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ABSTRACT 

This  paper descrtbes a new code DASSL, f o r  t he  numerical s o l u t i o n  o f  i m p l i c i t  
systems o f  d t f f e r e n t i a l / a l g e b r a i c  equations. These equations ape w r i t t e n  i n  
the  form F(t,y,y') = 0, and they can inc lude systems which a r e  s u b s t a n t i a l l y  
more complex than standard form ODE systems y '  = f ( t , y ) .  D i f f e r e n t i a l / a l g e -  
b r a i c  equations occur i n  several d i ve rse  app l i ca t i ons  i n  the  phys ica l  world. 
We o u t l i n e  the  a lgor i thms and s t ra teg ies  used i n  DASSL, and exp la in  some o f  
t h e  features of the-code. I n  add i t ion ,  we o u t l i n e  b r i e f l y  what needs t o  be 
done t o  so lve a problem us ing  DASSL. 
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. rJlmdwLu 
Tbls paper describes a new code DASSL, for the 

numerical solution of implicit systems of diEerentid/dge- 
braic equations. These equations are written in the form 

F(t,  Y, s/> - 0 
v(to) = Yo (1) 

Y v o )  = Yo'. 

where F, y, and y' are N dimensional vectors. DASSL 
is useful for solving two general classes of problems which 
cannot be handled by standard ODE solvers. For the flrst 
class, it is not possible to solve for y' explicitly to rewrite 
(1) as a standard form ODE system y' = f(t ,y).  For the 
second class, it is possible in theory to solve for J, but it is 
impractical to do so. For example, to convert Ay' = By to 
st-andard form, we must multiply by '4-l. If A is a sparse 
matrir, A'' may not be sparse, so it is adwntageous to be 
able to solve the equations in their original form. 

Systems of differential/algebraic equations (DAE) arise 
in several diverse applications in the physical world. P r o b  
lems of this type occur frequently in the numerical method- 
of-lines treatment of partial differential equations'. In these 
applications, BF/Oy' may be singular (so that  it is not pos- 
sible to solvt explicitly for J )  because of boundary con- 
ditions, or because the PDE system includes both evolu- 
tionary and non-evolutionary equations (such as the incom- 
pressible Navier-Stokes equations, or the boundary layer 
equations2). DiEerential/algebraic equations arise in the 
simulation of electronic circuits, where they are sometimes 
called semistate equations3. These systems also Occur in the 
dynamic analysis of mechnnicsl systems'. These problems 
can all be solved using DtLsSL. 

Nearly all of the most popular codes for solving ordi- 
nary dinerentid equations have been directed at systems 
written in standard form 

u' = !(C Y) l  Y(t0) = Yo. (2)  

Several codes besides DASSL have been written for solv- 
ing systems which cannot be written in standard form. In 
the early 19703, C. W. G e d  flrst noticed that,numeri- 
cal methods for solving stiff diflerentisl systems could be 
adapted to solve some DAE sptems, and Gear and Brown" 
wrote a code for this purpose. In 1980, G. Soderlind7 
published a code for solving systems of the form 

in which y and z are treated by different methods. k 
C. Hindmarsh and J. F. Painter recently released a code 
LSODI' for solving linearly im licit DAE systems A(t, y)p' 
= = f ( t , y ) .  LSODI is similar to 8ASSL in that it uses back- 
ward differentiation formulas (BDF) to advance the solution 
from one time step to the next. However, there are sub- 
stantial differences between these two codes, both in how 
they are used and in the strategies which are used internally 
to compute the solution. We will explore some of these 
differences later; for other details, the reader is referred to 
Petzold*. 

DASSL was developed beczuse of a need at Sandia 
National Laboratories to solve problems of the form (1). 
The code has been used for solving problems arising from 
several different applications by users with varying back- 
grounds, on several computers. We have taken care to  make 
the code easy to use, while a t  the same time providing op 
tions which are needed for dexibility in solving practicd 
problems. The Fortran source code for DASSL can be ob- 
tained by writing to the author. 

