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ABSTRACT

This report describes the procedures used to create 0 and C-type solution
grids around arbitrary two-dimensional bodies. The grid generation procedure
is a modification of the 0-type hyperbolic method of Steger and Chausseel.

The procedure described in Reference (1) was modified by including additional
dissipation terms and by changing the form of the dissipatidn described. The
modifications necessary to produce a C-type grid are discussed and examples
are provided. |

A brief descrfption of the theory and development of the governing
hyperbolic equations is provided. Example results for both an airfoil section
and a complex body (X-24C) are shown. A discussion of the user definable
input variables and their effects on the resulting grid is included.

For many solution procedures it is desirable that the distribution of
points around the airfoil be "second order smooth."2 Since most airfoils are
defined with a somewhat random distribution of points, a routine was used to
redefine the coordinates in a smooth distribution. The routine also allows
selective clustering of grid points in regions of interest. A brief description
of this routine and the effects of the different input parameters are included

as Appendix A.

ii




AFWAL-TH-84-191

TABLE OF CONTENTS

SECTION
I INTRODUCTION
II THEORY DEVELOPMENT
I[II PROGRAM RESULTS
IV EFFECTS OF USER DEFINABLE PARAMETERS
v CONCLUSIONSl

APPENDIX A - SMOOTHING INPUT COORDINATES
REFERENCES

PAGE

11
19
37
38
46




AFWAL-TM-84-191

FIGURE
1

W O ~N OO0 O B W N

NNNND—-‘HO—IO—ID—‘HHO—‘HH
wr\)v—tomoo\lcnmhumo-ao

LIST OF ILLUSTRATIONS

Coordinate Transformation
Flow Diagram

0-Grid on NLR 7301 Airfoil
0-Grid on a Square

0-Grid on X-24C

0-Grid on X-24C

Tridiagonal Equation

Typical C-Grid on NLR 7301 Airfoil
Baseline Grid

Effect of Variation of JMAX
Grid Distribution

Effect of Variation of KMAX
Effect of Variation of DSETA
Effect of Variation of SETAMX
Effect of ESCAL Parameter
Effect of Variation of ESCAL
Effect of Variation of SMU
Effect of Variation of SMUIM

Effect of Variation of ALPHA on X-24C
Effect of Variation of ALPHA on NLR 7301

SMOOTH Coordinate Distribution
Coordinate Point Distribution

Clustered Grid Distribution

iv

PAGE

12
13
14
15
17
18
21
22
24
25
27
28

30
32
34
35
36
41
44
45

Y




AFWAL-TM-84-191

IT
II1
Iv

LIST OF TABLES

Subroutine Definitions
Baseline Parameter Settings
Input Parameter for SMOQTH

Coordinates for NLR 7301

PAGE
10
20
40
42




AFWAL-TM-84-191

ALPHA

DSETA
ESCAL
JMAX
KMAX

PDE

RL

SETAMX

SMU

SMUIM

XMAX

LIST OF SYMBOLS
Parameter defining the finite difference representation for
marching in the n direction
Grid pattern shaped 1ike the letter C
Initial step size in the n direction
Scaling parameter for grid spacing in the n direction
Maximum number of points defining the body surface
Maximum number of grid surfaces surrounding the body
Reference body length (usually 1)
Grid pattern shaped like the letter 0
Partial differential equation
Reynolds number based on length L
Perimeter of body measured clockwise from XMAX
Maximum value for n (in reference lengths)
Parameter defining the amount of explicit smoothing
Parameter defining the amount of implicit smoothing
Cartesian coordinate defining the body

Maximum value of the coordinates defining the body (including
the zero-thickness wake extension)

Cartesian coordinate defining the body

Transformed coordinate that encircles the body
Transformed coordinate that extends radially from the body
Exponential stretching function

Central difference operator

Backward difference operator

Forward difference operator

vi




== H E4

I. INTRODUCTION

Finite difference solutions of the partial differential equations that
govern fluid flow about arbitrary bodies require the development of a computa-
tional grid around the body. In particular, a grid system that conforms to
the shape of the body has the very important advantages of simplifying the
partial differential equation solution technique and simplifying the satisfaction
of the boundary conditions at the body. In many cases, the character of the
entire flow field is determined in the high gradient regions near the body.
Therefore, the development of a body-conforming coordinate system is a necessary
and very important first steb in numerical solutions of fluid flow problems.

