$$
\text { AD-759 } 011
$$

DESCRIPTION OF AN ALPHA-BETA FILTER IN CARTESIAN COORDINATES

Ben H. Cantrell
Naval Research Laboratory
Washington, D.C.
21 March 1973

DISTRIBUTED BY:

Metimal Tcclmical inforestian Service
U. S. DEPARTME:T OF Cenmerce 5285 Port Royal Road, Sprinefferd Va. 22151

Description of an $\alpha-\beta$ Filter in Cartesian Coordinates

Ben H. Cantrell.
Radar Analysis Staff
Radar Division

March 21, 973

:

CONTENTS

Abstract ii
Authorization ii
1.0 INTFODUCTION 1
2.0 THE NOISE PROCESS 1
2.1 Polar-to-Cartesian Coordinate Transformation 1
2.2 Effect of Linear Filter 5
2.3 Cartesian-to-Polar Coordinate Transformation 7
2.4 Discussion of Results 9
3.0 FILTER DESCRIPTION 9
3.1 Filter Definition 1
3.2 Frequency Response 11
3.3 Errors Under Sinusoidal Excitation 13
3.4 Comparison of Mean Errors for Cartesian and Poiar Coordinate Filters 14
3.5 Discussion of Results 17
4.0 RESPONSE TO NOISE 17
4.1 Covariance Equations 18
4.2 A Simple Stationary Solution 21
4.3 Some Nonstationary Solutions 24
4.4 Discussion of Results 28
5.0 COMPARISON OF POLAR AND CARTESIAN $\alpha-\beta$ FILTERS FOR SHORT FADE CONDITIONS AND THE TRACK HANDOFF PROBLEM 28
5.1 Mean Errors 32
5.2 Covariance Description 36
5.3 Track Handoff Problens 40
5.4 Discussion of Rerults 42
6.0 CONCLUSION 42
ACKNOWLEDGMENT 43
REFERENCES 43
APPENDIX - Calculation of Means and Covanances of Radar Measurements in Terms of Cariesian Cocrdinates 44

ABSTRACT

A procedure for determining the més. and covariance errors in an $\alpha \beta$ filter operating in cartesian coordinates was found. The results obtained from this procedure were compared to an $\alpha-\beta$ filter operating in polar coordinates.

Assuming that the input measurements in polar coordinates were Gaussian distributed, it was shown that at the output of the coonilnate transformations the noise could be approximated accurately by a Gaussian distribution for typical radar data. Closed-form solutions under steady-state conditions were found for the output covariances for the polar coordinate filter and for the cartesian coordinate filter when the target is stationary. These covariances dependea upon α, β, and the measurement variances. For moving targets, the cartesian coordinate filter yielded output covariances which were nonstationary. Their values depended upon α, β, measurement variances, target trajectory, targel speed, and sampling time. The mean errors were discussed. Under fading conditions both the mean and covariance errors increased during the fading time.

AUTHORIZATION
NRL Problem R02-54
Project RF 05-151-403-4010

Manuscript submitted January 4, 1973.

DESCRIPTION OF AN $\alpha-\beta$ FILTER IN CARTESLAN COORDINATES

1,0 INTRODUCTION

In the last several years, there has been a considerable amount of interest in automatic detection and traciing for search radar systems. Several systems exist with varving degrees of automation such as MTDS, NTDS, and the SPS-33. Others are being proposed such as the Gillfillan and APL systems for the SPS-48, the JPTDS program for the SPS-49, and the AEGIS system. Even with these efforts there is still a need io improve system performance under various conditions.

NRL Report 7434 recently studied the effects of maneuvering targets, measurement noise, false targets, and fade conditions on the ability of an $\alpha-\beta$ filter operating in polar coordinates to maintain a track (1). Even mere recently NRL Renort 7505 discussed the ability of this polar coordinate filler to hand off is track from the search radar to the track radar (2). In both of these reports a considerable amount of difficulty was encountered in either maintaining or handing off a track at close ranges when a polar coordina: filte: was used. This was due to large range and azimuth accelerations at the close ranges. In the cartesian coordinate system these large accelerations are not encountered. However, the nonlinear trausiomations encountered between the two coordinates change the noise processes. H it is the purpose of this report to describe analytically the $\alpha-\beta$ filter operating in cartesian coordinates and compare these results with the results of the polar coordinate filter.

Section 2.0 describes the probability densities under the coordinate system transformations. Section 3.0 describes the general charucteristics of the filter and the mean errors between the predicted and true target's positions. Section 4.0 describes the covariances at the output of the filter system. Section 5.0 studies the mean and covariance errors under fading conditions and preseuts the results of a simulation calculating the probability of placing the bram of the tracking radar on a target using the track set up by the $\alpha-\beta$ filter. Conclusions are given in Section 6.0.

2.0 THE NOISE PROCESS

In the study of any filter it is assential to know the characteristics of the desired signals and the noise which excite the filter. The mean motion of the targets is studied in Section 3.0. The description of the noise processes proceeds as follows:

The block diagram of the filtering system is shown in Fig. 2.1. The polar coordinate radar imeasurements are R_{m} in range and θ_{m} in azinuth, where R_{m} and θ_{m} are assumed to be uncorrelated, Gaussian, amplitude-distributed randorn variables with means $\bar{\theta}_{m}, \bar{R}_{m}$

Fig. 2.1-Filter system
ud variances $\sigma_{R_{m}}^{2}, \sigma_{\theta_{m}}^{2}$, In addition, the measurements are assumed to be independent from scan to scan of the starch radar. This section is concerned with determining approximate probability densities $p\left(X_{m}, Y_{m}\right), p\left(X_{p}, Y_{p}\right)$, and $p\left(R_{p}, o_{p}\right)$.

2.1 Polar to Cartesian Coordinate Transformation

The probability density of the polar coordinate iadar measurement is

$$
\begin{equation*}
p\left(R_{m}, \theta_{m}\right)=\frac{1}{2 \pi \sigma_{R_{m}} \sigma_{\theta_{m}}} \exp \left\{-\frac{1}{2}\left[\frac{\left(R_{m}-\bar{R}_{m}\right)^{2}}{\sigma_{R_{m}}^{2}}+\frac{\left(\theta_{m}-\bar{\theta}_{m}\right)^{2}}{\sigma_{\theta_{m}}^{2}}\right]\right\} \tag{2.1}
\end{equation*}
$$

Contours describing constant values of the probability density function are ploted for two different cases in Figs. 2.2 and 2.3. Observing the central $\left(10^{-8}\right)$ regions of these densities, cne finds that this region appears to be a correlated Gaussian process in the (X_{m}, Y_{m}) coordinates. This observation is next investigated.

A cartesian coordinate system (p, q) is defined as shown in Figs. 2.2 and 2.3. For an arbitrary point (R_{m}, θ_{m}) in pniar coordinates, the values of p and q in the $p-q$ rectangular coordinate system are found to be

$$
\begin{align*}
& p=R_{m}\left[2-\cos \left(\theta_{m}-\bar{\theta}_{m}, j-\bar{R}_{m}\right.\right. \tag{2.2}\\
& q=R_{m} \sin \left(\theta_{m}-\bar{\theta}_{m}\right) \tag{2.3}
\end{align*}
$$

with the aid of Fig. 2.4. For cases when $\left(\theta_{m}-\bar{\theta}_{m}\right)$ is less than about 5°, Eqs. (2.2) and (2.3) can be approximated by

$$
\begin{align*}
& p=R_{m}-\vec{R}_{m} \tag{2.4}\\
& q=R_{m}\left(\theta_{m}-\bar{\theta}_{m}\right) \tag{2.5}
\end{align*}
$$

with very little error. For example, if $\sigma_{g_{m}}=0.5$ degress, one would be at $10 \sigma_{\theta_{m}}$ or in the far fail region before the approximation begias to be significantly in error. Furthermore, if $R_{5 \text { : }}$ does not significantly deviate from \bar{R}_{m}, one can further appreximate Eq. $(2,5)$ as

$$
\begin{equation*}
q=\bar{R}_{m}\left(J_{m}-\bar{\theta}_{m}\right) \tag{2.6}
\end{equation*}
$$

Fig. 2.2-Constant contours of $p\left(F_{r_{m}}, \theta_{m}\right)$

Fig. 2.3-Constant contours of $p\left(R_{m}, \theta_{m}\right)$

Fig. 2.4-Geometry requirsi to compute p and q in terme of polar coordinates

For example, if $\sigma_{R_{m}} / \bar{R}_{m}=0.01$ as would be the case for $\bar{R}_{m}=4.18 \mathrm{n} . \mathrm{mi}$. and $\sigma_{R_{m}}$ of 250 ft , one would be in error by 1% at one standard deviation and 5% at five standard deviations. At lorger renges the error is much less.