&w The Code W a  

In th is  section, we outline the algorithms which DASSL 
uses for ad.vancing the solution from one time step to 
the nest. A complete description of the algorithms and 
strategies used in the code can be found in Petzolds. 

The underlying idea of Gears for solving DAE systems 
is to replace the derivative in (1) by a diaerence approxima- 
tion, and then to solve the resulting equation for the solu- 
tion at the current time tn  using Newton's method. For ex- 
ample, replacing the derivative by the bschwerd difference 
in (l), we obtain the flrst order rotmula 

This equation is then solved using Newton's method, 

f5, 
where m is the itcratiou indcx. Tbe nlgorillims uscd in 
DASSL we an cstensiotl of this npproach. Instcad of wing 
the nrst order lormilla (.I), DASSL approsimatcs Lhe dcriva- 
tive using the kLh ortlcr bnckwnrtl clilTcrentinLion formula 
(BDF), wlicre k rnngcs lrom oiic to flvc. 011 cvery sccp it 
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chooses the order k and stepsize At,, based on the behavior 

Newton's method(5) converges most rapidly when the 
initid guess 9: Is accurate. DASSL obtains an initial 
guess for by evaluating the polynomial which inter- 
polates the computed solution at the last k + 1 times 
fn-l, L a ,  ..., f,,-(!+l), at  the current time t,. An initial 
guess for $, Is obtund by evaluating the derivative of this 
polynomial at t,,. Once yo, is found, Newton's method is 
used to solve for Y,, as in (S), except that in general the 
derivative is ap roximated by the kth order BDF formula, 
instead of by t tl e backward difference of y,. When the 
stepsize is not constant, there is a choice as to which form 
of the BDF formula to use. DASSL uses the b e d  lead- 
Ing coeacient form of the BDF formula (see Jackson and 
Sacks-Davis' ). These formulas tend to be more stable than 
the flxed coeacient formulas used in LSODI', and are more 
eflcient in some respects than the variable coefltcient for- 
mulas used in'EPLSODE'O. In DASSL, these polynomials 
are represented in terms of scaled divided differences; the 
details are discussed in Petzolds. 

It is important to solve the nonlinear equation (4) 
efEcientiy. To simplie notation, we can rewrite this equa- 
tion as 

where 8 is a constant which changes whenever the s t e p  
size or order chmges, b is a vector which depends on the 
solution at  past times and t,y,&,b are evaluated at t,. 
This equation is solved in DASSL by a m d e d  version of 
Newton's method, 

- of the solution. 

F(t ,  Y? G Y  + B )  = 0, (6) 

-1 8F ymfl = ym - c( + a") F( t ,  y"', 6ym 4- B ) .  (7) 
BY 

The iteration matrix G = BF/By' + aBF/By is computed 
and factored, and is then used for as maay time steps 
as possible. In general, the d u e  of a when G was  last 
computed is ditlerent from the current value of b. If a is Coo 
ditlerent from 8,  then (7) may not converge. The constant 
c in (7) is chosen to speed up the convergence aben a#&, 
and is given by .-. 

The rate of convergence p of (7) is estimated whenever two 
or more iterations have been taken by 

(Ilv"+' - Y"II )'? 
IlY' - YOll 

(9) 

(The norms are scaled norms which depend on the error 
tolerances specifled by the user.) The iteration hns con- 
verged when 

If p > 0.9, or m > 4, and the iteration has not yet 
converged, then the stepsize is reduced, and/or an iteration 
matrix based on current approximations to y, y', and a is 
formed, and the step is attempted again. 