Algebraic transformation techniques for grid generation have been used
for some applications and have the advantage of being relatively simple and
fast. However, the most popular techniques use the solution of partial
differential equations (PDE). Procedures exist that solve elliptic, hyperbolic
and parabolic PDEs. Elliptic routines-are most often used and probably are
more generally applicable to a wider range of problems. Hyperbolic routines
are relatively fast and simple, but are not easily adapted to physical far
field constraints (such as internal flows and multiple bodies). Parabolic
routines have been recently developed and show some promise. The PDE methods
attempt to produce nearly orthogonal grids with assurance of no crossover of
adjacent grid lines.

This report will discuss the characteristics of a hyperbolic grid generation
routine modified to produce a computational grid over arbitrary two-dimensiona]
bodies. The hyperbolic grid generation routine was chosen because it is quite
fast, provides nearly orthogonal grids and has good user control of the grid
spacings. The routine should work well for generating a grid around bodies

where there are no physical constraints (such as other bodies, walls, etc.)




within the region of the grid. The actual grid generation starts at the body
at user defined locations and marches out to an outer boundary.

The core of this program was adapted from the procedure described by
Steger and Chaussee in Reference 1. The purpose of this report is to describe
and document the modifications made to the 0-grid algorithm of Steger and
Chaussee and to provide examples of how the various user defined variables
affect the results.

Another program called SMOOTH has been developed to allow a smoothly
varying distribution of the points describing the body. The same process that
insures smoothness also allows arbitrary clustering and/or spreading-out of
points around the body. This'program is briefly described and some representa-

tive results are provided in Appendix A.
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IT. THEORY DEVELOPMENT
In the grid generation algofithm developed by Steger and Chaussee,
definitions of grid orthogonality and transformation Jacobian were chosen to
devise a scheme mapping (x,y) to (£,n). A typical transformation for an

airfoil is shown in Figure 1.

Orthogonality (1)

[
o

XExn + YEYn

XY -XY 1/4 Inverse Jacobian  (2)

En né

Note that in general, area integrands in physical and computational domains

can be written

dA = dXdY = 1/J dzdn

Numerically A¢ = an =1, so the inverse Jacobian approximates the physical cell

area. Equations (1) and (2) are locally linearized using

= X° + AX

>
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Y° + AY

—<
/]

where X°, y° is a nearby location. The linearized set of equations become

(after some algebraic manipulation)
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or
AR +BR =% (3)

The specific numerical procedure for solving equation (3) depends on the class
of equations being solved (elliptic, hyperbolic, or parabolic). The class can

be determined by inspecting 871 a,

- -
(] -} o -] o Q o o
) KXo Yo A A AR
BT A= 1/J
-} Q o o o o - <} o
R AR ARRETS XEJ

where

T - 0ol 02
J XE + YE

Since B'1 A is symmetric, it has real eigenvalues, specifically:

= 4 T o °o _ o 02+ e ° o 0y
AI,Z-_l/J-\/(xE A AN SR AR

This indicates that the system is hyperbolic and can be marched in n.
The finite difference solution scheme used is centrally differenced in £

and backward differenced in n. The scheme can be written as

-1 = e -1 7 2 S
[I+8B™A 55] Rj,k+1 = Rj,k + B fj,k+1 * g (vj AJ.) Rj,k

. 2 7 .
where fk+1 1s known at the k level, and e (Vj Aj) Rj,k 1s an added, fourth

e
order dissipation term in £ as discussed in Beam and warming.3




—- - >

Typically XE°, YE° are approximated as follows:

et T Uy = X1,60/2
Yo = (v

j+1,k = Y5-1,6072

While Xn°, Yn° are extracted from the nonlinear differential equations (1) and

(2).

° BT ° .°)_ °
xn = YOJSA V , Yn = }\S ,\V
J

This allows the nonlinearity to be maintained. It is important to note that
the cell areas at the k and k+1 levels are assumed to be known. This can be
accomplished in several ways. Steger and Chaussee construct polar grids about
two individual circles whose circumference is the arc length of the body to be
meshed. The grids on these two circles have the same spacing in the radial
direction, (usually an exponential stretching to cluster points near the
body). However, the two circles differ in grid spacing in the circumferential
direction. One circle has points placed in equal spaced increments around the
circumference. Cell areas are extracted from thesa polar grids such that when
near the body, cell areas are calculated using the nonuniform circumferential
distribution of points. When far from the body, areas from the uniform
circumferentially distributed circle are used. A smooth function transitions
from one area type to the other for points between these two extremes.