Equations (2.4) and (2.6) are linear transformations and therefore p and q are Gaussian distributed, at least to the extent in which the approximations are valid. By rotating the (p, q) coordinates and shifting the mean, one obtains the ($X_{\ldots}, Y_{m, i}$) coordinates

$$
\begin{align*}
X_{m}-\bar{X}_{m} & =p \cos \bar{\theta}_{m}-q \sin \bar{\theta}_{m} \tag{2.7}\\
Y_{m}-\bar{Y}_{m} & =p \sin \bar{\theta}_{m}+q \cos \bar{\theta}_{m} . \tag{2.8}
\end{align*}
$$

Again, these are linear transformations and therefore th ? variables (X_{m}, Y_{m}) are Gaussian distributed:

$$
\begin{align*}
p\left(X_{m}, Y_{m}\right)= & \frac{1}{2 \pi \sigma_{x_{m}} \tau_{v_{m}} \sqrt{1-\rho_{x_{m} y_{m}}^{2}}} \\
& \times \operatorname{} \quad\left\{\begin{array}{r}
{\left[-\frac{1}{2}\left[\frac{\left(X_{m}-\bar{X}_{m}\right)^{2}}{\sigma_{x_{m}}^{2}}-2 \rho_{x_{m} y_{m}} \frac{\left(X_{m}-\bar{X}_{m}\right)\left(Y_{m}-\bar{Y}_{m}\right)}{\sigma_{x_{m}} \sigma_{y_{m}}}+\frac{\left(Y_{m}-\bar{Y}_{m}\right)^{2}}{\sigma_{y_{m}}^{2}}\right.\right.} \\
1-\rho_{x_{m} y_{m}}^{2}
\end{array}\right] \tag{9}
\end{align*}
$$

where

$$
\begin{align*}
& \sigma_{x_{m}}^{2}=\sigma_{R_{m}}^{2} \cos ^{2} \bar{\theta}_{m}+\left(\bar{R}_{m} \sigma_{\theta m}\right)^{2} \sin ^{2} \bar{\theta}_{m} \tag{2.10}\\
& \sigma_{y_{m}}^{2}=\sigma_{R_{m}}^{2} \sin ^{2} \bar{\theta}_{m}+\left(\bar{R}_{m} \sigma_{\theta m}\right)^{2} \cos ^{2} \bar{\theta}_{m} \tag{2.11}\\
& \rho_{x_{m} y_{m}}=\frac{\left[\sigma_{R_{m}}^{2}-\left(\bar{R}_{m} \sigma_{\theta m}\right)^{2}\right] \sin 2 \bar{\theta}_{m}}{2} \tag{2.12}\\
& \sigma_{x_{m} \sigma_{y_{m}}} \tag{2.13}\\
& \bar{X}_{m}=\bar{R}_{m} \cos \bar{\theta}_{\cdot n} \tag{2.14}\\
& \bar{Y}_{m}=\bar{R}_{m} \sin \bar{\theta}_{m}
\end{align*}
$$

An independeat procedure for obtaining Eqs. (2.10) through (2.14) is also shown in the appendix.

The two density functions :sed in plotting Fige. 2.2 and 2.3 are approximated by $p\left(X_{m}, Y_{m}\right)$ shown in Eq. (2.9), and the results are shown in Figs. 2.5 and 2.6. in comparing Fig. 2.2 with 2.5 and 2.3 with 2.6 , one finds that the central and near tail reginns of the two densities $p\left(X_{m}, Y_{m}\right)$ and $p\left(R_{m}, \theta_{m}\right)$ are essentially the same. The approximation begins to break down in the far tail regions. However, it is the central and near tail regions which control the system. Any point in the far tail usually results in saturation or in this case no target being accepted.

2.2 Effect of Linear Fiter

Since $p\left(X_{m}, Y_{m}\right)$ is essentially Gaussian, the output of a linear filter is also Gaussian distributed; i.e.,

Fig. 2.5-Constant contours of $p\left(X_{m}, Y_{m}\right)$

Fig. 2.6-Constant conteus of $p\left(X_{m}, Y_{m}\right)$

$$
\begin{align*}
p\left(X_{p}, Y_{p}\right)= & \frac{1}{2 \pi \sigma_{x_{p}} c_{y_{p}} \sqrt{1-\rho_{x_{p}, p}^{2}}} \\
& \left.\times\left\{\begin{aligned}
&\left\{\frac{\left(X_{p}-\bar{X}_{p}\right)^{2}}{\sigma_{x_{p}}^{2}}-2 \rho_{x_{p} y_{p}} \frac{\left(X_{p}-\bar{X}_{p}\right)\left(Y_{p}-\bar{Y}_{p}\right)}{\sigma_{x_{p}} \sigma_{y_{p}}}+\frac{\left(Y_{p}-\bar{Y}_{p}\right)^{2}}{\sigma_{y_{p}}^{2}}\right] \\
& 1-\rho_{x_{p} y_{p}}^{2}
\end{aligned}\right]\right\} \tag{2.15}
\end{align*}
$$

This is because the output of any filter can be written as a linear ccmbination of the inputs, and, since the sum of Gaussian random variables is Gaussian distributed, the cutput of the filter is Gausisian. The means and covvriances will be investigated in detail later.

2.3 Cartesian tc Polar Coordinate Transformation

Contours describing constant values of the probability density function given in Eq. (2.15) are plotted for two different cases in Figs. 2.7 and 2.8. Observing thase figures, it appears that the central and near tail regions of these densities are Gaussian distributed in polar conrdinates. This conjecture is investigated. The (p, q) axis system is defined in Figs. 2.7 and 2.8. The $\left(\bar{X}_{p}-\bar{X}_{p}\right),\left(Y_{p}-\bar{Y}_{p}\right)$ axis is rotated so as to coincide with the $p-q$ axis. Then,

Fig. 2.7-Constant contours of $p\left(X_{p}, Y_{p}\right)$

Fig. 2.8-Constanc contours o: $p\left(X_{p}, Y_{p}\right)$

$$
\begin{align*}
& p=\left(X_{p}-\bar{X}_{p}\right) \cos \bar{\theta}_{F}+\left(Y_{p}-\bar{Y}_{p}\right) \sin \bar{\theta}_{p} \tag{2.16}\\
& q=-\left(X_{p}-\bar{X}_{p}\right) \sin \bar{\theta}_{p}+\left(Y_{p}-\bar{Y}_{p}\right) \cos \bar{\theta}_{p} . \tag{2.17}
\end{align*}
$$

For small angular and range deviations in the coordinates (θ_{p}, R_{p}), the approximations defired in Eq. (2.4) and (2.5) are valid:

$$
\begin{gather*}
R_{p}-\bar{R}_{p}=p \tag{£.18}\\
\bar{R}_{p}\left(\theta_{p}-\bar{\theta}_{p}\right)=q \tag{2.19}
\end{gather*}
$$

Combining Eqs. (2.16)-(2.19), one obtailis

$$
\begin{align*}
R_{p} & =X_{p} \cos \bar{\theta}_{p}+Y_{p} \sin \bar{\theta}_{p} \tag{2.20}\\
\theta_{p} & =\left(-X_{p} \sin \bar{\theta}_{p}+Y_{p} \cos \bar{\theta}_{p}\right) / \bar{R}_{p} \tag{2.2X}
\end{align*}
$$

Since Eqs. (2.20) and (2.21) are linear transtormations on Gaussian-Tistributed random variables X_{p} and $Y_{p}, p\left(R_{p}, \theta_{p}\right)$ is Gaussian distributen at least over the region in which the approximation is valid:

$$
\begin{align*}
& p\left(\bar{R}_{p}: \mathcal{G}_{p}\right)=\frac{1}{2 \pi a_{R_{p}} \sigma_{\theta_{p}} \sqrt{1-\rho_{R_{p} \theta_{F}}^{2}}} \\
& \times \exp \left\{-\frac{1}{2}\left[\frac{\frac{\left(R_{0}-\bar{K}_{p}\right)^{2}}{\sigma_{R_{p}}^{2}}-2 \rho_{R_{p} \theta_{p}} \frac{\left(R_{p}-\bar{R}_{p}\right)\left(\theta_{p}-\bar{\partial}_{p}\right)}{\sigma_{R_{p}} \sigma_{\theta_{p}}} \cdot \frac{\left(\theta_{p}-\bar{\theta}_{p}\right)^{2}}{\sigma_{\theta_{p}}^{2}}}{1-\rho_{R_{p} \theta_{F}}^{2}}\right]\right\}, \tag{2.22}
\end{align*}
$$

where

$$
\begin{align*}
\sigma_{R_{p}}^{2} & =\sigma_{x_{p}}^{2} \cos ^{2} \bar{\theta}_{p}+2 \sigma_{x_{p}} \sigma_{y_{p}} \rho_{x_{p} y_{p}} \cos \bar{\theta}_{p} \sin \bar{\theta}_{p}+\sigma_{y_{p}}^{2} \sin ^{2} \bar{\theta}_{p} \tag{2.23}\\
\sigma_{\theta_{f}}^{2} & =\frac{\sigma_{x_{p}}^{2} \sin ^{2} \bar{\theta}_{p}-2 \sigma_{x_{p}} \sigma_{y_{p}} \rho_{x_{p} y_{p}} \sin \bar{\theta}_{p} \cos \bar{\theta}_{p}+\sigma_{y_{p}}^{2} \cos ^{2} \bar{\theta}_{p}}{\bar{R}_{p}^{2}} \tag{2.24}\\
\rho_{R_{p} \theta_{p}} & =\frac{+0.5\left(-\sigma_{x_{F}}^{2}+\sigma_{y_{p}}^{2}\right) \sin 2 \bar{\theta}_{p}+\rho_{x_{p} y_{p}} \sigma_{x_{p}} \sigma_{y_{p}} \cos 2 \bar{\theta}_{p}}{\sigma_{R_{p}} \sigma_{\theta_{p}} \bar{x}_{p}} \tag{2.25}\\
\overline{\bar{R}}_{p} & =\sqrt{\bar{X}_{p}^{2}+\bar{Y}_{p}^{2}} \tag{2.26}\\
\bar{\theta}_{p} & =\tan ^{-1} \bar{Y}_{p} / \bar{X}_{p} . \tag{2.27}
\end{align*}
$$

The two density functions used in plotting Figs. 2.7 and 2.8 are approximated by $p\left(R_{p}, \theta_{p}\right)$ shown in Eq. (2.22), and the results are shown in Figs. 2.9 and 2.10. In comparing Fig. 2.7 with 2.9 and 2.8 with 2.10 , one finds that the central and near tail regions of the two densities $p\left(X_{p}, Y_{p}\right)$ and $p\left(R_{p}, \theta_{p}\right)$ are essentially the same. Again as in Section 2.i, the approximation begins to break down in the far tail regions. However, these regions are of little interest.

