated by the configurations of va-
lence proton particles with seniority ν 6= 0 coupled to the neutron 1p1h configurations,
i.e., to the neutron particle–hole pairs.

• Case 3: the 3−1 state, which is drawn in blue.

Table 1. Calculated transition probabilities B(EL; JP
i → JP

f )s with L = 2 or 3 (in Weisskopf units), in
comparison with experimental data [51]. We also present the shell-model results of References [12,14]
for comparison; the results of Reference [12] by Coraggio and collaborators are denoted by “SM1” and
the results of Reference [14] by Caurier and collaborators are denoted by “SM2”. In the calculations
of SM1 and SM2, configurations of neutron particle–hole excitations were not considered. In our
calculation, the initial and final states of the transitions listed here all belong to Case 1, i.e., are states
dominated by valence proton configurations coupled to the N = 126 closed shell.

Nuclei JP
i JP

f L Expt. This
Work SM1 SM2

210Po 2+1 0+1 2 0.56± 0.12 3.60 3.55 3.55
4+1 2+1 2 4.46± 0.18 4.37 4.46 4.51
6+1 4+1 2 3.05± 0.09 3.00 3.07 3.09
8+1 6+1 2 1.12± 0.04 1.21 1.25 1.24

11−1 8+1 3 3.71± 0.10 1.64 0.55 0.89

212Rn 2+1 0+1 2 - 5.81 - 6.41
4+1 2+1 2 1.050+0.044

−0.040 0.83 1.42 1.51
6+1 4+1 2 0.40+0.06

−0.04 0.47 0.73 0.83
8+1 6+1 2 0.117± 0.007 0.17 0.252 0.26

12+1 10+1 2 4.52+0.32
−0.29 3.20 3.6 3.62

17−1 15−1 2 2.94+0.17
−0.15 2.71 2.9 2.87

11−1 8+1 3 1.8+0.6
−0.4 0.78 - 0.60

17−1 14+1 3 21.3+1.7
−1.5 20.90 6 20.41

Let us discuss Case 1 first. In the upper panel of Figure 1 for 210Po, one sees that
although the calculated energy levels of Case 1, i.e., those of 0+1 , 2+1 , ..., 8+1 and those of 2−1 ,
4−1 , 5−1 , ..., 10−1 , 11−1 , are lower than corresponding experimental ones, the relative level
spacing given by the calculation is very similar to that given by the experimental data.
The calculated RI+1 /2+1

’s with I = 4, 6, 8, which are equal to (1.29, 1.39, 1.46), are very close
to the experimental ones (1.21, 1.25, 1.32). For the negative-parity states, the calculated
energy levels are close to each other, with the 11−1 state being the lowest one, and so are the
experimental ones.

Similarly, in the lower panel of Figure 1 for 212Rn, one sees that although the calculated
energy levels of Case 1 (in particular, the negative-parity ones), i.e., those of 0+1 , 2+1 , ..., 14+1
and those of 10−1 , 11−1 , 13−1 , 14−1 , ..., 17−1 , 18−1 , are lower than corresponding experimental
data, the relative level spacing given by the calculation is very similar to that given by
experimental data. The calculated RI−1 /11−1

’s with I = 10, 13, 14, ..., 17, 18, which are equal
to (1.05, 1.29, 1.39, 1.38, 1.46, 1.38, 1.76), are very close to the experimental values (1.07, 1.35,
1.45, 1.45, 1.50, 1.47, 1.85).

In Table 1, the initial and final states of the discussed transitions all belong to Case
1, i.e., are dominated by the configurations of valence proton particles coupled to the
N = 126 closed shell. One sees that the experimental transition probabilities are very well
reproduced by our calculation, except for those of the 2+1 → 0+1 , 11−1 → 8+1 transitions of
210Po. In Table 1, we also present two sets of shell-model results [12,14] for comparison. In
the two shell-model calculations [12,14], configurations of neutron particle–hole excitations
were not considered. One sees that our results and the two sets of shell-model results are
close to each other.
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Figure 2. The probability of neutron one-particle-one-hole (1p1h) excitations across the N = 126
shell gap, as well as the probability of the closed-shell (i.e., 0p0h) state, in the yrast states of 210Po
and 212Rn.

We then come to Case 2. These negative-parity states, i.e., 12−1 , 13−1 , 14−1 of 210Po
and 19−1 of 212Rn, are dominated by the configurations of valence proton particles with
seniority ν 6= 0 coupled to the neutron 1p1h excitations across the N = 126 shell gap.
In Figure 1, one sees that for both 210Po and 212Rn, the calculated energy levels of Case
2 are very close to the corresponding experimental ones. Yet, the comparison between
the calculated energy levels of Case 1 and experimental ones in Figure 1 reflects that the
calculated excitation energies of valence proton configurations of seniority ν 6= 0 with
respect to the proton ν = 0 state might be lower than the ones inferred from experimental
data, and then energies of neutron 1p1h excitations across the N = 126 shell gap in the
calculation might be higher than the ones inferred from experimental data.