The solution algorithm based on these equation's exhibits difficulties
for geometries with slope discontinuities and regions of reverse (concave)
curvature. Discontinuities can propagate into the grid interior with undesir-
able results. Drawing from experience in other hyperbolic systems it is

possible that these problems may be circumvented by carefully including other




o - B 3

forms of dissipation without drastically compromising the orthogonal qualities
of the grid. If an analogy is made between marching in time and marching in n,
it seems reasonable that adding both temporal and spacial dissipation would be
beneficial in insuring smoothness. To accomplish this a more general class of

integration in n was chosen:

Reel - Ry
An

= (1-a) (%% K foa (%%)k+l

When o = 1, the original backward differenced scheme is obtained. From a Taylor
expansion it can be shown that the numerical error term for this scheme is:
L(1-20) An.ggg + higher order terms. MNote that for a =% the integration is a
trapezoidal type and is formally second order in n. For q > 1 the error term
has a dissipative effect in the n direction. Rewriting the algorithm in the

so called "delta" form, such that increments in E, (Ek+1 - Ek) are solved,

the algorithm becomes

[I+a8lA 8¢l (Reyp = R) = B, 'I(aV°k+1 * (l-a)V,) + ee(vjAj)ZEk

Adding a second order implicit dissipation term to this algorithm in delta
form serves to augment the amount of explicit dissipation that may be added,
while not formally degrading the accuracy of the method. Therefore the final
form of the algorithm is:

)R

-1 D I = -1 °
[1+ si(VjAj) *aB AT (R -R) =BT (av kel (1-a)V)) + ee(vjaj K
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The marching algorithm regalting from the hyperbo]fc equations provides an
efficient means for constructing a computational grid. Figure 2 is a flow
chart of the computer program based on this algorithm. The program begins by
initializing the variables and reading in the user defined body coordinates.
The marching procedure loop consists of four steps. First, the areas at the

k+1 level are approximated. Then a system of equations is set up to determine

the increments in X and Y. This results in a 2x2 block tridiagonal matrix

which is solved. The increments in X and Y are now known at the k level for
each j station, and the grid is computed at the k+1 level using these increments.
The process is repeated until the KMAX level is reached.

Table I is a listing ofbthe subroutines used in a computer program that
utilizes the algorithm described above. A brief description of the purpose of

each subroutine is also provided.
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TABLE 1

SUBROUTINE DEFINITIONS

SUBROUTINE CALLED FROM CALLS TO PURPOSE
MAIN - INITIA PROGRAM CONTROL
STEP
OUTPUT
INITIA MAIN BODIS READS INPUT, DEFINES INITIAL
SARC GRID SPACING
EPSIL
BODIS INITIA - READS BODY COORDINATES
SARC INITIA - COMPUTES BODY PERIMETER
EPSIL INITIA - DEFINES  DISTRIBUTION
STEP MAIN METRIC MARCHES GRID GENERATOR
RHS FROM BODY TO QUTER
FILTRY BOUNDARY
BTRI
METRIC STEP -
RHS STEP - CALCULATES THE FORCING FUNCTION
(RIGHT HAND SIDE)
FILTRY STEP GMATRX FILLS THE TRIDIAGONAL MATRIX
GMATRX FILTRY - DEFINES G MATRIX
BTRI STEP LUDEC BLOCK TRIDIAGONAL SOLUTION
LUDEC BTRIP - COMPUTES L-U
QUTPUT MAIN - WRITES DESIRED INFORMATION TO
OUTPUT
BC STEP - ROUTINE ADDED TO C-GRID TO

DEFINE AFT BOUNDARY CONDITIONS.

10
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ITI. PROGRAM RESULTS

Two computer programs were developed using the algorithm described in the
proceeding section. One program produces an O-type computational grid and the
other provides C-type grids. Results from the O-type grid will be shown first,
followed by a discussion of the modification necessary to produce a C-type grid
and some example results. A step by step examination of the effects of the
various input parameter options is provided in the next section.

