
MIT Sloan School of Management

Working Paper 4437-03
February 2003

Description Logic Programs: Combining
Logic Programs with Description Logic

Benjamin N. Grosof, Ian Horrocks, Raphael Volz, Stefan Decker

© 2003 by Benjamin N. Grosof, Ian Horrocks, Raphael Volz, Stefan Decker.
All rights reserved. Short sections of text, not to exceed two paragraphs,

may be quoted without explicit permission, provided that full
credit including © notice is given to the source.

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract=460986

http://ssrn.com/abstract=460986

Description Logic Programs: Combining Logic Programs
with Description Logic

Benjamin N. Grosof
MIT Sloan School of Management

Cambridge, MA, USA

bgrosof@mit.edu

Ian Horrocks
University of Manchester

Manchester, UK

irh@cs.man.ac.uk

Raphael Volz
University of Karlsruhe
Karlsruhe, Germany

volz@fzi.de

Stefan Decker
USC ISI

Los Angeles, CA, USA

stefan@isi.edu

ABSTRACT
We show how to interoperate, semantically and inferentially, be-
tween the leading Semantic Web approaches to rules (RuleML
Logic Programs) and ontologies (OWL/DAML+OIL Description
Logic) via analyzing their expressive intersection. To do so, we de-
fine a new intermediate knowledge representation (KR) contained
within this intersection: Description Logic Programs (DLP), and
the closely related Description Horn Logic (DHL) which is an ex-
pressive fragment of first-order logic (FOL). DLP provides a signif-
icant degree of expressiveness, substantially greater than the RDF-
Schema fragment of Description Logic.

We show how to perform DLP-fusion: the bidirectional transla-
tion of premises and inferences (including typical kinds of queries)
from the DLP fragment of DL to LP, and vice versa from the DLP
fragment of LP to DL. In particular, this translation enables one to
“build rules on top of ontologies”: it enables the rule KR to have
access to DL ontological definitions for vocabulary primitives (e.g.,
predicates and individual constants) used by the rules. Conversely,
the DLP-fusion technique likewise enables one to “build ontolo-
gies on top of rules”: it enables ontological definitions to be sup-
plemented by rules, or imported into DL from rules. It also enables
available efficient LP inferencing algorithms/implementations to be
exploited for reasoning over large-scale DL ontologies.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]:
Representation languages, Representations (procedural and rule-
based); H.3.4 [World Wide Web]; H.4.m [Information Systems
Applications]: Miscellaneous.

General Terms
Languages, Standardization, Theory

Keywords
Semantic Web, rules, ontologies, logic programs, Description
Logic, knowledge representation, XML, RDF, model-theoretic se-
mantics, inferencing, interoperability, translation, information inte-
gration
Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.xxx.

1. INTRODUCTION
The challenge we address in this paper is how and why to com-

bine rules with ontologies for the Semantic Web (SW). In this pa-
per, we focus on meeting key requirements for such a combina-
tion of rules and ontologies by establishing the basis for a com-
bined logical knowledge representation (KR) formalism. We start
from the current draft standards for ontologies (DAML+OIL) [6]
and for rules (RuleML) [3] in the Semantic Web context, and show
how aspects of each language can be translated to the other. Both
standards correspond with established KR formalisms: Description
Logic (DL) in the case of DAML+OIL, and (declarative) logic pro-
grams (LP) in the case of RuleML.1 This correspondence allows us
to exploit results w.r.t. the mapping of each KR to classical First
Order Logic (FOL).

A mapping between ontology and rule languages is important for
many aspects of the Semantic Web:
Language layering The Semantic Web can be viewed as largely
about “KR meets the Web”. Over the last two years or so, a broad
consensus has evolved in the Semantic Web community that the
vision of the Semantic Web includes, specifically, rules as well as
ontologies. A key requirement for the Semantic Web’s architecture
overall, then, is to be able to layer rules on top of ontologies—in
particular to create and reason with rule-bases that mention vocab-
ulary specified by ontology-based knowledge bases—and to do so
in a semantically coherent and powerful manner.
Querying The capabilities of ontology languages with respect
to instances can be rather low, and even conjunctive queries—
the least expressive query language usually considered in database
research—are often not supported [4]. This area is a stronghold
of rules, which offer extensive facilities for instance reasoning.
Hence, it is interesting to consider combining DLs with the rule
paradigm in order to state expressive instance queries w.r.t. termi-
nological knowledge bases.
Data integration The majority of today’s data resides in rela-
tional databases. As the Semantic Web grows in importance, peo-
ple will probably start exporting their data according to some cho-
sen ontology. This essentially leads to data that is replicated in
order to enable ontology-based processing, e.g., by reading the
exported files into a classifier such as FaCT [12] or Racer [10].

1In tandem with RuleML/LP, we also focus on the (positive) Horn
subset of FOL, which is closely related to the positive Horn subset
of LP.

Logic programming systems such as XSB [16], however, can ac-
cess databases directly through built-in predicates. Furthermore,
restricted variants of logic programs, such as the ones established in
this paper, can be directly implemented on top of SQL99-compliant
relational databases. Hence, an LP-based implementation of an on-
tology language allows a closer interaction with live data.
Semantic Web Services A task-oriented motivation for combin-
ing rules with ontologies arises from the efforts to design and build
Semantic Web Services (SWS). Semantic Web Services attempt to
describe services in a knowledge-based manner in order to use
them for a variety of purposes, including: discovery and search; se-
lection, evaluation, negotiation, and contracting; composition and
planning; execution; and monitoring. Both rules and ontologies
are necessary for such service descriptions and play complemen-
tary roles: while ontologies are useful for representing hierarchical
categorisation of services overall and of their inputs and outputs,
rules are useful for representing contingent features such as busi-
ness policies, or the relationship between preconditions and post-
conditions.

2. OVERVIEW OF THE APPROACH
This section gives an overview of our approach and sketches the

outline of the remainder of the paper. Our approach is driven by
the insight that understanding the expressive intersection of two
the KRs will be crucial to understanding the expressive combina-
tion/union of the two KRs. Hence, we start with the goal of under-
standing the relationship between both logic based KR formalisms
(so as to be able to combine knowledge taken from both): Descrip-
tion Logics (decidable fragments of FOL closely related to propo-
sitional modal and dynamic logics [17]), and Logic Programs (see,
e.g., [2] for review) which in turn is closely related to the Horn
fragment of FOL. Since Description Logics resemble a subset of
FOL without function symbols, we similarly focus on the fragment
of Horn FOL, def-Horn , that contains no function symbols. Both
DL and LP are then related to def-Horn.

The established correspondence is used to define a new interme-
diate KR called Description Horn Logic (DHL), which is contained
within the intersection, and the closely related Description Logic
Programs (DLP), which can be viewed as DHL with a moderate
weakening as to the kinds of conclusion can be drawn.

Figure 1: Expressive overlap of DL with LP.

Figure 1 illustrates the relationship between the various KRs and
their expressive classes. DL and Horn are strict (decidable) sub-
sets of FOL. LP, on the other hand, intersects with FOL but nei-
ther includes nor is fully included by FOL. For example FOL can

express (positive) disjunctions, which are inexpressible in LP. On
the other hand, several expressive features of LP, which are fre-
quently used in practical rule-based applications, are inexpressible
in FOL (and consequently also outside of def-Horn). One exam-
ple is negation-as-failure, a basic kind of logical non-monotonicity.
Another example is procedural attachments, e.g., the association of
action-performing procedural invocations with the drawing of con-
clusions about particular predicates.

