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Description of a Turbulent Cascade by a Fokker-Planck Equation
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From experimental data of a turbulent free jet we calculate the joint probability distribution
p(vy,Ly; vy, Ly) for two velocity incrementsv, v, of different length scaled.;,L,. We present
experimental evidence that the conditional probability distributidm,, L, | v,,L;) obeys a Fokker-
Planck equation. We calculate the corresponding drift and diffusion coefficients and discuss their
relationship to universal behavior in the scaling region and to intermittency of the turbulent cascade.
We explicitly present a stochastic process for the log-normal model of Kolmogorov and Oboukhov
[A.M. Oboukhov, J. Fluid Mech13, 77 (1962); A.N. Kolmogorov, J. Fluid Meci3, 82 (1962)].
[S0031-9007(96)02233-8]

PACS numbers: 47.27.Eq, 02.50.Fz, 05.40.+]

Fully developed turbulence is still regarded to be onehan the velocity increments, the length schlas related
of the main unsolved problems of classical physics. Grea a time differencd’; according to
efforts have been made towards an understanding of small L =UT;. )

scale turbulent velocity fluctuations, which are assumed tq_h locity | 1) is th . d by th
be stationary, homogeneous, and isotropic in a statistica). e velocity Increment ( ). s then estimated by the
sense [1]. For large Reynolds numbers these fluctuatio fference .Of the velocity S|gnal_measured by a single
are supposed to exhibit universal behavior on scale robe at timest andt + T;. |t is a well-established
act that in the center of a free jet the small scale

smaller than the integral one. The elucidation of thes N display local isot dh it d that
properties apparently has to be based on applications yﬁru-?- urles h'Sp ‘i‘%’ oca |sobropy alr_1 d olr:nogenel y ‘Znt 'Iad
the tools of statistical mechanics. The quantity of maind.e aylor ﬁﬁ €siS can f?pptle : or? mtﬁre edal et
interest is the longitudinal velocity fluctuations; on IScussion of the experimental Setup we reter the reader to
. [3]. In order to make contact with the theories which are
different length scales;, . o
formulated for the spatial velocity increments (1) we have
v =ulx + L;/2,y,z) —ulx — L;/2,y,z), (1) decided to discuss our results in terms of the length scales
L;. Using the transformation (2) our results can also be

where u(x,y,z) is the x component of the velocity ; ted i i | 4 thus b
field at space pointr,y,z. Based on the idea of an formulated In terms of time scales and thus become
ependent of the Taylor hypothesis.

energy cascade, as a fundamental process governir"@;d . ST . .
the turbulence, we know from the pioneering works of _A scaling reggon, indicated by a_llnear behavior of the
third moment{(v;) = L;, develops in the range between

the 1940s, cf. [1], that the velocity fluctuations are of the
30 and 200, where the Kolmogorov scajecorresponds

order v; ~ (eL;)'/3. € denotes the energy dissipation - :
(transfer) rate. However, it is commonly believed that!® Li = 0.66. For obvious reasons we shall use properly
scaled velocity variables. From the inertial range we

intermittent fluctuations of the energy dissipation rate”. | bitrarily oh | h scal h
alters the scaling behavior. Intermittency effects show up'"9'® out an arbitrarily chosen length scdlg, (here
in the changing shape of the probability density functions%ref = 324) and define the scaled velocity increments

(pdf) P, (v;) as a function ofZ; and consequently lead Vi — ’{i/(Li/Lfef)m' If the turbulencg obeys the scaling
for the scaling of the momentgy;)") ~ L% to nonlinear behavior suggested by Kolmogorov in 1941, cf. [1], the
n dependence of the scaling indlicgezs ! statistics of the velocity fields); become independent

In the present Letter we report on our recent aoproache! L; in the inertial range. Furthermore, without loss
P P PP generality we introduce a logarithmic length scale

to analyze statistical properties of turbulent cascades. i A Cay AP
have started to evaluate conditional probability functions_ ! IN(Lrer/L;). Note thath; varies from zero to infinity

” ) asL; decreases from to 7.
for the veIocmes_v,_ of d|ff$rent_ length scalesL,_ for It is an important question whether the conditional
a data set consisting of0’ points measured in the

center of a free jet witlk, — 600 by means of hot-wire probability functions fulfil a Chapman-Kolmogorov

anemometry [2]. It is traditional to evaluate the velocity equation

increments (1) by single-probe measurements invoking (2, Mo | 91, Ap) = fdﬁ?)p(ﬁz’ Ao | B3, A3)
Taylor's hypothesis of frozen turbulence [1]. Denoting )
by U the mean velocity of the jet, which is much larger X p(93, A3 | 01, Ay), 3)
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FIG. 1. Verification of the Chapman-Kolmogorov equation.
Contour plots 50 = v; = 50, i = 1,2) of the conditional

probability distributionsp (v, L, | v1,L;) in comparison with I
Peat(V2, Lol vi, L) = [dvs p(va, Ly | vs, L3)p(vs, Ly | vy, Ly). MV B R L