Figure 3 shows a far-field and near-field view of one of the first
attempts at fitting an O-grid around a NLR 7301 airfoil section.4 This shape
represents a relatively simple test condition except for the region of the
trailing edge. Careful seleétion of the points used to define the geometry at
the trailing edge can significantly improve the results. Figure 4 is an
example of an O-type grid around a square. Figure 4a has equally distributed
body geometry points, whereas, Figure 4b shows the results of clustered and
stretched body definition points. Figures 5 and 6 indicate the O-type grid
results for a complicated geometry. The geometries shown provide a very
severe test for any grid generation scheme and is particulary difficult for a
marching (hyperbolic) procedure.

O-type computational grids are widely used for a variety of solution
procedures. For some applications, however, a C-type grid is preferred. For
example, an attempt to determine the viscous flow characteristics around an
airfoil section and the resulting wake area behind the airfoil, require fine
grid spacings close to the body surface and in the wake. A C-type grid can
easily provide this kind of grid distribution.

The most obvious change required to convert from an 0-grid to a C-grid is
the establiskment of a downstream boundary condition. The boundary conditions

for a C-grid, however, are only slightly more difficult than for an 0-grid. A




FIGURE 3

0-GRID ON NLR 7301 AIRFOIL
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O-GRID=ON A SQUARE

FIGURE 4
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separate subroutine (BC) was provided to compute the downstream boundary
conditions, but essentially X is fixed at XMAX and Y is incremented as = AR.
The C-type grid algorithm alters the form of the tridiagonal matrix
slightly from the form required by the 0-grid procedure. Figure 7 shows the
general arrangement of the tridiagonal matrix used. Figure 8 shows a typical
C-grid for the NLR 7301 airfoil. Many examples of a C-type grid around the
NLR 7301 airfoil are provided in the next section which includes a discussion

of the effects of the various user definable parameters.
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IV. EFFECT OF USER DEFINABLE PARAMETERS

It is appropriate to begin this section with a discussion of how the
"body" is defined for the grid generating routines. In addition to the actual
body, as defined for the 0-grid routine, a zero thickness extension of the
body from the trailing edge to the downstream boundary is required for the
C-grid routine. The complete "body" (actual body plus zero thickness extension)
is input in the same way as the real body was input to the 0-grid procedure.
That is, the body geometry is input as JMAX Cartesian coordinates, starting at
XMAX and proceeding around the body in a clockwise direction. A more aesthet-
ically pleasing grid is obtained if the upper and lower (X, Y) locations for
the wake extension are equai.

This section includes a description and discussion of the effects of
varying the user defined input variables. It is necessary to define a baseline
condition from which variations of individual parameters will be discussed.
Table II defines the baseline parameters used to determine a grid for the
NLR 7301 airfoil section which will be used for most of the examples of this
section. Figure 9 shows a far field and a near field view of the grid produced
using these baseline parameters. The variables in Table II will each be
discussed in turn,

JMAX defines the total number of points used to describe the body.

Probably more important than the total number of points is the distribution of
these points. In a practical situation both the maximum number (JUMAX) and the
distribution will be governed by the body geometry and the finite difference
program that will be using the grid. Figure 10 shows the baseline configuration
(JMAX = 100), and grids with 25% fewer (JMAX = 75) and 50% more (JMAX = 150)
points. The distribution of the points around the body is approximately

proportional in all three cases.

19




TABLE 1I

BASELINE PARAMETER SETTINGS

PARAMETER VALUE REASON
JMAX 100 Number of coordinates for body.
KMAX 40 Typical value.
DSETA .004 Provides approximately 5 grid lines in a
turbulent boundary layer with RL = 10
| million.
SETMX 6 Typical value.
ESCAL .005 Nominal value.
SMU .1 Nominal value.
SMUIM o5 Nominal wvalue.
ALPHA 1.0 Implicit finite difference of order 1.