Description Logic Programs, our newly defined intermediate
KR, is contained within the intersection of DL and LP. “Full” LP,
including non-monotonicity and procedural attachments, can thus
be viewed as including an “ontology sub-language”, namely the
DLP subset of DL.

Rather than working from the intersection as we do in this pa-
per, one may instead directly address the expressive union of DL
and LP by studying the expressive union of DL and LP within the
overall framework of FOL. This is certainly an interesting thing to
do. However, to our knowledge, this has not yet been well charac-
terised theoretically, e.g., it is unclear how, if at all, such a union
differs from full FOL.

Full FOL has some significant practical and expressive draw-
backs as a KR in which to combine DL and rules. First, full
FOL has severe computational complexity: it is undecidable in
the general case, and intractable even under the Datalog restric-
tion (see Section 3.2). Second, it is not understood even at a ba-
sic research level how to expressively extend full FOL to provide
non-monotonicity and procedural attachments; yet these are cru-
cial expressive features in many (perhaps most) practical usages of
rules. Third, full FOL and its inferencing techniques have severe
practicable limitations since it is unfamiliar to the great majority of
mainstream software engineers, whereas rules (e.g., in the form of
SQL-type queries, or Prolog) are familiar conceptually to many of
them.

Via the DLP KR, we give a new technique to combine DL and
LP. We show how to perform DLP-fusion: the bidirectional map-
ping of premises and inferences (including typical kinds of queries)
from the DLP fragment of DL to LP, and from the DLP fragment
of LP to DL. DLP-fusion allows us to fuse the two logical KRs so
that information from each can be used in the other. The DLP-
fusion technique promises several benefits. In particular, DLP-
fusion enables one to “build rules on top of ontologies”: it enables
the rule KR to have access to DL ontological definitions for vo-
cabulary primitives (e.g., predicates and individual constants) used
by the rules. Conversely, the technique enables one to “build on-
tologies on top of rules”: it enables ontological definitions to be
supplemented by rules, or imported into DL from rules. It also
enables efficient LP inferencing algorithms/implementations, e.g.,
rule or relational database engines, to be exploited for reasoning
over large-scale DL ontologies.

3. PRELIMINARIES
In this section we will introduce Horn Logic, Description Logic

(DL) and the DL based ontology language DAML+OIL. In partic-
ular, we will describe their syntax and formalise their meaning in
terms of classical First Order Logic (FOL).

3.1 DAML+OIL and Description Logic
DAML+OIL is an ontology language designed for use on the

(semantic) web. Although DAML+OIL is syntactically “layered”
on top of RDFS, semantically it is layered on a subset of RDFS.
This subset does not include RDFS’s recursive meta model (i.e.,
the unrestricted use of the type relation), but instead treats RDFS

Constructor DL Syntax Example
intersectionOf C1 u . . . u Cn Human uMale
unionOf C1 t . . . t Cn Doctor t Lawyer
complementOf ¬C ¬Male
oneOf {i1 . . . in} {john, mary}
hasClass ∃P.C ∃hasChild.Lawyer
toClass ∀P.C ∀hasChild.Doctor
hasValue ∃P.{i} ∃citizenOf.{USA}
minCardinalityQ > n P.C > 2 hasChild.Lawyer
maxCardinalityQ 6 n P.C 6 1 hasChild.Male
cardinalityQ = n P.C = 1 hasParent.Female

Figure 3: DAML+OIL class constructors

as a very simple DL supporting only atomic class names. Like other
DLs, this “DAML+OIL subset” of RDFS corresponds to a fragment
of classical FOL, making it much easier to develop mappings to
rule languages as well as to DLs. From now on, when we talk about
RDFS, we will be referring to the DAML+OIL subset of RDFS.

DAML+OIL is equivalent to a very expressive DL—in fact it is
equivalent to the SHOIQ(D) DL [13, 11]. In addition to “ab-
stract” classes and individuals, DAML+OIL also supports the use
of “concrete” datatypes and data values (the (D) in SHOIQ(D)).
In this paper, however, we will restrict our attention to the abstract
part of the language, which corresponds to the SHOIQ DL.

Figure 2 (on page) shows how DAML+OIL statements corre-
spond to SHOIQ axioms, where C (possibly subscripted) is a
class, P (possibly subscripted) is a property, P− is the inverse of
P , P+ is the transitive closure of P , i (possibly subscripted) is an
individual and > is an abbreviation for A t ¬A for some class A

(i.e., the most general class, called “Thing” in DAML+OIL).
It can be seen that all DAML+OIL statements can be reduced to

class/property inclusion axioms and ground facts (asserted class-
instance and instance-property-instance relationships).2 In the case
of transitiveProperty, however, the axiom P + v P is
taken to be equivalent to asserting that P is a transitive property
(like DAML+OIL, SHOIQ does not include the transitive closure
operator).

As in any DL, DAML+OIL classes can be names (URIs) or ex-
pressions, and a variety of constructors are provided for building
class expressions. Figure 3 summarises the available constructors
and their correspondence with SHOIQ class expressions.

The meaning of SHOIQ is usually given by a model theory
[13]. However, SHOIQ can also be seen in terms of a corre-
spondence to FOL, where classes correspond to unary predicates,
properties correspond to binary predicates and subclass/property
axioms correspond to implication [7, 4].

To be more precise, individuals are equivalent to FOL constants,
classes and class expressions are equivalent to FOL formulae with
one free variable, and properties (and property expressions when
supported by the DL) are equivalent to FOL formulae with two free
variables. Class and property inclusion axioms are equivalent to
FOL sentences consisting of an implication between two formulae
with the free variables universally quantified at the outer level. E.g.,
a DL axiom of the form C v D is equivalent to a FOL sentence
of the form ∀x.C(x) → D(x). DL axioms of the form a : C and
〈a, b〉 : P correspond to ground atoms C(a) and P (a, b). Finally,
DL axioms asserting the transitivity of a property P , the function-
ality of a property P and that property Q is the inverse of property

2Equivalence axioms can be reduced to a symmetrical pair of in-
clusion axioms.

DL FOL
a : C C(a)
〈a, b〉 : P P (a, b)
C v D ∀x.C(x)→ D(x)
P+ v P ∀x, y, z.(P (x, y) ∧ P (y, z))→ P (x, z)
> v 6 1 P ∀x, y, z.(P (x, y) ∧ P (x, z))→ y = z

P ≡ Q− ∀x, y.P (x, y) ⇐⇒ Q(y, x)

C1 u . . . u Cn C1(x) ∧ . . . ∧ Cn(x)
C1 t . . . u Cn C1(x) ∨ . . . ∨ Cn(x)
¬C ¬C(x)
{a1, . . . , an} x = a1 ∨ . . . ∨ x = an

∃P.C ∃y.(P (x, y) ∧ C(y))
∀P.C ∀y..(P (x, y)→ C(y))
> n P.C ∃y1, . . . , yn.

