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ABSTRACT. For infinitely divisible distributions p on R? the stochastic integral mapping
® ¢ p is defined as the distribution of improper stochastic integral fooo_ f(s)dXép), where f(s)
is a non-random function and {X s(p )} is a Lévy process on R? with distribution p at time 1.
For three families of functions f with parameters, the limits of the nested sequences of the
ranges of the iterations <I>}‘ are shown to be some subclasses, with explicit description, of
the class Ly, of completely selfdecomposable distributions. In the critical case of parameter
1, the notion of weak mean 0 plays an important role. Examples of f with different limits

of the ranges of ® are also given.

1. INTRODUCTION

Let ID = ID(R?) be the class of infinitely divisible distributions on R?, where d
is a fixed finite dimension. For a real-valued locally square-integrable function f(s)
on R =[0,00), let

orvec ([ soaxs)

0

the law of the improper stochastic integral fooof f(s)dXép) with respect to the Lévy
process {X{”: s > 0} on R? with £(X")) = p. This integral is the limit in probability
of F(s)dX{" ast — 0o. The domain of @, denoted by D(®), is the class of p € 1D
such that this limit exists. The range of ®y is denoted by (®). If f(s) = 0 for
s € (s0,00), then ®;p = L( [;° f(s)dXﬁp)) and ®(®;) = ID. For many choices of
f, the description of :8(®y) is known; they are quite diverse. A seminal example is
R(P;) = L = L(R?), the class of selfdecomposable distributions on R?, for f(s) = e~*
(Wolfe (1982), Sato (1999), Rocha-Arteaga and Sato (2003)). The iteration ®7} is
defined by @} = @ and ®}"'p = ©(P}p) with D(P}) = {p € D(P}): P}p €
D(Pf)}. Then

ID > R(®y) D R(PF) D -+



We define the limit class
(@f) = [ ) R(DY).
n=1

If f(s) = e, then R(®}) is the class of n times selfdecomposable distributions and
Roo(Py) is the class L of completely selfdecomposable distributions, which is the
smallest class that is closed under convolution and weak convergence and contains
all stable distributions on R?. This sequence and the class L., were introduced by
Urbanik (1973) and studied by Sato (1980) and others. If f(s) = (1 —s)1j1(s), then
Roo(Ps) = Lo, which was established by Jurek (2004) and Maejima and Sato (2009);
in this case R(Py) is the class of s-selfdecomposable distributions in the terminology
of Jurek (1985). The paper of Maejima and Sato (2009) showed R (Ps) = Lo in
many cases including (1) f(s) = (—logs)lpa(s), (2) s = ffo(i) u e du (0 < s < 00),
ff e du (0 < 5 < s = /7/2). The classes R(®;) corresponding to (1)~

(3) are Goldle Steutel-Bondesson class B, Thorin class T (see Barndorff-Nielsen et
al. (2006)), and the class G of generalized type G distributions, respectively. These
results pose the problem what classes other than L., can appear as Ro.(P) in general.
For —oo < a < 2, p > 0, and ¢ > 0, we consider the three families of functions
foa(5), lya(s), and f.(s) as in [S] (we refer to Sato (2010) as [S]). We define ®,,,
Ay, and VU, to be the mappings ® with f(s) equal to these functions, respectively.
In this paper we will prove the following theorem on the classes R, (®y) of those
mappings. The case o = 1 is delicate. There the notion of weak mean 0 plays an

important role.

Theorem 1.1. (i) Ifa <0, p>1, and g > 0, then
Roo (Ppa) = Reo(Aga) = Reo(Vy) = Lo
(i) If 0<a<1,p>=1, and g >0, then
Roo(@pa) = Roc(Aga) = Reo(Wa) = LE?.
(i) Ifa=1,p>1, and ¢ =1, then
Reo (1) = Roo(A11) = Roo(Vy) = LD N {p € ID: pi has weak mean 0}.
(iv) If l<a<2,p>=1, and ¢ > 0, then

Reo (Ppa) = Roo(Aga) = Roo(Vy) = LD N {p € ID: p has mean 0}.



Let us explain the concepts used in the statement of Theorem 1.1. A distribution

p € ID belongs to Ly if and only if its Lévy measure v, is represented as
w(B) = [ 1@ [ ) [ 1ater i
(0,2) S 0

for Borel sets B in R?, where I, is a measure on the open interval (0,2) satisfying
f(w)(ﬁfl + (2 = B)"Tu(dB) < oo and {Nj: B € (0,2)} is a measurable family of
probability measures on S = {£ € R?: |¢| = 1}. This ', is uniquely determined
by v, and {\;} is determined by v, up to § of I',-measure 0 (see [S] and Sato
(1980)). For a Borel subset E of the interval (0,2), the class LE denotes, as in [S],
the totality of u € Lo such that I', is concentrated on E. The classes L% and
L%? appearing in Theorem 1.1 are for E = (a,2) and (1, 2), respectively. Let C),(2)
(z € RY), A,, and v, be the cumulant function, the Gaussian covariance matrix, and
the Lévy measure of p € ID. A distribution 1 € ID is said to have weak mean m,,
if iMoo f) jp<q @Vu(d2) exists in R and if
Cu(z) = —3(z,Auz) + lim (e 1 —i(z,2))v,(dx) + i{m,, 2).

a—00 |x‘<a

This concept was introduced by [S] recently. If p € ID has mean m, (that is,
Jga 2| pe(dz) < oo and [p, xp(dz) = m,), then p has weak mean m,, (Remark 3.8 of
S).

