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Description of a Turbulent Cascade by a Fokker-Planck Equation
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From experimental data of a turbulent free jet we calculate the joint probability distribut
psy1, L1; y2, L2d for two velocity incrementsy1, y2 of different length scalesL1, L2. We present
experimental evidence that the conditional probability distributionpsy2, L2 j y1, L1d obeys a Fokker-
Planck equation. We calculate the corresponding drift and diffusion coefficients and discuss
relationship to universal behavior in the scaling region and to intermittency of the turbulent cas
We explicitly present a stochastic process for the log-normal model of Kolmogorov and Obouk
[A. M. Oboukhov, J. Fluid Mech.13, 77 (1962); A. N. Kolmogorov, J. Fluid Mech.13, 82 (1962)].
[S0031-9007(96)02233-8]
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Fully developed turbulence is still regarded to be on
of the main unsolved problems of classical physics. Gre
efforts have been made towards an understanding of sm
scale turbulent velocity fluctuations, which are assumed
be stationary, homogeneous, and isotropic in a statisti
sense [1]. For large Reynolds numbers these fluctuatio
are supposed to exhibit universal behavior on sca
smaller than the integral one. The elucidation of the
properties apparently has to be based on applications
the tools of statistical mechanics. The quantity of ma
interest is the longitudinal velocity fluctuationsyi on
different length scalesLi,

yi ­ usx 1 Liy2, y, zd 2 usx 2 Liy2, y, zd , (1)

where usx, y, zd is the x component of the velocity
field at space pointx, y, z. Based on the idea of an
energy cascade, as a fundamental process govern
the turbulence, we know from the pioneering works o
the 1940s, cf. [1], that the velocity fluctuations are of th
order yi , seLid1y3. e denotes the energy dissipation
(transfer) rate. However, it is commonly believed tha
intermittent fluctuations of the energy dissipation rat
alters the scaling behavior. Intermittency effects show u
in the changing shape of the probability density function
(pdf) PLi

syid as a function ofLi and consequently lead
for the scaling of the momentsksyidnl , L

zn

i to nonlinear
n dependence of the scaling indiceszn.

In the present Letter we report on our recent approach
to analyze statistical properties of turbulent cascades. W
have started to evaluate conditional probability function
for the velocitiesyi of different length scalesLi for
a data set consisting of107 points measured in the
center of a free jet withRl ­ 600 by means of hot-wire
anemometry [2]. It is traditional to evaluate the velocit
increments (1) by single-probe measurements invoki
Taylor’s hypothesis of frozen turbulence [1]. Denotin
by U the mean velocity of the jet, which is much large
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than the velocity increments, the length scaleLi is related
to a time differenceTi according to

Li ­ UTi . (2)

The velocity increment (1) is then estimated by th
difference of the velocity signal measured by a singl
probe at timest and t 1 Ti. It is a well-established
fact that in the center of a free jet the small scal
structures display local isotropy and homogeneity and th
the Taylor hypothesis can be applied. For a more detail
discussion of the experimental setup we refer the reader
[3]. In order to make contact with the theories which ar
formulated for the spatial velocity increments (1) we hav
decided to discuss our results in terms of the length sca
Li. Using the transformation (2) our results can also b
formulated in terms of time scalesTi and thus become
independent of the Taylor hypothesis.

A scaling region, indicated by a linear behavior of the
third momentky3

i l ø Li, develops in the range between
30 and 200, where the Kolmogorov scaleh corresponds
to Li ­ 0.66. For obvious reasons we shall use properl
scaled velocity variables. From the inertial range w
single out an arbitrarily chosen length scaleLref (here
Lref ­ 324) and define the scaled velocity increment
ỹi ­ yiysLiyLrefd1y3. If the turbulence obeys the scaling
behavior suggested by Kolmogorov in 1941, cf. [1], th
statistics of the velocity fields̃yi become independent
on Li in the inertial range. Furthermore, without loss
of generality we introduce a logarithmic length scale
li ­ lnsLrefyLid. Note thatli varies from zero to infinity
asLi decreases fromL0 to h.

It is an important question whether the conditiona
probability functions fulfill a Chapman-Kolmogorov
equation

psỹ2, l2 j ỹ1, l1d ­
Z

dỹ3psỹ2, l2 j ỹ3, l3d

3 psỹ3, l3 j ỹ1, l1d , (3)
© 1997 The American Physical Society 863
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FIG. 1. Verification of the Chapman-Kolmogorov equation
Contour plots (250 # yi # 50, i ­ 1, 2) of the conditional
probability distributionspsy2, L2 j y1, L1d in comparison with
pcalsy2, L2 j y1, L1d ­

R
dy3 psy2, L2 j y3, L3dpsy3, L3 j y1, L1d.