∧

16i6n
(P (x, yi) ∧ C(yi))

∧
∧

16i<n,i<j6n
yi 6= yj

6 (n− 1) P.C ∀y1, . . . , yn.(
∧

16i6n
(P (x, yi) ∧ C(yi)))

→ (
∨

16i<n,i<j6n
yi = yj)

Figure 4: DL FOL equivalence

P are equivalent to FOL sentences of the form ∀x, y, z.(P (x, y)∧
P (y, z)) → P (x, z), ∀x, y, z.(P (x, y) ∧ P (x, z)) → y = z and
∀x, y.P (x, y) ⇐⇒ Q(y, x) respectively.

Figure 4 summarises the above equivalences and shows the FOL
formulae corresponding to the DL class expressions described in
Figure 3, where a, b are constants, and x is the free variable. These
formulae can be composed in the obvious way, e.g., ∃R.(CuD) ≡
∃y.(P (x, y) ∧ (C(y) ∧D(y))).

As a notational convention we will, throughout the paper, use a

and b for constants and w, x, y and z for variables.

3.2 Logic Programs and Horn FOL
Declarative logic programs (LP) is the KR whose semantics un-

derlies in a large part the four families of rule systems that are
currently most commercially important—SQL relational databases,
OPS5-heritage production rules, Prolog, and Event-Condition-
Action rules—as well as the proposals for rules in context of the
Semantic Web.

As mentioned before, the commonly used expressiveness of full
LP includes features, notably negation-as-failure/priorities and pro-
cedural attachments, that are not expressible in FOL, much less in
DL. We thus concentrate on only an expressive portion of LP.

An ordinary (a.k.a. “normal”3) LP is a set of rules each having
the form:

H ← B1 ∧ . . . ∧Bm ∧ ∼Bm+1 ∧ . . . ∧ ∼Bn

where H , Bi are atoms (atomic formulae), and n ≥ m ≥ 0. Note
that no restriction is placed on the arity of the predicates appearing
in these atoms. Logical variables, and logical functions (with any
arity), may appear unrestrictedly in these atoms.

H is called the head (a.k.a. consequent) of the rule;
B1 ∧ . . . ∧Bm ∧ ∼Bm+1 ∧ . . . ∧ ∼Bn

is called the body (a.k.a. antecedent) of the rule. ← is to be read
as “if”, so that the overall rule should be read as “[head] if [body]”,
i.e., “if [body] then [head]”. If n = 0, then the body is empty, i.e.,
True, and notationally the “ ← ” is often omitted. A fact is a
rule whose body is empty and whose head is a ground atom. ∼
stands for negation-as-failure, a logically non-monotonic form of
negation whose semantics differs, in general, significantly from the

3[2] call this “general”; however, there are actually a number of
frequently used extensions!

Axiom DL Syntax Example
subClassOf C1 v C2 Human v Animal u Biped
sameClassAs C1 ≡ C2 Man ≡ Human uMale
subPropertyOf P1 v P2 hasDaughter v hasChild
samePropertyAs P1 ≡ P2 cost ≡ price
disjointWith C1 v ¬C2 Male v ¬Female
sameIndividualAs {i1} ≡ {i2} {President Bush} ≡ {G W Bush}
differentIndividualFrom {i1} v ¬{i2} {john} v ¬{peter}
inverseOf P1 ≡ P−

2 hasChild ≡ hasParent−

transitiveProperty P+ v P ancestor+ v ancestor
uniqueProperty > v 6 1 P.> > v 6 1 hasMother.>
unambiguousProperty > v 6 1 P−.> > v 6 1 isMotherOf−.>
range > v ∀P.C > v ∀hasParent.Human
domain > v ∀P−.C > v ∀hasParent−.Human
itypeC i : C john : Man
i1 P i2 〈i1, i2〉 : P 〈john, peter〉 : hasParent

Figure 2: DAML+OIL statements and SHOIQ axioms

semantics of classical negation (¬). Intuitively, ∼Bi means “Bi is
not believed” (i.e., is unknown or false), whereas ¬ means “Bi is
false”. Intuitively, each rule can be viewed as universally quanti-
fied at the outer level. More precisely, each rule can be viewed as
standing for the set of all its ground instantiations.

A definite LP is an ordinary LP in which negation-as-failure does
not appear, i.e., a set of rules each having the form:

H ← B1 ∧ . . . ∧Bm

where H , Bi are atoms, and m ≥ 0.
Definite LP is closely related syntactically and semantically to

the Horn fragment of FOL, a.k.a. Horn-clause logic. A clause in
FOL has the form:

L1 ∨ . . . ∨ Lk

where each Li is a (classical) literal. A literal L has either the form
(1) A or (2) ¬A, where A is an atom. The literal is said to be pos-
itive in case (1), or to be negative in case (2). A clause is said to
be Horn when at most one of its literals is positive. A Horn clause
is said to be definite when exactly one of its literals is positive. A
definite Horn clause is also known as a Horn rule. A definite Horn
clause, a.k.a. Horn rule, can thus be written in the form:

H ← B1 ∧ . . . ∧Bm

where H , Bi are atoms, and m ≥ 0. We say that this Horn
rule corresponds to the definite LP rule that has the same syn-
tactic form, and vice versa. Likewise, we say that a Horn ruleset
RH and a definite LP ruleset RP correspond to each other when
their rules do (isomorphically). We then also say that RP is the
LP-correspondent of RH, and conversely that RH is the Horn-
correspondent ofRP .

As mentioned above, it is implicit in this notation that all logical
variables are universally quantified at the outer level, i.e., over the
scope of the whole clause. E.g., the rule

man(x) ← human(x) ∧ male(x)
can be written equivalently as:
∀x. man(x) ← human(x) ∧ male(x).

Note the similarity with the FOL equivalent of a DL inclusion (sub-
ClassOf) axiom given in Figure 4.

An LP rule or Horn clause is said to be equality-free when the
equality predicate does not appear in it. Likewise, each is said to
be Datalog when no logical functions (of arity greater than zero)
appear in it.4

4The Datalog restriction is usually taken to mean, additionally, no
negation and only “safe” rules (all variables in the head also occur

The semantics of an ordinary LP is defined to be a conclusion
set, where each conclusion is a ground atom, i.e., fact, entailed by
the LP. Formally, the semantics of a definite LP R is defined as
follows. Let HB stand for the Herbrand base of R. The conclusion
set C is the smallest (w.r.t. set inclusion) subset S of HB such that
for any rule

H ← B1 ∧ . . . ∧Bm,
if B1 ∧ . . . ∧Bm ∈ S then H ∈ S.

The relationship of LP semantics to FOL semantics is relatively
simple to describe for the case of definite equality-free Datalog LP,
which we call def-LP. The syntactically corresponding fragment of
FOL is definite equality-free Datalog Horn FOL, which we call def-
Horn. Let RP be a def-LP. Let RH stand for the corresponding
def-Horn ruleset. The conclusion set of RP then coincides with
the minimal (w.r.t. set inclusion) Herbrand model ofRH.