Section 2 begins with exact definitions of f,, fy, and [, , and expounds existing
results concerning R (P ). Then, in Section 3, we will prove Theorem 1.1. In Section
4 we will give examples of @ for which R (®Py) is different from those appearing in

Theorem 1.1. Section 5 gives some concluding remarks.

2. KNOWN RESULTS

Let —co<a <2, p>0,and ¢ > 0 and let

1 ! 1 1
Gpa(t) = —/ (1—w)P Yy, 0<t<1,
L(p) Ji
1 1
Jaa(t) = T )/ (—logu)'u™"tdu, 0<t<1,
q) J¢

ga(t) = / u e du, 0<t< oo
t

Let t = f,4(5) for 0 < s < Gpa(0+), t = lya(s) for 0 < s < j,0(04), and t = f,(s)
for 0 < s < go(0+) be the inverse functions of s = g, (t), s = jsa(t), and s = g,(?),

respectively. They are continuous, strictly decreasing functions. If o < 0, then



Gp.a(04), 44.0(04), and g,(0+) are finite and we define f,(s), ly.a(s), and fu(s) to
be zero for s > §pa(0+), joa(0+), and g,(0+), respectively. Let ®,,, A, ., and
W, denote ®; with f = f,a, lya, and fo, respectively. Let K, ., Lya, and Ky
be the ranges of @pya, Aga, and W, respectively. These mappings and classes were
systematically studied in Sato (2006) and [S]. In the following cases we have explicit
expressions:
(1 — [als)11 19 1 /0y (5) for a < 0,
fra(s) =lia(s)=qe* for a =0,
(14 as)~ Ve for a > 0,
foa(s) = {1 = (Cp + 1) )"} Lo ayrprap(s), >0,
loo(s) = exp(—(T(q + 1)s)"/), ¢ >0,
f-1(s) = (= 1log s) 1o 1y(s).
In the case p = ¢ = 1 we have &)1,04 = Ao and Ky, = L;,, which are in essence
treated earlier by Jurek (1988, 1989); ®;, = A;, were studied by Maejima et al.
(2010a), and Maejima and Ueda (2010b) with the notation ®,. The mapping A,
and the class L, o with ¢ = 1,2, ... coincide with those introduced by Jurek (1983) in
a different form. A variant of U, is found in Grigelionis (2007).
A related family is

[e.e]
Goplt) = / uw e du, 0<t< oo,
¢

for —co < a < 2and 8 > 0. Let t = G}, 4(s) for 0 < s < G, 3(0+) be the inverse
function of s = G 5(t). If a < 0, then G, 3(0+) is finite and we define G7, 5(s) = 0 for
s > Ga,p(0+). Let ¥, 5 denote ®; with f = G}, 5. This was introduced by Maejima
and Nakahara (2009) and studied by Maejima and Ueda (2010b) and, in the level of
Lévy measures, by Maejima et al. (2010c). Clearly, ¥, ; = ¥,. We have

G 55(s) = (= log Bs)P 1191/8(s), B> 0.

Earlier the mappings ¥y » and W_3 5 were treated in Aoyama et al. (2008) and Aoyama
et al. (2010), respectively; U_, 5 appeared also in Arizmendi et al. (2010).
Maejima and Sato (2009) proved the following two results.

Proposition 2.1. Let 0 < ty < oco. Let h(u) be a positive decreasing function on
(0,t0) such that [,°(1+u?)h(u)du < co. Let g(t) = [ h(u)du for 0 < t < to. Let
t = f(s), 0 < s < g(0+), be the inverse function of s = g(t) and let f(s) = 0 for
s 2 g(0+). Then R (Py) = Lo



Proposition 2.2. R (V) = L.

It follows from Proposition 2.1 that R (Pf) = Lo for f = fp.a With p > 1 and
-1 <a<0, f=1lowithg>1land -1 <a<0,f=f, with -1 <a <0,
and f = GJ, 5 with —1 < o < 0 and § > 0. The function f, for ¥y = @, does
not satisfy the condition in Proposition 2.1 but Proposition 2.2 is proved using the
identity Wo = A1 oU_; = U_1A4 .

In November 2007-January 2008, Sato wrote four memos, showing the part re-
lated to W, in (ii), (iii), and (iv) of Theorem 1.1. But assertion (iii) for ¥; was shown
with the set {y € ID: p has weak mean 0} replaced by the set of u € L, satisfying
some condition related to (4.6) of Sato (2006). At that time the concept of weak
mean was not yet introduced. Those memos showed that some proper subclasses of
L., appear as limit classes R (Py).

Sato’s memos were referred to by a series of papers Maejima and Ueda (2009a, b,
2010a, b) and Ichifuji et al. (2010). In Maejima and Ueda (2010a, c) they characterized
R(AT,), —00 < a < 2, for n = 1,2,..., in relation to a decomposability which
they called a-selfdecomposability, and found R (A1) for —co < o < 2. But the
description of R (A1,1) was similar to Sato’s memos. In Maejima and Ueda (2010b)
they showed that U, 3 with —oco < o < 2 and [ > 0 satisfies R (V0 3) = Roo(Va),
under the condition that o # 1 4+ nfB for n = 0,1,2,.... For ¥y, and V_g5 with
B > 0, this result was earlier obtained by Aoyama et al. (2010). Further it was shown
in Maejima and Ueda (2009b) that Roo(Vs) = Roc(A1,) for —oo < o < 2. An
application of the result in Maejima and Ueda (2010a) was given in Ichifuji et al.
(2010).