We then decrease the N = 126 shell gap and perform more NPA calculations with
configuration spaces constructed in the same way as in the previous calculation. As shown
in Figure 2, in our previous calculation the 12−1 , 13−1 , 14−1 states of 210Po and the 19−1 state
of 212Rn almost purely consist of configurations of neutron 1p1h excitations. Thus, with
a decrease in the N = 126 shell gap, the calculated wave functions of these states will
approximately not change, while the calculated energies will approximately decrease by the
same amount. Furthermore, according to our calculation, the 12−1 , 13−1 , 14−1 states of 210Po
almost purely consist of neutron 1p1h excitations coupled to the proton configurations with
(JP)π = 8+, and the 19−1 state of 212Rn almost purely consists of neutron 1p1h excitations
coupled to the proton configurations with (JP)π = 14+. Thus, as an approximation, we
regard the 12−1 , 13−1 , 14−1 states of 210Po to be neutron 1p1h excited states with respect to
the 8+1 state, and the 19−1 state of 212Rn to be a neutron 1p1h excited state with respect to
the 14+1 state. We further use ∆E1 = E(12−1 )− E(8+1 ) and ∆E2 = E(13−1 )− E(8+1 ) of 210Po,
as well as ∆E3 = E(19−1 )− E(14+1 ) of 212Rn, to represent the energies of corresponding
neutron 1p1h excitations, and present them versus the change of the N = 126 shell gap
in Figure 3. One sees in Figure 3 that the calculated ∆E1, ∆E2, ∆E3 with the decreasing
shell gap indeed follow straight lines with the same slope. Furthermore, one sees that, after
decreasing the N = 126 shell gap by 0.6 MeV, (i.e., with the shell gap in the 208Pb core
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being ∆′sh = ∆sh − 0.6 = 2.83 MeV), the calculated energies of neutron 1p1h excitations are
consistent with the ones inferred from experimental data.
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Figure 3. The energy differences (in units of MeV), ∆E1 = E(12−1 )− E(8+1 ) and ∆E2 = E(13−1 )−
E(8+1 ) of 210Po, as well as ∆E3 = E(19−1 )− E(14+1 ) of 212Rn, which we use to represent the energies
of corresponding neutron 1p1h excitations, versus the change of the N = 126 shell gap (denoted as
δ and in units of MeV) adopted in the calculation. In all the calculations, the configuration spaces
are constructed in the same way. For comparison, we also present the corresponding experimental
values. See the texts for details.

Last, we discuss the 3−1 state. Neutron particle–hole excitations are expected to play
an essential role in these 3−1 states. Yet, in our calculation where the N = 126 shell gap
consistent with Figure 1 of Reference [10] is adopted, the 3−1 states of 210Po and 212Rn are
both dominated by the negative-parity configurations of valence proton particles coupled
to the N = 126 closed shell. As discussed above, we also decrease the N = 126 shell
gap and perform more NPA calculations. As shown in Figure 3, after decreasing the shell
gap by 0.6 MeV, the calculated energy differences which we use to represent the energies
of corresponding neutron 1p1h excitations, are very close to experimental data. However,
according to our calculation, after decreasing the shell gap by 0.6 MeV, the 3−1 states are still
dominated by valence proton configurations coupled to the N = 126 closed shell. This might
be a consequence of the argument discussed previously, i.e., that the excitation energies of
valence proton configurations of seniority ν 6= 0 with respect to the proton ν = 0 state in our
calculation are lower than those inferred from experimental data. In a future work, we intend
to further investigate these 3−1 states with a new effective interaction for the proton part, to be
derived by using the Vlow−k method [24–26] followed by the Q̂-box method [21,22].

4. Summary

In this paper, we study the yrast states of two N = 126 isotones, 210Po and 212Rn, using
the nucleon-pair approximation with particle–hole excitations, and using a low-momentum
interaction Vlow−k renormalized from the realistic CD-Bonn potential. We consider valence
proton particles in the 82–126 major shell and neutron particle–hole excitations across the
N = 126 shell gap with holes in the 82–126 major shell and particles in the 126–184 major
shell. The configurations of neutron particle–hole excitations are constructed using the
low-lying particle–hole pairs. Note that the particle–hole pairs in our particle–hole mixed
representation correspond to the phonon excitations with respect to the fully filled lower
major shell in the particle representation. An overall good agreement with experimental
level structures, B(E2)s, and B(E3)s, is achieved.

According to our calculation where the adopted single-particle energies are consistent
with Figure 1 of Reference [10], most yrast states discussed here are dominated by the
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configurations of valence proton particles coupled to the N = 126 closed shell, while the
12−1 , 13−1 , 14−1 states of 210Po and the 19−1 state of 212Rn are dominated by the configurations
of valence proton particles with seniority ν 6= 0 coupled to the neutron one-particle-
one-hole (1p1h) excitations across the N = 126 shell gap. The comparison between our
calculated energy levels and experimental ones indicates that the excitation energies of
valence proton configurations of seniority ν 6= 0 with respect to the proton ν = 0 state in
our calculation might be lower than those inferred from experimental data; meanwhile,
the excitation energies of neutron 1p1h excitations across the N = 126 shell gap in the
calculation might be higher than those inferred from experimental data.

We then decrease the N = 126 shell gap and perform more NPA calculations with
configuration spaces constructed in the same way as in the above calculation. Our results
suggest that, after decreasing the shell gap by 0.6 MeV, the calculated energy differences,
which we use to represent the energies of corresponding neutron 1p1h excitations, are very
close to the experimental data, while the 3−1 states are still dominated by valence proton
configurations coupled to the N = 126 closed shell. In a future work, we intend to further
investigate these 3−1 states with a new effective interaction for the proton part, to be derived
by using the Vlow−k method followed by the Q̂-box method.
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