Hence, the def-LP and the def-Horn ruleset entail exactly the
same set of facts. Every conclusion of the def-LP is also a conclu-
sion of the def-Horn ruleset. Relative to the def-Horn ruleset, the
def-LP is thus sound; moreover, it is complete for fact-form con-
clusions, i.e., for queries whose answers amount to conjunctions
of facts. However, the def-LP is a mildly weaker version of the
def-Horn ruleset, in the following sense. Every conclusion of the
def-LP must have the form of a fact. By contrast, the entailments,
i.e., conclusions, of the def-Horn ruleset are not restricted to be
facts. E.g., supposeRH consists of the two rules

kiteDay(Tues) ← sunny(Tues) ∧ windy(Tues)
and

sunny(Tues).
Then it entails

kiteDay(Tues) ← windy(Tues)
(a non-unit derived clause) whereas RP does not. In practical
applications, however, quite often only the fact-form conclusions
are desired, e.g., an application might be interested above only in
whether or not kiteDay(Tues) is entailed. The def-LP has the
virtue of conceptual and computational simplicity. Thinking in
terms of expressive classes, we will view def-LP as an expressive
subset of def-Horn—we will call it the expressive f-subset. def-LP
is a mild weakening of def-Horn along the dimension of entailment
power, permitting only fact-form conclusions—we will call this f-
weakening.

In return for this f-weakening, def-LP has some quite attractive

in the body).

computational characteristics (as well as being expressively exten-
sible in directions that FOL is not, as discussed earlier). For the
propositional case of def-LP, exhaustive inferencing is O(n) where
n = |RP|— i.e., worst-case linear time [8]. For the general case
with logical variables, the entire conclusion set of a def-LPRP can
be computed in time O(nv+1), when there is a constant bound v on
the number of logical variables per rule (this restriction, which we
will call VB, is typically met in practise). Inferencing in def-LP is
thus tractable (worst-case polynomial time) given VB. In contrast,
DLs are generally not tractable (typically ExpTime or even NExp-
Time complexity for key inference problems), and full FOL is not
decidable.

4. MAPPING DL TO def-Horn
In this section we will discuss how DL languages (e.g.,

DAML+OIL) can be mapped to def-Horn, and vice versa.

4.1 Expressive Restrictions
We will first discuss the expressive restrictions of DL and def-

Horn as these will constrain the subset of DL and def-Horn for
which a complete mapping can be defined.

DLs are decidable subsets of FOL where the decidability is due
in large part to their having (a form of) the tree model property
[19].5 This property says that a DL class C has a model (an in-
terpretation I in which CI is non-empty) iff C has a tree-shaped
model, i.e., one in which the interpretation of properties defines a
tree shaped directed graph.

This requirement severely restricts the way variables and quan-
tifiers can be used. In particular, quantifiers must be relativised via
atomic formulae (as in the guarded fragment of FOL [9]), i.e., the
quantified variable must occur in a property predicate along with
the free variable (recall that DL classes correspond to formulae with
one free variable). For example, the DL class ∃P.C corresponds to
the FOL formula ∃y.(P (x, y) ∧ C(y)), where the property predi-
cate P acts as a guard. One obvious consequence of this restriction
is that it is impossible to describe classes whose instances are re-
lated to another anonymous individual via different property paths.
For example, it is impossible to assert that individuals who live and
work at the same location are “HomeWorkers”. This is easy with a
Horn rule, e.g.:

HomeWorker(x) ← work(x, y) ∧ live(x, z) ∧ loc(y, w) ∧ loc(z, w)

Another restriction in DLs is that only unary and binary predi-
cates can usually be captured.6 This is a less onerous restriction,
however, as techniques for reifying higher arity predicates are well
known [12].

Definite Horn FOL requires that all variables are universally
quantified (at the outer level of the rule), and restricts logical con-
nectives in certain ways. One obvious consequence of the restric-
tion on quantifiers is that it is impossible to assert the existence
of individuals whose identity might not be known. For example,
it is impossible to assert that all persons have a father (known or
unknown). This is easy with a DL axiom, e.g.:

Person v ∃father.>.

5Expressive features such as transitive properties and the oneOf
constructor compromise the tree model property to some extent,
e.g., transitive properties can cause “short-cuts” down branches of
the tree.
6This is not an inherent restriction, and n-ary DLs are known, e.g.,
DLR [5].

No negation may appear within the body of a rule, nor within the
head. No existentials may appear within the head. Thus it is impos-
sible to assert, e.g., that all persons are either men or women (but
not both). This would also be easy using DL axioms, e.g.:

Person v Man tWoman
Man v ¬Woman.

The Datalog restriction of def-Horn is not an issue for mapping
DL into it, since DL also has the Datalog restriction. Finally, the
equality-free restriction of def-Horn is a significant restriction in
that it prevents representing (partial-)functionality of a property
and also prevents representing maximum cardinality. The prohibi-
tion against existentials in the head prevents representing minimum
cardinality.

4.2 Mapping Statements
In this section, we show how (some of) the statements (axioms)

of DL and DL based languages (such as DAML+OIL and OWL)
correspond to def-Horn statements (rules).

4.2.1 RDFS Statements
RDFS provides a subset of the DL statements described in Sec-

tion 3.1: subclass, subproperty, range, and domain statements
(which in a DL setting are often called Tbox axioms); and asserted
class-instance (type) and instance-property-instance relationships
(which in a DL setting are often called Abox axioms).

As we saw in Section 3.1, a DL inclusion axiom corresponds to
an FOL implication. This leads to a straightforward mapping from
class and property inclusion axioms to def-Horn rules as follows:

CvD, i.e., class C is subclass of class D, maps to:
D(x) ← C(x)

QvP , i.e., Q is a subproperty of P , maps to:
P (x, y) ← Q(x, y)

As shown in Figure 2, RDFS range and domain statements cor-
respond to DL axioms of the form > v ∀P.C (range of P is C)
and > v ∀P−.C (domain of P is C). From Figure 4, we can
see that these are equivalent to the FOL sentences ∀x. true →
(∀y. P (x, y) → C(y)) and ∀x. true → (∀y. P (y, x) →
C(y)), which can be simplified to ∀x, y. P (x, y) → C(y) and
∀x, y. P (y, x)→ C(y) respectively. These FOL sentences are al-
ready in def-Horn form, which gives us the following mappings for
range and domain:

> v ∀P.C, i.e., the range of property P is class C, maps to:
C(y) ← P (x, y)

> v ∀P−.C, i.e., the domain of property P is class C, maps
to:

C(y) ← P (y, x)

Finally, asserted class-instance (type) and instance-property-
instance relationships, which correspond to DL axioms of the form
a : C and 〈a, b〉 : P respectively (Abox axioms), are equivalent
to FOL sentences of the form C(a) and P (a, b), where a and b

are constants. These are already in def-Horn form: they are simply
rules with empty bodies (which are normally omitted):

a : C, i.e., the individual a is an instance of the class C,
maps to:

C(a)

〈a, b〉 : P , i.e., the individual a is related to the individual b

via the property P , maps to:
P (a, b)

Note that in these rules a and b are ground (constants).

4.2.2 DAML+OIL statements
DAML+OIL extends RDF with additional statements about

classes and properties (Tbox axioms). In particular, it adds ex-
plicit statements about class, property and individual equality and
inequality, as well as statements asserting property inverses, transi-
tivity, functionality (unique) and inverse functionality (unambigu-
ous).