The contour lines are shown in logarithmic scale. The nu
bers indicate the contour lines for the valuese2n, n ­ 1, 3, 5.
(a) L1 ­ 224, L3 ­ 124, L2 ­ 54. (b) L1 ­ 124, L3 ­ 54,
L2 ­ 34; note thatL2 ­ 34 is already out of the inertial range
A velocity value of 50 correponds to a measured velocity o
13, expressed in units of local Reynolds number at the d
tector [3].

where l1 , l3 , l2. This equation is a necessar
condition for the statistics of the turbulent cascade to
Markovian. It means that the transition probabilities fro
scalel1 to l2 can be subdivided into a transition from
l1 to l3 and then froml3 to l2. It is related with the
idea [1] that the turbulent cascade is generated by a lo
transfer mechanism.

In the Markovian case the conditional probabilitie
psỹi , li j ỹj , ljd determine all the n-point probabil-
ity distributions psỹn, ln; . . . , ỹi , li; . . . , ỹ1, l1d, n ­
1, ..., `. We have checked the validity of the Chapma
Kolmogorov equation for differentli triplets. Fig-
ure 1 compares conditional probability distribution
psỹ2, l2 jỹ1, l1d with the ones calculatedspcald accord-
ing to (3). There only are visible deviations resultin
from a finite resolution of the statistics in the oute
regions. We want to point out that our results ind
cate that Eq. (3) holds in the whole range betweenL0

and h. Figure 2 shows that we are able to obtain a
PLn synd by iterating the Chapman-Kolmogorov equa
tion starting from a pdf at large scale with remarkab
precision.

The Chapman-Kolmogorov equation can be form
lated in differential form [4] leading to an evolution
equation for the conditional probability distribution
psỹ2, l2 jỹ1, l1d. If the Kramers-Moyal coefficients
D̃nsỹ2, l2d, defined as

D̃nsỹ2, l2d ­
1
n!

lim
l3 !l2

1
l3 2 l2

Z
dỹ3sỹ3 2 ỹ2dn

3 psỹ3, l3 j ỹ2, l2d , (4)

all vanish for n $ 3 we are led to a Fokker-Planck
equation,
864
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FIG. 2. Comparison of probability density functions forLi ­
24, 54, 124, 224, 424 obtained directly from the data set (±), and
evaluated (1) by iterating the Chapman-Kolmogorov equatio
starting form fromPL1 sy1d for L1 ­ 1024 using the experimen-
tally determined conditional probabilitiespsyj , Lj j yi , Lid.

≠

≠l2
psỹ2, l2 j ỹ1, l1d ­

∑
2

µ
≠

≠ỹ2

∂
D̃1sỹ2, l2d

1

µ
≠

≠ỹ2

∂2

D̃2sỹ2, l2d
∏

3 psỹ2, l2 jỹ1, l1d , (5)

and the stochastic process is completely characterized
the drift and diffusion coefficients̃D1sỹi , lid, D̃2sỹi , lid.
We have calculated approximations to the limits Eq. (
defining the first four Kramers-Moyal coefficients an
are able to show that the approximants of the third a
fourth order coefficients tend to zero whereas the fi
and second coefficients have well-defined limits [5]. Th
Pawulas theorem [4] infers that all higher Kramers-Moy
coefficients vanish (provided they exist) ifD4 vanishes.

Figure 3 shows the drift and diffusion coefficients calc
lated for the turbulent cascade from the experimental d
for various values ofli or Li, respectively. It seems tha
the drift coefficient becomes linear iñyi and independent

FIG. 3. Scaled drift and diffusion coefficients̃D1sỹ1, l1d,
D̃2sỹ1, l1d. [L ­ 20 (3), 54 (1), 124 (h), 224 (±)].
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of li in the inertial range. The drift coefficient forLi ­ 20
differs since it is not contained in the scaling region. Ap
parently, the diffusion coefficient is a function ofỹi and
depends onLi also in the scaling region.

Let us draw some conclusions from our results.
should be kept in mind that we have not yet prove
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that then-point probability distributions form a Markov
chain. However, non-Markovian processes which ful
the Chapman-Kolmogorov equation should be rather ra
If we assume that turbulence is actually a Markovi
process in space the following expression [4] contains
complete information on the statistics:
psỹn, ln; . . . , ỹ1, l1d ­
1qQn21

j­1 4pD̃2sỹj , ljddl
exp

(
2

n21X
j­1

dl
fsỹj11 2 ỹjdydl 2 D̃1sỹj , ljdg2

4D̃2sỹj , ljd

)
Pl1 sỹ1, l1d , (6)
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wherelj ­ jdl. In the limit dl ! 0 this is a path in-
tegral representation of a probability functionalpsssỹsldddd,
whereỹsld is now a function of the continuous variablel.