2.4 Discussion of Results

The section showed that if $p\left(R_{m}, \theta_{m}\right)$ was Gaussian distributed with small variances, $p\left(R_{p}, \theta_{p}\right)$ was also Gaussian distributed over the central and near tail regions of the distribution. The means and variances after each of the coordinate transformations were found. The mearis and variances following tie linear filter will be investigated later.

3.0 FILTER DESCRIPTION

The $\alpha-\beta$ filter is defined in this section and a few of its characteristics are shown.

Fig. 2.9-Constant contours of $p\left(R_{p}, \theta_{p}\right)$

Fig. 2.10-Constant contours of $p\left(R_{p}, \theta_{p}\right)$

3.1 Filter Definition

The filter in the x coordinate is described by

$$
\begin{align*}
& {\left[\begin{array}{l}
X(k) \\
V_{x}(k)
\end{array}\right]=\left[\begin{array}{cc}
(1-\alpha) & (1-\alpha) T \\
-\beta / T & (1-\beta)
\end{array}\right]\left[\begin{array}{l}
X(k-1) \\
V_{x}(k-1)
\end{array}\right]+\left[\begin{array}{c}
\alpha \\
\beta / T
\end{array}\right]\left[X_{m}(k)\right]} \tag{3.1}\\
& {\left[X_{p}\left(k+j_{1} \cdot n\right)\right]=\left[\begin{array}{ll}
1 & j T / m
\end{array}\right]\left[\begin{array}{l}
X(k) \\
V_{x}(k)
\end{array}\right], \quad \text { for } \quad j=1, \ldots m .} \tag{3.2}
\end{align*}
$$

Similarly, the description in the y coordinate is

$$
\begin{align*}
& {\left[\begin{array}{l}
Y(k) \\
V_{y}(k)
\end{array}\right]=\left[\begin{array}{cc}
(1-\alpha) & (1-\alpha) T \\
-\beta / T & (1-\beta)
\end{array}\right]\left[\begin{array}{c}
Y(k-1) \\
V_{y}(k-1)
\end{array}\right]+\left[\begin{array}{c}
\alpha \\
\beta / T
\end{array}\right]\left[Y_{m}(k)\right]} \tag{3.3}\\
& {\left[Y_{p}(k+j / m)\right]=\left[\begin{array}{ll}
1 & j T / m
\end{array}\right]\left[\begin{array}{c}
Y(k) \\
V_{y}(k)
\end{array}\right], \quad \text { for } \quad j=1, \ldots m .} \tag{3.4}
\end{align*}
$$

Since the equations are idertical in each of the coordinates, it is sufficient to show a few of the characteristics in the x coordinate.

3.2 Frequency Response

Using z-transform analysis, we define the transfer functions (3) as

$$
\begin{align*}
& G_{x}=\frac{X(z)}{X_{m}(z)}=\frac{\alpha z\left(z+\frac{\beta-\alpha}{\alpha}\right)}{z^{2}-z(2-\alpha-\beta)+(1-\alpha)} \tag{3.5}\\
& G_{v}=\frac{V_{x}(z)}{X_{m}(z)}=\frac{(\beta / T) z(z-1)}{z^{2}-z(2-\alpha-\beta)+(1-\alpha)}, \tag{3.6}
\end{align*}
$$

and for $\boldsymbol{j}=\boldsymbol{m}$ we can define the transfer function

$$
\begin{equation*}
G_{p}=\frac{X_{p}(z)}{X_{m}(z)}=\frac{(\alpha+\beta) z\left(z-\frac{\alpha}{\alpha+\beta}\right)}{z^{2}-z(2-\alpha-\beta)+\{1-\alpha)} \tag{3.7}
\end{equation*}
$$

By placing $z=e^{j \omega T}$ into Eqs. (3.5)-(3.7), the magnitude and phase, defined as

magnitude	$\left\|G_{x}\right\|$	$\left\|G_{v}\right\|$	$\left\|G_{p}\right\|$
phase	ϕ_{x}	ϕ_{v}	ϕ_{p},

can be found as a function of α, β, and $\omega T . G_{x}$ and G_{v} are plotted for a given case in Fig. 3.1. This sigure shows that $X(k)$ is the result of passing $X_{m}(k)$-through a low-pass filter, and $V_{x}(k)$ is the result of differentiating $X_{m}(k)$. The frequency of the input signal, the sampling time T, and the fitter parameters α and β control the fiiter's respouse.

It is useiul to place Eq. (3.5) into the form of a classical second-order system (3):

$$
\begin{equation*}
G_{x}=\frac{\alpha z\left(z+\frac{\beta-\alpha}{\alpha}\right)}{z^{2}-z 2 \exp \left(-\xi \omega_{0} T\right) \cos \omega_{d} T+\exp \left(-2 \xi \omega_{0} T\right)} . \tag{3.8}
\end{equation*}
$$

Fig. 3.1-Frequetcy response of 0 \& fiter

Equating coefficients between Eqs. (3.5) and (3.8), results in

$$
\begin{align*}
& \alpha=1-e^{-2 \xi \omega_{0} T} \tag{3.9}\\
& \beta=1+e^{-2 \xi \omega_{0} T}-2 e^{-\xi \omega_{0} T} \cos \omega_{d} T . \tag{3.10}
\end{align*}
$$

The inverse relations are

$$
\begin{align*}
& \xi=\frac{\ln (1 / \sqrt{(1-a})}{\sqrt{[\ln (1 \sqrt{1-\alpha})]^{2}+\left[\cos ^{-1}\left(\frac{(2-\alpha-\beta)}{2 \sqrt{1-\alpha}}\right)\right]^{2}}} \tag{3.11}\\
& \omega_{d}=\frac{1}{T} \cos ^{-1} \frac{(2-\alpha-\beta)}{2 \sqrt{1-\alpha}} \tag{3.12}
\end{align*}
$$

and

$$
\begin{equation*}
\omega_{0}=\omega_{d} / \sqrt{1-\xi^{2}} \tag{3.13}
\end{equation*}
$$

where ξ, ω_{d}, and ω_{0}, are the classic damping coefficients, damped natural frequency, and natural frequency of a second-order system.

3.3 Errors Under Sinusoidal Excitation

A target having $:$ circular motion is used to represent a tuming target. The geometry is shown in Fig. 3.2. The equations of motion are

$$
\begin{equation*}
X_{m}=\bar{X}_{m}+\left|X_{m}\right| \cos \omega_{0} t \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{m}=\bar{Y}_{m}+\left|Y_{m}\right| \sin \omega_{0} t \tag{3.15}
\end{equation*}
$$

Fig. 3.2-Target geometry

The waveforms produced by the circular-motion target are passed through the filter described by Eqs. (3.1)(3.4). Since X_{m}, Y_{m} and the operations are well defined, it is possible to obtain a closed-form solution for $R(k+j / m)$ and $\theta(k+j / m)$. However, the closed-form solutions are lengthy and involved. It is easier to simply compute numerically the results under various conditions. The error tetween the predicted position $X_{p}(k+j / m)$ and the true target position is computed as a function of time as shown in Fig. 3.3. The envelope of the peak error is sinusoidal, as would be predicted from 'inear system theory. In addition, the envelope oî the lower peaks is almost sinusoidal and would be if $j=0$. The entor shown is valid only ar the sample instants.

Fig. 3.3-Error betweer, predicted and true position for a circular-motion target

The errors between the predicted and true ranges and the predicted and true azimuths are computed next. Various examples are shown in Figs. 3.4, 3.5, and 3.6. Ir these figures, we find that the amount of filtering affects the envelope of the peak error and the ripple errors. Nithough not shown, the target trajectory and the sampling tirne also affect the error.

3.4 Comparison of Mean Errors for Cartesian and Polar Ccordinate Filters

The $\alpha-\beta$ tracker in polar coordinates is described by

$$
\left[\begin{array}{l}
R(k) \tag{3.16}\\
V_{R}(k)
\end{array}\right]=\left[\begin{array}{cc}
(1-\alpha) & (1-\alpha) T \\
-\beta / T & (1-\beta)
\end{array}\right]\left[\begin{array}{l}
R(k-1) \\
V_{R}(k-1)
\end{array}\right] \div\left[\begin{array}{c}
\alpha \\
\beta / T
\end{array}\right]\left[R_{m}(k)\right]
$$

Fig. 3.4-Mean error between presictoun and arue positions for a circular tanget trajectory using an $\alpha-\hat{\beta}$ tracker in cartesian coordinates

Fg. 3.5-Mean error between predicted and true position for a cirsular target trajectory using an $\alpha-\beta$ tracker in cartusian covordinates

$$
\begin{gather*}
{\left[\begin{array}{c}
\theta(k) \\
V_{\theta}(k)
\end{array}\right]=\left[\begin{array}{cc}
(1-\alpha) & 1-\alpha) \bar{T} \\
-\beta j T & (1-\beta)
\end{array}\right]\left[\begin{array}{c}
\theta(k-1) \\
V_{\theta}(k-1)
\end{array}\right]+\left[\begin{array}{c}
\alpha \\
\hat{\alpha} / 2
\end{array}\right]\left[\theta_{m}(k)\right]} \tag{3.17}\\
R_{p}(k+j / m)=R(k) \div(j i m) T V_{R}(k) \tag{3.18}\\
\theta_{p}(k+i / m)=\theta(k)+(j i m) T V(k) . \tag{3.19}
\end{gather*}
$$

Fig. 3.6-Mean error between predicted and trie position for a circular target trajectory using an $\alpha-\beta$ tracker in carteitan cordinates

For the same circular flight path as shown in Fig. 3.2, the error between the true and predicted positions in range and azimuth is computed and the results are shown in Figs. 3.7 and 3.8 . As shown in these figures, the errors in the polar coordinate tracking system at the near ranges are larger than the cartesian coordinate ones. This is due to the large

Fig. 3.7-Mean error between predicted and inue positions for a sircular target using an $\alpha-\beta$ tracker in polar coctdinates

Fig. 3.8-Mean error between predicted and inue positions for a circular target trajectory using an $\alpha-\beta$ tracker in polar ccordinates
accelera:ions set up by the trajectory in poiar coordinates. At the far ranges we find that the errors in either tracking system are neariy the sime. This point can also be illustrated by computing the arrons using boih systems for a constant-velocity, straight-line flight path. For the cartesuan system in steady state the erroz is zero. Figure 3.9 shows a typical errci stiuence for tracking in the polar coordinate system. Again, at the far ranges ti: mean tracking errors are essentially the same for either sysiem. At short ranges the mean error in the polar system can become quite large due to the target motion and orientation with respect to the radar.