As discussed in Section 3.1, class and property equivalence ax-
ioms can be replaced with a symmetrical pair of inclusion axioms,
so they can be mapped to a symmetrical pair of def-Horn rules as
follows:

C ≡ D, i.e., the class C is equivalent to (has the same ex-
tension as) the class D, maps to:

D(x) ← C(x)
C(x) ← D(x)

P ≡ Q, i.e., the property P is equivalent to (has the same
extension as) the property Q, maps to:

Q(x, y) ← P (x, y)
P (x, y) ← Q(x, y)

As we saw in Section 3.1, the semantics of inverse axioms of
the form P ≡ Q− are captured by FOL sentences of the form
∀x, y.P (x, y) ⇐⇒ Q(x, y), and the semantics of transitivity
axioms of the form P+ v P are captured by FOL sentences of the
form ∀x, y, z.P (x, y) ∧ P (y, z)→ P (x, z). This leads to a direct
mapping into def-Horn as follows:

P ≡ Q−, i.e., the property Q is the inverse of the property
P , maps to:

Q(y, x) ← P (x, y)
P (x, y) ← Q(y, x)

P+ v P , i.e., the property P is transitive, maps to:
P (x, z) ← P (x, y) ∧ P (y, z)

As we saw in Section 3.1, DL axioms asserting the functionality
of properties correspond to FOL sentences with equality. E.g., a
DL axiom > v 6 1 P (P is a functional property) corresponds to
the FOL sentence ∀x, y, z.P (x, y) ∧ P (x, z) → y = z.7 This
kind of axiom cannot be dealt with in our current framework (see
Section 4.1) as it would require def-Horn rules with equality in the
head, i.e., rules of the form (y = z) ← P (x, y) ∧ P (x, z).

4.3 Mapping Class Constructors
In the previous section we showed how DL axioms correspond

with def-Horn rules, and how these can be used to make statements
about classes and properties. In DLs, the classes appearing in such
axioms need not be atomic, but can be complex compound expres-
sions built up from atomic classes and properties using a variety of
constructors. A great deal of the power of DLs derives from this
feature, and in particular from the set of constructors provided.8

In the following section we will show how these DL expressions
correspond to expressions in the body of def-Horn rules.

In the following we will, as usual, use C, D to denote classes,
P, Q to denote properties and n to denote an integer.

Conjunction (DL u)
A DL class can be formed by conjoining existing classes, e.g.,
C u D. From Figure 4 it can be seen that this corresponds to a

7Note that, technically, this is partial-functionality as for any given
x there is no requirement that there exist a y such that P (x, y).
8Note that this feature is not supported in the RDFS subset of DLs.

conjunction of unary predicates. Conjunction can be directly ex-
pressed in the body of a def-Horn rule. E.g., when a conjunction
occurs on the l.h.s. of a subclass axiom, it simply becomes conjunc-
tion in the body of the corresponding rule

C1 u C2 v D ≡ D(x) ← C1(x) ∧ C2(x)

Similarly, when a conjunction occurs on the r.h.s. of a subclass
axiom, it becomes conjunction in the head of the corresponding
rule:

C v D1 uD2 ≡ D1(x) ∧D2(x) ← C(x),

This is then easily transformed (via the Lloyd-Topor transforma-
tions [14]) into a pair of def-Horn rules:

D1(x) ← C(x)
D2(x) ← C(x)

Disjunction (DL t)
A DL class can be formed from a disjunction of existing classes,
e.g., C tD. From Figure 4 it can be seen that this corresponds to a
disjunction of unary predicates. When a disjunction occurs on the
l.h.s. of a subclass axiom it simply becomes disjunction in the body
of the corresponding rule:

C1 t C2 v D ≡ D(x) ← C1(x) ∨ C2(x)

This is easily transformed (again by Lloyd-Topor) into a pair of
def-Horn rules:

D(x) ← C1(x)
D(x) ← C2(x)

When a disjunction occurs on the r.h.s. of a subclass axiom it
becomes a disjunction in the head of the corresponding rule, and
this cannot be handled within the def-Horn framework.

Universal Restriction (DL ∀)
In a DL, the universal quantifier can only be used in restrictions—
expressions of the form ∀P.C (see Section 4.1). This is equivalent
to an FOL clause of the form ∀y.P (x, y) → C(y) (see Figure 4).
P must be a single primitive property, but C may be a compound
expression. Therefore, when a universal restriction occurs on the
r.h.s. of a subclass axiom it becomes an implication in the head of
the corresponding rule:

C v ∀P.D ≡ (D(y) ← P (x, y)) ← C(x),

which is easily transformed into the standard def-Horn rule:

D(y) ← C(x) ∧ P (x, y).

When a universal restriction occurs on the l.h.s. of a subclass
axiom it becomes an implication in the body of the corresponding
rule. This cannot, in general, be mapped into def-Horn as it would
require negation in a rule body.

Existential Restriction (DL ∃)
In a DL, the existential quantifier (like the universal quantifier) can
only be used in restrictions of the form ∃P.C. This is equivalent
to an FOL clause of the form ∃y.P (x, y) ∧ C(y) (see Figure 4).
P must be a single primitive property, but C may be a compound
expression.

When an existential restriction occurs on the l.h.s. of a subclass
axiom, it becomes a conjunction in the body of a standard def-Horn
rule:

∃P.C v D ≡ D(x) ← P (x, y) ∧ C(y).

When an existential restriction occurs on the r.h.s. of a subclass
axiom, it becomes a conjunction in the head of the corresponding
rule, with a variable that is existentially quantified. This cannot be
handled within the def-Horn framework.

Negation and Cardinality Restrictions (DL ¬, > and 6)
These constructors cannot, in general, be mapped into def-Horn.
The case of negation is obvious as negation is not allowed in either
the head or body of a def-Horn rule. As can be seen in Figure 4,
cardinality restrictions correspond to assertions of variable equality
and inequality in FOL, and this is again outside of the def-Horn
framework.

In some cases, however, it would be possible to simplify the DL
expression using the usual rewriting tautologies of FOL in order
to eliminate the offending operator(s). For example, negation can
always be pushed inward by using a combination of De Morgan’s
laws and equivalences such as ¬∃P.C ≡ ∀P.¬C and ¬> n P ≡
6 (n − 1) P [1]. Further simplifications are also possible, e.g.,
using the equivalences C t¬C ≡ >, and ∀P.> ≡ >. For the sake
of simplicity, however, we will assume that DL expressions are in a
canonical form where all relevant simplifications have been carried
out.

4.4 Defining DHL via a Recursive Mapping
from DL to def-Horn

As we saw in Section 4.3, some DL constructors (conjunction
and universal restriction) can be mapped to the heads of rules when-
ever they occur on the r.h.s. of an inclusion axiom, while some
DL constructors (conjunction, disjunction and existential restric-
tion) can be mapped to the bodies of rules whenever they occur on
the l.h.s. of an inclusion axiom. This naturally leads to the defini-
tion of two DL languages, classes from which can be mapped into
the head or body of LP rules; we will refer to these two languages
as Lh and Lb respectively.

The syntax of the two languages is defined as follows. In both
languages an atomic name A is a class, and if C and D are classes,
then CuD is also a class. In Lh, if C is a class and R is a property,
then ∀R.C is also a class, while in Lb, if D, C are classes and R is
a property, then C tD and ∃R.C are also classes.

