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A method has been described to represent orientations and orientation distributions of cubic crystals by means of
a 3-dimensional orientation space which is formed by the repeatedly discussed rotation coordinates (axis and
angle of rotation). Special emphasis has been given to the problem of multi-valency of the representation due to
the cubic symmetry, to the description of scattering around an ideal orientation and to the numerical evaluation
of these orientation coordinates by means of rotation matrices.

INTRODUCTION

For the description of the orientation of a crystal,
one needs 3 parameters related to a reference co-
ordinate system. The reference system is mostly
chosen either with respect to the geometry of the
specimen (e.g. for rolled sheets the system rolling
direction, sheet normal and cross direction), or
with respect to the crystallographic orientation of
another crystal (e.g. for a recrystallized grain the
crystallographic axes of the deformed matrix
crystal).
The 3 parameters can be chosen in many different

ways. One can, for example, imagine that the
reference coordinate system is transformed into
the system of the crystallographic axes of the con-
sidered crystal by rotating it around a certain axis
and uses the polar coordinates q9 and 8 of the axis
of rotation and the angle of rotation . Another
possibility is to apply the 3 Eulerian angles, which
are obtained if the reference system is turned into
the orientation of the crystal by 3 sequential rota-
tions around its orthogonal axes. As a third example,
in the case of rolled sheets, one often uses the indices
{h, k, l}(u, v, w) which represent the lattice plane
of the crystal coinciding with the plane of rolling
(2 parameters) and the crystallographic direction
falling into the direction of rolling (1 parameter).

Such a set of 3 orientation parameters can be
considered as a coordinate system defining a three-
dimensional orientation space. An orientation can
then be treated as a point and, correspondingly, an
orientation distribution as a density distribution in
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such an orientation space. This 3-dimensional
method of description of orientation distributions
has been used by Lticke, Perlwitz and Pitsch, and
in a similar manner by Williams. 2 They have
applied the rolling parameters {h, k, l}(u, v, w) and
their distribution to describe rolling textures.
Viglin a and Bunge et al.,4-8 also Roe and
others9-14 have discussed orientation representa-
tions with the aid of the Eulerian angles.

Mostly, orientation distributions, e.g. those of
crystallites of polycrystalline metals (textures), are
described by pole figures. These are stereographic
projections of the density distribution of the
normals (poles) to certain crystallographic planes
{h,k, l} over the various directions within the
sample. The reason for the preference of the pole
figures is that these can be determined in rather
simple ways by X-ray methods. Since, however, a
pole figure is only a kind of 2-dimensional projec-
tion of the 3-dimensional orientation variety it does
not contain the full information on the orientation
distribution. If, for instance, a certain point in the
pole figure representing a pole {h, k, l} of a crystal
is considered, it is not known which other points of
the pole figure belong to the same crystal, i.e.
nothing is known about the rotation of the crystal
around this axis. Only in cases of very pronounced
textures with only few components can one guess
from the pole figure the approximate orientation of
the crystals. In more complicated cases, one has to
apply a 3-parameter analysis.

It is the subject of this paper to discuss the method
of such a 3-parameter analysis of orientation dis-
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tributions using the above-mentioned 3-dimensional
rotation coordinates p, ,9 and ,. Compared to the
Eulerian coordinates which represent a sequence
of 3 rotations, these coordinates describe a single
rotation which is all necessary for the same purpose.
Even though these coordinates had frequently been
discussed previously15-18 (mainly by Mackenzie),
the method of using them for the practical analysis
of orientation distributions was not sufficiently
developed.

Therefore, in the present paper a systematic
derivation of the general theoretical relationships
needed for such an analysis will be given. In a second
paper19 (in the following referred to as Part II) an
example (recrystallization of deformed Fe-3 Si
single crystals) will be treated in order to demon-
strate how the orientation parameters qg, 0, can
be determined numerically and be used for a
rational description of orientation distributions.
Finally, at the end of Part II, a general discussion of
the principles of describing orientation distributions
will be given.