3.5 Discussion of Results

This section invertigated the mean response of the filter. It was briefly described how α, \tilde{p}, T, iarget trajectory, and range affected the error between the predicted and true positions of the target. It was found that $\alpha-\beta$ trackers operating either in polar or cartesian coordinates, were essentially equivalent at the far ranges in the mean errors. The mean errors in the polar coordinate tracking system were much larger than in tie cartssian courdinate system at short ranges.

4.0 RESPONSE TO NOISE

This section is concemed with somputing the covariances of the noise at the output of the filter after the measurement neise described in Section 2.0 has passed through the filter described in Section 3.6.

Fig. 3.9-Error between prodicted and true target positions at sampling instants $j T / m$ for a straight-ine target trajectory (tracking in polar ceordinates)

4.1 Covariance Equations

Equations (3.1)-(3.4) can be written in the form (4)

$$
\begin{equation*}
W(k)=A W(k-1)+\Gamma V(k), \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
W(k) & =\left[\begin{array}{c}
X(k) \\
V_{x}(k) \\
Y(k) \\
V_{y}(k)
\end{array}\right] \quad \mathrm{V}(k)=\left[\begin{array}{c}
X_{m}(k) \\
Y_{m}(k)
\end{array}\right] \quad \Gamma=\left[\begin{array}{cc}
\alpha & 0 \\
\beta / T & 0 \\
0 & \alpha \\
& \beta / T
\end{array}\right] \\
A & =\left[\begin{array}{cccc}
(1-\alpha) & (1-\alpha) T & 0 & 0 \\
-\beta / T & (1-\beta) & 0 & 0 \\
0 & 0 & (1-\alpha) & (1-\alpha) T \\
0 & 0 & -\beta / T & (1-\beta)
\end{array}\right] .
\end{aligned}
$$

The covariance equations can be written as

$$
\begin{equation*}
P(k)=A P(k-1) A^{T}+\Gamma Q(k) \Gamma^{T}, \tag{4.2}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
P(k)=\left[\begin{array}{lll}
P_{x x}(k) & P_{x v_{x}}(k) & P_{x y}(k) \\
P_{v_{x} x}(k) & P_{x v_{y}}(k) \\
P_{v_{x} v_{x}}(k) & P_{v_{x} y}(k) & P_{v_{x} v_{y}}(k) \\
P_{y v_{x}}(k) & P_{y y}(k) & P_{y v_{y}}(k) \\
P_{v_{y} x}(k) & P_{v_{y} v_{x}}(k) & P_{v_{y} y}(k)
\end{array} P_{v_{y} v_{y}}(k)\right.
\end{array}\right], \begin{aligned}
& P_{x v_{x}}=\operatorname{cov}\left(X, V_{x}\right), \text { etc. } \\
& Q(k)=\left[\begin{array}{ll}
Q_{x x}(k) & Q_{x y}(k) \\
Q_{y x}(k) & Q_{y y}(k)
\end{array}\right] \\
& Q_{x x}(k)=\operatorname{cov}\left(X_{m}, X_{m}\right)=\sigma_{x_{m}}^{2} \\
& Q_{x y}(k)=\operatorname{cov}\left(X_{m}, Y_{m}\right)=\rho_{x_{m} y_{m}} \sigma_{x_{m}} \sigma_{y_{m}} \\
& Q_{y y}(k)=\operatorname{cov}\left(Y_{m}, Y_{m}\right)=\sigma_{y_{m}}^{2} .
\end{aligned}
$$

The covariance equations for the filter are

$$
\begin{align*}
{\left[\begin{array}{c}
P_{x x}(k) \\
P_{x v_{x}}(k) \\
P_{v_{x} v_{x}}(k)
\end{array}\right]=} & {\left[\begin{array}{cc}
(1-\alpha)^{2} & 2(1-\alpha)^{2} T \\
(1-\alpha)^{2} T^{2} \\
-\beta(1-\alpha) / T & (1-\alpha)(1-2 \beta) \\
(1-\alpha)(1-\beta) T \\
(\beta / T)^{2} & -2 \beta(1-\beta) / T
\end{array}{(1-\beta)^{2}}^{2}\right] } \\
& \times\left[\begin{array}{c}
P_{x x}(k-1) \\
P_{x v_{x}}(k-1) \\
P_{v_{x} v_{x}}(k-1)
\end{array}\right]+\left[\begin{array}{c}
\alpha^{2} \\
\alpha \beta / T \\
(\beta / T)^{2}
\end{array}\right]\left[Q_{x x}(k)\right] \tag{4.3}
\end{align*}
$$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
P_{y y}(k) \\
P_{y v_{y}}(k) \\
P_{v y^{2} y}(k)
\end{array}\right]=} & {\left[\begin{array}{cc}
(1-\alpha)^{2} & 2(1-\alpha)^{2} T \\
-\beta(1-\alpha) / T & (1-\alpha)(1-2 \beta) \\
(\beta, T)^{2} & (1-\alpha)(1-\beta) T \\
2 & -2 \beta(1-\beta) / T
\end{array}{(1-\beta)^{2}}^{2}\right.}
\end{array}\right] .
$$

and

$$
\begin{align*}
& {\left[\begin{array}{c}
P_{y x}(k) \\
P_{v_{y y}}(k) \\
P_{v_{x} y}(k) \\
P_{v_{x} y_{y}}(k)
\end{array}\right]=\left[\begin{array}{cccc}
(1-\alpha)^{2} & (1-\alpha)^{2} T & (1-\alpha)^{2} T & (1-\alpha)^{2} T^{2} \\
-\beta(1-\alpha) / T & (1-\alpha)(1-\beta) & -\beta(1-\alpha) & (1-\alpha)(1-\beta) T \\
-\beta(1-\alpha) / T & -\beta(1-\alpha) & (1-\beta)(1-\alpha) & (1-\alpha)(1-\beta) T \\
(\beta / T)^{2} & (-\beta / T)(1-\beta) & (-\beta / T)(1-\beta) & (1-\beta)^{2}
\end{array}\right]} \\
& \times\left[\begin{array}{c}
P_{y x}(k-1) \\
P_{v_{y} x}(k-1) \\
P_{v_{x} y}(k-1) \\
P_{v_{x} y_{y}}(k-1)
\end{array}\right]+\left[\begin{array}{c}
\alpha^{2} \\
\alpha \beta / T \\
\alpha \beta / T \\
\\
(\beta / T)^{2}
\end{array}\right]\left[Q_{x y}(k)\right] . \tag{4.5}
\end{align*}
$$

Forming the covariances of Eqs. (3.2) and (3.4) yields

$$
\begin{align*}
& \sigma_{x_{p}}^{2}=P_{x x}(k)+2(j / m) T P_{x v_{x}}(k)+(j / m)^{2} T^{2} P_{v_{x} v_{x}}(k) \tag{4.6}\\
& \sigma_{y_{p}}^{2}=P_{y y}(k)+2\{j / m) T P_{y v_{y}}(k)+(j / m)^{2} T^{2} P_{v_{y} v_{y}}(k) \tag{1.7}\\
& \left.\rho_{x_{p j}: p} \sigma_{x_{p}} 0_{j p}=P_{y x}(k)+(j / m) \mathcal{T}_{[} P_{v_{y x}}(k)+P_{v_{x y} y}(k)\right]+(j / m)^{2 m}{ }^{2} P_{v_{x} y_{y}}(k) . \tag{4.8}
\end{align*}
$$

For stationary noise inputs closed-form solutions can be found for Eqs. (4.3)-(4.5) by placing $\mathbf{P}(k+1)=P(k)$ and solving the resulting algebraic equations. However, it is eacier to obtain solutions by recursively solving Eqs. (4.3)-(4.5) until a steady-state solution is obtained. It is necessary to eliminate T as a parameter by substituting $\Delta y=V_{y} T$ and $\Delta x=\nabla_{x} T$ into the original filter equations. The resulting covariance equations are of the same form as Eqs. (4.3)-(4.8) with $T=1$. (The covariances are independent of sampling time.) Solving Eqs. (4.3)-(4.8) yields the following result:

$$
\begin{equation*}
F=o_{x_{p}}^{2} / Q_{x x}(k)=\sigma_{y_{p}}^{2}(k) / Q_{y y}(k)=\rho_{x_{p} x_{p}} \sigma_{x_{p}} \sigma_{y_{p}} / Q_{x y}(k) \tag{4.9}
\end{equation*}
$$

For all admissible α. β, and j; for $T=1$; and for $F=f(\alpha, \beta, j)$.
A simple procedure for determining the solution for stationary targets is next described.