Using the mappings from Section 4.3, we can now follow the
approach of [4] and define a recursive mapping function T which
takes a DL axiom of the form C v D, where C is an Lb-class
and D is an Lh-class, and maps it into an LP rule of the form
A ← B. The mapping is defined as follows:

T (C v D) −→ Th(D, y) ← Tb(C, y)
Th(A, x) −→ A(x)
Th((C uD), x) −→ Th(C, x) ∧ Th(D, x)
Th((∀R.C), x) −→ Th(C, y) ← R(x, y)
Tb(A, x) −→ A(x)
Tb((C uD), x) −→ Tb(C, x) ∧ Tb(D, x)
Tb((C tD), x) −→ Tb(C, x) ∨ Tb(D, x)
Tb((∃R.C), x) −→ R(x, y) ∧ Tb(C, y)

where A is an atomic class name, C and D are classes, R is a
property and x, y are variables, with y being a “fresh” variable,
i.e., one that has not previously been used.

As we saw in Section 4.3, rules of the form (H ∧ H ′) ← B

are rewritten as two rules H ← B and H ′ ← B; rules of the
form (H ← H ′) ← B are rewritten as H ← (B ∧ H ′);
and rules of the form H ← (B ∨ B′) are rewritten as two rules
H ← B and H ← B′.

For example, T would map the DL axiom

A u ∃R.C v B u ∀P.D

into the LP rule

B(x) ∧ (D(z)←P (x, z)) ← A(x) ∧ R(x, y) ∧ C(x)

which is rewritten as the pair of rules

B(x) ← A(x) ∧ R(x, y) ∧ C(x)
D(z) ← A(x) ∧ R(x, y) ∧ C(x) ∧ P (x, z).

We call L the intersection of Lh and Lb, i.e., the language where
an atomic name A is a class, and if C and D are classes, then CuD

is also a class. We then extend T to deal with axioms of the form
C ≡ D, where C and D are both L-classes:

T (C ≡ D) −→

{

T (C v D)
T (D v C)

As we saw in Section 4.2.1, range and domain axioms > v
∀P.D and > v ∀P−.D are mapped into def-Horn rules of the
form D(y) ← P (x, y) and D(x) ← P (x, y) respectively.
Moreover, class-instance and instance-property-instance axioms
a : D and 〈a, b〉 : P are mapped into def-Horn facts (i.e., rules
with empty bodies) of the form D(a) and P (a, b) respectively. We
therefore extend T to deal with these axioms in the case that D is
an Lh-class:

T (> v ∀P.D) −→ Th(D, y) ← P (x, y)
T (> v ∀P−.D) −→ Th(D, x) ← P (x, y)
T (a : D) −→ Th(D, a)
T (〈a, b〉 : P) −→ P (a, b)

where x, y are variables and a, b are constants.
Finally, we extend T to deal with the property axioms discussed

in Section 4.2:

T (P v Q) −→ Q(x, y) ← P (x, y)

T (P ≡ Q) −→

{

Q(x, y) ← P (x, y)
P (x, y) ← Q(x, y)

T (P ≡ Q−) −→

{

Q(x, y) ← P (y, x)
P (y, x) ← Q(x, y)

T (P+ v P) −→ P (x, z) ← P (x, y) ∧ P (y, z)

(1)

Definition 1 (Description Horn Logic) A Description Horn
Logic (DHL) ontology is a set of DHL axioms of the form C v D,
A ≡ B, > v ∀P.D, > v ∀P−.D, P v Q, P ≡ Q, P ≡ Q−,
P+ v P , a : D and 〈a, b〉 : P , where C is an Lb-class, D is an
Lh-class, A, B are L-classes, P, Q are properties and a, b are
individuals.

Using the relationships of (full) DL to FOL discussed in Sec-
tion 3.1, especially Figure 4, it is straightforward to show the fol-
lowing.

Theorem 1 (Translation Semantics) The mapping T preserves
semantic equivalence. Let K be a DHL ontology and H be the
def-Horn ruleset that results from applying the mapping T to all
the axioms in K. Then H is logically equivalent to K w.r.t. the
semantics of FOL — H has the same set of models and entailed
conclusions as K.

DHL can, therefore, be viewed alternatively and precisely as an
expressive fragment of def-Horn— i.e., as the range of T (DHL).

4.5 Expressive Power of DHL
Although the asymmetry of DHL (w.r.t. classes on different sides

of axioms) makes it rather unusual by DL standards, it is easy to see
that it includes (the DAML+OIL subset of) RDFS, as well as that
part of DAML+OIL which corresponds to a simple frame language.

As far as RDFS is concerned, we saw in Section 4.2.1 that RDFS
statements are equivalent to DL axioms of the form C v D, > v
∀P.C, > v ∀P−.C, P v Q, a : D and 〈a, b〉 : P , where C, D

are classes, P, Q are properties and a, b are individuals. Given that
all RDFS classes are L-classes (they are atomic class names), a
set of DL axioms corresponding to RDFS statements would clearly
satisfy the above definition of a DHL ontology.

DHL also includes the subset of DAML+OIL corresponding to
simple frame language axioms, i.e., axioms defining a primitive hi-
erarchy of classes, where each class is defined by a frame. A frame
specifies the set of subsuming classes and a set of slot constraints.
This corresponds very neatly to a set of DL axioms of the form
A v Lh.

Moreover, DHL supports the extension of this language to
include equivalence of conjunctions of atomic classes, and ax-
ioms corresponding to DAML+OIL transitive property, and inverse
property statements.

5. DEFINING DLP

Definition 2 (Description Logic Programs) We say that a def-LP
RP is a Description Logic Program (DLP) when it is the LP-
correspondent of some DHL rulesetRH.

A DLP is directly defined as the LP-correspondent of a def-Horn
ruleset that results from applying the mapping T . Semantically, a
DLP is thus the f-weakening of that DHL ruleset (recall subsec-
tion 3.2). The DLP expressive class is thus the expressive f-subset
of DHL. By Theorem 1, DLP can, therefore, be viewed alterna-
tively and precisely as an expressive subset of DL, not just of def-
Horn.

In summary, expressively DLP is contained in DHL which in
turn is contained in the expressive intersection of DL and Horn.

6. MORE ABOUT TRANSLATING
As our discussion of expressive relationships has made clear,

there is a bi-directional semantic equivalence of (1) the DHL frag-
ment of DL and (2) the DHL fragment of def-Horn. Likewise, there
is a bi-directional semantic equivalence of the DLP fragment of
DL and the DLP fragment of def-Horn. So far, however, we have
mostly concentrated on only one direction of syntactic mapping:
from DL syntax to def-Horn syntax (and to the corresponding def-
LP), rather than from def-Horn (or def-LP) to DL. Next, we eluci-
date our reasons for this emphasis.

First, a prime immediate goal for the Semantic Web is to enable
rules (in LP / Horn) on top of ontologies (in DL) — more than
vice versa to enable DL ontologies on top of LP or Horn rules.
Second, it is desirable to exploit the relatively numerous, mature,
efficient, scalable algorithms and implementations (i.e., engines)
already available for LP inferencing so as to perform some frag-
ment of DL inferencing — more than vice versa to perform LP
via the fewer available DL engines, which are designed to handle
more expressive languages (than DLP) and may not be optimised
for DLP ontologies. Third, as compared to def-Horn, DL has a rel-
atively detailed set of quite specific syntactic expressive constructs;
it was easier to go through these one by one to define a translation
mapping than to do so in the reverse direction where one has to
invent more structure/forms.