The linear systems are solved using routines from the 
LINPACK" subroutine package. The matrix can either 
bo dense or have a banded structure. For most problems, 
the iteration matrix i s  computed by nnite diikrenccs. The 
jth column of C is approximated by incrcmenting thc 
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jtb component of y in (6), and then forming the flnite 
ditlerence quotient. The choice of the increment is a deli- 
cate but important issue; for details, see Petzold6. When 
C is banded, it is computed using the algorithm of Curtis 
et. al.12 so as to minimize the number of function evalua- 
tions required. There is an option available for the user 
to write a routine to compute G, given t ,  y, and a. For 
some problems, this can be more eficient than using finite 
diflerences to compute the matrix. 

m e r  the corrector iteration has converged, an error 
test is made to determine whether the solution satisfles 
a local error tolerance specifled by the user. The test is 
satisfled whenever Clly, - y:JlS 1, where C is a constant 
which depends on the order and recent stepsize history of 
the method. The constant C is chosen to control both the 
variable stepsize local truncation error, and the error in 
interpolated values of y between mesh points. If the error 
test is satisfled, the code takes another step. Otherwise, the 
stepsize and/or order are reduced and the step is attempted 
again. 

The stepsize and order for the next step are deter- 
mined using basically the same strategies 3s in Shampine 
and GordonI3. The code estimates what the error would 
have been if the last few steps had been taken at  constant 
stepsize, a t  the current order k ,  and at k - 2, k - 1, and 
k + 1. Lf these estimates increase as k increases, the order 
is lowered; if they decrease, it is raised. The new stepsize 
A t n + l  is chosen so that the error estimate based on taking 
constant stepsizes At,+l at  order kn+l satisfles the error 
test. 

One of the main complications which arise in solving 
DAE's, which has no counterpart in ODE'S, is that it may 
not be a trivial matter to obtain initial values for all of the 
components of y or d .  Depending upon the application, 
users may know yo but not YJ,! go but not yo, or various 
combinations of these possibilities. In our experience, it is 
fairly common for users to know all of yo, and some but not 
all of the components of y6. To facilitate solving problems 
of this type, there is an option in DASSL to compute the 
initial values for y', given the initial values of y and an ini- 
tial guess for d. The algorithm uses the backward Euler 
method (4), in conjunction with a damped Newton itera- 
tion. A stepsize At0 is chosen based on considerations es- 
plained in Petzold8, and the iteration matrix is computed at 
y = yo + A t ~ y ' ~ ,  y' = f0. This algorithm works best when 
the iteration matrix does not depend on y', or depends on 
this value only weakly. In contrast to the approach used in 
LSODI', it is applicable even if aFjBy' is singular. 

The code is arranged so that a driver routine, called 
DASSL, allocates storage, checks for illegal input and other 
error conditions, sets up the initial stepsize and optionally 
calls a subroutine to compute the initial derivative. DASSL 
calls the one-step solver DASTEP to advance the solution 
over each time step, and manages the output and error 
messages. Communication between DASSL and the other 
routines is via parameter lists and one labeled commou 
block whose elements can only be altered by the driver. 
The common block contains pointers into work arrays, and 
these pointers can be chouged only by the driver. Two 
routines NJAC and SOLVE manage the solution of the 
system of h e a r  equations in D.4STEP. NJAC computes 
the iteration matrix and factorizes it, aud SOLVE calls the 
appropriate linear system solver to solve the decomposed 
system. Because thc linear algebra is lornlized to these two 
routines, i L  is 3 simple mattcr to add uew linear equation 
solvers for diflercnt types of mntriccs. 



I mous change in the solution. All of these systems ran caiise 
problems for a code. Often, the system can be rewritten in a 
mathematically equivalent form so that it is solvable. This 
sometimes involves differentiating an algebraic constraint 
and/or eliminating a variable from the system by solving 
for it in terms of other variables and their derivatives. A 
complete description of the sources of these dificulties is 
beyond the scope of this paper. The interested reader is 
referred to P e t ~ o l d ' ~  for a more detailed discussion of t hese 
types of systems. These complications will  never occur for 
many practical problems. Anyone using this type of code 
should, however, think carefully about both his problcm, 
and the formulation of his problem, before trying to solve 
i l  numerically. 
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