4.2 A Simple Stationary Solution

For the system shown in Fig. 2.1 the measurement means and covariances are transformed into $\sigma_{x_{m}}, \sigma_{y_{m}}, \rho_{x_{m} y_{m}}, \bar{X}_{m}, \bar{Y}_{m}$ by Eqs. (2.10)(2.14). One then computes the covariances at the output of the filter by Eqs. (4.3)(4.8). The resuits $\sigma_{R p}^{2}, \sigma_{\theta_{p}}^{2}, \rho_{R p} \theta_{p}$, $\bar{\theta}_{p}$, and \bar{R}_{p} are then computed by Eqs. (2.23) $\mathbf{i 2} 27$). If the target is stationary the input process to the filter is stationary (Eqs. (2.10)-(2.14)), and therefore the output of the filter has a stationary solution given by Eq. (4.9). In addition, $\bar{\theta}_{m}=\bar{\theta}_{p}$ and $\bar{R}_{m}=\bar{R}_{p}$. The output of the filter can then be written as

$$
\begin{gather*}
\sigma_{x_{p}}^{2}=F \sigma_{R_{m}}^{2} \cos ^{2} \bar{\theta}_{p}+F\left(\bar{R}_{p} \sigma_{\theta_{m}}\right)^{2} \sin ^{2} \bar{\theta}_{p} \tag{4.10}\\
\sigma_{y_{p}}^{2}=F \sigma_{R_{m}}^{2} \sin ^{2} \bar{\theta}_{p}+F\left(\bar{R}_{p} \sigma_{\theta_{m}}\right)^{2} \cos ^{2} \bar{\theta}_{p} \tag{4.11}\\
\rho_{x_{p} y_{p}} \sigma_{x_{p}} \sigma_{y_{p}}=0.5 F \sigma_{x_{m}} \sigma_{y_{m}}\left(\sigma_{R_{m}}^{2}-\left(\bar{R}_{p} \sigma_{\theta_{m}}\right)^{2}\right) \sin 2 \bar{\theta}_{p} . \tag{4.12}
\end{gather*}
$$

Substituting Eqs. (4.10)-(4.12) into Eqs. (2.23)-(2.27) results in

$$
\begin{align*}
\sigma_{R_{p}}^{2} & =F \sigma_{R_{m}}^{2} \tag{4.13}\\
\sigma_{\theta_{p}}^{2} & =F \sigma_{\theta_{m}}^{2} \tag{4.14}\\
\rho_{R_{p} \theta_{p}} & =0 \tag{4.15}\\
\bar{R}_{p} & =\bar{R}_{m} \tag{4.16}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{\theta}_{p}=\bar{\theta}_{m} . \tag{4.17}
\end{equation*}
$$

Bit this is the same solution as would have been obtained if the system shown in Fig. 4.1 had been used. The equations descriting the system are

$$
\left[\begin{array}{l}
R(k) \tag{4.18}\\
V_{R}(k)
\end{array}\right]=\left[\begin{array}{cc}
(1-\alpha) & (1-\alpha) T \\
-\beta / T & (1-k)
\end{array}\right]\left[\begin{array}{c}
R(k-1) \\
V_{R}(k-1)
\end{array}\right]+\left[\begin{array}{c}
\alpha \\
\beta / T
\end{array}\right]\left[R_{; n}(k)\right]
$$

Fig. 4.1-Equivalent system te Fig. 21 under linear approximations used in Section 2.0

$$
\begin{gather*}
{\left[\begin{array}{c}
\theta(k) \\
V_{\theta}(k)
\end{array}\right]=\left[\begin{array}{cc}
(1-\alpha) & (1-\alpha) T \\
-\beta / T & (1-\beta)
\end{array}\right]\left[\begin{array}{c}
\theta(k-1) \\
V_{\theta}(k-1)
\end{array}\right]+\left[\begin{array}{c}
\alpha \\
\beta / T
\end{array}\right]\left[\theta_{m}(k)\right]} \tag{4.19}\\
R_{p}(k+j / m)=R(k)+(j / m) T V_{R}(k) \tag{4.20}
\end{gather*}
$$

and

$$
\begin{equation*}
\theta_{p}(k+j / m)=\theta(k)+(j / m) T V_{\theta}(k) \tag{4.21}
\end{equation*}
$$

The covariance squations are formed in the same manner as before:

$$
\begin{align*}
{\left[\begin{array}{c}
P_{R R}(k) \\
P_{R V_{R}}(k) \\
P_{V_{R} V_{R}}(k)
\end{array}\right]=} & {\left[\begin{array}{ccc}
(1-\alpha)^{2} & 2(1-\alpha)^{2} T & (1-\alpha)^{2} T^{2} \\
-\beta(1-\alpha) / T & (1-\alpha)(1-2 \beta) & (1-\alpha)(1-\beta) T \\
(\beta / T)^{2} & -2 \beta(1-\beta) / T & (1-\beta)^{2}
\end{array}\right] } \\
& \times\left[\begin{array}{c}
P_{R R}(k-1) \\
P_{R V_{R}}(k-1) \\
P_{V_{R} V_{R}}(k-1)
\end{array}\right]+\left[\begin{array}{c}
\alpha^{2} \\
\alpha \beta / T \\
(\beta / T)^{2}
\end{array}\right]\left[Q_{R R}(k)\right] \tag{4.22}
\end{align*}
$$

$$
\begin{align*}
{\left[\begin{array}{c}
P_{\theta \theta}(k) \\
P_{\theta V_{\theta}}(k) \\
P_{V_{\theta} V_{\theta}}(k)
\end{array}\right]=} & {\left[\begin{array}{cc}
(1-\alpha)^{2} & 2(1-\alpha)^{2} T \\
-\beta(1-\alpha) / T & (1-\alpha)(1-2 \beta) \\
(\beta / T)^{2} & (1-\alpha)(1-\beta) T \\
2 \beta(1-\beta) / T & (1-\beta)^{2}
\end{array}\right] } \\
& \times\left[\begin{array}{c}
P_{\theta \theta}(k-1) \\
P_{\theta V_{\theta}}(k-1) \\
P_{V_{\theta} V_{\theta}}(k-1)
\end{array}\right]+\left[\begin{array}{c}
\alpha^{2} \\
\alpha \beta / T \\
(\beta / T)^{2}
\end{array}\right]\left[\begin{array}{c}
{\left[Q_{\theta \theta}(k)\right]}
\end{array}\right. \tag{4.23}\\
\sigma_{R_{p}}^{2}= & P_{R R}(k)+2(j / m) T P_{R V_{R}}(k)+(j / m)^{2} T^{2} P_{V_{R} V_{R}}(k) \tag{4.24}\\
\sigma_{\theta_{p}}^{2}= & P_{\theta \theta}(k) \div 2(j / m) T P_{6 V_{\theta}}(k)+(j / m)^{2} T^{2} P_{V_{\theta} V_{\theta}}(k) \tag{4.25}\\
\rho_{R_{p} \theta_{p}}= & 0 \quad \text { because } \theta_{m} \text { and } R_{m} \text { are uncorrelated. } \tag{4.26}
\end{align*}
$$

Since Eqs. (4.3), (4.4), (4.6), and (4.7) are identical with Eqs. (4.22)-(4.25) in form,

$$
\begin{align*}
\sigma_{R_{p}}^{2} & =F \sigma_{R_{m}}^{2} \tag{4.27}\\
\sigma_{\theta_{p}}^{2} & =F \sigma_{\theta_{m}}^{2} \tag{4.28}\\
\rho_{R_{p} \theta_{p}} & =0 \tag{4.29}\\
\bar{R}_{p} & =\bar{R}_{m} \tag{4.30}\\
\bar{\theta}_{p} & =\bar{\theta}_{m} \tag{4.31}
\end{align*}
$$

Eqs. (4.13)-(4.17) are identical to Eqs. (4.27)-(4.31), a fact which shows that the system of Fig. 2.1 is the same as that of Fig. 4.1. To justify this result the following argument is given. The system shown in Fig. 2.1 is redrawn in Fig. 4.2. Recall that in Section 2.0 the polar-to-cartesian and cartesian-to-polar transformations were shown to be approximately linear over the region governing the means and covariances. The order of operation

Fig. 4.2-Filter system
for linear operators can be changed, yielding the system shown in Fig. 4.3. For stationary target case the two transforms cancel, yielding Fig. 4.1.