If f(s) = blygl(s) for some a > 0 and b # 0, then it is clear that R (Py) =
R(Ps) = ID. A first example of Ryo(Py) satisfying Lo & Rao(®y) S 1D was
given by Maejima and Ueda (2009a); they showed that if f(s) = b for a given
b > 1 with [s] being the largest integer not exceeding s, then R, (Pf) = L (b), the
smallest class that is closed under convolution and weak convergence and contains
all semi-stable distributions on R? with b as a span; in this case RR(®) is the class
L(b) of semi-selfdecomposable distributions on R? with b as a span. See Sato (1999)
for the definitions of semi-stability, semi-selfdecomposability, and span. See Maejima
et al. (2000) for characterization of L. (b) as the limit of the class L, (b) of n times
b-semi-selfdecomposable distributions and for description of the Lévy measures of

distributions in Le (D). Recall that Ly G Lo (b).



We have the following result in [S].

Proposition 2.3. The assertions related to Ay, in (i), (ii), and (iv) of Theorem 1.1

are true.

Indeed, in [S], Theorem 7.3 says that Ayyy.a = Ay al\ga for a € (—oo0,1)U(1,2),
q >0, and ¢' > 0, and hence A} , = A4, and further, Theorem 7.11 combined with

Proposition 6.8 describes [ .o Lg.a for o € (—o0,1) U (1,2).

q>0

3. PROOF OF THEOREM 1.1

We prepare some lemmas. We use the terminology in [S] such as radial decom-
position, monotonicity of order p, and complete monotonicity. In particular, our
complete monotonicity implies vanishing at infinity. The location parameter v, of
i € 1D is defined by

Col) = —1(z, Ay2) + /R (1 = i, ) gy () () + i 7).
Let K7, [resp. K goa] denote the class of distributions p € I'D for which there exist
p € ID and a function ¢, from [0,00) into R? such that f; Frals)dX¥) — g, [resp.
fot fa(s)dXs(p ) qi] converges in probability as ¢ — oo and the limit has distribution

L.

Lemma 3.1. Let —co < a < 2 and p > 0. The domains of ®,, and ¥V, are as

follows:

D(Ppa) =D(Va)

(

1D for a <0,
{pe€ID: flx|>1 log |z| v,(dz) < oo} for a =0,
{pelID: flr|>1 |z|* v,(dz) < oo} for0<a <1,

{peID: flx|>1 2| v,(dz) < 00, [gax p(dz) =0,
limg_oo f; s~ 'ds f‘$|>8 zv,(dx) exists in R} for a =1,

\{p €lD: flﬂc|>1 |z|* v,(de) < 00, [paxp(dr) =0} forl<a<2.

This is found in Sato (2006) or Theorems 4.2, 4.4 and Propositions 4.6, 5.1 of [S].

Lemma 3.2. Let —oco < a <2 andp > 0. The class K, [resp. K, ] is the totality

of w € ID for which v, has a radial decomposition (\,(d§), u=*"! k‘g(u)du) such that

kg(u) is measurable in (&, u) and, for A\,-a. e. £, monotone of order p [resp. completely



monotone] on R} = (0,00) in u. The classes Ko and K o, that is, the ranges of

®, and Y, are as follows:

(K;a for —oo < a <1,
Kpo = {n € K51 pu has weak mean 0} for a =1,

({n € K}, i has mean 0} forl<a <2,

'Kf;,a for —oco < a <1,
Koo = {n € KS 10 1 has weak mean 0} for a = 1,

({n € K5, .+ it has mean 0} forl<a<2.

See Theorems 4.18, 5.8, and 5.10 of [S]. Note that if x is in K2 , or K¢, with

00, P,

0 < <2, then [p, |z|°u(dr) < oo for § € (0,) (Propositions 4.16 and 5.13 of [S]).
It follows from the lemma above that Ky , O K, , and K, D Ky, for p < p’ and
that K5, , =[50 Kpa and Koo =[50 Kpa- In fact, this is the reason why we use

the notation K , and K 4.

Lemma 3.3. Let p € L.

(i) Let 0 < a < 2. Then [p |z|*p(dz) < oo if and only if T,((0,a]) = 0 and
f(a,g)(ﬁ —a)™! I'y(dB) < oo.

(i) Jipsq log |2] p(dz) < 00 if and only if [, B2 T,(dB) < 0.

Proof. Assertion (i) is shown in Proposition 7.15 of [S]. Since

/|2|>1 log |z|v,(dz) /(072) Fp(dﬁ)/s)\ﬁ(dg)/l (log |r&|)r="dr
= [ vt [Cosrrtar= [,
(0,2) 1 0,2)

assertion (ii) follows. O

Lemma 3.4. Let pu and p be in LS. Suppose that I',(dp) = (8—1)b(B)I.(dB) and
Ay = Mg with a nonnegative measurable function b(3) such that (3 — 1)1 (b(3) — 1)
is bounded on (1,2). Then, [ s 'ds f|x‘>5 xv,(dz) is convergent in R as a — oo if

and only if 1 has weak mean m,, for some m,,.