It is well known [4] that the Fokker-Planck equation
equivalent to a stochastic evolution equation,

ỹsl 1 dld ­ ỹsld 1 dlD̃1sỹ, ld
q

D̃2sỹ, lddl hl ,
(7)

where hl is a normally distributed random variab
This equation leads us to the following interpretati
The stochastic evolution equation yields a realiza
of a turbulent velocity fieldỹsld, where the systemat
behavior is governed by the drift term, i.e., a class
path, whereas the diffusion term contains fluctuati
around this path. This underlines the importance fo
investigation of these coefficients for different types
turbulent flows.

Let us consider a scenario where drift and diffus
coefficients become independent on the length scall.
This may happen for the limiting case of infinite Reyno
numbers. Then the distribution [6]

Pstatsỹid ­
N

D̃2sỹid
exp

"Z ỹi

ỹ0

dy0D̃1sy0dyD̃2sy0d

#
(8)

is a stationary solution of the Fokker-Planck equation
the inertial range. Although the shape of this distri
tion may differ considerably from a Gaussian no int
mittency connected with a change of the shape of
distribution shows up provided that this distribution is
tually established in the experiment at large scales. C
sequently no deformation of the shape of the probab
distribution will take place under the development of
l-independent Fokker-Planck equation. The scaling
havior suggested by Kolmogorov in 1941 is valid.

Since in each experiment the turbulent flow is driv
at the integral length scaleL0 the distribution forL , L0

has to match a distribution atL0 which may be differen
from the stationary one. In that case one has to take
account nonstationary distributions of the Fokker-Pla
equation leading to intermittency effects.

Let us consider the following scenario which will le
us to the scaling behavior of the velocity increments
suggested by Kolmogorov and Oboukhov [7] in 19
(K 62 scaling). Taking into account fluctuations of t
local energy dissipation rate and assuming a log-no
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distribution for this quantity they concluded that thenth
order momentyn

i should scale according to

ksyidnl ø L
ny32mnsn23dy18
i , (9)

where m is the Kolmogorov intermittency coefficient.
From Fig. 3 it is evident that the diffusion coefficien
contains, besides ãy independent part, also a contribution
quadratic in ỹ. Thus we are guided to consider th
hypothetical case where the diffusion coefficient becom
purely quadratic inỹ and the drift term linear,D̃1 ­
2gỹ, D̃2 ­ Qỹ2. This corresponds to a multiplicative
noise term in the Langevin equation (7). In this cas
now a stationary solution of the Fokker-Planck equatio
is the distributionpstatsyid ­ dsyid. As indicated above,
one has to resort to nonstationary solutions. In fact, t
Fokker-Planck equation (5) for the present case yields
following expression for thenth order moments [8]

kỹnl sld ­ 2kỹnl s0d exphf2gn 1 Qnsn 2 1dglj

­ csL0yLd2gn1Qnsn21d. (10)

Using Kolmogorov’s24y5 law [1] that the third order
momentkỹ3l of the scaled velocity increment̃y should
be constant in the inertial range we obtaing ­ 2Q.
The Kolmogorov intermittency exponent is related to th
constantQ of the diffusion coefficientQ ­ my18. Note
that with the definition of̃y, kynl ø kỹnlrny3.

To conclude, by a detailed analysis of experimental da
of a fluid dynamical experiment we were able to obtain
phenomenological description of the statistical properti
of a turbulent cascade using a Fokker-Planck equati
As an evolution equation for the probability densit
function of the velocity increment (1) this equation
contains the information on the changing shape of t
distribution as a function of the scaleL. Thus information
on the observed intermittency of the turbulent cascade
obtained. Based on simplified assumptions on the dr
and diffusion coefficient we have discussed two scenar
in order to indicate that both, the Kolmogorov 41 and 6
scalings, are contained as possible behavior in the pres
description. However, the experimentally determine
drift and diffusion coefficients are more complicated,
least for the Reynolds number investigated here. T
drift term may well be linear inỹ and l independent
in the inertial range, but the diffusion coefficient appea
to depend onl as well as onỹ. Therefore, it seems
865
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to be highly important to investigate these function
for flows with different Reynolds numbers and differen
experimental setups.
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