DESCRIPTION OF ORIENTATIONS IN
CUBIC CRYSTALS BY MEANS OF
ROTATIONAL COORDINATES

For any given orientation of a crystal B with
respect to a reference orientation .4, the coordinates
q, 9 and k of the corresponding 3-dimensional
rotation R (p, , ,) can assume the following
values"

0__<,p=<2r; 0=<__<n/2; -z__<O__< +
(positive sign of is to indicate clockwise rotation).
The corresponding orientation space can, for in-
stance, be represented in such a way that the unit
vector v of the rotation axis (with the coordinates
q9 and ) is plotted in the usual stereographic
projection and the rotation angle , as a third
coordinate, perpendicular to the projection plane
(Figure la).
Another representation of the orientation space

is obtained if--in the manner of 3-dimensional
polar coordinates--the angle of rotation is
plotted as radius vector in direction of the rotation
axes (Figure b). By assigning to the counter
direction the reversed sense of rotation one obtains
instead of the cylindrical orientation space of
Figure a a sphere with the radius IPmax g and
the somewhat modified range of values 0 _< q _< 27r,
0 _< _<_ 7r, 0 -< _< zr. While the representation

Z

FIGURE Representations of the three-dimensional
orientation space formed by the rotational coordinates
(v, t) (0, oa, v). (a) cylindrical space, (b) spherical space.

of Figure a will prove itself suitable for the
practical evaluation of experiments (see Part II)
the representation of Figure b will be advantageous
for theoretical considerations. As will be discussed
later, in some cases modified rotation angles

18 ]a/30* ’"(- sin 0)
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will be used leading to a radius of the orientation
sphere of * 1/a0max (18/n) and **Imax 1.

Since the 3 cube axes of a cubic crystal are non-
distinguishable, one obtains 24 different rotations
(R1 to Rz,,) for describing one and the same orienta-
tion. This corresponds to 24 different possibilities
of transforming cube poles of one crystal into those
of the other. (These can easily be seen" a first cubic
half axis of crystal A can be rotated into six different
half axes of crystal B and for each of these rotations
a second half axis of A into four different half
axes of B). However, since already one of these
24 rotations suffices to define the orientation, the
problem arises which of the 24 rotations, i.e. which
of the (theoretically equally well suited) 24 sets of
values p, and k is the most practical one to use.
This is different for different cases and will be dis-
cussed in Part II.

Mostly in literature, that of the 24 rotations which
is distinguished by the smallest angle of rotation
(mi.) has implicitly been used; it is named
"disorientation’’5 Rmin. In the orientation space,
Figure a, the orientations Rmi, are located near the
plane 0 and form there a sub-space in which
all possible orientations are contained." The
boundaries of this sub-space, which are curved
areas lying symmetrically with respect to the
plane 0, represent the largest values the angle
Omin can assume for the various directions of the
rotation axis. These angles Om, which are indicated
in Figure 4 for the unit triangle range between 45
and 62.8. In a corresponding way also, for the
spherical orientation space Figure b a sub-space
(around the center) containing all the rotations
Rmn can be defined.
The axes of rotation can be found graphically.

For each of the 3 pairs of cube poles which are
transformed into each other by the considered
rotation, the largest circle which runs symmetrically
between the two poles is drawn. The common
intersection of the 3 circles gives the corresponding
axis of rotation. One of the 24 possibilities is shown
in Figure 2 by the circles G1, Gz, G3 intersecting in
v. The rotation angle can then easily be deter-
mined if the whole pole figure is rotated in such a
way that v is located in its center.

Less time-consuming is a numerical way to
determine the rotational coordinates from the
3 angles o91, 0)z and 093 between the cube poles of
A and B to be transformed into each other (compare

-There are many different possibilities to divide the
orientation space into 24 sub-spaces in such a way that each
sub-space contains each possible orientation once.2

FIGURE 2 Graphic determination of axis (vl and angle
(,) of rotation for transforming the initial orientation A
(standard projection with the cube poles X, Y, Z) into the
final orientation B (with the cube poles X’, Y’, Z’). Relation
between rotation angle u, distance 2 from pole to rotation
axis and distance co of the two poles to be transformed into
each other (hereZ and Z’).

also Figure 5). For a given rotation one obtains
here the 3 equations

sin
sin - "sin2, (2)

(i 1, 2, 3) where 2i is the angle between the con-
sidered pole and the rotation axis. This can be
recognized by considering the spherical triangle in
in Figure 2 where o9i 0)=. From Eq. (2), it follows

sin2 (o/2)
cos 2 2i 1- sin2 (/2)

and, since

COS2 /i 1, one obtains for the angle

COS (.D "$" COS 0)2 -]" COS O.)3 + 2 cos (3)

From Eqs. (2) and (3) also the Cartesian coordinates
v1 cos 2i of the axis of rotation can be obtained.

