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Abstract: A subloading-friction model is formulated to describe the smooth transient variation from static friction 

to kinetic friction, the recovery to static friction after the sliding velocity decreases, and the accumulation of 

sliding displacement under the cyclic loading of contact stress. In the past relevant studies, however, the model 

formulation used for simulations is limited to the hypoelastic-based plasticity framework, and the validation of 

the model is limited to simulations of the test data for metal-to-metal friction. In this study, the formulation of 

the subloading-friction model based on a hyperelastic-based plasticity framework is adopted. In the fields of 

civil, geotechnical, agricultural engineering, and terramechanics, the interaction between soils and metals is 

critical, as reflected in construction and agricultural machinery, foundation piles, and retaining walls. The 

validity of the model for describing the friction between various sands and metals is verified by simulations of 

the experimental data under monotonic and cyclic loadings. 
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1  Introduction 

It is well acknowledged that (1) when a body at rest 

begins to slide, a high friction coefficient appears first, 

which is known as static friction; (2) subsequently, 

the friction coefficient decreases toward its lowest 

stationary value, which is known as kinetic friction; 

(3) when the sliding suspends and then restarts,  

the friction coefficient approaches the static friction 

coefficient, and a behavior similar to the initial sliding 

is observed [1–10]. The magnitude of the difference 

between static friction and kinetic friction can reach 

up to several tens of percent, depending on the 

materials as well as the sliding velocity and stress 

levels [11]. Hence, a mathematical model that considers 

these characteristics is required in engineering analyses 

involving frictional boundaries. 

The recovery of the static friction coefficient has 

been investigated theoretically and modeled via 

mathematical expressions directly including the 

elapsed time after sliding ceases [2, 3, 6–8, 10]. 

However, the evaluation of the duration of sliding 

suspension is often accompanied by the ambiguity in 

judging when sliding ceases and restarts, particularly 

when the sliding velocity varies gradually within a 

low velocity range. Therefore, the inclusion of the 

duration time of sliding suspension in the constitutive 

modeling of the friction law may result in the loss of 

objectivity [12]. Meanwhile, the variation in frictional 

properties on the contact surfaces, including the 

above-mentioned transitional behavior, should be 

expressed in terms of the contact traction, sliding 
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velocity, and internal variables representing the state 

and/or history of a sliding process without including 

the suspension duration. 

In the 1970s and early 1980s, the “rate-and-state 

friction” (RSF) approach was proposed for modeling 

static and kinetic friction. Dieterich [13–15] proposed 

a function for the friction coefficient based on the 

time of the stationary contact and the sliding velocity, 

as well as discussed the mechanics of stick–slip. Ruina 

and Rice [16, 17] proposed a friction law that depends 

on the state and slip history by introducing internal 

state variables. Meanwhile, Popova and Popov [18] 

presented a historical overview of studies pertaining 

to friction laws proposed in early works by Coulomb 

and Amontons, as well as subsequent developments 

leading to the RSF approach. However, the RSF model 

was formulated in terms of scalar-valued quantities 

based on only one-dimensional considerations. 

Therefore, the application of RSF models is limited to 

one-dimensional linear sliding. 

For general three-dimensional engineering analyses, 

a friction model applicable to multidirectional frictional 

sliding on a contact surface is required. In this regard, 

constitutive relations to describe multi-dimensional 

frictional sliding have been formulated in the framework 

of elastoplasticity (e.g., Refs. [19, 20]). The key idea 

of the friction models based on the elastoplastic 

approach is twofold: (1) the decomposition of the 

sliding displacement into an elastic (reversible or 

stick/adhesive) component and a plastic (irreversible 

slip) component to formulate plastic internal variables 

that are irrelevant to elastic sliding but change with 

the plastic sliding history; (2) the expression of a yield 

function in terms of the contact traction and internal 

variables to define the loading criterion of whether 

plastic sliding proceeds in multi-dimensional sliding 

processes. Computational treatment of friction 

constitutive laws within the finite element formulation 

has been established [21, 22] and is widely used in 

engineering analyses involving frictional contact. 