20
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FIGURE ¢
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KMAX defines the maximum number of grid levels or contours. Note that
the body geometry definition constitutes the first physical contour (K = 1).
Each succeeding contour is determined by marching radially from the previous
contour. The initial cell height in the radial (n) direction is also approxi-
mately specified by the user (DSETA). The program uses a Newton-Raphson
routine to determine the values of an exponential stretching function (¢) that
will smoothly vary from the initial increment (DSETA) at the body to the
location of the outer boundary (SETAMX) in KMAX steps:

i k-2
R = Ryqp + DSETA (1+ ¢)

Figure 11 shows a typical variation of A R with distance from the body.
With JMAX, SETAMX and DSETA fixed, the aspect ratio (length to width) of the
grid cells away from the body are governed by KMAX. Figure 12 shows the
effect of reducing the value of KMAX by 50% (KMAX = 20) and of increasing the
value of KMAX by 50% (KMAX = 60) over the baseline value. The aspect ratio of
the cells and the rate of transition to equal area cells are both significantly
influenced by the value of KMAX.

DSETA defines the initial cell height normal to the body surface. The
proper magnitude for DSETA depends on the purpose for which the grid is being
created. For example, if a detailed analysis of the flow conditions in the
boundary layer of a high Reynolds number flow is desired, several grid levels
will be needed within this thin layer near the body. On the other hand, if
the flow is assumed to be inviscid (no boundary layer) the grid distribution
near the body may be governed by other factors, such as cell aspect ratio. If
the total number of contours (KMAX) and the outer boundary Tocation (SETAMX)

are fixed, then obviously having more contours near the body requires a wider

23
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spacing away from the body. Figure 13 shows the variation in grid spacing for
DSETA = .001 and .01 compared to the baseline value of .004.

The next parameter in the list, SETAMX, defines the approximate location
of the outer boundary for the grid. For the baseline airfoil it defines
(approximately) the number of chord lengths away from the body for the outer
most grid level (KMAX). Figure 14 shows a comparison of SETAMX = 3, 6 and 10
with all other parameters at baseline values. Note that the downstream
boundary has been maintained at six chord lengths for this comparison. A
practical grid would probably have the downstream boundary approximately the
same distance from the body as the other far field boundaries.

ESCAL defines the rate at which the grid distribution around the body
will transition from the input coordinate distribution to a grid with equal
cell areas for a given radial location. The scale factor used to transition

to equal cell areas is of the form:
scale, = (1. - ESCAL)*"? k=2, 3, b.....KMAX

Figure 15 shows how the value of ESCAL influences this scale factor. ESCAL =

0 means there will be no tendency for the grid cells to seek equal areas with
increasing distance from the body. In this case the radial lines tend to
march out from the body with the same distribution as the input data; however,
the procedure will not allow radial lines to coalesce or cross. Figure 16
compares results for ESCAL = 0. and 0.025. Notice that the ESCAL = 0.025 grid
has very undesirable characteristics along a Tine of "disturbance" from the
trailing edge. Additional problems results when the disturbance reaches the
rear boundary of the C-grid routine. The bad grid points occur between regions
of relatively dense grid spacing and regions of sparse grid spacing. Some

relief for this problem can be obtained with the following smoothing parameters.
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VARIATION OF SETYAMX
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The next input parameter for the routine is an explicit smoothing parameter
(SMU). This parameter defines the amount of fourth order dissipation (smoothing)
to be used to damp numerical oscillations. An explanation of why the
smoothing is needed and how it is implemented is given in Section II and
Reference (1).
SMU has an adverse effect on orthogonality and too large a value for SMU
could cause the numerical procedure to become unstable. The value of SMU
input represents the maximum amount of smoothing for any grid level. The
actual value used in the program varies from zero at the body to this maximum

value far from the body at a rate equal to the rate of transition to equal

cell areas.
SMUK = SMUINPUT (1 - SCALEK)

For the baseline parameters, variations of SMU seem to have very little
effect on the grid produced until values of approximately 4.5 are input.
Figure 17 demonstrates this by showing grids for SMU = 0.0, 0.5 and 4.5. At
SMU = 4.5, very obvious instabilities are occurring at grid points far from
the body. It is important to remember that the value for ESCAL, SMUIM and the
input geometry definition can all have a strong influence on how SMU affects
the grid.

