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ABSTRACT 
 
We propose a novel feature vector suitable for searching 
collections of 3D-objects by shape similarity. In this 
search a polygonal mesh model serves as a query. For each 
model feature vectors are automatically extracted and 
stored. Shape similarity between 3D-objects in the search 
space is determined by finding and ranking nearest 
neighbors in the feature vector space. Ranked objects are 
retrieved for inspection, selection, and processing. The 
feature vector is obtained by forming a complex function 
on the sphere. Afterwards, we apply the Fast Fourier 
Transform (FFT) on the sphere and obtain Fourier 
coefficients for spherical harmonics. The absolute values 
of the coefficients form the feature vector.  

Retrieval efficiency of the new approach is evaluated 
by constructing precision/recall diagrams and using two 
different 3D-model databases. We compared the approach 
with two methods based on real functions on the sphere. 
Our empirical comparison showed that the complex feature 
vector performed best. 

We also prepared a Web-based retrieval system for 
testing methods discussed in this paper.  

 

1. INTRODUCTION AND RELATED WORK 
 
As the amount of new information generated in the world 
rapidly increases, efficient search in collections of 
structured data, texts, and multimedia objects (e.g., 
images, video and audio sequences, and 3D-models) 
becomes more important. Solutions for efficient retrieval 
of structured information as well as textual documents 
exist. However, the search for a specific multimedia object 
is more intricate. Features of multimedia data can be 
extracted manually (high-level features), automatically 
(low-level features), and semi-automatically (controlled 
mapping of low-level to high-level features). Properties 
like automatic extraction and flexibility in describing 
objects attract many researchers to explore low-level 
features of images, videos, 3D-models, etc. Consequently, 
several techniques for content-based multimedia retrieval 
(mostly for images) have been reported.  

The topic of our research [2,8-11] is automatic 
generation of descriptions suitable for searching 
collections of 3D-mesh models by shape similarity. We 
consider that the most important criteria for defining 3D-
shape descriptors are the following: 
1. invariance with respect to translation, rotation, 

scaling, and reflection of a 3D-object, 
2. robustness with respect to level-of-detail, 
3. efficient feature extraction and search, and 
4. multi-resolution (MR) feature representation. 

A broader range of criteria for multimedia descriptors 
in general is defined by the MPEG-7 standard [4]. The 
MPEG-7 standard also identifies the following processing 
chain in multimedia retrieval applications. 

 

MPEG-7 standardizes only feature description while 
feature extraction (analysis) and description consumption 
(application, e.g., search) are left for the competition. Our 
3D-model retrieval algorithm complies with the context of 
MPEG-7 [10].  

Usually, before extracting shape features from 3D 
models a canonical position and orientation is estimated 
for each object [2,6,8-11]. The pose estimation is used for 
accomplishing the invariance requirement (1). The most 
prominent tool for pose estimation is the Principal Compo-
nent Analysis (PCA, also known as Karhunen-Loeve trans-
form) [7]. Modifications of the discrete PCA used for 3D-
model pose estimation are proposed in [2,6,9]. The Conti-
nuous PCA (CPCA) suitable for finding the canonical 
position of a polygonal mesh was introduced in [8]. We 
stress that all of the (infinitely many) points in the poly-
gons of an object are equally relevant for the CPCA. There 
are a few exceptions in which pose estimation is not neces-
sary because features are derived from relative properties 
of a model (e.g., topology [3] and curvature [5]). Typi-
cally, extraction of such descriptors is time-consuming.  

The requirements (2)-(4) should be fulfilled by de-
scriptor definitions. Descriptors are mostly represented as 
real-valued vectors [2,5,6,8-11] thereby the l1 (or l2) norm 
can be engaged for nearest neighbor search. Other repre-
sentations (e.g., graphs [3] or octrees [2]) can be used, as 
well as new similarity measures can be defined [3,5]. 

http://nbn-resolving.de/urn:nbn:de:bsz:352-231301


In this paper we present a new 3D-shape descriptor 
derived from a complex function on the sphere. Using 
Fourier expansion of this function provides embedded MR 
feature vectors. We describe our experiments that we 
designed to evaluate the proposed method. Our Web-based 
retrieval system serves as a proof-of-concept.  
 