Within the framework of elastoplasticity theory, 

the aforementioned fundamental friction behaviors, 

i.e., the decrease in the friction coefficient from the static 

to the kinetic friction coefficient via plastic sliding and 

the recovery of the friction coefficient by the decrease 

in the sliding velocity, have been formulated in the 

subloading-friction model [23–25] based on the concept 

of a subloading surface [26]. In this concept, a 

subloading surface with a shape and a direction similar 

to those of the sliding-yield surface is introduced, and 

the plastic (irreversible) sliding velocity is assumed 

to be induced gradually as the subloading surface 

approaches the sliding-yield surface. Consequently, 

the subloading-friction model is endowed with the 

capability to describe the gradual evolution of plastic 

sliding as the contact traction approaches the sliding- 

yield limit and hence the accumulation of sliding 

displacement under the cyclic loading of the contact 

traction inside the sliding-yield surface. The validity 

of the subloading-friction model for describing actual 

frictional sliding behavior was verified by comparison 

with the test data [23–25]. However, the validation  

of the model in these past studies was limited to   

the sliding behavior of metal interfaces. Recently, 

Ozaki et al. [27] demonstrated the applicability of the 

subloading-friction model to frictional sliding between 

a rough rubber hemisphere and a smooth acrylic plate. 

In the field of civil and geotechnical engineering, 

the interaction between soils and metals is critical, as 

reflected in the driving installation process of the pile 

foundations and their subsidence/loosening under 

traffic loads, earthquakes, etc. [28–31]; retaining walls; 

construction machineries; and the effect of friction 

between a soil specimen and a testing apparatus in 

laboratory tests for geomaterials [32–34]. In the field 

of terramechanics, frictional sliding between soils 

and metals is relevant to the interactions between 

wheels/blades and soil terrains [35–45]. Extensive 

experimental research has been performed to precisely 

measure the friction property of soil–steel interfaces 

under monotonic or cyclic loading [46–53], and to 

elucidate the factors affecting the interface friction 

property, such as the testing methods, materials, sliding 

velocity, interface roughness, particle geometry, 

gradation, and grain crushing [54–57]. Recently, 

advanced experimental investigations on the frictional 

properties of the geological materials have been 

conducted, e.g., micromechanical experiments of 

inter-granule loading [58], sliding friction tests of 

the interface between shale rock and dry quartz sand 

particles [59], and granular friction tests under linearly 

reciprocating sliding [60]. It is noteworthy that a  
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mathematical model is required for the successful 

analysis and prediction of problems in these areas. 

Hence, the abovementioned features of the subloading- 

friction model are advantageous for describing the 

multidirectional and cyclic frictional sliding behavior 

at the interfaces between soils and metals, which  

are often encountered in the fields of civil and 

geotechnical engineering, construction and agricultural 

machinery, and terramechanics. Currently, however, 

the validation and application of the subloading- 

friction model are limited to frictional sliding between 

manufacturing materials and have not been done for 

soil–metal friction. 

In this study, the formulation of the subloading- 

friction model based on the hyperelastic-based plasticity 

framework was adopted. The elastic–plastic additive 

decomposition of the sliding displacement vector   

is introduced in Section 2. Section 3 describes the 

hyperelastic equation used to define the relation 

between the contact traction vector and the elastic 

(reversible) sliding displacement vector. In the previous 

subloading-friction models [23–25, 27], a hypoelastic- 

based plastic sliding formulation was adopted, in 

which the rate of elastic sliding displacement is 

associated with the co-rotational (objective) rate of 

the contact traction vector via a rate or incremental 

equation of the  hypoelastic  law [61, 62]. However,  

the hypoelastic-based framework is limited to the 

description of frictional sliding involving infinitesimal 

elastic sliding. Furthermore, it requires a cumbersome 

time-integration scheme for the rate equation of the 

hypoelastic law to calculate the sliding displacement 

vs. the contact traction relationship; hence, meticulous 

treatment is necessary in the numerical time-integration 

scheme to guarantee the objectivity of the constitutive 

relation [63, 64]. More importantly, it is well 

acknowledged that the hypoelastic-based framework 

has several serious drawbacks in terms of physical 

and theoretical aspects, namely, energy dissipation 

and its accumulation within a purely elastic range 

during cyclic loadings [65, 66], and the arbitrariness 

or non-uniqueness regarding the selection of a 

co-rotational rate [67]. By contrast, the hyperelastic 

equation defines the direct relation between the contact 

traction and elastic sliding displacement, intrinsically 

assuring the objectivity property as the fundamental 

requirement for constitutive laws. Its computer 

implementation is simple and straightforward as it does 

not require a cumbersome time-integration scheme. 