SMUIM is another smoothing parameter. This implicit smoothing is not as
effective as the explicit smoothing (SMU) but it will not cause the numerical
instability that large values of SMU does. Implicit smoothing has the dual
effect of adding some higher order smoothing itself plus increasing the amount

of explicit smoothing that can be added before the procedure becomes unstable.
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Although there is no theoretical stability 1imit to the amount of implicit
smoothing (SMUIM) that can be added, there is a practical limit because both
orthogonality and accuracy of the grid are affected. Figure 18 shows the
effect of SMUIM on orthogonality. It is obvious from Figure 18 that large
values of SMUIM have a significant effect on the propagation of disturbances
throughout the grid.

The ALPHA parameter controls the nature of the finite difference marching
algorithm used to march the grid from the body to the outer boundary (see
Section II). A value of ALPHA greater than 1 tends to weight the procedure in
favor of the implicit method and has the result of improving the smoothness of
the grid. The trade-off is Setween the accuracy (and improved orthogonality)
provided by the ALPHA = } choice and the "robustnes§" of the ALPHA greater than
1 choice. The grid characteristics required by the finite difference program
for which the grid is intended and the shape of the body about which the grid
is produced will probably determine what value of ALPHA is appropriate. The
payoff from using large. values of ALPHA are most evident on complex bodies.
Figure 19 shows the effect of ALPHA on the grid generated about sections of
the X-24C. For the baseline parameters on the airfoil section, the effect of
changing ALPHA from 0.5 to 2.0 is quite small (see Figure 20). There is some
stretching of the grid in the radial direction as ALPHA gets larger. Very
large values of ALPHA (up to 10) produce significant stretching in the radial

direction and causes some loss of orthogonality near the body.
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FIGURE 20
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V. CONCLUSIONS

In conclusion, the hyperbolic grid generating procedure described is very
fast and provides a good grid pattern with a lot of user control. The routine
is tolerant to variations of all input parameters ("robust") except for the
parameter that controls transition to equal cell areas (ESCAL) when rapid
changes in grid spacings around the body are used. Tolerance to ESCAL could
be improved by changing some of the other parameters (SMUIM for example)
and/or adding or deleting input points. Additional work is needed in reducing
the effect of the disturbance between high and low density grid regions.
Another desirable feature for clustered grids would be to delay the transition
to equal cell areas in the cfﬁstered regions until about a body length away

from the body (n = 1).
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APPENDIX A - SMOOTHING INPUT COORDINATES

Most finite difference procedures for which a grid is required, need the
distribution of points around the body to be second order smooth.2 In other
words, a plot of grid point number (J) versus body perimeter length (S) should
be such that the rate of change of curvature is mathematically smooth.
Smoothing of the geometry coordinates (which constitutes the grid distribution
at the surface) must be accomplished by a separate program before the gecmetry
is input to the grid generating procedure. Any clustering of grid points,
such as around the leading edge or at shock locations, must also be included
in the body coordinates readlby the grid generating routine. These clustered
coordinates should also be second order smooth.

A program called SMOOTH was written that allows the distribution of
coordinates around the body and wake to be broken into any number of intervals.
Within an interval any number of points can be defined such that the distribution
within the interval and across the end points is smooth. An exponential point
distribution is used within the intervals and a tension spline is used to
interpolate between the original body coordinates to define the new, smooth
and (if desired) clustered points.

The end points of the intervals are identified by grid point numbers (J).

XMAX (J = 1).

The first interval always begins at the lower surface at X

The last interval ends at the upper surface at X = XMAX (J = XMAX). The
program must also have an interval defined at the leading edge, X = XMIN,
Tocation to avoid the possibility of having more than one Y for a given X in
an interval. The curve fitting routines require monotonically increasing or
decreasing values for X in a given interval. Other points where intervais
should be defined are the lower and upper Tocations of the trailing edge of

the body. This would minimize the possibility of incorrectly defining the

geometry in that region.




- -

In addition to defining the location of the start (and thus stop) points
of each interval, the user must define the number of points in each interval,
and the grid spacing at each interval point. A typical set of input values
for the SMOOTH routine is shown in Table III. This Table is for the NLR 7301
airfoil and wake with 100 points in both the original input geometry and the
new smooth coordinates. Figure 21 shows a plot of coordinate point (J) versus
body length (S) for the original coordinates and the new smooth coordinates.
Table IV is a Tisting of the original coordinates and the smooth coordinates.