2. COMPLEX FUNCTIONS ON THE SPHERE    
FOR 3D-SHAPE DESCRIPTORS 

 
In this section we explain how complex functions suitable 
for describing 3D-shape can be generated. Triangle 
meshes are commonly used to represent 3D-models. Let 
{T1,...,Tm} (Ti ⊂ �3) be the set of triangles of a mesh, given 
by vertices (geometry) {p1,...,pn} (pi = (xi, yi, zi) ∈ �3). An 
index table with three vertices per triangle (topology) is 
associated to the mesh. Then the object is I = �i=1,..,m Ti , 
the point set of all triangles. As described in section 1, we 
start with pose estimation. In order to determine the 
canonical coordinate frame, we apply the CPCA [11] to 
the set I. Our study confirmed that the CPCA performs 
better than the discrete PCA (including modifications). If a 
3D-object is closed and orientable polygonal mesh, then 
the CPCA can be applied to the model volume. However, 
only a small fraction of available 3D-models represents 
solid objects, therefore, we apply the CPCA to the set I.  

In the canonical coordinate frame, we define a unit 
sphere S2 with the center in the origin (i.e., center of the 
sphere coincides with the center of mass of the model). 
Further, we define the function r(u) (u∈S2)  
 r  :  S2 � � 
   r(u) = x(u) + � y(u) 
   x : S2 � [0,+�) ∈ �, y : S2 � [0,1] ∈ �, 
where � is the imaginary unit. The function x(u) measures 
the extent of the object from the origin 0 in directions 
given by u∈S2  
   x(u) =  max{ x � 0 | x u∈I � {0}}. 
The imaginary part of r(u) is defined as follows 
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where  n(u)  is the normal vector of the mesh  at the point 
u x(u) (x(u) � 0). The function y(u) can also be described 
as a rendered perspective projection of the model on an 
enclosing sphere.  

We recall that in [9] we took a number of samples 
x(u) as a feature vector in the spatial domain. This feature 
vector is sensitive to small perturbations of the object. In 
[11] we improved the robustness of the feature vector by 
taking samples of the spherical function x(u) at many 
points, but characterizing the map by just a few 
coefficients in the spectral domain. In this paper we 
engage spherical harmonics to merge two features 
represented by real functions (x(u) and y(u)) by embracing 
them into a single complex function.  

3. "COMPLEX FEATURE VECTOR" WITH 
SPHERICAL HARMONIC REPRESENTATION 

 
As mentioned in section 2, we apply the spherical 

Fourier transform to the function r(u). The Fourier 
transform on the sphere uses the spherical harmonics 
functions Yl,m to represent any function  r ∈ L2(S2) as 
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where ),(ˆ mlr  denotes a Fourier coefficient. Spherical 
basis functions are certain products of Legendre functions 
and complex exponentials. The spherical harmonics are 
orthogonal with respect to integration over the surface of 
the unit sphere. The complex Fourier coefficients can be 
efficiently calculated by a spherical FFT algorithm applied 
to samples taken at points uij, 
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The parameter n∈� is selected sufficiently large. More 
details about spherical harmonics as well as the 
corresponding software can be found in [1].  

We apply the FFT to the functions r(u), x(u), and 
y(u), defined in section 2. In the case of real functions, the 
spherical Fourier (complex) coefficients are pairwise 
conjugate for m � 0, i.e.,  

),(ˆ),(ˆ),(ˆ),(ˆ mlrmlrmlrmlr −=�−= . 

An example output of the absolute values of the spherical 
Fourier coefficients of the complex function r(u), when the 
underlying 3d-model is non symmetrical, is given here: 
 

 m =-2 m =-1 m = 0 m = 1 m = 2 
l = 0   0.898 
l = 1  0.082 0.227 0.036 
l = 2 0.328 0.023 0.289 0.022 0.366 
 

If the function x(u) is engaged, the spherical harmonic 
coefficients can be used to reconstruct an approximation of 
the underlying object at different levels. In Figure 1, the 
original model is a cube. After sampling at 16384 points 
uij (n = 128) the FFT was applied. The reconstructed 
objects are obtained by taking first k rows of coefficients. 

We have chosen to use only absolute values of 
coefficients in the first k rows as components of our 
feature vectors. Because of the symmetry we take only 
coefficients with m � 0 if the underlying function is real. 
Hence, the dimensions of the feature vectors are given by 
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Note that feature vectors derived in this way contain 
all feature vectors of the same type of smaller dimensions. 
Therefore, an embedded MR feature representation is 
provided. In what follows, we refer to features derived 
from the functions x(u), y(u) and r(u) as ray-based [8,11], 
shading-based, and complex feature vector, respectively. 