Fig. 4.3-Interchange of linear operations

The value of F can be computed as follows: $P(k)$ is set $\epsilon_{\mathrm{G}}: a l$ to $\mathrm{P}(k-1)$ and the resulting algebraic equations are solved;

$$
\begin{gather*}
\frac{P_{R}(i k)}{v_{R_{m}}^{2}}=\frac{P_{\theta \theta}(k)}{\sigma_{\theta_{m}}^{2}}=-\frac{2 \beta-3 \alpha \beta+2 \alpha^{2}}{\alpha(4-2 \alpha-\beta)} \tag{4.32}\\
\frac{P_{R V_{R}}(k)}{\sigma_{R_{m}}^{2}}=\frac{P_{\theta V_{\theta}}(k)}{\sigma_{\theta_{m}}^{2}}=\frac{\beta(2 \alpha-\beta)}{\alpha(4-2 \alpha-\beta)} \tag{4.33}\\
\frac{P_{V_{R} V_{R}}(k)}{\sigma_{R_{m}}^{2}}=\frac{P_{V_{\theta} V_{\theta}}(k)}{\sigma_{\theta_{m}}^{2}}=\frac{\beta\left[2 \alpha^{2}-\alpha^{3}+2 \beta-\alpha \beta\right]}{\alpha(4-2 \alpha-\beta)} \tag{4.34}\\
F=\sigma_{R_{p}}^{2} / \sigma_{R_{m}}^{2}=\frac{P_{R R}(k)}{\sigma_{R_{m}}^{2}}+(2 j / m) \frac{P_{R V_{R}}(k)}{\sigma_{R_{m}}^{2}}+(j / m)^{2} \frac{P_{V_{R} V_{R}}(k)}{\sigma_{R_{m}}^{2}} \tag{4.35}
\end{gather*}
$$

The peak variance occurs for $j=m$. In Fig. 4.4, F is plotted vs α and β for $j=m$. Observing this figure one finds that the amount of smoothing (α and β) cortrols the peak noise levels. In addition, the noise varies betweer: each scan of the search radar from k to $k=1$. This is plotted vs j in Fig. 4.5 for large m. Observing this figure one finds that the noise is nonstationary but periodic with time under steady-state conditions.

4.3 Some Nonstationary Solutions

A target is flown at a constant velocity in a straight-line trajectory as shown in Fig. 4.6. The measurement standard deviations are assumed to be $\sigma_{R_{m}}=250 \mathrm{ft}$ and $\sigma_{\theta_{m}}=$ 0.5°. Equations (2.10)-(2.14) are used to obtain $\sigma_{y_{m}}^{2}, \sigma_{y_{m}}^{2}, \rho_{x_{m} y_{m}}, \bar{X}_{m}, \bar{Y}_{m}$ in terms of the measurement variances and target trajectory. Using these results with Eqs. (4.1), (4.2), and (4.3)-(4.8), we find $\sigma_{R_{p}}^{2}, \dot{o}_{p}^{2}, \rho_{R p \theta_{p}}, \bar{P}_{. p}$, and $\bar{\theta}_{p}$. The results for several trajectories and values of smoothing coefficients are shown in Figs. 4.7-4.12. in all cases only the envelope of the peak noise ($j=m$) is shown. The covarimices will have a ripple between samples (k) and $(k+1)$. In addition the dotied lines show the covariances if the target is stationary. Figures $4.7-4.12$ show that the output noise processes are in general

Fig. 4.4-Predicted position noise power as a
function of (α, β)

Fis. 4.5-Normaiized predicted azimuth variance as a function of time

Fig. 4.6-Straight-line target trajectory

Fig. 4.7-Covarianct of predicted range and azimuth for straight-line sarget trajectory $\bar{X}_{m}=2 \mathrm{n} . \mathrm{mi}$., $\alpha=0.56, \beta=0.85$, $v=2000 \mathrm{ft} / \mathrm{s}$

Fig. 4.8-Covariance of predicted range ard azimuth for straight line target trajectory $\bar{X}_{m}=2 \mathrm{n} . \mathrm{mi} ., v=2000 \mathrm{f} / \mathrm{s}$, $\alpha=0.1, \beta=0.005$
nonstationary and depend upon the target trajectory and velocity, the sampling time, and the filter parameters.

A circular fight path is flown as shown in Fig. 3.2. The covariances of the predicted range and aximuth are shown in Figs. 4.13-4.16 as a function of time for various conditions. Again only the envelope of the peak variances is plotted ($j=m$). At the far ranges or low velocities the variances of range and azimuth approach the stationary solution values, although at the long ranges it was found that the correlation did not go to zero but was a function of the turning motion. Again it is found that the covariances can be a function of target trajectory, velocity, and range; sampling time; measurement uncertainty; and filter parameters.

The effect of the faster sampler $(j=1, \ldots m)$ is shown in Fig. 4.17. Observing this figure one finds that the covariances ripple between the scan time of the search rader in a similar manner as found ior the stationary solutions.

Fig. 4.10-Covariance of predicted range and azimuth for straight-line irajectory $\bar{X}_{m}=30 \mathrm{n} . \mathrm{mi}$., $t=2000 \mathrm{ft} / \mathrm{s}_{\mathrm{p}} \alpha=0.56$, $\beta=0.85$

4.4 Discussion of Results

The covariance equations were found for both the polar and cartesian coordinate filters. A simple closed-form solution was found for the covariances in both filters when the target was stationary in space. For these cases the output correlation was zero and the output variances only depended upon α, β, and the input measurement variances. For nonstationary targets the cartesian coordinate filter yielded output covariances which dependea upon α, β, input measurement variances, target trajectory pnd speed, and sampling time. In general the covariances increased as one came rear the radar and tended to approach the statiol.ary target solutions at the far ranges except that the correlation depended upon the turning motion.

5.0 COMPARISON OF POLAR AND CARTESIAN COORDINATE $\alpha-\beta$ FILTERS OPERATIING UNDER SHORT FADE CONDITIUNS

This section is concemed with evaluating the tracking performance of the polar and cartesian $\alpha-\beta$ filters for short fade conditions and for the track handoff problem. Sectio

Fig. 4.12-Covariance of predieted range and azimuth for straight-line trajectory flying directly at radzr: $v=2000$ $\mathrm{ft} / \mathrm{s}, \alpha=0.56, \beta=0.85$

Fig. 4.13-Covariance of predicted range and azimuth for circular flight path $\bar{R}_{m}=21.2 \mathrm{n} . \mathrm{mi}$., $\bar{\theta}_{m}=45^{\circ}, v=2000 \mathrm{fi} / \mathrm{s}, 3-\mathrm{g}$ turn, $\alpha=0.56, \beta=0.85$

Fig. 4.14-Covariance of predicted range and azimuth for circular nightit path $\overline{\boldsymbol{K}}_{m}=70.7 \mathrm{n} . \mathrm{mi}$, $\bar{\theta}_{m}=45^{\circ}, v=2000 \mathrm{ft} / \mathrm{s}, 3-\mathrm{g}$ turn, $\alpha=0.56, \beta=0.85$

Fig. 4.15-Covariances of predicted range and azimuth for circular flight path $\tilde{R}_{m}=210.2 \mathrm{n} . \mathrm{mi}$. $\hat{\delta}_{m}=45^{\circ}, v=2000 \mathrm{ft} / \mathrm{s}, 3-\mathrm{g}$ turn, $\alpha=0.56, \beta=0.85$

\qquad

Fig. 4.16-Covariances of predicted range and :izimuth for circular flight path $\bar{R}_{m}=21.2$ n.mi., $\bar{\theta}_{m}=45^{\circ}, v=2000 \mathrm{ft} / \mathrm{s}, 3 \mathrm{~g} \mathrm{turn}, \alpha=0.1, \beta=0.005$

Fig. 4.17-Covariances of predicted rarate and azimuth for circular flight path including intersample ripple: $\bar{R}_{m}=21.2$ n.mi., $\bar{G}_{m}=45^{\circ}, v=$ $2000 \mathrm{ft} / \mathrm{s}, 3 \mathrm{~g}$ turn, $\alpha=0.56, \beta=0.85$

5.1 describes the mean errors due to short fades, and Section 5.2 describes the effects on the covariances. Section 5.3 presents the results of the simulation on the track handoff problem.

5.1 Mean Errors

The predicted value strategy used for processing information under fading conditions is defined ac follows. When a fade occurs the predicted position is set equal to the measured position. The $\alpha-\beta$ filter equations in cartesian coordinates given in Eqs. (3.1)-(3.4) reduce to

$$
\begin{align*}
& {\left[\begin{array}{l}
X(k) \\
V_{x}(k)
\end{array}\right]=\left[\begin{array}{ll}
1 & T \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
X(k-1) \\
V_{x}(k-1)
\end{array}\right]} \tag{5.1}\\
& X_{p}(k+j / m)=\left[\begin{array}{ll}
1 & . j T / m
\end{array}\right]\left[\begin{array}{l}
X(k) \\
V_{x}(k)
\end{array}\right] \tag{5.2}\\
& {\left[\begin{array}{l}
Y(k) \\
V_{y}(k)
\end{array}\right]=\left[\begin{array}{ll}
1 & T \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
Y(k-1) \\
V_{y}(k-1)
\end{array}\right]} \tag{5.3}
\end{align*}
$$

and

$$
Y_{p}(k+j / m)=\left[\begin{array}{ll}
1 & j T / M
\end{array}\right]\left[\begin{array}{c}
Y(k) \tag{5.4}\\
V_{y}(k)
\end{array}\right] .
$$

during the period of the fade. Otherwise they are the same as before. Observing Eqs. (5.1)-(5.4), one finds that they are of the same form as Eqs. (3.1)-(3.4) except that $\alpha=\beta=0$. Therefore Eqs. (3.1)-(3.4) can be used to represent the system under fading conditions, except that α and β are time varying between these set values and $\alpha=\beta=0$.

In a similar manner the filter in polar coordinates is found to be represented by Eqs. (3.16)-(3.19) with time-varying coefficients of $\alpha=\beta=0$ and the original set values of α and β corresponding to a fade and no-fade condition. Under fading conditions the polar coordinate filter moves the target along curvilinear lines at the last known radial and traverse velocities during the fade. The cartesian coordinate filter moves the target along straight lines at the last known velocity.