Figure 3 gives an example showing all 24 axes
and angles of rotation which turn orientation A
into B. One recognizes that in each of the 24 unit
triangles of the pole figure just one axis is situated.
One further recognizes that all axes v are situated
in groups on largest circles, which run symmetrically
between the crystallographic poles to be transformed
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into each other. (Two such circles are shown as
dotted lines in Figure 3.) The number of axes on
one circle is equal to the crystallographic frequency
of the considered type of pole if the axis .Vmin corre-
sponding to the smallest angle of rotation (Omin)
is counted for all of these groups. One has always a
total of 13 such largest circles, namely, there are
as many as four-, three- and two-fold axes together.
For describing an identical orientation, one can

apply the rotation angle 0, but also the rota-
tions 90, 180 and 270 around the axes
100), 120 and 240 around (111) and 180
around (110). By considering the crystallographic
frequency z of the axes (3 for (100), 4 for (111)
and 6 for {110), one obtains 24 rotations, which
represent the actual cubic symmetry operations.
For 0 a degeneration occurs insofar as then
the location of the rotation axis is no longer
defined, but any direction may be selected as rota-
tion axis. This degeneration shows up already at
finite but small values of O: in Eq. (2) a small change
in orientation d sin (0)/2) corresponds to a large
displacement d sin 2 of the rotation axis if is
small. In the spherical orientation space (Figure b)
the orientations with 0 correspond to the

FIGURE 3 Example showing the 24 rotations R which
describe an orientation B with respect to the standard
orientation A. At the rotation axes (1 to 24) the respective
rotation angles are indicated; vml is emphasized. Of the
13 largest circles connecting vmi, with the various groups of
rotation axes, two are plotted as examples (dotted lines G
and G,).

origin of the coordinate system for which, of
course, no direction of the rotation axis is defined.

DESCRIPTION OF ORIENTATION
DISTRIBUTIONS

Now let us consider an orientation distribution.
According to Dunn21 one can define, the pole
density on the surface of a unit sphere by

dH(P)
o(g)=

dO (4)

Here, dH(P)is proportional to the volume fraction
of the specimen with poles of the considered type
in the space angle element df sin ,9d dqg. The
normalization is chosen in such a way that

2= o /--2o D(P).sin ,9 dO d9 z (5)

i.e. it equals the number z of poles of the con-
sidered type in the semi-space (per crystal). For a
random orientation distribution, the pole density
has for all directions the same value, D,(P) z/2rc.

In a corresponding way, we now define an orien-
tation density22 D(R) in the spherical 3-dimensional
orientation space (Figure lb) by

dH(R)
D(R) df. dO (6)

Here dH(R) is proportional to the volume fraction
with a rotation axis in the space angle element df
and the corresponding angle of rotation in the
range de. The normalization is chosen in such a
way that

= D(R). sin 0" dO. dqg.d 24o o
(7)

i.e. it equals the number of rotation axes (per
crystal).

In the case of random orientations all spatial
directions have equal probability for the direction
of the rotation axis, i.e. the orientation density is
independent of ,9 and o. According to Delthei123
it depends, however, upon the rotation angle:

D,(R) -2" sin2 (8)

Here the normalization factor 12[r 2 has already
been chosen so that it complies with Eq. (7). If one
inserts Eq. (8) into Eq. (7) and carries out only the
first two integrations, one obtains the distribution



DESCRIPTION ORIENTATION DISTRIBUTIONS 91

of the rotation angles for a random orientation dis-
tribution (compare Part II, Figure 4):

12f 24 ()h,(O) -" D,(R) df --re "sinZ (9)

Accordingly, for the density of the rotation axes one
obtains for this case by integration over , a
constant value h() 12/ft.

111)%. , 60’
D: 5,29, 6o,o’
D 5,3

N ,:o7v

min 5"

D =2.29
100 110

E]GUE 4 Jstdbufio of the ]JBJt values of the rotation
angles mln and of the density D(Vmln) of tile corresponding
rotation axes Vm for random orientations (compare also
Mackenziea 6).