Proof. Notice that b(/) is bounded on (1,2) and that f|z|>1 |z|v,(dz) < oo by Lemma
3.3. We have

/1“81d8/|xl>8:z:1/p(d:c) :/1a s 1ds /(1’2) Fp(dﬁ)/sg)\g(dg) /:o,,,ﬁdr

- /() WATd3) [ ex5(a) [ Pas =1 Gsay



and

[ ontan = [ v s [Crtar - )
L-n= [ o) -0ras) [ [T

‘(b(ﬁ) —y [t < o= -1

and [ r~Pdr tends to (8 —1)7%, I} — I, is convergent in R? as a — oo. Hence I; is

Hence

Since

convergent if and only if I5 is convergent. O

Lemma 3.5. Let f and h be locally square-integrable functions on R,. Assume that
there is so € (0,00) such that h(s) = 0 for s > so and that ®y, is one-to-one. Then
Oy, = ), Py

Proof. Let fi(s) = f(s)1p4(s). Then ®;®;, = &Py, by Lemma 3.6 of Maejima
and Sato (2009). Let p € ©(®y). Then ®pp — Ppp as t — oo by the definition
of ®;. Hence ®,®5p — ©,Psp by (3.1) of Maejima and Sato (2009). It follows
that ®;®,p — &,Psp. Since the convergence of fo dX in law implies its
convergence in probability, ®,pis in ®(®y) and ¢ P;p = ®,Psp. Conversely, suppose
that p € ID satisfies ®,p € ©(Ps). Then ©,Ppp = O, Ppp — q)f@hp as t — o0o.
Looking at (3.8) of Maejima and Sato (2009), we see that [;°h(s) # 0 from the
one-to-one property of ®,. Hence {®,p: t > 0} is precompact by the argument in
pp. 138-139 of Maejima and Sato (2009). Hence, again from the one-to-one property
of @y, @y, p is convergent as t — oo, that is, p € D(Py). O

Lemma 3.6. Let [ be locally square-integrable on R,. Suppose that there is 3 > 0
such that any p € R(Ps) has Lévy measure v, with a radial decomposition (A, (d§),

uﬁl’g(u)du) where I (u) is measurable in (§,u) and decreasing on RS in u. Then
EROO((I)f) C moo(AL_g_l) = L.

Proof. Clearly I > 0 for \,-a.e. . Since f$|>1 v, (dr) < oo, we have lim, .o l¢ (u) = 0
for A,-a.e. §. Hence we can modify l{(u) in such a way that [¢'(u) is monotone of
order 1 in w € RZ. Recall that a function is monotone of order 1 on RY if and only if
it is decreasing, right-continuous, and vanishing at infinity (Proposition 2.11 of [S]).

Then it follows from Theorem 4.18 or 6.12 of [S] that
R(Pr) C R(A1_p-1). (3.1)



Let us write A = Ay _p_; for simplicity. We have ®;A = A®; by virtue of Lemma
3.5, since A is one-to-one (Theorem 6.14 of [S]). If ®;A™ = A"® for some integer
n > 1, then
DA = OpAN" = ADFA" = ANy = AT Dy
Hence ® ;A" = A"®; for n =1,2,.... Now we claim that
R(P}) C R(A") (3.2)

for n =1,2,.... Indeed, this is true for n = 1 by (3.1); if (3.2) is true for n, then any
€ R(P}™) has expression

M:(I)'}H-lp:q)fq)}bp: (I)fAn ,:An(bfp/:AnAp” :An+1p//

for some p € D(PYH), p' € D(A") with ®}p = A"p/, and p” € D(A) with $pp' = Ap”,
which means (3.2) for n+1. It follows from (3.2) that R (Pf) C Rao(A). The equality
Roo(A) = Lo, is from Proposition 2.3. O

Proof of the part related to Roo (V) in Theorem 1.1. The result for —1 < a < 0 is
already known (see Propositions 2.1 and 2.2). But the proof below also includes this
case. First, using Lemma 3.2, notice that Lemma 3.6 is applicable to ®; = ¥, and
B=(—a—1)VO0.

Case 1 (—oo < a < 0). We have ©(¥,) = ID in Lemma 3.1. Let us show that

Wo (L) = L. (3.3)
Let p € Ly and g = U,p. Then for B € B(R?), where B(R?) is the class of Borel

sets in RY,
/ ds/ 1g(fa(s)x)v,(dx) = / t_a_le_tdt/ 1p(tz)v,(dz)
R 0 Rd

N / e /02 //\g(df) /OOO 1B(tTf)T_ﬁ_1dT
- /(072) NGO a)Fp(dﬁ)/S)\g(dg)/o 1 (ué)u""du.
Hence p € Lo, with
[u(dB) =T (B8 —a)l,(dB) and \j=\]. (3.4)

Let us show the converse. Let p € L,,. In order to find p € L., satistying ¥,p = p,
it suffices to choose I',, )\g, A,, and 7, such that (3.4) holds and

A, :/o fa(s)“dsA,, (3.5)



W= fa(s)ds (’Yp + /Rd (1| fa()rl<1y — 1{|x<1})vp(dm)) (3.6)

(see Proposition 3.18 of [S]) This choice is possible, because infge(o2) I'(8 — o) > 0,
I3 fals)ds = [t e tdt = @), J5° fals)?ds = [T t' et =T'(2 — a), and

/ fa(S)dS/ 2 11 fao)zi<1y — Lgjaicny| vp(d)
0 Rd
:/ taetdt/ || |1{|tw‘<1} — 1{|z‘<1}| Vp<dx)
0 R