Several constent-velocity, straight-iine target trajectories as shown in Fig. 4.6 were flown. In all cases using the cartesian coordinate filter, the mean error between the predicted and true target positions was zero under the fadirg sequences. By using the polar coordinate filter, the mean error between the predicted and true target azimuths was found under several conditions as shown in Figs. (5.1)-(5.4). A one in the fading sequence

Fis. 5.1-Error between predicted and true target positions at sempling instants $k(j=m)$ for straight-ine target trajectory under fading conditions (tracking in polar coordinates)

Fig. 5.2-Error between predicted and trus terget positions at sampling instants $k(j=m)$ ior straight-ine target trajectore under fading conditions (tracking in polar coordinates)

Fis. 5.3-Error between predicted and true tarret positions at sampling irstants $k(j=m)$ for straight-line target trajectory under fading conditict.s (tracking in polar coordinates)

F:3. 5.4-Errors between predicted and true target position at sampling instant $k(j=m)$ for straight-line target trajectory under fading conditions (tracking in polar coordinates)
represents a fade, whereas a zero corresponds to no fade. In all cases the envelope of the errors at sample instants ($j=m$) is shown, ignoring the ripple errors due to the faster sampler. These figures indicate that the error becomes larger as the target comes closer to the radar and when the filter uses heavier smoorhing. In addition the error grows during the time the fade is present. The reason this occurs is that the target is being projected along curvilinear lines during the fades and is moving in a straight line. The error situation would be reversed if the target were moving along a traverse line rather than a straight line.

A target is flown in a circular trajectory and the mean errors betweeis the predicted and true positions are computed for a given situation including a sequence of fades. The results are shown in Figs. 5.5 and 5.6. These figures show that at leası́ at the farther ranges and short fading conditions the error is approximately the same using either the polar or cartesian coordinate system filter.

In general it appears that at the farther ranges where the near effect accelerations are not present in the polar coordinate system, the mean errors in either filter system under shost fading conditions are nearly the same. The polar coordinate filter performs better for constant-velocity targets moving in the polar directions, whereas the cartesian coordinate filter performs better for targets moving in straight lines.

Fig. 5.5-Mean error between predicted and true positions for a circular target trajectory using an $\alpha-\beta$ filter in cartesian coordinates under fading senditions

BEN H. CANTRELL

Fig. 5.6-Mean error betweer predicted and irue positions for a circular target trajectory using an $\alpha-\beta$ filter in polar coordinates under fading conditions

5.2 Covariance Description

Under fading conditions and using the predicted position strategy as outlined in Section 5.1, the covariances are described in the same manner as in Section 4.0 except that when a fade occurs α and β are set equal to zero. A constant-velocity target is flown in a straight line and the covariances are computed under a fading condition for two cases as shown in Figs. 5.7 and 5.8. The cartesian ccordinate filter is used and the envelope of the covariances $(j=m)$ is shown. The covariances increase during a fading condition. The convariances were computed using the polar coordinate filter and are shown in Fig. 5.9. Unlike the cartesian coordinate filter, in this case the covariances are independent of target trajectory, spced, and sampling time.

A circular flight path is flown and the corariances are computed using the polar and cartesian coordinate filters. The results are shown in Figs. 5.10-5.12, which show that the covariances increase as the target fades.

Fig. 5.7-Covariances of predicted range and azimuth for straight-line target trajectory $\bar{X}_{m}=30 \mathrm{n} . \mathrm{mi} ., v=2000 \mathrm{ft} / \mathrm{s}$, $T=4, \alpha=0.56, \beta=0.85$, for fade sequence ($10001000100 \ldots$)

Fig. 5.8-Covariances of predicted range and azimuth for straight-line target trajectory $\bar{X}_{m}=2 \mathrm{n} . \mathrm{mi}, v=2000 \mathrm{ft} / \mathrm{s}, T=$ $4, \alpha=0.56, \beta=0.85$, for fade sequence ($10001000100 \ldots$)

Fig. 5.9-Covariances of predicted range and azimuth for a filter in polar coordinates operating under fading conditions ($1000100010 \ldots$), $\alpha=0.56, \beta=0.85$

Fig. 5.11-Covariances of predicted range and azimuth for circular flight path $\bar{R}_{m}=210.2$ $\mathrm{n} . \mathrm{mi} ., \bar{\theta}_{m}=45^{\circ}, v=2000 \mathrm{ft} / \mathrm{s}, T=4 \mathrm{~s}, 3-\mathrm{g}$ turn, $\alpha \times 0.56, \beta=0.85$, under fading conditions (1000100010...), (X-Y) track

Fig. 5.12-Covariances of predicted range and azimuth for a filter in polar coordinates operating under fading conditions ($10010010 \ldots$), $\alpha=0.56, \beta=0.85$

5.3 Track Handoff Problem

In this section, the abilities of the polar and cartesian $\alpha \beta$ filters to perform the track handoff problom are compared. Since the details of the track handoff simulation are given in Ref. 2, only the basic facts will be presented here.

The geometry of the situation is shown in Fig. 5.13. The coordinates of the target at time $t=0$ are $\left(x_{0}, y_{0}, h_{g}\right)$, its height when crossing the y axis is h_{f}, its ground speed is v, and its heading is A. The radar coordinates are $\left(0,0, h_{r}\right)$.

Fig. 5.13-Geometry of radar and target

The simuation is run in the following manner: The target is assumed to be detected on every scan of the search radar. Initially, three target positions are generated, and the $\alpha-\beta$ filter is initialized. After each additional detection, the $\alpha-\beta$ filter is updated and is used to continuously estimate the target's coordinates. Starting with the third sample, the center of the tracking scan pattern is centered on the predicted position of the target. The search pattern of the tracking radar is initialized, and during each update time, the program calculates whether or not the target is located within the acceptance bearn of the tracking radar (Section 5.4). The simulation continues until the target crosses the y axis. The output of a single case is a series of correct and incorrect handoffs between the search and tracking radars. Many cases are runs, and the probability of handing off as a function of range is estimated.

The initial simulation was run with the following target parameters: x_{0} was uniformly distributed between $121,600 \mathrm{ft}$ ($20 \mathrm{n} . \mathrm{mi}$) and $122,60 \mathrm{ft}, y_{0}=0, h_{0}=10,000$ $\mathrm{ft}, h_{f}=5000 \mathrm{ft}, \Delta$ is uniformly distributed between 5.9° and 6.1°,* and V is uniformly distributed between 2100 and $2300 \mathrm{ft} / \mathrm{s}$. The radar is at a height of 80 ft , has a range resolution of 250 ft and a scanning rate (update time) of 4 s , and measures the azimuth position with a standard deviation of 0.5°. The deviation accuracy of the radar will be varied in the simulation. it will have a standard deviation of 1°, or else the radar (a 2-D radar) assumes that the elevation of the target is always 12° (the bottom of the 24° scan pattern of the tracking radar is set on the horizon). The filter parameters are $\alpha=0.6$ and $\beta=0.9$ for range, $\alpha=\beta=0.5$ for azimuth, and $\alpha=0.5 ¢$ and $\beta=0.85$ for X and Y.

[^0]For each of the two elevation accuracies and two filters, 50 cases were run; and the probability of the target being in the beam of the tracking radar on the last scan pattern, vs the target range, is shown in Figs. 5.14 and 5.15. It is obvious that one can hand off targets at closer ranges using the $X-Y$ filter. This is because of the large acceierations in the $R-\theta$ coordinate system for crossing targets.

Fig. 5.14-Probability of handoff using $R-\theta$ filter

Fig. 5.15-Probability of handoff using $X-Y$ filter - -

BEN H. CANTRELL

5.4 Discussion of Results

The mean errors in the polar and cartesian filters were found to increase during fades unless the target was moving at a constant velocity along the polar or cartesian coordinates, respectively. For short fades at the longer ranges, there seemed to be very intie difference between the mean errors in either system. The covariances increased during fading conditions.

One can hand off targets at closer ranges using the $X-Y$ filter. This is because of the large accelerations in the $R-\theta$ coordinate system for crossing targets.

6.0 CONCLUSION

This report describes an approximate analytical procedure for determining the errors in an $\alpha-\beta$ filter operating in castesian coordinates. These errors are separated into mean and covariance errors and ars compared to the errors in an $\alpha-\beta$ filter operating in pclar coordinates.

The polar to cartesian and cartesian to polar cocrdinate iransformations are shown to be approximately linear over the space in which the central and near tail regions of the probability density lie. Since the measurement probability density is Gaussian, it is shown that the probability densities after the transformations can be approximated with a high degree of accuracy with Gaussian densities as long as the far tail region is of little concern. Using this result, we find che covariances at the output of the filters. Closedform steady-state solutions are found for the covariances in the polar coordinate filter and for stationary targets using the cartesian coordinate filter. These covariances depend upon α, β, and measurement variances. For moving targets, the cartesian coordinate filter yields output covariances wisich are nonstationary. Their values depend upon α, β, measurement variances, target trajectory, target speed, and sampling time. In steady state and for the far ranges, the output variances using the cartesian coordinate filter approach the variances obtained from the polar coordinate filter. At the near ranges, the covariances are in general larger in the cartesian coordinate filter as compared to the polar coordinate filter.

At the far ranges the mean errors using either filtering system are essentially the same. But at the close ranges the mean error in the polar coordinate system is in general larger than in the cartesian coordinate filter.

In the study on the effects of short fades using the predicted target strategy, it was generally found that both the mean errors and covariances increased during the time of the fade.

In the study of the track handoff problem it was found that one could hand off targets at closer ranges using the $X-Y$ filter. This is because of the large accelerations in the $R-\theta$ coordinate system for crossing targets.

ACKNOWLEDGMENT

I would like to thank Dr. G. V. Trunk for discussing the problems involved in this report with me and for contributing the results shown in Section 5.3.