Consequently, the hyperelastic-based formulation 

presented herein offers significant advantages in terms 

of both physical and numerical aspects. 

In this study, we assumed an isotropic friction-yield 

criterion with tangential associative sliding evolution 

law, particularly to validate the predictive capability 

of the subloading-friction model for the evolution 

and accumulation of sliding displacement under 

monotonic/cyclic loadings. This is further described 

in Section 4. The validity of the subloading-friction 

model for the description of the frictional sliding 

behavior between sands and metals was verified by 

simulations of various test data under monotonic  

and cyclic sliding displacements, and the details are 

presented in Section 5. 

2 Sliding displacement and contact traction 

We consider the sliding displacement of the counter 

(slave) body relative to the main (master) body, denoted 

by u , and assume that it is decomposed orthogonally 

into the normal component 
n

u  and tangential 

component 
t

u  to the contact surface in the additive 

form, as Eq. (1):  

n t
 u u u                 (1) 

with 

   
 

n n

t n

u      


    

n n n n n

I

u u u

u u u n un
       (2) 

where I denotes the second-order identify tensor, n 

denotes the unit outward normal vector of the 

surface of the main body, and the normal component 

is expressed as 

n n
u      un n u            (3) 

where the minus sign for 
n

u  is introduced to yield a 

positive number when the counter body approaches 

the main body. 

We assume the additive decomposition of the 

sliding displacement vector u  into the elastic sliding 

displacement eu  and the plastic (irreversible) sliding 

displacement pu  in the following form:  
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  peu u u                (4) 

This additive decomposition exactly holds even for a 

finite (large) sliding displacement, which is not 

limited to an infinitesimal range. Subsequently, the 

elastic and plastic components are further decomposed 

into normal ( e

n
u , p

n
u ) and tangential components ( e

t
u , 

p

t
u ), i.e., 

e e e

n t

p p p

n t

  


 

u u u

u u u
               (5) 

where 

   
 

e e e e

n n

e e e e

t n

u      


    

u u un

u

n

u u u

n n n

I n n
       (6) 

and 

   
 

p p p p

n n

p p p p

t n

u      


    

u n n n n u n

u I n n u

u

u u
      (7) 

by setting 

e e e

n n

p p p

n n

u

u

  



  

     

n n

n un

u u

u
           (8) 

The elastic sliding displacement vector eu  is directly 

associated with the current contact traction vector f via 

the hyperelastic equation described in Section 3. The 

elastic–plastic additive decomposition of the sliding 

displacement vector in Eq. (4) holds exactly even in  

a large sliding displacement, which is in contrast to 

the fact that the deformation gradient tensor, defined 

by the ratio of the current (deformed) infinitesimal 

line-element vector to the initial one, must be 

decomposed into elastic and plastic components   

in the multiplicative form [26]. Therefore, an exact 

mathematical description of the finite frictional 

sliding behavior involving large nonlinear sliding 

displacements and/or rotations of the soil–metal interface 

can be accomplished using the hyperelastic-based 

plastic sliding formulation presented herein. 

The contact traction vector f for the main body is 

additively decomposed into the normal traction vector 

n
f  and tangential traction vector 

t
f , as Eq. (9): 

n t n t f
f f    nf f f t             (9) 

where 

 
n n

t n t f t

( ) ( )

( 0)

f

f

      
        

f

f f

n f n n n f n

f I t fn n f n
   (10) 

with 

n

t
t f t f f f

t

, ( 0, 1)

f

f

   

      


  


 


n f

t f t t
f

f
f

n t
  (11) 

where 
f

t  means the unit direction vector of 
t

f . The minus 

sign for 
n

f  is introduced to yield a positive number 

when compressive traction is exerted on the main body 

by the counter body. 