1 oo
:/ t_ae_tdt/ |z| v, (dx) —I—/ t_“e_tdt/ |z| v, (dx)
0 1<|z|<1/t 1 1/t<z|<1

1/]z| oo
= / || Vp(dx)/ t~ e tdt +/ |z] Vp(dx)/ t~ % dt < oo,
|z|>1 0 lz|<1 1/lx]

since fol/m t=e7tdt ~ (1 — ) Yz|* ! as |x| — oo and ffﬁx‘ t=e~tdt ~ |z|*e /17 as
|z| | 0. Therefore (3.3) is true. It follows that U7 (L) = Lo for n =1,2..... Hence
Roo (Vo) D Loo. On the other hand, R (¥, ) C Ly by virtue of Lemma 3.6.

Case 2 (0 < aw < 1). Since ©(¥,,) is as in Lemma 3.1, it follows from Lemma 3.3
that

Lo ND(W,) = {

We have

p € Ly f(02 72T ,(dB) < oo}, a =0,
{peLW). Jia(B =) Ty (dB) < oo}, O<a<l

Uo(Loo ND(T,)) = LY, (3.7)
where L% = L. Indeed, if p € Lo ND(V,) and p = Uop, then we have p € L2
and (3.4), using I'(8 —a) = (8 —a)"'T(B—a+1) for 0 < a < 1. Conversely, if u €
L% then we can find p € LooN®D(V,) satisfying = ¥, p in the same way as in Case
1; when a = 0, we have [, B7T,(df3) < oo since I',(dB) = B(I(8 + 1))~'T',(dB)
and [, 67T, (dB) < co. Hence (3.7) holds. Now we have

U (Lo ND(V2)) = L2 (3.8)
for n =1,2,.... Indeed, it is true for n = 1 by (3.7) and, if (3.8) is true for n, then
L = W7 (Lo N D(WR)) = W2 (LED 1 D(WD))
= Vi (Va(Loo ND(Va)) ND(V7))
= U5 (Pa(Loo ND(TLH))) = Wi (Los ND(TLT)).
It follows from (3.8) that L& C R (P,). Next we claim that

R(V,) N Ly € LY. (3.9)
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Let yt € R(¥o)N Loo. Then p has a radial decomposition (A, (d§), r=*~" k{ (r)dr) with
the property stated in Lemma 3.2. On the other hand,

v(B) = /m) rua9) [ e [ ey

:/SXy(df) /(0’2) I%(dp) /OOO L E)rP1dr

for B € B(R?), as there are a probability measure A, on S and a measurable family
{5} of measures on (0,2) satisfying f(o,z) (8714 (2= B)"HT{(dpB) = const such that
L (dB)N5(d€) = A.(d§)T(dB). Hence, by the uniqueness in Proposition 3.1 of [S],
there is a positive, finite, measurable function ¢(¢) such that \,(d¢) = (&), (d€)
and, for A,-a.e. & r=* Mk (r)dr = c(§)7! <f(0 2) Tfﬁflf’g(dﬁm dr. Hence k¢ (r) =
c(§)™ f(o,z) r*=PTE(dp), a.e. r. Since k¢ (r) is completely monotone, it vanishes as r
goes to infinity. Hence I';((0,a]) = 0 for A ,-a.e. £ Hence I',((0,a]) = 0, that is,
pe L proving (3.9). Now, using Lemma 3.6, we obtain R (V,) C R(Va)N Lo C
L&?.
Case 3 (o =1). Let us show that

Uy (Lo ND (V1)) = LY N {p € ID: weak mean 0}. (3.10)

Let p € Lo ND (W), that is, p € L, [,,(8 = 1)7'T,(dB) < 00, fpazp(dz) =0,
and lim,_ . fl s lds f|x|>s
1, u € L% and (3.4) holds with @« = 1. By Lemma 3.2, p has weak mean 0.
Conversely, let u € L&Y n {p € ID: weak mean 0}. Choose p € L5 such that
Tp(dB) = (T(B = 1))7'Tu(dB), Aj = A, Ay = Ay, and v, = — [, av,(dz) (note
that f(m)(ﬂ— 1)7'T',(dB) < oo and hence f‘$|>1 |z|v,(dz) < oo by Lemma 3.3). Then
Jga Tp(dz) = 0 (see Lemma 4.3 of [S]). Since p has weak mean, [;"s~'ds Jiaf>s

is convergent as a — oo by application of Lemma 3.4 with b(3) = 1/T'(3). Hence

zv,(dz) exists in RY. Let u = W;p. Then, as in Case

zv,(dx)

p € D(Vy). We have vy,, = v,, Ay,, = A,, and V;p has weak mean 0. Among
distributions p’ € ID having v,, = v, and A, = A,, only one distribution has weak

mean 0. Hence Wp = p. This proves (3.10). We have
U Lo ND(WT)) = LY N {p € ID: weak mean 0}, n=12... (3.11)

from (3.10) by the same argument as in Case 2. Hence

LYY N {p € ID: weak mean 0} C Roo (V). (3.12)
Next
R(V1) N Lo € LYY N {p € ID: weak mean 0}. (3.13)
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Indeed, R(V;) N Lo C LS by the same argument as in Case 2. Any 1 € R(¥;) has
weak mean (0 by Lemma 3.2. Now it follows from Lemma 3.6 that
Reo (V1) € LD N {p € ID: weak mean 0}. (3.14)
Case 4 (1 < a < 2). We show that
Uy (Lo ND(V,)) = LY N {p € ID: mean 0}. (3.15)