If instead of k the coordinate * (see Eq. (1)) is
used, one obtains as volume element of the orien-
tation space

(,*)2.sin,gdOdqd/* -5. sina .sin ,gd,gdq) d,

(10)

i.e. for a random orientation distribution (see
Eq. (8)) one obtains a constant orientation density
D,(R*) 1. If the stereographic coordinate $**
instead of qt is used, it follows from Eqs. (8) and
(1) for the orientation density at random dis-
tribution

192
D(R**) --T-[1 +(O**)/]a (11)

For the case of a random orientation distribution
the distribution of the rotations with the smallest
rotation angle (Rm,) has been calculated by
Mackenzie . 7 and Handscomb. s By extending
the integration (9) over only that part of the orienta-
tion space occupied by the Rm,, one obtains the
distribution h,.(Om.), which assumes a maximum
at 45 (see also Part II, Figure 6). The corresponding
integration over leads to the (then no longer
constant) distribution of the rotation axes Vm,.

This function h,(vmin) is indicated for a unit triangle
in Figure 4. This function hr(vml,) (as well as the
upper limit value mi,) increases perpendicular to
concentric circles around (100)- and (111)-axes
with increasing distance from these poles. It reaches
its highest values on the largest circle (thick line)
for which /(2)v v2 + v3 (v, v2 and v3 are the
Cartesian coordinates of the rotation axis unit
vector v).
The pole density D(P) can be obtained from the

orientation density D(R) as a sum of 2z line
integrals:

2z2=f,D() dsD(’)
,:

(12)

Let us consider, as an examNe, a { 100} pole figure.
All rotation aes, which contribute to the pole
density at a certain point Z’ by transforming the
standard pole Z into Z’ are situated on the largest
circle (here Ga) which lies symmetrically between
Z’ and Z. To each rotation axis v on this circle
belongs another rotation angle , (see Eq. (2)), so
that this circle corresponds to a path s in the
orientation space. The integration in Eq. (12) must
be carried out along this path. Since one has 2z
(i.e. here 6) poles of the standard position (the
positive and negative directions of the axes must be
counted separately) which can be brought into Z’,
one obtains 2z of such circles and, therefore, 2z
terms in Eq. (12).]" The factor 2z/24 results from the
condition that in the case of random orientation
the integration over the entire pole sphere (on the
left side of Eq. (12)) leads to the value 2z (Eq. (5))
and the integration over the entire orientation
space (on the right side of Eq. (12)) yields the value
24 (Eq. (7)). Equation (12) shows again that from
the orientation distribution D(R) the pole density
distribution D(P)can be unequivocally derived,
but not D(R) from D(P).

THE ORIENTATION DISTANCE AND THE
DESCRIPTION OF SCATTER AROUND AN
IDEAL ORIENTATION

For the purpose of describing the orientation
difference between two crystals by only one para-
meter the disorientation Omen appears to be most- In the present case of a 100 pole figure each orientation
corresponding to one of these largest circles is described
by 4 different points on this circle (e.g. for the circle trans-
formingZ into Z’ one has 4 possibilities of transforming the
other 2 cube poles into each other). With 6 circles, one
arrives again at 24 orientation points per orientation.
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appropriate. According to Eq. (3) it is determined
by the 3 angles co, between the corresponding cube
axes of the two crystals (see Figure 5). As first
proposed by Dunn2 one often uses only the largest
of the 3 angles cot which has been defined as
"orientation distance p" since it is a quantity more
simple to determine than the disorientation. (For
example, in Figure 5 p is equal to co2, the angle
between A2 and B2). This definition can easily be
applied to other types of axes, e.g. to (1 ll)-axes
by considering the largest of the 4 angles between
corresponding (111) axes as being the orientation
distance. 2# In the following the relationships
between p and @mi, will now be derived. The cal-
culations will be limited first to cube axes and to the
supposition that the reference crystal is in standard
projection.

Equation (2)shows that for a given rotation
always that one of the 3 cube axes possesses the
largest distance from its original direction, whose
angular distance 2 from the rotation axis v lies

FIGURE 5 Definition of the orientation distance p
between the orientations B and A (p is the largest of the 3
angles o9 between the corresponding poles of A and B; here
p

closest to n/2. Only this cube axis determines the
orientation distance p. (In Figure 6, where the
rotation axis characterized by q0 and 2 is considered,
it is the axis [i00]). With v being the component
of the rotation axis vector v in the direction of this

cube axis, and setting cos 2 v (see Figure 6) and
co p, one obtains from Eq. (2)

IPmin 2 arc sin
\(1- v)/] (13)

00

I00

FIGURE 6 Derivation of the relationship between the
orientation distance p of two crystals, and the rotation
coordinates (0,