The contact traction vectors f, 
n

f , and 
t

f  can be 

calculated using the Cauchy stress tensor σ  applied 

to the contact bodies using Cauchy’s fundamental 

theorem [26], as Eq. (12):  

n

t

( ) ( )

( )

 
    
   

f

f

f n

n n n n n n

I n n n


 


         (12) 

3 Hyperelastic sliding displacement 

We consider the hyperelastic model that defines the 

relationship between the elastic sliding displacement 

vector eu  and the contact traction vector f via the 

elastic sliding displacement energy function  e( )u  

as Eq. (13):  






e

e

( )u

u
f                (13) 

As a specific functional form of  e( )u , we adopt the 

quadratic form as Eq. (14):  

  e e e( ) /2u u E u             (14) 

where E  denotes the second-order symmetric tensor 

of the elastic contact tangent stiffness modulus (  TE E ). 

In the present formulation, we assume a constant 

elastic modulus. In this case, substituting Eq. (14) into 

Eq. (13) yields the linear relationship in Eq. (15):  

 e e 1,f Eu u E f            (15) 

We assume isotropy for the mechanical properties 
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of the contact surface. In this case, the frictional property 

is independent of the sliding direction on the contact 

surface. We further introduce the normalized rectangular 

coordinate system, 
1 2 3 1 2

( , , ) ( , , )e e e e ne , fixed to the 

contact surface. Under these settings, the elastic contact 

tangent stiffness modulus tensor E , with its inverse 

tensor, is expressed as Eq. (16):  

 
 

 

 



     
      
     



     


t n

t 1 1 2 2 n

1

t n

1 1 2 2

t n

( )

( )

1 1
( )

1 1
( )

I n n n n

e e e e n n

I n n n n

e e e e n n

E

E       (16) 

where 
n

  and 
t

  denote the normal and tangential 

contact elastic moduli, respectively. Applying Eq. (16) 

to Eq. (15) yields 

e e

t t n n

e

t n

t n

1 1

 

 

  

  


f u u

u f f
            (17) 

The contact traction and the elastic sliding displacement 

are described in terms of their components with 

respect to the rectangular coordinate system as 

Eq. (18):  

1 1 2 2 n

e e e e

1 1 2 2 n

f f f

u u u

   
   

f e e n

u e e n
          (18) 

The substitution of Eqs. (16) and (18) into Eq. (15) yields 

the matrix representation in Eq. (19):  

e

1 t 1

e

2 t 2

e

n n n

0 0

0 0

0 0

f u

f u

f u






    
        

         

        (19) 

and its inverse relation is 

e

1 t 1

e

2 t 2

e

n n n

1 / 0 0

0 1 / 0

0 0 1 /

u f

u f

u f






     
        
        

 

where      
1 2 1 2

0e e en ne . 

It is noteworthy that the hyperelastic equation 

provides a one-to-one correspondence between the 

elastic sliding displacement eu  and the contact 

traction f, from which one can calculate f directly by 

substituting eu . Hence, neither the rate equation of 

the hypoelastic law in terms of a co-rotational rate 

of f nor its time integration is required. 

4 Elastoplastic sliding velocity 

The subloading-friction model is formulated based 

on the concept of a subloading surface. The model is 

composed of the sliding-yield criterion, the hardening/ 

softening rule of the friction coefficient, the evolution 

rule for the plastic sliding velocity, and a variable 

associated with the sliding-subloading surface. 

4.1 Sliding normal-yield surface and sliding- 

subloading surface 

Let us consider the sliding-yield surface defined by the 

following friction-yield function ( )f f  with isotropic 

hardening/softening (Fig. 1):  

( )f f                (20) 

which specifies the criterion of friction yielding, with 

the friction coefficient   being the function describing 

the friction hardening/softening, i.e., the variation in 

the size of the sliding-yield surface. The friction-yield 

function ( )f f  in terms of the contact traction f for the 

Coulomb friction law is expressed as 

t

n

( )
f

f
f

f               (21) 

The variation in   depending on the state of contact 

traction and/or the history of the sliding process is  

 

Fig. 1 Coulomb-type sliding normal-yield and sliding-subloading 
surfaces. 
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defined by the friction hardening/softening rule, 

which is described in Section 4.2. Next, we introduce 

the subloading surface concept: The plastic sliding 

velocity evolves as the magnitude of contact traction 

approaches the sliding-yield limit. Based on this 

notion, we introduce a sliding-subloading surface 

that has a shape and orientation similar to those of 

the sliding-yield surface and passes through the 

current contact traction. Hereinafter, the sliding-yield 

surface is renamed as the sliding normal-yield surface 

to distinguish it from the sliding-subloading surface. 