Let p € LooND(W,), that is, p € L&, Jiaz)(B=a)7'T(dB) < 00, and [y, zp(dz) = 0
(Lemmas 3.1 and 3.3). Let u = W,p. Then p € L? and (3.4) holds. Hence
Jga lz|p(dz) < oo by Lemma 3.3 and p has mean 0 by Lemma 3.2. Conversely, if
pe L N{p € ID: mean 0}, then we can find p € L,,ND(¥,,) satisfying ¥,p = p,
similarly to Case 3. Hence (3.15) is true. It follows that

U (Lo ND(TM)) = LD N {p € ID: mean 0}, n=1,2,...
similarly to Cases 2 and 3. Hence
LY N {p e ID: mean 0} C Roo(Vs). (3.16)
We can also prove
R(V,) N Lo € LY N {p € ID: mean 0}

similarly to Cases 2 and 3. Hence the reverse inclusion of (3.16) follows from Lemma

3.6. U

Proof of the part related to Roo(Ppn) in Theorem 1.1. We assume p > 1. Since
monotonicity of order p € [1.00) implies monotonicity of order 1 (Corollary 2.6 of
[S]), it follows from Lemma 3.2 that Lemma 3.6 is applicable with § = (—a — 1) V0.
Hence R (®po) C Loo. If p € Loo ND(P,,) and &, ,p = p, then p € LY
(understand that L? = L for a < 0) and, noting that

v.(B) = /0 " ds /R n(pa()e)yldr) = ﬁ /0 el g /R (e, da)
.

-5 /0 (L — /(072) T, (d5) /S () /0 (e

o F(ﬁ_&> 14 > U u_ﬁ_l U
_/(072) —F(ﬁ_a+p)rp(dﬂ)/SAﬁ(d€)/o Lp(ué)u™"d

and recalling Lemmas 3.1 and 3.3, we obtain p € L% with

TW(d5) = g

F5 a0 and X=X (3.17)
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Now the proof of assertions (i), (ii), and (iv) can be given in parallel to the

corresponding assertions for ¥,. Note that, if —oco < a < 1, then

/0 Frals)ds /Rd |2 (1417, o (9)21<1} — Lgeicay| vp(da) < oo

similarly. We also use the fact that k¢ (1) vanishes at infinity if it is monotone of order
p € [1,00).
For assertion (iii) in the case o = 1, we have to find another way, as Lemma 3.4

is not applicable if # > 1. Let us show
D1 (Lo ND(D,1)) = L3P N {p € ID: weak mean 0}. (3.18)

Suppose that p € Lo,ND(®, ;) and &, 1p = p. Then p € L%, f(l’Q)(ﬁ—l)*ll"p(dﬁ) <
00, 1t € L3? with (3.17), and p has weak mean 0 by Lemma 3.2. Conversely, suppose
that p € L%? with weak mean 0. As in [S], let M~ be the class of Lévy measures
of infinitely divisible distributions on R? and let @i | be the transformation of Lévy
measures associated with the mapping ®,,. Define T'y(dB) = T BlJ{f’ x(d3). Then
f(1’2)(2 — B)"'To(dfB) < oo. Define

vy(B) = 0 L h (rér=7ldr
B)= [ o) [ xiee) [ 1erta
for B € B(R%). We have 1y € M. We see
vu(B) = / m—_l))ro(dﬁ) /S NA(dE) /0 (€U du

—1+

/ ds/RdlB 71 () vod)

from the calculation above. Since v, € M*, we have vy € D(PL) and L vy =
Vy. Then it follows from Theorem 4.10 of [S] that v, has a radial decomposition
(Au(d€), u=?kf (u)du) such that kf (u) is measurable in (¢, u) and, for A,-a. e. £, mono-
tone of order p in u € RS. Hence p € R(Pp,1) from Lemma 3.2. Since O 1y = v,
and ®L, is one-to-one (Theorem 4.9 of [S]), we have i = ®,,1p for some p € D(P,1)
with v, = 1y. It follows that p € L. This finishes the proof of (3.18). Now we
can show (3.11)—(3.14) with ®,; in place of ¥, similarly to Case 3 in the preceding
proof. U

Proof of the part related to Roo(Ay ) in Theorem 1.1. Since we have Proposition 2.3,
it remains only to consider A;;. But the assertion for $.,(A;,;) is obviously true,

since A1’1 = q)1,1~ O
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4. SOME EXAMPLES OF R (Py)

We present some examples of @, for which the class R (®y) is different from
those appearing in Theorem 1.1.

Define T,, the dilation by a € R\{0}, as (T,u)(B) = [ 1p(az)u(dz) = p((1/a)B),
B € B(R%), for measures on R?. Define P;, the raising to the convolution power
t > 0, in such a way that, for p € ID, Py is an infinitely divisible distribution
with characteristic function ﬁtp(z) = 7i(2)*. The mappings T, (restricted to ID), P;,
and ®; are commutative with each other. A measure y on R? is called symmetric
if Ty = p. A distribution p on R? is called shifted symmetric if g = p % 6, with
some symmetric distribution p and some d-distribution 8. Let [ Dy = I Dgym(R?)
[resp. IDRIM = IDRIM(RY)] denote the class of symmetric [resp. shifted symmetric]

infinitely divisible distributions on R?.