Equati on (13) is valid for all rotation axeslocated
in the 8 shaded triangles, since for those [i00]
represents the most distant cube axis. For the
remaining 16 triangles vl, in Eq. (13), must be
replaced by v. and v3, respectively. According to
Eq. (13) has its smallest value on (100)-zone
circles since here the corresponding v, 0 (in the
case of Figure 6 one has t’ 0 along the hori-
zontally running [i00]-circle):

O<oo> P (14)
From here, increases with increasing distance
from this circle and reaches its maximum value in
the direction of the (111)-axis"

i/sin (p/2)0(111) 2 arc sin
k (2/3)’/2"] 1.22 p

(5)
(Here, the error of approximation made in the
second part of this equation is smaller than 70
for p =< 60).
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II

010

FIGURE 7 The area in the sphere-shaped orientation
space (v, ,} corresponding to a constant orientation distance,
/7 const., with respect to the center orientation.

In the spherical orientation space {v, @} Eq. (13)
defines for a given p a body as shown in Figure 7.
It can approximately be described as a sphere of
the radius <10o> P, having pyramidal
elevations in the (111 )-directions, or, otherwise, as
a cube with an edge length 2"(1>]x/3 , 1.41.p
whose surfaces are bowed out to such extent that
the circumferential lines parallel to cube faces
describe circles with the radius q<aoo> P. One
recognizes that within a deviation of +10 the
orientation distance is independent of the position
of the rotation axis and roughly given by the size
of the rotation angle.

If the orientation space is occupied by orienta-
tions with random distribution, the probability,
W(p), to find an orientation at a distance __< p from
the standard position is equal to the probability of
its falling into the interior of the body, Figure 7.
This permits an exact calculation of this quantity
W(p), which had been determined already approxi-
mately by Dunn2x by considering the individual
poles (see also ref. 25). For that purpose this body
is transformed into the orientation space (v, *}
with O* as length of the radius vector, since then
the orientation density for a random distribution is
Dr(R*) (Eq. (10)) and W(p) given directly by
the volume of this body. A simple estimate can then
be obtained by approximating the body by a sphere
of the radius

4 .)3 paW(p) - n OP k (16)

Replacing q* by Eq. (1) and setting p, it
leads to k 1.27, which corresponds to a too
small volume.
The exact calculation has been carried out in

Appendix I and gives also, in a very good approxi-
mation, the volume proportional to p3 (maximum
deviation 2.7 for p 45). It gives further,
k 1.42 for ( 100}-poles and k 1.38 for { 111 }-
poles. Using these k-values Eq. (16) defines a radius

* q*fr, which leads to a sphere of the same
volume as that of the original body. With k 1.4
one obtains q4n 1.03p, i.e. one finds that here
also the orientation distance p is about equal to the
rotation angle min"

In experimentally determined orientation dis-
tributions one often finds orientation scatter around
a center orientation ("ideal orientation"). If this
scatter has almost spherical symmetry’, i.e. if the
distribution depends only upon and not upon v
it is often sufficient to describe it one-dimensionally
using the orientation distance with respect to the
ideal orientation instead of using the complete
3-dimensional orientation distribution. In such a
case one can experimentally determine the (integral)
frequency distribution H(p), which gives the
fraction of crystals having an orientation distance
__< p from the ideal orientation. By comparing the
measured distribution H(p) to the distribution
W(p), which is calculated for random orientations
(Eq. (16)) a "preference factor"

/-/(p)
Q(P) W(p) (17)

can be defined21,2s which represents a measure for
the degree of accumulation around an ideal
orientation.

In general, the ideal orientations do not coincide
with the standard orientation as had been assumed
in the foregoing. Since p always refers to the ideal
orientation and q to the standard orientation, the
simple relationship Eq. (13) is no longer valid in
this general case. Moreover, by the transformation
of the ideal orientation from the standard position
(q 0) into an asymmetrical orientation( q0),
the shells around the ideal orientation which charac-
terize the scattering, are being distorted. Therefore,
in the ease of ideal orientations deviating from the
center of the orientation space, certain difficulties
arise in evaluating experimental results" (i) the- This always has to be examined, e.g. Perlwitz, Pitsch,
LtickO found strongly ellipsoidal scattering in rolling
textures ofcopper and brass.
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symmetry of the scattering is no longer simply
recognizable, e.g. a spherical scattering around the
center looks approximately ellipsoidal if the ideal
orientation is situated outside the center; (ii) the
angle obtained by averaging the rotation angles

of all crystals of the accumulation deviates from
the angle o for the ideal orientation (if o 4: 0)
eveninthe casethat the scattering wouldbe spherical.
These two effects are treated in Appendix II.