Furthermore, we introduce a scalar parameter, named 

the sliding normal-yield ratio, denoted by r (  0 1r ), 

which defines the ratio of the size of the sliding- 

subloading surface to the size of the sliding normal- 

yield surface. It is vital to the subloading-friction 

model as it designates the approaching degree of 

contact traction to the sliding-normal yield surface. 

Subsequently, the sliding-subloading surface is 

represented as 

( )f rf                (22) 

Figure 1 shows a schematic diagram of the sliding- 

subloading surface for the Coulomb friction law defined 

by Eq. (22) based on Eq. (21). 

The time differentiation of Eq. (22) provides the 

consistency condition for the sliding-subloading 

surface, as Eq. (23):  

 


  


 ( )f
r r

f
f

f
           (23) 

At this stage, we formulate the isotropic hardening/ 

softening rule to define the friction coefficient   and 

the evolution rule of the sliding normal-yield ratio r, 

which will be presented in Sections 4.2 and 4.3, 

respectively. 

4.2 Friction hardening/softening rule for friction 

coefficient 

The following can be inferred based on the experimental 

findings: 

1) The friction coefficient   transiently gains the 

maximum value of static friction, and then decreases 

to the minimum stationary value of kinetic friction. 

Subsequently, we assume that plastic sliding causes a 

decrease in the friction coefficient, namely, plastic 

softening, which corresponds to the transition from 

static friction to kinetic friction. 

2) The friction coefficient gradually recovers its initial 

value at static friction during sliding suspension. 

Subsequently, we assume that the duration causes an 

increase in the friction coefficient, i.e., viscoplastic-like 

hardening. 

Considering the above, we postulate the following 

isotropic hardening/softening function describing the 

variation in the friction coefficient   [23, 27]:  

       p
k s        u        (24) 

or in the differential form: 

              
p

k s

Negative Positive

d ( ) d ( )dtu       (25) 

where s  and k k s
( )     are the material 

constants representing the maximum and minimum 

values of   corresponding to static friction and 

kinetic friction, respectively. The constant   specifies 

the rate of decrease in   during the plastic sliding 

process. The constant   specifies the rate of recovery 

of   for the suspension duration. The first and second 

terms in Eq. (24) and their differential counterparts  

in Eq. (25) are associated with the destruction and 

reconstruction, respectively, of the engagements of 

surface asperities. The variations in the sliding 

coefficient, based on Eq. (25), are shown in Fig. 2. 

4.3 Evolution rule of sliding normal-yield ratio 

Based on the abovementioned hypothesis regarding 

elastoplastic sliding, the evolution of the sliding 

normal-yield ratio r must fulfill the following conditions 

for p  0u :  

, 0 : quasi-elastic sliding state

0, 0 1 : sliding sub-yield state

0, 1 : sliding normal-yield state

0, 1 : sliding over normal-yield state

r

r
r

r

r

   
  
 
 

      

(26) 

Therefore, we apply the following evolution rule: 

p p( ) ( )r U r  0   u u          (27) 

with ( )U r  being the monotonically decreasing function  
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Fig. 2 Variations in the friction coefficient. 

of r, fulfilling the conditions: 

, 0 : quasi-elastic sliding state

0, 0 1 : sliding sub-yield state

0, 1 : sliding normal-yield state

0, 1 : sliding over normal-yield state

( )

r

r
rU

r

r

   
  
 
 

  

(28) 

Subsequently, we employ the following specific form 

of ( )U r :  

 
  

 
 π

cot(
2

) rU r u               (29) 

where u  is the evolution coefficient. The sliding 

normal-yield ratio r evolves along with the plastic 

sliding velocity, obeying the evolution rule shown in 

Eq. (27). Equation (29) implies that the increase in   

r with the progress of plastic sliding displacement 

becomes less significant as the value of u  decreases. 