REFERENCES

1. B. H. Cantrell, "Behavior of $\alpha-\beta$ Tracker for Maneuvering Targets Under Noise, False Target, and Fade Conditions," NRL Report 7434, Aug. 17, 1972
2. B. H. Cantrell and G. V. Trunk, "Analysis of the Track Handoff Between the Search and Track Radars," NRL Report 7505, Dec. 29, 1972
3. J. T. Tou, Digital and Sampled-Data Control Systems, 1st ed., McGraw Hill, New York, 1959
4. J.S. Meditch, Stochastic Optimal Linear Estimation and Control, 1st ed., McGraw Hill, New York, 1969

Appendix
 CALCULATION OF MEANS AND COVARIANCES OF RADAR MEASUREMENIS IN TERMS OF CARTESIAN COORDINATES

A radar measurement is given ir range R and azimuth \hat{v}, where R and θ are assumed to be uncorrelated, Gaussian-distributed random variables with means $\tilde{\theta}$ and \bar{R}, and variances σ_{R}^{2} and σ_{0}^{2}. The problem is to determine the means and covariances of the two quantities X and Y defined as

$$
\begin{align*}
& X=R \cos \theta \tag{A1}\\
& Y=R \sin \theta . \tag{A2}
\end{align*}
$$

In the calculations the following two facts are used extensively. The approximation

$$
\begin{equation*}
e^{-2 \tau_{\theta}^{2}}=1+\sum_{N=1}^{\infty} \frac{\left(-2 \sigma_{\theta}^{2}\right)^{N}}{N!} \approx 1-2 \sigma_{\theta}^{2} \tag{A3}
\end{equation*}
$$

is used because the azimuth standard deviation σ_{g} in radians found in typical searcin radars is small. The integrai

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\alpha^{2} X^{2}} \cos b X d X=\frac{\sqrt{\pi} e^{-b^{2} / 4 \alpha^{2}}}{2 \alpha}, \quad \text { where } \alpha>0 \tag{A4}
\end{equation*}
$$

is used in each of the calculations.
The major steps in the calculations are the following.
Mean of X, \bar{X}

$$
\begin{aligned}
& \bar{X}=E[R] E[\cos \theta] \quad \text { where } E[R]=\bar{R} \\
& E[\cos \theta]=\frac{1}{\sqrt{2 \pi} \sigma_{\theta}} \int_{-\infty}^{\infty} \cos \theta e^{\left.-(1 / 2)\left[(\theta-\bar{\theta}) / \sigma_{\theta}\right)^{2}\right]} d \sigma .
\end{aligned}
$$

Change of variable $\omega=\bar{\varepsilon}-\bar{\theta}$

$$
E[\cos \theta]=\frac{1}{\sqrt{2 \pi} \sigma_{\theta}} \int_{-\infty}^{\infty}[\cos \omega \cos \theta-\sin \omega \sin \theta] e^{(-1 / 2)\left(\omega / \sigma_{\theta}\right)^{2}} d \omega
$$

$$
\begin{align*}
& E[\cos \theta]=\frac{2 \cos \bar{\theta}}{\sqrt{2 \pi} \sigma_{\theta}} \int_{0}^{\infty} \cos \omega e^{-\left(1 / \sqrt{2} \sigma_{\theta}\right)^{2} \omega^{2}} d \omega \\
& E[\cos \theta]=e^{-\sigma_{\theta}^{2} / 2} \cos \bar{\theta} \\
& \bar{X}=\bar{R} e^{-\sigma_{\theta}^{2} / 2} \cos \bar{\theta} ; \quad \text { for small } \sigma_{\theta}, \quad \bar{X}=\bar{R} \cos \bar{\theta} \tag{2.13}
\end{align*}
$$

Mean of $\mathbf{Y}, \overline{\mathbf{Y}}$
Similar to calculation of \bar{X}

$$
\begin{equation*}
\bar{Y}=\bar{R} e^{-\sigma_{\theta}^{2} / 2} \sin \bar{\theta} ; \quad \text { for small } \sigma_{\theta}, \quad \bar{Y}=\bar{R} \sin \bar{\theta} \tag{2.14}
\end{equation*}
$$

Variance of $Y, V A R X$

$$
\begin{aligned}
& \operatorname{Var} X=E\left[X^{2}\right]-(E[X])^{2}=E\left[R^{2}\right] E\left[\cos ^{2} \theta\right]-\bar{X}^{2} \\
& E\left[\cos ^{2} \theta\right]=\frac{1}{\sqrt{2 \pi} \sigma_{\theta}} \int_{-\infty}^{\infty} \cos ^{2} \theta e^{\left.-(1 / 2)\left[(\theta-\bar{\theta}) / \sigma_{\theta}\right)^{2}\right]} d \theta \\
& E\left[\cos ^{2} \theta\right]= \\
& =\frac{1}{2} \times \frac{1}{\sqrt{2 \pi} \sigma_{\theta}} \int_{-\infty}^{\infty} e^{\left.-(1 / 2)\left[(\theta-\bar{\theta}) / \sigma_{\theta}\right)^{2}\right]} d \theta \\
& \\
& \quad+\frac{1}{2} \times \frac{1}{\sqrt{2 \pi} \sigma_{\theta}} \int_{-\infty}^{\infty} \cos 2 \bar{\theta} e^{\left.-(1 / 2)\left[(\theta-\bar{\theta}) / \sigma_{\theta}\right)^{2}\right]} d \theta
\end{aligned}
$$

Let $\omega=\theta-\bar{\theta}$;

$$
\begin{aligned}
E\left[\cos ^{2} \theta\right]= & \frac{1}{2}+\frac{1}{2} \times \frac{1}{\sqrt{2 \pi} \sigma_{\theta}} \int_{-\infty}^{\infty} \cos (2 \omega+2 \bar{\theta}) e^{(-1 / 2)\left(\omega / \sigma_{\theta}\right)^{2}} d \omega \\
E\left[\cos ^{2} \theta\right]= & \frac{1}{2}+\frac{1}{2} \times \frac{1}{\sqrt{2 \cdot x} \sigma_{\theta}} \int_{-\infty}^{\infty}(\cos 2 \omega \cos 2 \bar{\theta}-\sin 2 \omega \sin 2 \bar{\theta}) \\
& \times e^{(-1 / \varepsilon)\left(\omega / \sigma_{\theta}\right)^{2}} d \omega \\
E\left[\cos ^{2} \theta\right]= & \frac{1}{2}+\frac{2 \cos 2 \bar{\theta}}{2 \sqrt{2 \pi} \sigma_{\theta}} \int_{-\infty}^{\infty} \cos 2 \omega e^{-\left\{1 / \sigma_{\theta} \sqrt{2}^{2} \omega^{2}\right.} d \omega
\end{aligned}
$$

$E\left[\cos ^{2} \theta\right]=\frac{1}{2}+\frac{1}{2} e^{-2 \sigma_{\theta}^{2}} \cos 2 \bar{\theta}$
$E\left[R^{2}\right]=\sigma_{R}^{2}+(\bar{R})^{2}$
$\operatorname{Var} X=E\left[K^{2}\right] E\left[\cos ^{2} \theta\right]-(\bar{X})^{2} ; \quad$ for small σ_{θ},
$\operatorname{Var} X=\sigma_{R}^{2} \cos ^{2} \bar{\theta}+(\bar{R})^{2} \sigma_{\theta}^{2} \sin ^{2} \bar{\theta}$

Variance of \mathbf{Y}, Var \mathbf{Y}

Similar to calculation of $\operatorname{Var} X$, for small σ_{θ},
$\operatorname{Var} Y=\sigma_{R}^{2} \sin ^{2} \bar{\theta}+(\bar{R})^{2} \sigma_{\theta}^{2} \cos ^{2} \bar{\theta}$.
Eq. (2.11)
Covariance of X and $Y, \operatorname{Cov} X Y$
$\operatorname{cov} X Y=E[X Y]-E[X] E[Y]=E\left[R^{2}\right] E[\cos \theta \sin \theta]-\bar{X} \bar{Y}$
$E[\cos \theta \sin \theta]=\frac{1}{2} \times \frac{1}{\sqrt{2 \pi} o_{\theta}} \int_{-\infty}^{\infty} \sin 2 \theta e^{\left.-(1 / 2)\left[(\theta-\bar{\theta}) / \sigma_{\theta}\right)^{2}\right]} d \theta$
$\omega=\theta-\bar{\theta}$
$E[\cos \theta \sin \theta]=\frac{1}{2 \sqrt{2 \pi} \sigma_{\theta}} \int_{-\infty}^{\infty}(\sin 2 \omega \cos 9 \bar{\theta}$
$+\cos 2 \omega \sin 2 \dot{\theta}) e^{(-1 / 2)\left(\omega / \sigma_{\theta}\right)^{2}} d \omega$
$E[\cos \theta \sin \theta]=\frac{\sin 2 \bar{\theta}}{\sqrt{2 \pi} \sigma_{\theta}} \int_{-\infty}^{\infty} \cos 2 \omega e^{-\left(1 / \sigma_{\theta} \sqrt{2}\right)^{2} \omega^{2}} d \omega$
$E[\cos \theta \sin \theta]=\frac{1}{2} e^{-2 \sigma_{\theta}^{2}} \sin 2 \bar{\theta}$
$E\left[R^{2}\right]=\sigma_{R}^{2}+(\bar{R})^{2}$
$\operatorname{cov} X Y=E\left[R^{2}\right] E[\cos \theta \sin \theta]-\bar{X} \bar{Y} ; \quad$ for small σ_{θ},
$\operatorname{cov} X Y=\frac{\sigma_{R}^{2}}{2} \sin 2 \bar{\theta}-\frac{\bar{R} \sigma_{\theta}^{2}}{2} \sin 2 \bar{\theta}$.
Eq. (2.12)

[^0]: *This makes the target pass within 2 mi of the radar.