Example 4.1. Let f(s) = bljgq(s) — bla2q(s) with a > 0 and b # 0. Then
Roo(Ps) = I Dy
Indeed, for p € ID,

a 2a
Cole) = [ Cob2dis + [ Cyl=ba)ds = aCyfb2) +aCyl=b2) = Cruryor i (2

for z € R%, and hence ®;p = P,T,(p * T_1p). Define Up = Py jop * T_1 Py j2p. Then
Up € IDgm for any p € ID. If p € IDgyy,, then Up = p. Hence U"p = Up for
n=12,.... Since &y = P,T,PoU = P,/ TU, we have @? = Py 10U = UP;, 1) and
U = @} Py} T1),- Hence Roo(Pf) = R(U) = I Dy

Example 4.2. Let f(s) = bljgq(5) — bl(ga+q(s) with a >0, ¢ >0, a # ¢, and b # 0.
Then Mo (®) = 1Dl

sym *

To see this, notice that
Co,p(2) = aCy(bz) + cCp(—bz) = (a + ¢)(a1Cn,,(2) + (1 — a1)Cr,p(—2))

for p € ID, where a1 = a/(a + ¢). That is, ®rp = Py Tp(Payp* Pi_g, T-1p). Let us
define Vp = P, p* Pi_,,T7_1p. Note that V is the stochastic integral mapping ®; in
the case a+c=1 and b = 1. We have

Vnp = Panp * Pl—anT—lp (41)

for n =1,2,..., where a, is given by a, =1 — a; + a,_1(2a; — 1). Indeed, if (4.1) is

true for n, then it is true for n + 1 in place of n, since

V"o =P, VpxP_o, T \Vp=P, Vpx P_,, VT_1p
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= Po,(Payp* Pioa,T-1p) * Piog,(Pa, T-1p * Pi_a,p)
= Panal—l—(l—an)(l—al)p * Pan(l—al)—i-(l—zzn)alelp
= g, P* Pl—an+1T—1p’

We see that 0 < a, <1 for all n. We have &% = P2 T/'V" = V"P Ti" and V" =
PlaroTin® = 4P, o T1),- Therefore i)%((I)’J%) = R(V"™) and hence R (Py) =

R (V). Next let us show that
Roo (V) = I DM (4.2)

sym
If p € IDgyy, then Vp = p. Hence Dy, C Roo(V). If p = 0,, then Vp =
Sary * 0_(1—ar)y = O@2a1-1)y- Now 0y, = Véa/241-1))y, since a; # 1/2. Hence all
d-distributions are in R(V") and hence in R (V). Since Roo(V) is closed under
convolution, we obtain [ D:;lff C Roo(V). To show the converse, assume that p €
Roo(V). Then p = V"p, for some p,, € ID. It follows from (4.1) that v, = a,v,, +
(1 —an)T_1v,,. Let 0, € ID be such that (A,,, Vs, Ye.) = (0,7,,,0). It follows
from a, = 1 —a; + a,-1(2a; — 1) and from 0 < a,, < 1 that a,, — 1/2 as n — oc.
Hence a,, > 1/3 for all large n. We see that the set {o,,: n =1,2,...} is precompact,
since v,, < a,'v, < 3y, for all large n. Thus we can choose a subsequence {0, }
convergent to some p' € ID. Since [ ¢(x) l/gnk (dz) — [ p(z)vy(dx) for any bounded
continuous function ¢ which vanishes on a neighborhood of the origin and since
a, — 1/2, we obtain v, = (1/2)v,y + (1/2)T_1v,. Hence v, is symmetric. Hence
fo % 6_,, is symmetric. It follows that p € IDZI. This proves (4.2) and therefore
Roo (Pf) = [ DEhifE,

sym

Example 4.3. Let o < 0. Let h(s) be one of fa(s), fra(s), and I, (s) (p = 1, ¢ > 0).
Let sg = sup{s: h(s) > 0}. Then 0 < sy < co. Define

h(8)7 0 < < 50,
f(s) =< —h(2s0 — ), S0 < s < 289,
O, s > 280.

Then Ru(®4) = Low N I Dy
Proof is as follows. First, recall that ®(®;) = D(Py) = ID. We have, for p € ID,

Co,p(2) = /080 C,(h(s)z)ds —I—/ ’ Cy(—h(2s9 — s)z)ds

- /080 Co(h(s)2)ds + | C,(—h(s)z)ds
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It follows that ®sp = ®p(p *x T_1p) = O, PoUp = UP,®,p, where U is the mapping
used in Example 4.1. It follows that ® = O PpU = URy®p for n = 1,2,....
Hence R(®7}) C R(P}) N I Dy Conversely, assume that p € R(P}) N I Dgyry. Then
p = @pp for some p and Ty = ®7T_1p. Since P, is one-to-one (see [S]), we have
p =T-1p. Hence ®p = Py PrUp = O} Py'p = Py'p and thus p = QEPl)p € R(PY).
In conclusion, R(P}) = R(P}) N [ Dy and hence Ry (Pf) = Roo(Pr) N [ Dy =
Lo N IDgy.