If an orientation distribution contains more than
one accumulation there is the possibility that the
scatter regions overlap. While the extent of over-
lapping can be directly recognized in a 3-dimen-
sional orientation space, it is less easily recognizable
in a pole figure. This problem, which is also im-
portant for the evaluation of experiments, is treated
in Appendix III.

NUMERICAL DESCRIPTION OF
ORIENTATIONS BY ROTATION
MATRICES

For the numerical determination of orientation
relationships it is useful to present the orientations
of cubic crystals by 3 x3 orthogonal matrices
R2 5,2 s with the determinant Det(R) + 1"

R-- r21 r22 r2 (18)
/’31 /’32 F3

Such matrices which are known as rotation matrices,
can be used to describe the above treated rotation
of the reference system (corresponding to the unit
matrix U) into the coordinate system of the crystal
axes."
The three columns ofthe matrix give the Cartesian

coordinates of the unit vectors r of the cube axes

R (r, r2, r3)
with r ill.rll -]-112"r21 @U3"I’31 etc. (19)

with u, u2, u 3 as the unit vectors of the axes of the
reference system. If the rotation R occurs relative to
an .orientation which corresponds to a rotation A
relative to the reference system, one obtains a
rotation

A.R (20)

"" Also in this representation, only three independent
parameters occur, since between the 9 matrix elements r
one has 3 equations of normalization and 3 equations of
orthogonality.

relative to the reference system (for A U one gets
again B R). Hence the orientation of B with
respect to A:t::

R A-.B A"B (21)

Axis and angle of rotation can be obtained from
the matrix elements rk as follows. Since at the
rotation R the rotation axis v is retained one has

R’v v (22)

i.e. v is a eigenvector of the matrix R. The same
applies for the reversed rotation, hence

R-l.v R"v v
and

(R-R’)’v S*’v 0 (23)

with rik rik--rki. Equation (23) represents a
system of three homogeneous linear equations for
the components v, v2, va of v with the determinant
Det (R*) 0. This means, this system corresponds
to two independent equations so that together with
the normalization conditionv +v +v one has
3 equations from which the components v can be
calculated individually. One finds

V K.(r23-r32); v2 K.(ral-rl3);

v3 K’(r2-r2) (24)
with

1
[(/,23--/’32) 2 -l-(/’31--/’:t3) 2 +Q’12-F21)2]1/2

(25)

The rotation angle t can be obtained from the
(inversant) trace ofthe matrix

rjj / 2 cos (26)
J

in agreement with Eq. (3).
If one has found one of the possible 24 rotations,

e.g. R, the others can be obtained by interchang-
ing-prior to application of this rotation Rtmthe
cube axes of the reference system. This can be
achieved by applying suitable rotations T which

:I: For the orthogonal and normalized matrices which are
used here, the inverse matrix A -x, which describes the
reversed rotation, is equal to the transposed matrix A’, which
is defined by a’ au. Thus we have here

/e100"
A.A’= U |0101

\OOl/
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are given by the 24 cubic symmetry operations."
The 24 identical orientations are thus arrived at by
a sequence of two rotations

R= RI’T with i= 1,2,...,24 (27)

The corresponding coordinates (v, /) are obtained
from R again by Eqs. (24) to (26). The orientation
distance p is given by the smallest of the diagonal
elements of the matrix Rmi,

cos p Min (/’min)jj (28)

In Part II it will be shown, with the aid of an
example, how to determine numerically such
rotation matrices and the rotational coordinates
from experimental data and how to apply these to a
rotational description of orientation distributions.

Appendix I: DISTRIBUTION OF THE
ORIENTATION DISTANCES AT RANDOM
ORIENTATION DISTRIBUTION

According to Eqs. (13) and (1) modified rotation
angle Imi is given as a function of the orientation
distance p by

* --" 2 arc sin
sin it

-sin (2arcsin ( sin(p/2)sin2>)]} 1/3

(29)

Since in the case of random orientation distribution
one has D,.(R*)= in the (v, O*)-space, the
probability W(p,,,) to find orientations with p =< Pm is

’m* (@,)2 .sin ,9d dq9

(30)

" Since these operations can be reduced to the three basic
rotations

Too=90[100]; T11= 120[111]; Tlo= 180[110]
one has generally

T T oo" T ,. T, o (27a)
with i= 1,2 24; r=0,1,2,3; s=0,1,2; t=0,1.
In particular, one has for r s , T, U, and for the
fundamental interchange matrices

(i i) (i i i)Too TI To

(27b)

with *min being the value resulting from Eq. (29)
for p pro.