As mentioned above, a tension spline routine is used to determine the new
coordinate values. The value of the tension parameter, SIGMA, must be provided
by the user. The range of vé]ues is from zero (normal cubic spline) to
infinity (straight line between points). For Figure 21 a value of 1000 was
used. Too small a value for SIGMA can produce undesirable (not smooth)
perturbations in the grid distribution; whereas,« too large a value may produce
"straight line" geometry definition. Figure 22 shows the coordinate distribution
obtained by using the parameters in Table III and SIGMA = 1000. Figure 23
shows a coordinate distribution and resulting grid for clustered points
between 50 and 60% chord on the upper surface. This is typical of what might
be desired to provide a close grid spacing in the region of a shock wave. The
value of the parameter ESCAL in the grid procedure will need to be kept small

to keep the grid points clustered at points away from the body.
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TABLE III

INPUT PARAMETERS FOR SMOOTH

STARTING | NUMBER OF POINTS | GRID SPACING AT COMMENTS
J IN INTERVAL POINT J
1 16 0.5 Lower surface rear boundary to
lower surface trailing edge.
9 35 .04 Lower surface T.E. to L.E.
48 36 .006 L.E. to upper surface T.E.
92 16 .04 Upper surface T.E. to rear
boundary.
100 0 0.5 Number of points is not needed
here.

Note: The number of new coordinates defined is the sum of the number of points
in each internal minus the number of internals, plus two; i.e., (16 + 35
+ 36 +16) -5+ 2 = 100.
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- TABLE IV
ORIGINAL SMQOTH
J X Y X Y
1 600000 Na00000 £a0000C 0.00000 |
2 5.00000 0.00000 546707 <=0.00000
X _a.00000 0.,00000 4 .77434 R.,00000
4 3.00000 0.00000 3.87389 =0.00000
8 2.00000 0000480 2.1811% =0.,00000
6 1.50000 6.00000 2464807 0.00000
2 1.125100 0.00000 2423818 0.00000
8 1.01560 0.00000 1.92291 0.00000
Q 1.00000 =0.00040 l1.68014 =0.00000
10 098850 0.00050 1.49351 =0.00000
11 0.895790n 0080220 1.34622 000000
12 051290 0.00180 123904 0.00000
12 N 87630 =0.00080 1.15422 0.00000
14 0.83960 =0.,00550 1.09032 0.00000
18 0 .80400 =0.01130 1.04074 0.00001
16 0677520 =0.01690 100000 =0.00040
17 0 .750E0 =a022010 L .9£6003 N0.002%11
18 072230 =-0.02810 0eG51671 0.00186
f—13 0,E6360 =0.04080 ! 0.86905 =-0.00176 !
20 0.61960 =0.05050 0481745 =(.00909 |
21 D .563480__ =0.0£140 076124 =0,01979 !
22 052000 =-0.06799 069984 <=0.032296 |
23 0.47440 =-Na07280 063324 ~0.04750 !
24 0443720 =0.07526 0eS57206 =-0.CE5974
25 0.39560 =0,0769C | 0.51548 =0.C€841
26 0.35600 <=0.07780 046359 =0,07352
217 031530 ~«007780 | 0.41586 =0.076310 |
28 0627540 =0407676C 037220 =~0407745
29  0.23610___=0.07540 0e33247 -0.07781 !
30 0.19970 =0.0715C 0.29604 =Co07727 |
31 016670 =0e06830 | 0426280 =~0.07594
32 013380 =0.06440 023246 =0.07412
33 0.11140 =0.05110 | 0.20478_ =0,07191
34 0.09650 =~0.05860 0617945 =0,06955
35 0.08100__ =-0405560 0615643  =0.0€70S
36 0.06150 <=0.05100 0413546 =0o.0£461
37 004510 =-0.04580 011634 =0.06184
38 0.03580 =-0.04210 0.09863 =0.05897 |
39 0.02950 =0e03920 | 0.08264 =~0.05593 |
4C 002440 <=0403650 0406630 =0605257
41 001570 =0.03360 005346 =-0.04905
| 42 0.01070 =0.02660 0604369 =0.04527
i 43 000730 =0.02260 0603321 =-0.04094 °
. 44 0.00460 =0,01830 0.02388 =0.03620
45 0.00210 =0.01280 0.01606 =0403050
46 0.00090 =0.00890 000365 =0.02553
47 000050 -0400590 000497 -0.0189%
48 0.00000 0.00000 0.00200 =0.81258 ;
49 0.00060 0,00880 0.00051 -0.00601
50 0.00120 0.01310 0.00000 0.0C000
51 0.00180 0.01580 0.00029 0,00614
52 C.00250 0.0198¢C 0.00109 0.0125¢ |
53 0.00570 0.0275¢C 0.00282 0.01953
54 C.00830 0.03260C 0.0G6E539 0.C2576
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TABLE IV CONCLUDED
ORIGINAL SMOOTH
] J X Y X Y