4. RESULTS 
 

We use two different collections of 3D-models for 
testing, our own collection of 1839 objects and the official 
MPEG-7 test set of 227 meshes. Our 3D-model database is 
mostly collected from the Internet (e.g., www.3dcafe.com 
and www.viewpoint.com) and on average a model contains 
5659 vertices and 10314 triangles. We manually classified 
models by shape. For example, we have 33 models of cars, 
63 airplanes, etc. On average a model from the MPEG-7 
3D-database contains 6569 vertices and 8977 triangles. 
The MPEG-7 collection is classified into 15 categories 
mostly by semantics (not by shape). The categories are the 
following: aerodynamic (35 models), balloon (7), building 
(10), car (17), e1m (9), finger (30), fourlimb (31), letters 
a-e (10 models each), missile (10), soma (7), and tree (21).  

In our empirical study we compared retrieval 
performance of ray-based, shading-based, and the complex 
feature vectors. A Web-based retrieval system for 
demonstrating the three methods above is located at: 
������������	
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A retrieval example generated by the on-line system is 
shown in figure 2. A model of an airplane from the 
MPEG-7 test set was used as the query, while the l2 norm 
was applied to the proposed feature vector of dimension 
169. The models are visualized from the same direction in 
the original coordinate frame (before pose normalization). 

Feature extraction of the complex vectors is efficient. 
For example, on a PC with an 866 MHz Pentium III 
processor running Windows 2000 the average time for 
extracting complex feature vectors with n=128 (section 3) 
was 0.415 seconds for our database and 0.355 seconds for 
the MPEG-7 models.  

In order to compare the effectiveness of feature vec-
tors, we used the classification of databases as ground truth 
to compute precision/recall diagrams [8,11]. Briefly, recall 
is the proportion of the relevant models actually retrieved 
and precision is proportion of retrieved models that is 
relevant. All models in the same category are relevant to 
each other. We also examined how the choice of distance 
metric (l1 or l2) affects the retrieval. A part of our results is 
depicted in figure 3. For each descriptor we calculated 
average precision/recall diagrams for all models in classes 
“car” (in both databases), “airplane” (our database), and 
“aerodynamic” (MPEG-7). In separate tests, we concluded 
that the best choice of dimensions is to select the first k=13 
rows of coefficients. As expected, the overall retrieval 
performance was better when we searched in the much 
smaller collection. The results from figure 3 help us rank 
the three descriptors by performance, while it is difficult to 
infer which metric is better. The shading-based feature 
possessed the lowest retrieval rate, because robustness 
with respect to level-of-detail was weaker compared to the 
other two features. The ray-based descriptor performed 
best when searching the MPEG-7 3D-objects, while the 

complex descriptor was superior when retrieving models 
from our database. Note that at small recall values the new 
descriptor performed best in all cases. Since our database 
is classified by shape and MPEG-7 models are sorted by 
semantics (e.g., there are limousines, formulas, and seats in 
the class “car”) we conclude that the new (complex) fea-
ture vector shows the best performance for shape represen-
tation in the context of 3D-model retrieval. 

In the future, we will consider some other definitions 
of the function y(u) in order to improve the robustness with 
respect to level-of-details. A weighted complex function of 
the type r(u) = �x(u) + � �y(u) (�, � ∈ �) will be explored. 
 

5. CONCLUSION 
 

In this paper we have introduced a new 3D-shape 
descriptor derived from a complex function on the sphere. 
In order to represent features that depend on angular 
coordinates, we engage spherical harmonics obtaining 
embedded multi-resolution 3D-shape feature vectors. In 
our tests the complex feature vector performed better than 
the ray-based and shading-based feature vectors. 
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Figure 1. Multi-resolution representation of the function  x(u) Figure 2.  Query for an airplane from the MPEG-7 database using the 
applied for a cube using k2 spherical harmonic coefficients. complex feature vector of dimension 169 and the l2 distance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend: [l1] denotes the l1 norm; [l2] denotes the l2 norm; RSO (resp. RSM) denotes the complex feature vector (FV) applied at our 
(resp. MPEG-7) database; RO (resp. RM) denotes the ray-based FV applied at our (resp. MPEG-7) database; SO (resp. SM) denotes the 
shading-based FV applied at our (resp. MPEG-7) database; the mean values of the curves are given in the brackets. 

Figure 3. Average precision vs. recall of queries for two categories from both our and MPEG-7 3D-model database using three FVs 
with spherical harmonic representation, the complex FV of dimension 169 and ray-based and shading-based FV of dimension 91 
(always k=13). Both databases contain the category 'cars', the category 'airplanes' exists only in our database, and the category 
'aerodynamic' is present only in the MPEG-7 database. 