The contour lines are shown in logarithmic scale. The num- -25.0 00 250 \'/
bers indicate the contour lines for the values', n = 1,3,5.
(a)L1 =224, Ly = 124, L, = 54. (b) L, = 124, L3 = 54,

FIG. 2. Comparison of probability density functions for =
o “h 2 | J 24,54,124,224,424 obtained directly from the data set)( and
L, = 34; note thatl, = 34 is already out of the inertial range. o7, ,4te'¢) by iterating the Chapman-Kolmogorov equation
A velocity value of 50 correponds to a measured velocity of starting form fromP;,, (v,) for L, = 1024 using the experimen-

13, expressed in units of local Reynolds number at the det'ally determined conditional probabilitigs(v;. L | v;. L;).

tector [3].
where Ay < A3 < A,.  This equation is a necessary 9 B B 3 \ayo .
condition for the statistics of the turbulent cascade to be 7,- P(D2, A2 91, A1) = [—<T>D (D2, A2)
. " - V) 2
Markovian. It means that the transition probabilities from )
scaleA; to A, can be subdivided into a transition from + <L> [)2(52,/\2)}
A to A3 and then fromAs to A,. It is related with the v,
idea [1] that the turbulent cascade is generated by a local X p(oy, M lo, A1), (5)

transfer mechanism. _ _ .

In the Markovian case the conditional probabilities@nd the stochastic process is completely characterized by
p(B:i,A;15;, ;) determine all the n-point probabil-  the drift and diffusion coefficient®' (v, A;), D*(@:, 4:).
ity distributions p(#,, Ay;..., 00 Ais..., D1, A1), n=  We have calculated approximations to the limits Eq. (4)
1,..,. We have checked the validity of the Chapman-defining the first four Kramers-Moyal coefficients and
Kolmogorov equation for different); triplets. Fig- are able to show .th_at the approximants of the third a_md
ure 1 compares conditional probability distributionsfourth order coefficients tend to zero whereas the first
p(#2, A2 |91, A1) with the ones calculatedp.,;) accord- and second coefficients have well-defined limits [5]. The

ing to (3). There only are visible deviations resulting Pawulas theorem [4] infers that all higher Kramers-Moyal

from a finite resolution of the statistics in the outer COefficients vanish (provided they exist)lf* vanishes.
regions. We want to point out that our results indi- Figure 3 shows the drift and diffusion coefficients calcu-

cate that Eq. (3) holds in the whole range betwdgn lated for the turbulent cascade from the experimental data
and 5. Figure 2 shows that we are able to obtain allfor various values of; or L;, respectively. It seems that
P, (v,) by iterating the Chapman-Kolmogorov equa- the drift coefficient becomes linear # and independent
tion starting from a pdf at large scale with remarkable

precision.

The Chapman-Kolmogorov equation can be formu- D! T T T D T T T
lated in differential form [4] leading to an evolution
equation for the conditional probability distribution sof 1300 y
g(ﬁz,Azlﬁl,Al). If the Kramers-Moyal coefficients
D" (95, A,), defined as 0.0 J200[ ]

- 1 1 -5.00 ]

D" (72, A2) = — lim dis(D3 — Do)" 10.0[ ]

(92, A2) PN Azf U3(03 — 1)
X p(U3, A3 92, 42) ) 250 o0 %0 3 250 00 %0 3

all vanish forn =3 we are led to a Fokker-Planck FIG. 3. Scaled drift and diffusion coefficient®' (v, )
equation, D2(91, Ay). [L = 20 (X), 54 (+), 124 (), 224 (©)].
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of A; inthe inertial range. The drift coefficientfd; = 20  that ther-point probability distributions form a Markov
differs since it is not contained in the scaling region. Ap-chain. However, non-Markovian processes which fulfill
parently, the diffusion coefficient is a function 6f and the Chapman-Kolmogorov equation should be rather rare.
depends orL; also in the scaling region. If we assume that turbulence is actually a Markovian

Let us draw some conclusions from our results. Itprocess in space the following expression [4] contains the
should be kept in mind that we have not yet prov?ncomplete information on the statistics:

P(ﬁn»)\n;-“,ﬁla)\l) =

n—1 ~ — 5 — DY AP
1 exp{_ [(vj+l ])/d)l D ( j’)l])] P}\l(ﬁl,/\l), (6)

S Loz = o)/
\/ 7;11 4m D0, A;)dA j=1 4D%(v, A))

whereA; = jdA. In the limit dA — 0 this is a path in-| distribution for this quantity they concluded that théh
tegral representation of a probability functiona{#(1)),  order momenv;" should scale according to

where? () is now a function of the continuous variable (v))"y =~ 113 unn=3)/18 ©)
It is well known [4] that the Fokker-Planck equation is ' ' ’
equiva|ent to a stochastic evolution equation, where )7 is the KOImOgOfOV intermittency coefficient.
_ — From Fig. 3 it is evident that the diffusion coefficient
#(A + dX) = ©(A) + dAD'(5,1)y/ DD, )d Ay, contains, besides@independent part, also a contribution

(7) quadratic ino. Thus we are guided to consider the
where 5, is a normally distributed random variable. hypothetical case where the diffusion coefficient becomes

This equation leads us to the following interpretation.Purely quadratic ing and the drift term linearD' =
The stochastic evolution equation yields a realization~ ¥, D* = Q. This corresponds to a multiplicative
of a turbulent velocity fieldii(1), where the systematic Noise term in the Langevin equation (7). In this case
behavior is governed by the drift term, i.e., a classicanOW a stationary solution of the Fokker-Planck equation
path, whereas the diffusion term contains fluctuationds the distributionp,(v;) = 6(v;). As indicated above,
around this path. This underlines the importance for afPn€ has to resort to nonstationary solutions. In fact, the
investigation of these coefficients for different types ofFokker-Planck equation (5) for the present case yields the
turbulent flows. following expression for theth order moments [8]
Le; us consider a_scenario where drift and diffusion (") (1) = —(&") (0)exp[—yn + On(n — 1)]A}
coefficients become independent on the length saale B —ynt Onln—1)
This may happen for the limiting case of infinite Reynolds = c(Lo/L) : (10)
numbers. Then the distribution [6] Using Kolmogorov's—4/5 law [1] that the third order
N o, 5 N moment(&°®) of the scaled velocity incremerit should
Pya(0;) = =5 — exp|:] dv’Dl(v’)/Dz(v’):| (8) be constant in the inertial range we obtajn= 20Q.
D2(w;) Yo The Kolmogorov intermittency exponent is related to the
is a stationary solution of the Fokker-Planck equation inconstantQ of the diffusion coefficien) = u/18. Note
the inertial range. Although the shape of this distribu-that with the definition ofy, (v") = (5")r"/3.
tion may differ considerably from a Gaussian no inter- To conclude, by a detailed analysis of experimental data
mittency connected with a change of the shape of thef a fluid dynamical experiment we were able to obtain a
distribution shows up provided that this distribution is ac-phenomenological description of the statistical properties
tually established in the experiment at large scales. Cornf a turbulent cascade using a Fokker-Planck equation.
sequently no deformation of the shape of the probabilityAs an evolution equation for the probability density
distribution will take place under the development of thefunction of the velocity increment (1) this equation
A-independent Fokker-Planck equation. The scaling beeontains the information on the changing shape of the
havior suggested by Kolmogorov in 1941 is valid. distribution as a function of the scale Thus information
Since in each experiment the turbulent flow is drivenon the observed intermittency of the turbulent cascade is
at the integral length scall) the distribution forL < L,  obtained. Based on simplified assumptions on the drift
has to match a distribution dt, which may be different and diffusion coefficient we have discussed two scenarios
from the stationary one. In that case one has to take intm order to indicate that both, the Kolmogorov 41 and 62
account nonstationary distributions of the Fokker-Planckscalings, are contained as possible behavior in the present
equation leading to intermittency effects. description. However, the experimentally determined
Let us consider the following scenario which will lead drift and diffusion coefficients are more complicated, at
us to the scaling behavior of the velocity increments (1)east for the Reynolds number investigated here. The
suggested by Kolmogorov and Oboukhov [7] in 1962drift term may well be linear inb and A independent
(K 62 scaling). Taking into account fluctuations of thein the inertial range, but the diffusion coefficient appears
local energy dissipation rate and assuming a log-normab depend onA as well as ono. Therefore, it seems
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to be highly important to investigate these functions [3] B. Chabaud, A. Naert, J. Peinke, F. Chilla, B. Castaing,

for flows with different Reynolds numbers and different and B. Hebral, Phys. Rev. Leff3, 3227 (1994).

experimental setups. [4] H. Risken,The Fokker-Planck Equatio(Springer-Verlag,
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