Example 4.4. Let h(s) and sy be as in Example 4.3. Define

h(so — s), 0 < s < s,
h(s — < s < 2sg,
f(s) = (s — so), S0 < 8 S0
—h(3sg — s), 250 < s < 350,
0, s > 3sg.
Then Rao(®;) = Loo M I DML,

To see this, notice that

Co,p(2) = /OSO Cy(h(sg — s)z)ds + ! C,(h(s — sg)z)ds

50

3s0
+ / Cy(—h(3s0 — s)z)ds
2

50
S0 S0 50
= / C,(h(s)z)ds —I—/ C,(h(s)z)ds —l—/ Cy(—h(s)z)ds
0 0 0
= QC@W(Z) + C‘%p(_z)
= 3(2C0,(2) + 1C (=),
Hence ®;p = PV ®yp, where Vp = Py3p x P/31_1p. This mapping V' is a special
case of V in Example 4.2 with a; = 2/3. Hence (4.1) holds with a, = 27(1 + 3™")
and 1 —a, = 27'(1 = 37"). Now &} = PPV d} = ORPyV™ = V'PydR. Hence
R(P}) C R(PR)NR(V™). It follows that Reo(Pf) C Roo(Pr) NRse(V) = Lo NI DAY
from Theorem 1.1 and (4.2). Let us also show the converse inclusion Lo, N ID3AY C
Roo(Pf). It is enough to show
R(Pp) NID C R(PY). (4.3)
For any v € R? we have
S0 S0
Cas ()= [ Co (h(s)2)ds =i [ (ruh(s)2)ds = el 2) = Ci (2),
0 0

where ¢ = foso h(s)ds > 0. That is, ®,0, = 6.. Hence @0, = P3®,V4, =
P3®,(0(2/3)y * 0—(1/3)y) = Pndy = 0ey. Hence @49, = deny and 0, = ®%5.-n,. Hence
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all d-distributions are in R(®%}). Similarly all §-distributions are in R(®}). Let
i€ R(Pp) N IDNE. Then px b, € R(P}) N I Dy for some . Letting p/ = pu % 65,
we have p/ = @7 p’ for some p'. Since p/ =T 1y = ®PT_1p', we have p' =T, p' from
the one-to-one property of ®,. Thus V"p' = p’ and ®%}p’ = ¢ Pp’ = PP/, Hence
p = Plp®hp’ = Q4P p" € R(PY). It follows that = p'+d_, € R(PY). This proves
(4.3). Hence Roo(®) = Lo, N I DI

sym *

Example 4.5. Let b > 1. Let f(s) = bljy(s) + 11,2)(s). Then Lo (b) C Ro(Py) &
ID. We do not know whether R (Pf) equals Ly (b). Here Lo (b) is the b-semi-
analogue of the class L., mentioned in Section 2.

Let us show that L (b) C Reo(Pf). For 0 < a < 2 define &,(b) = S,(b,RY) as
follows: p € &,(b) if and only if p is a J-distribution or a non-trivial a-semi-stable

distribution with b as a span, that is,
Ga(b) ={p € ID: Pup = Typ 5, for some v € R}.

We have Cy,,(2) = Cy(bz) + Cy(2) for p € ID, that is, @pp = Typ x p. If p € G4(b)
with Pop = Tpp * 6, then pp = Pypp satisties p = Typx p = Prap x 0_y x p =
Pyop1p*d_y and p € S,(b). If p € 8,(b) with Py = Typ * 0./, then p = Psp for
p = Pijwet1) (1t * 01/ pb+1))y) € Sa(b). Therefore ®;(S, (b)) = S,(b). Hence &,(b) C
R(P}) for 0 <a<2andn=1,2,.... It follows from Proposition 3.2 of Maejima and
Sato (2009) that 2R(®7%) is closed under convolution and weak convergence. Hence
Loo(b) € R(P}) and thus Lo (b) C Reo(Py). In order to show Ro(®y) S ID, let
p be such that v, = 0, with a # 0. Suppose that y = ®p for some p € ID.
Then v, = Tyv, +v,. If v, # 0, then the support of v, contains at least one point

a’ # 0 and hence the support of v, contains at least two points {a’, ba'}, which is
absurd. If v, = 0, then v, = 0, which is also absurd. Therefore u & 9(® ;) and hence

% ¢ moo(q)f)'
5. CONCLUDING REMARKS

The limit class R (P) is not known in many cases. For instance it is not known
for the following choices of f(s): l,1(s) with ¢ € (0,1) U (1,00) in [S]; f,.a(s) with
p € (0,1) and a € (—o0,2) in [S]; cos(27'7rs) in Maejima et al. (2010b); e~ 1jo (s)
with ¢ € (0,00) in Pedersen and Sato (2005); G?, 5(s) with a € [1,2) and 8 > 0
satisfying a = 1 + ng for some n = 0,1, ... in Maejima and Ueda (2010b). Another
instance is @y = T* with a € (0, 1) related to the Mittag-LefHler function, introduced
in Barndorff-Nielsen and Thorbjgrnsen (2006).
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Consider, as in Sato (2007), a stochastic integral mapping

e ([ saxe)

with 0 < a < oo for a function f(s) locally square-integrable on the interval (0, a] and
study Reo(Pf) = M2y R(P}). Under appropriate choices of f we obtain .o (Py)
equal to LYY N IDy with a € (1,2), LYY N IDy N {u € ID: p has drift 0} with
a € (0,1), or a certain subclass of LYY N IDy. This will be shown in a forthcoming

paper.
It is an interesting problem what other classes can appear as R (Py).
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