855 0,.01210 ND.03850 00929 D.03448

56 0.01660 0.043880 0.01470 0.0416°%
87 Na.02040 NaN&4T730 N.02202 f.04858 |
58 0.02420 0.05020 0.03134 0.05447
59 N .02770 0.05280 N.082485 0.08919
60 0.03120 0.05440 005493 0.06306
£1 0 .03800 05750 06059 (0,06644
62 0.04740 0.060%90 0.08365 006958
£3 06160 006490 De100£2 007245
64 0.08100 0.06910 6.11868 0.07504
65 N .09690 N.07190 0 .13R8€2 007747 |
66 0.12270 0.07560 0.16018 0.07985
£7 0.15340 007920 0.,18321  0,02205
68 0.18320 0.08200 0.20588 0.08415
69 (.206£0 0,08390 fl.23819 N.08618
70 0.22960 006560 026502 0.08801
11 0.254%S0 008730 0,302€5 N.06941
72 0.28300 0.08870 033933 0.09034
13 0.31X°0 0.02980 0 37922 0,02042
74 0.347€0 005050 0.42305 0.05987
715 0.38370  0.09040 | 0,47635 0.NEZ2D |
76 0.42070 0.08990 0.52223 0.08718
11 D.4T210____0.08920 0.57843 _ 0.06273
78 80.51600 0.08760 0.63974 0.,07498
19 0 .S561£0 0e02440 0.,7058° 0,06501 |
80 6.599<0 0.08060 076649 0.05342
81 0.63110 007620 | 0082169 0.08136
82 067440 0.07010 0.87217 0.02966
83 070960 006440 0.51840 0.018990
84 0.73%20 0.05900 096047 0.,00924
85  0.77050 _ 0.05260 | 1.00000 0.00040
86 0.80400 0.04540 1.04079 =-0.00001
87 C.84070 0.0370C 1.,09034 =0.0C000
88 0.88060 0.02770 115431 =0.00000
89 0.92400 001760 1.23903 <-0.,00000
90 0.96370 000850 134922 =0.000020
91 0.98310 0.00420 1.49350 g.00000
92 1.00000 0.00043 1.68C13 0.00C00
93 1.01%60 0.000080 192290 ~0.0000C
94 1.125400 0.,00000 223817 =0.00000
9S 1.,50000 0,00000 2.64805 =0.00000 |
96 2.,00000 0.00000 3.18112 0.00000
97 3.00000 0.00000 3.87387 0.0C0080
98 4,00000 0.0C000 4.,77432 =0.00000
959 5.00000 0-_0000(‘ 546705 000000 |
100 6.000C0O 0.00000 6.00000 0.00000
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FIGURE 22

COORDINATE POINT DISTRIBUTION
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CLUSTERED GRID DISTRIBUTION

as [ %
r rid as s

[ %]
A

a3 a8 a4

.4

48

OFSt LINE 1S MO+ BCDY OISTRIATION.

FIGURE 23

45

Y




Y

REFERENCES

1. Steger, J. and Chaussee, D., "Generation of Body-Fitted Coordinates Using
Hyperbolic Partial Differential Equations," SIAM J. Sci. Stat. Comput., Vol 1,
Dec 1980, pp. 431-437.

2. Thompson, J. F. (Editor), Numerical Grid Generation, Elseiver Science
Publishing Co., New York, 1982, pp. 31-40.

3. Beam, R. W. and Warming, R. F., "An Implicit Finite-Difference Algorithm
for Hyperbolic Systems in Conservation Law Form", J. Comp. Phys., 22 (1976),

pp. 87-110.

4. Davis, S. and Malcolm, G., "Experimental Unsteady Aerodynamics of Conven-
tional and Supercritical Airfoils," NASA TM 81221, Aug 1980.

46