We do not have space here to give detailed algorithms and com-
putational complexity analyses of the syntactic translations. We
will limit ourselves to some relatively high-level observations;
these are straightforward to show. The T mapping, from DL syn-
tax to def-Horn/def-LP syntax, corresponds immediately to an al-

gorithm whose computational complexity is tractable. This map-
ping is invertible (e.g., in the usual manner of parsers) from def-
Horn/def-LP syntax to DL syntax, again, tractably.

7. INFERENCING
As discussed in the previous section, one of the prime goals of

this work is to enable some fragment of DL inferencing to be per-
formed by LP engines. In this section we will discuss the kinds of
inference typically of interest in DL and LP, and how they can be
represented in each other, i.e., in LP and DL respectively. Although
the emphasis is on performing DL inferencing, via our mapping
translation, using an LP reasoning engine, the reverse mapping can
be used in order to perform LP inferencing using a DL reasoning
engine. In particular, we will show how inferencing in (the DHL
fragment of) DL can be reduced, via our translation, to inferencing
in LP; and how vice versa, inferencing in (the DLP fragment of)
LP can be reduced to inferencing in DL.

In a DL reasoning system, several different kinds of query are
typically supported w.r.t. a knowledge base K. These include
queries about classes:

1. class-instance membership queries: given a class C,

(a) ground: determine whether a given individual a is an
instance of C;

(b) open: determine all the individuals in K that are in-
stances of C;

(c) “all-classes”: given an individual a, determine all the
(named) classes in K that a is an instance of;

2. class subsumption queries: i.e., given classes C and D, de-
termine if C is a subclass of D w.r.t. K;

3. class hierarchy queries: i.e., given a class C return all/most-
specific (named) superclasses of C in K and/or all/most-
general (named) subclasses of C in K;

4. class satisfiability queries, i.e., given a class C, determine if
C is satisfiable (consistent) w.r.t. K.

In addition, there are similar queries about properties: property-
instance membership, property subsumption, property hierarchy,
and property satisfiability. We will callQDL the language defined
by the above kinds of DL queries.

In LP reasoning engines, there is one basic kind of query sup-
ported w.r.t. a rulesetR: atom queries. These include:

1. ground: determine whether a ground atom A is entailed;

2. open (ground is actually a special case of this): determine,
given an atom A (in which variables may appear), all the
tuples of variable bindings (substitutions) for which the atom
is entailed.

We call QLP the language defined by the above kinds of LP
queries.

Next, we discuss how to reduce QDL querying in (the DHL
fragment of) DL to QLP querying in (the DLP fragment of) LP
using the mapping T . We will assume that R is a ruleset derived
from a DL knowledge base K via T , and that all QDL queries are
w.r.t. K.
QLP (ground or open) atom queries can be used to answer
QDL (ground or open) class-instance membership queries when
the class is an Lh-class, i.e., a is an instance of C iff R entails

T (a : C). When C is an atomic class name, the mapping leads
directly to a QLP atom query. When C is a conjunction, the re-
sult is a conjunction of QLP atom queries, i.e., a is an instance
of C u D iff R entails T (a : C) and R entails T (a : D).
When C is a universal restriction, the mapping T (a : ∀P.C) gives
T (C, y) ← P (a, y). This can be transformed into aQLP atom
query using a simple kind of skolemisation, i.e., y is replaced with
a constant b, where b is new in R, and we have a is an instance of
∀P.C iffR∪ {P (a, b)} entails T (b : C).

The case of property-instance membership queries is trivial as
all properties are atomic: 〈a, b〉 is an instance of P iff R entails
P (a, b).

Complete information about class-instance relationships, to an-
swer open or “all-classes” class-instance queries, can then be ob-
tained via class-instance queries about all possible combinations of
individuals and classes inK.9 (Note that the set of named individu-
als and classes is known, and its size is worst-case linear in the size
of the knowledge/rule base.)

For Lh-classes,QDL class subsumption queries can be reduced
to QLP using a similar technique to class-instance membership
queries, i.e., C is a subclass of D iffR∪{T (a : C)} entails T (a :
D), for a new inR. ForQDL property subsumption queries, P is
a subproperty of Q iffR ∪ P (a, b) entails Q(a, b), for a, b new in
R.

Complete information about the class hierarchy can be obtained
by computing the partial ordering of classes in K based on the sub-
sumption relationship.

In the DHL (and DLP) fragment, determining class/property sat-
isfiability is a non-issue as, with the expressive power at our dis-
posal in def-Horn, it is impossible to make a class or a property
unsatisfiable.

Now let us consider the reverse direction from QLP to QDL.
In the DLP fragment of LP, every predicate is either unary or bi-
nary. Every atom query can thus be viewed as about either a named
class or a property. Also, generally in LP, any open atom query is
formally reducible to a set of ground atom queries—one for each
of its instantiations. Thus QLP is reducible to class-instance and
property-instance membership queries in DL.

To recap, we have shown the following.

Theorem 2 (Inferencing Inter-operability) For Lh-classes,
QDL querying in (the DHL fragment of) DL is reducible to QLP
querying in (the DLP fragment of) LP, and vice versa.

8. TRANSLATION TO DATABASES
Luckily, Logic Programming is also an elegant language for

data-oriented problems, for example it allows one to obtain lan-
guages equivalent to known database languages by making various
syntactic restrictions. One language that can be obtained by such
restrictions is Datalog, which underlies deductive databases, and
closely corresponds to the def-Horn subset of FOL introduced in
Section 3.

8.1 Translation to relational databases
Datalog programs can be implemented on top of relational

databases. To perform this implementation all explicit facts of a
predicate P are stored in a dedicated table PExt. All non-recursive
rules are translated to relational views. Rule bodies are translated
to appropriate SQL queries (usually operating on other views). To
obtain all explicit and implicit information, a view is defined to

9More efficient algorithms would no doubt be used in practise.

represent each predicate p. The query of the view integrates the ex-
plicit information, found in pext with the queries that represent the
bodies of those rules where p is the head. The interested reader may
refer to [18] for an in-depth description, algorithm and proof. Intu-
itively, this result follows from the following substitutions: each
Datalog-rule can be simulated using the select-from-where con-
struct of SQL; multiple rules defining the same predicate can be
simulated using union; and negation in rule bodies can be simu-
lated using not in.

To compute the answer for user queries the translated views are
used. This realises a form of bottom up processing, since the
queries involved in view definitions are performed on the exten-
sional data and intermediate results are propagated up to a final
query, which is the user query. This results in many irrelevant facts
being computed in the intermediate steps; more efficient proce-
dures based on sideways information passing have, however, been
developed in the deductive database literature.

The above mentioned strategy is, however, not possible for re-
cursively defined rules. Here additional processing is required.

8.2 Handling recursion
Modern relational database systems, which support the SQL:99

standard, can process some limited form of recursion, namely lin-
ear recursion with a path length one. Hence, the predicate used as
the rule head may occur only once in the rule body. Cycles other
than such linear self-references can also not be implemented.