Furthermore, it is noteworthy that the plastic sliding 

displacement required for a certain increase in r 

increases with r because of cot((π/2) )r , and thus 

( )U r  is the decreasing function of r. 

Meanwhile, in the case of purely elastic sliding, the 

sliding normal-yield ratio r is calculated by substituting 

the contact traction at a current state obeying the 

elastic sliding constitutive relation, along with the 

current value of  , into the equation of the sliding- 

subloading surface shown in Eq. (22), and then 

solving it for r. 

According to Eq. (27) and using Eqs. (28)2 and (28)3, 

contact traction is automatically attracted onto the 

sliding normal-yield surface during plastic sliding. 

Meanwhile, contact traction is pulled back onto the 

sliding normal-yield surface when the contact traction 

exceeds the sliding normal-yield surface because 

 0r  for  1r , based on Eqs. (27) and (28)4. The 

characteristics of Eq. (28), as illustrated in Fig. 3, are 

advantageous in numerical calculations, as they 

effectively reduce the numerical errors in the incremental 

step analysis. 

4.4 Plastic sliding velocity 

The partial derivative of the sliding-yield function is 

expressed as 

 

t n

t n

t n

( ) ( ) ( )

( ) ( )

f f f

f f

   
 

    
 

    
 

f ff f f

f f f f f

f f
I n n n n

f f

    

(30)

 

noting 

 

n

t

( )        
 

           

n n ff
n n

f f

I n n ff
I n n

f f

     (31) 

Subsequently, based on Eq. (11), 

n

t t t t

t

t t
f

t t

( )

( )
( )

f

f

   
     
 

         
           



   

   

f n
nI n

f f

f f f

f f f f

I n n ff f
I n n t

f ff

(32) 

Substituting Eqs. (24) and (27) into Eq. (23) yields 

   p

k s

p

( )

( )

f
r

U r

     



        



  

 

f
f u

f

u

  

(33)

 

 

Fig. 3 Contact traction controlling feature in the evolution  
rule of r. Contact traction is automatically attracted to sliding 
normal-yield surface during plastic sliding. 
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Next, we assume that the direction of the plastic 

sliding velocity is tangential to the contact surface, 

and further assume that the plastic sliding velocity 

evolves in the direction of outward normal to the curve 

generated by the intersection of the sliding-subloading 

surface and the constant normal traction plane defined 

by 
n

constant,f  which results in the tangential 

associated flow rule (Fig. 1), as Eq. (34):  

p p p

t
( 0, 0)         u u n un       (34) 

where 

t t t

t t

( ) ( )
( 1, 0)

f f    
          

 f f
n n n n

f f
 (35) 

and 

       
              t

( ) ( ) ( ) ( )f f f ff f f f
n n I n n

f f f f
 (36) 

where   and 
t

n  are the magnitude and direction of 

the plastic sliding velocity, respectively. 

Substituting Eq. (34) into Eq. (33) yields 




  


  p c( )f
m m

f
f

f
           (37) 

where 

    


  

p
k

c c
s

( ) ( )

( ) 0( )

m r U r

m r m

   
  

         (38) 

which are associated with the plastic and the creep 

sliding velocities, respectively. 

Based on Eqs. (34) and (37), we obtain 

c

p

c

p

tp

( )

( )

f
m

m
f

m

m




 





 





















f
f

f

f
f

f
u n

          (39) 

By substituting the rate form of Eq. (15)2 and Eq. (39)2 

into the rate form of Eq. (4), the sliding velocity is 

expressed as 




 


 




c

1
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m
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f
f

f
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Subsequently, based on Eq. (40), 
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which results in 
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i.e., 


  

     
  

n  p c

t

( ) ( )f f
m m

f f
E u E

f f
 

from which the plastic multiplier in terms of the sliding 

velocity, denoted by the symbol  , is expressed as   
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By substituting the rate form of Eq. (4) with Eq. (41)2 

into the rate form of Eq. (15)1, we obtain the inverse 

relation of Eq. (40) as Eq. (42):  