Because of the crystallographic symmetry, one
can limit the integration to one of the 48 unit
triangles, for instance, to triangle [0011-[0111-[111
of Figure 6. Setting 2 ,9 and carrying out the
integration over q* and q, the latter from Oo
to n/4

W(0,,*) 48 o "(0)3. sin 0d

By inserting for the boundaries of the triangle
sin o ctg and ctg l (2)/2 and
applying the substitution ctg sin x, one finally
obtains

W(p,,)
=o (l+sinx)3/

x [F(x,p)-sin {F(x,p)}] dx (32)
with

F(x, p) 2 arc sin [(1 +sin x)/.sin (p/2)]

This integral cannot be solved analytically.
However, for small p both terms in the integral can
be expanded so that with x-sinx x3/6 the
easily solvable integral

x cosxdx 1.424.pW(p) z2 6 =0
(33)

is obtained in agreement with Eq. (16). A numerical
evaluation of integral (32) reveals that the approxi-
mation (33) is very good; even forp 45 it leads
to a value only 2.7 above the exact one. (For
p,,, > 45 Eq. (32) becomes invalid, as then two
{100}-poles of the same orientation may fall into
the same circle of scattering, a possibilty not been
considered in the derivation of Eq. (30)).
A similar calculation can be carried out, if one

defines p as the largest of the four angles between
the corresponding (111)-axes. Also, in this case
Eq. (29) is valid; one only has to insert for 2 the
angle closest to n[2 of the four angles between the
rotation axes and the four (111)-axes. Also here,
the integration can be carried out over a unit
triangle and results again in an expression of the
type of Eq. (16) with k 1.382. This expression is
valid up to p 35.5 (half the distance of two
{ 111 }-poles).
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Appendix II" SCATTER AROUND AN IDEAL
ORIENTATION WHICH DOES NOT
COINCIDE WITH THE STANDARD
ORIENTATION

As a simple example of an orientation distribution
in the spherical orientation space (Fig. b) we
consider a sphere of the radius @ around the
center of this space. It may contain N orientations
leading to an orientation densitypDr(@) (see Eq. (8))
inside the sphere, whereas the rest of the orienta-
tion space is not occupied. After a rotation of the

II -- const.
"t- .-.4-. 4---

FIGURE 8 Transformation of a sphere with the radius,, around the center of the spherical orientation space
(sphere I) by a rotation of the angle ’o > ’ (schematic)
(a) in the (v, ,} space, (b) in the (v, ** space. Here also a
sphere corresponding to an angle Zo < s is plotted (II).

coordinate system around the angle o around an
axis Vo the ideal orientation originally situated in
the center will be located at a point in the orienta-
tion space characterized by .Vo and @o and again be
surrounded by a scattering zone.

This zone, however, is no longer spherically
shaped. In radial direction the diameter 2@s has
been maintained since in the direction of the rota-
tion axis the rotation angles can simply be added.
In azimuthal direction, however, the scattering zone

f According to Eq. (3 l) the normalization factorp follows
fromp W(,s*) (with g,. gs).

is smaller, since the orientation density increases
with increasing (Eq. (8)) and, therefore, the
volume required for N orientations decreases. For
small and not too small o one can approximate
the scattering body by a rotational ellipsoid
(Figure 8a) with the length of the large axis being
2k and that of two small axes being 2s, with s
defined by

n.s2 _.3 k/D,OPo) (34)

This relationship is obtained by equating the
number of orientations in the ellipsoid to that in
the sphere around zero (see Eqs. (16) and (1)),
assuming that the density in the whole ellipsoid is
approximately given" by D(@o), i.e. by that at the
point (Vo, Oo),

4n 4n 4
-.tps.s2.p.D,(po) --.p-(O*) 3 = .p-@s (35)

In this approximation, in which o ff represents
the center of the ellipsoid, also the distribution of
the .-values can be easily derived. With zkk
[q/-o] and with Eqs. (34) and (35) one obtains the
differential frequency (normalized to the total
number N)

(36)
Here, r, given by

+ 1, (37)

is the radius of the (approximately plane) circular
sections ofthe ellipsoid at constant. From Eq. (36)
one obtains the integral frequency

h(zXq,)