Usually, binary recursive rules such as transitivity can be rewrit-
ten into a linear form. E.g. the mapping for transitive properties
(see 1) can be rewritten into

P (x, y)← PExt(x, y).
P (x, z)← PExt(x, y) ∧ P (y, z).

The usual strategy to compute the remaining forms of recursive
rules in relational databases is in-memory processing using some
iterative strategy, e.g. the magic template procedure [15].

Indirect Recursion. The remaining cases of non-linear recur-
sion that cannot be rewritten into the SQL:99 constructs are mainly
represented by the possibility of having cyclical class and property
hierarchies.

We can, however, translate this case into the database by exploit-
ing the observation that this form of recursion decomposes into
unions, since no join processing of intermediate results (such as
involved in computing the transitive closure of transitive proper-
ties) is necessary. This is immediately clear for classes, since they
are monadic predicates. A closer look at all axioms where binary
predicates (properties) are in the head reveals the same. Hence,
these cyclic references can be implemented via an algorithm that
detects equivalence classes (each constituted by a cycle) in graphs.
All incoming edges to an equivalence class must be duplicated to
all members of the equivalence class; this may done by using a
new intermediate predicate to collect the incoming edges and de-
riving the members of the equivalence class from this intermediate
predicate. Afterwards, all rules that constitute the cyclic references
within the equivalence class may safely be removed. The reader
may note that this can also be performed (with appropriate adap-
tions) on the cyclic references imposed by inverse properties.

8.3 Implementation
We have used the above techniques to realise a prototypical im-

plementation of Description Horn Logic based on the Datalog en-
gine written by Boris Motik in the KAON project. The implemen-
tation, called Bubo (after the Latin name of the biological genus of

eagle owls), is freely available at http://kaon.semanticweb.org/owl/.
Initial tests of Bubo have been encouraging, but much more work

needs to be done in order to determine if the benefits promised by
the DLP-fusion approach are delivered by this implementation.

9. DISCUSSION
In this paper we have shown how to interoperate, semanti-

cally and inferentially, between the leading Semantic Web ap-
proaches to rules (RuleML Logic Programs) and ontologies
(OWL/DAML+OIL Description Logic). We have begun by study-
ing two new KRs, Description Logic Programs (DLP), which is
defined by the expressive intersection of the two approaches, and
the closely related Description Horn Logic (DHL).

We have shown that DLP (or DHL) can capture a significant frag-
ment of DAML+OIL, including the whole of the DAML+OIL frag-
ment of RDFS, simple frame axioms and more expressive property
axioms. The RDFS fragment of DL permits: stating that a class
D is a Subclass of a class E; stating that the Domain of a property
P is a class C; stating that the Range of a property P is a class C;
stating that a property P is a Subproperty of a property Q; stating
that an individual b is an Instance of a class C; and stating that a
pair of individuals (a,b) is an Instance of a property P. Additional
DLP expressively permits (within DL): using the Intersection con-
nective (conjunction) within class descriptions (i.e., in C, D, or E
above); using the Union connective (disjunction) within subclass
descriptions (i.e., in D above); using (a restricted form of) Univer-
sal quantification within superclass descriptions (i.e., in E above);
using (a restricted form of) Existential quantification within sub-
class descriptions (i.e., in D above); stating that a property P is
Transitive; stating that a property P is Symmetric; and stating that a
property P is the Inverse of a property Q.

Many of the ontologies in the DAML ontology library are inside
this fragment of DAML+OIL. An immediate result of this work is
that LP engines could be used for reasoning with these ontologies
and for reasoning with (possibly very large numbers of) facts, such
as web page annotations, that use vocabulary from these ontologies.

This work represents only a first step in realising a more com-
plete interoperability between rules and ontologies, and the lay-
ering of rules on top of ontology languages in the Semantic Web
“stack”. We were able to illustrate its utility both theoretically and
within our prototypical implementation. We believe, however, that
our study of the expressive intersection will provide a firm foun-
dation for future investigations of more expressive languages up to
and including the expressive union of rules and ontologies.

Future work will include extending the mapping to additional
DL primitives, in particular those which require the ability to state
and derive the equality of individuals, such as cardinality restric-
tions (including functional properties) and nominals (extensionally
defined classes).

Acknowledgements
Thanks to Tim Berners-Lee, Harold Boley, Dan Connolly, Michael
Dean, Richard Fikes, Patrick Hayes, Jim Hendler, Deborah
McGuinness, Boris Motik, Daniel Oberle, Peter Patel-Schneider,
Jos De Roo, Steffen Staab and members of the DAML+OIL Joint
Committee for helpful comments and discussions.

10. REFERENCES
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and

P. Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2002.

[2] C. Baral and M. Gelfond. Logic programming and
knowledge representation. Journal of Logic Programming,
19/20:73–148, 1994.

[3] H. Boley, B. Grosof, M. Sintek, S. Tabet, and G. Wagner.
RuleML Design , September 2002.
http://www.dfki.uni-kl.de/ruleml/indesign.html.

[4] A. Borgida. On the relative expressiveness of description
logics and predicate logics. Artificial Intelligence,
82(1–2):353–367, 1996.

[5] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the
decidability of query containment under constraints. In Proc.
of PODS’98, pages 149–158, 1998.

[6] D. Connolly, F. van Harmelen, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein.
DAML+OIL (March 2001) Reference Description ,
December 2001.
http://www.w3.org/TR/daml+oil-reference/.

[7] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The
complexity of concept languages. In Proc. of KR’91, pages
151–162, 1991.

[8] W. Dowling and J. Gallier. Linear time algorithms for testing
the satisfiability of propositional horn formulae. Journal of
Logic Programming, 3:267–284, 1984.

[9] E. Grädel. On the restraining power of guards. J. of Symbolic
Logic, 64:1719–1742, 1999.

[10] V. Haarslev and R. Moller. Description of the RACER
system and its applications. In DL2001 Workshop on
Description Logics, Stanford, CA, 2001.

[11] I. Horrocks and U. Sattler. Ontology reasoning in the
SHOQ(D) description logic. In Proc. of IJCAI 2001, pages
199–204, 2001.

[12] I. Horrocks, U. Sattler, S. Tessaris, and S. Tobies. How to
decide query containment under constraints using a
description logic. In Proc. of LPAR’2000, 2000.

[13] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for
expressive description logics. In Proc. of LPAR’99, pages
161–180, 1999.

[14] J. W. Lloyd. Foundations of logic programming (second,
extended edition). Springer series in symbolic computation.
Springer-Verlag, New York, 1987.

[15] R. RAMAKRISHNAN. Magic templates: A spellbinding
approach to logic programs. J. Logic Programming,
11:189–216, 1991.

[16] K. Sagonas, T. Swift, and D. S. Warren. Xsb as an efficient
deductive database engine. In R. T. Snodgrass and
M. Winslett, editors, Proc. of the 1994 ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD’94), pages
442–453, 1994.

[17] K. Schild. A correspondence theory for terminological
logics: Preliminary report. In Proc. of IJCAI’91, pages
466–471, 1991.

[18] J. D. Ullman. Principles of Database and Knowledge-base
Systems, volume 1. Computer Science Press, 1988.

[19] M. Y. Vardi. Why is modal logic so robustly decidable? In
N. Immerman and P. Kolaitis, editors, Descriptive
Complexity and Finite Models. American Mathematical
Society, 1997.