  
    

  
      

 
t c

t
p p

t t

( )

( ) ( )

f

m

f f
m m

n

u n

n

f
E E

f
f

n

E E
f f

E E
f f

    

(42) 

The contact traction f can be calculated using the 

time integration of Eq. (42). Alternatively, it can be  
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calculated directly by substituting the elastic sliding 

displacement eu  into the hyperelastic equation, where 
eu  is obtained by subtracting the plastic sliding 

displacement vector pu  from the sliding displacement 

vector u . The loading criterion for the plastic sliding 

rate is expressed as 

p

p

, 0

, others

  




0

0



u

u
             (43) 

4.5 Isotropic sliding-yield surface 

The traction function for the isotropic sliding-yield 

surface is expressed as 

t n
( ) ( )f f f , ff                (44) 

for which the following partial derivatives hold with 

the reference to Eq. (32):  

t n

t n t n tn

n

t n t n
f

n t
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( , ) ( , )
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t
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f f f f f f ff
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f f

f f

n t

     

(45)

 

Subsequently, substituting Eq. (45) into Eqs. (11) and 

(35) yields 

ft
n t                  (46) 

Equation (46) confirms that the direction of the plastic 

sliding velocity coincides with the tangential direction 

of the traction. 

Next, we adopt the following Coulomb-type sliding 

yield function as a specific form of ( )f f  in Eq. (44): 

t

n

( )
f

f
f

f                  (47) 

Subsequently, based on Eqs. (45)–(47), 
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and thus 

t
f
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( ) 1 ff

f f

 
  

  

f
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Using Eq. (16) and 
f

0 n t , we obtain 

t f t f
 nE t tE              (50) 
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By substituting Eqs. (50)–(53), Eqs. (40) and (42) are 

reduced to 
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(55)
 

where   is the Macaulay’s bracket, i.e.,  s  for  0s  

and  0s  for  0s , where s is a scalar argument. 

In the coordinate system with base 
1 2

( , , )e e n , by 

considering: 

         
   

1 1 2 2

1 1 2 2

( )I n n e e e e n n n n

e e e e
   

(56)
 

we have 

f f1 1 f 2 2
t t t e e             (57) 
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where 

   
 

1 1 2 2
f1 f 22 2 2 2

t t1 2 1 2

,
f f f f

t t
f f f f   f f

 

By substituting Eqs. (56) and (57), Eq. (55) is 

reduced to   
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4.6 Linear sliding behavior 

Next, we examine the linear sliding phenomenon 

under a constant normal traction with a fixed direction 

of tangential contact traction, in which the following 

relations hold: 

 
   
     

n f
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Equations (54) and (55) are reduced to the following 

relations in one-dimensional sliding under the condition 

shown in Eq. (59), using notations 
t1 t

f f  , 
t1 t

u u   

t2
( 0f  , 

n
0f  , 

t2
0u  , and 

n
0u  ) as well as   

Eq. (38): 
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5 Application to description of soil–metal 

friction 

The applicability of the subloading-friction model for 

describing the soil–metal friction behavior is examined 

in this section. All the test data were one-dimensional, 

i.e., linear sliding, and they included the data from 

monotonic and cyclic sliding tests. Seven material 

constants, i.e., 
s

 , 
k

 ,  ,  , u , 
n

 , and 
t

 , and the 

initial value of the friction coefficient, denoted by 
0

, 

were included in the present subloading-friction model. 

The initial friction coefficient was set as the static 

friction coefficient, i.e., 
0 s

  , in all simulations. 

The material parameters used in the present model 

were determined as follows: 

1) The normal and tangential contact elastic moduli 

n
  and 

t
, respectively, may be sufficiently large 

because they are relevant to the surface asperities 

of the contact interface. However, 
n

  and 
t
α  do not 

significantly affect the contact stress vs. sliding 

displacement relationship provided that their values 

are sufficiently large. Therefore, a sufficiently large 

value can be set provided that it allows analysis to be 

performed stably. 

2) The static and kinetic friction coefficients 
s
 

and 
k
 (  

k s
) were determined, respectively, by the 

peak and bottom values of the ratio of the tangential 

contact stress to the normal contact stress. Therefore, 

these values can be determined directly from the 

experimental data. 