(38)

and in particular, for the sope ofH(Aff) at smallA
3

ho 2.
(39)

For more exact calculations it is more practical to
use the orientation space with the radius vector

** (Eq. (1)) instead of , since thenas can be
shownZthe transformation turns spheres into
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spheres (only their radius increases with increasing
0). Moreover, one has to consider that the density
pDr(**) is not constant within the sphere (Eq. (8))
and that the volume elements for deriving the
expression for h(**) must be taken along the
surface of spheres around the origin characterized
by k** const. (see Fig. 8b). One finds then the
equation

2 dH(ak**)

192 (**)2
s3"[l -I-(**)2] 3

cos

cos

(,**) +
cos

COS

where ** must be replaced by /o and A. For
small values of ks Eq. (39) is retained.
Such exact calculations lead also to the result

that, in contrast to the approximativc treatment,
the average angle of rotation i does no longer
coincide with the ideal value o. i is defined by

4 arc tg (**)
Dr(**).arc tg (**) dV

D,(,**) dV
(41)

with the integration taking place over the volume
of the sphere in the (v, **}-space. The evaluation
of this integral will lead to the difference fi iff-o
as a fanction of /s and ko. Since, however, we are
dealing only with a model distribution, the exact
evaluation will not be carried out, and only a
qualitative discussion of the principal features will
be given.
We consider const, and vary o (see

Figure 8b). For o 0 is also 5 0, since at the
integration the regions of the sphere with positive
and negative ** just cancel each other (sphere I).
With 0 < o < one has > 0, since the regions
cancelling each other (shaded area) become smaller
(sphere II). Finally, at o , the surface of the
sphere reaches the zero point, so that for qo >
all cancelling is abolished and no further increase
of 6 possible (sphere III). On the other hand, with
increasingo the curvature ofthe lines ** const
(see sphere III) as well as the density D,.(R**)

(Eq. (11)) decreases causing also a decrease of ft.
The superposition of the increasing and the
decreasing influence leads to a curve (**) having
a maximum approximately at o Cs as indicated
in Figure 9. A numerical calculation carried out for
k 23 yielded for o s (i.e. approximately
for the peak) 5 4.5 and for fro 120 only

FIGURE 9 Deviation of the average value of the
rotation angles from the ideal angle o as a function f ’o
for spherical orientation scattering with the scatter radius s
(schematic).

0.48. The magnitudes of these values should
be maintained even if instead of this model dis-
tribution a more real orientation distribution is
used in which possesses the character of a half
value radius.

Appendix III" OVERLAPPING OF SCATTER
ZONES

Since 2 orientations can coincide only if aI1 three
cube poles coincide, one obtains a true overlapping
of the scatter regions of two orientation accumula-
tions only if the scatter regions of all 3 cube poles
overlap. If the scatter region of only one pole has
no overlapping with any scatter region of the poles
of the other accumulation, the two accumulations
cannot contain a common orientation.

In order to elucidate the conditions the spherical
orientation space (Figure b) is considered. Let
one scatter sphere (radius ) be around the center
and a second scatter body be obtained by rotating
the first one around an angle < k, so that over-
lapping is obtained (for instance sphere I and
sphere II in Figure 8). If the line connecting the
ideal orientations I and II which indicates the
direction of the rotation axis, happens to be a cube
axis, one obtains a complete overlapping of the
scatter region of the cube poles corresponding to
this axis. The degree of overlapping is then deter-
mined solely by the overlapping of the scatter zones
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of the two other {100}-poles, and is given by the
rotation angle , i.e. by the length of the vector
connecting the two ideal orientations.

If, however, the rotation axis does not coincide
with a cube axis one has no longer a complete over-
lapping of the scattering zones of these poles. Since
during the rotation leading from I to II the cube
pole closest to the rotation axes undergoes the
smallest, and the one closest to 90 to it the largest
change in direction, the overlapping of the scatter
regions of the first pole is largest and that of the
second smallest. In the case where the angle between
rotation axes and the next located cubic axes is not
too large, the overlapping of the orientation scatter-
ing is still determined by the overlapping of pole
scatterings of the {100)-poles located nearest to 90
to the rotation axis. In this case, i.e. if the over-
lapping of the 3 pole regions is very different, the
smallest one of the 3 overlappings represents a
measure for the overlapping in the orientation
space.
The consequences for the evaluation of the

experimental results arising from such overlappings
will be considered in Part II.
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