3) The material constants   and   were determined 

to reproduce the decrease in the friction coefficient 

due to plastic sliding and the recovery rate of the 

friction coefficient due to the pause of sliding. They 

interact mutually in the contact stress vs. sliding 

displacement relationship. If the experimental data 

of sufficiently fast and slow slidings are provided,  

and then the values of   and   can be determined 

independently. 

4) The material constant u  is determined to 

reproduce the smooth transition from the elastic to 

plastic state. 

These material constants are independent of each 

other in terms of their physical meanings; therefore, 

they can be determined definitely, although the model 

simulation of the contact stress vs. sliding displacement 

relationship involves their combination. 
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5.1 Monotonic sliding behavior 

First, we examine the simulation of the monotonic 

sliding behavior by comparing it with the test data 

measured by Uesugi and Kishida [47] using a direct 

shear apparatus. Dry Toyoura sand with 
50

D  

0.18 mm (average diameter) was used as the soil 

specimen. Low-carbon structural steel (American Society 

for Testing and Materials (ASTM) Specification for 

Structural Steel A36) plates were used for the metal 

specimens with three levels of roughness, i.e.,  


max

0.6R μm (smooth), 
max

6.8R μm (medium), and 


max

9.8R μm (rough). Here, 
max

R  designates the  

relative height between the highest peak and the 

lowest valley along a surface profile over the gauge 

length [48]. A gauge length  0.2L mm was used to 

measure the surface roughness, considering the average 

diameter of the Toyoura sand (  200 μm). The normal 

contact stress was 78.4 kPa. The model simulation is 

shown in Fig. 4, and its material parameters are listed 

in Table 1. 

Next, the simulation of the test result for the 

monotonic sliding behavior measured by Yoshimi and 

Kishida [68] using a ring torsional shear apparatus 

is shown in Fig. 5. Tone River sand with a mean 

grain size of 0.27 mm (the relative density 
r

60%D ) 

was used as the soil specimen. The metal specimen was 

the same steel presented in Fig. 4. The surface roughness 

index of steel was 
max

3.3 3.6R    μm (the gauge length 

 0.25L  mm). The normal contact stress was 105 kPa. 

The material parameters used are listed in Table 2. 

 
Fig. 4 Comparison with the test data by Uesugi and Kishida [47] 
in monotonic sliding between sand and steel in direct shear test. 

Table 1 Material parameters used in the simulation of the 
monotonic sliding in direct shear test [47] shown in Fig. 4. 

maxR  0.6 μm 6.8 μm 9.8 μm 

Parameter Value 

s  

k  
1(mm )   

1(s )   
1(mm )u  

3
n (kN mm )   

3
t (kN mm )   

0.20 

0.10 

100 

0.050 

200 

2,000 

2,000 

0.37 

0.30 

33 

0.027 

3,000 

2,000 

2,000 

0.45 

0.40 

25 

0.022 

3,000 

2,000 

2,000 

 

Fig. 5 Comparison with the test data by Yoshimi and Kishida 
[68] in monotonic sliding between sand and steel in ring torsional 
shear test. 

Table 2 Material parameters used in the simulation of the 
monotonic sliding in ring torsional shear test [68] shown in Fig. 5. 

Parameter Value 

s  

k  
1(mm )   

1(s )   
1(mm )u  

3
n (kN mm )   

3
t (kN mm )   

0.33 

0.17 

0.59 

0.0030 

12 

10,000 

10,000 

5.2 Cyclic sliding behavior 

The simulation of the cyclic sliding behavior was 

analyzed by comparing the result with the test data 

obtained by Uesugi et al. [50]. Toyoura sand with 


50

0.18D  mm and steel plate A36 were used. The 

surface roughness index of steel was 
max

3.3 3.6R   μm 

(the gauge length  0.25L  mm) for pulsating sliding. 
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The surface roughness index of the steel was 


max

28R  μm (the gauge length  0.2L  mm) for 

two-way sliding. The normal contact stress was    

98 kPa. The model simulations for the pulsating and 

two-way cyclic sliding are shown in Figs. 6 and 7, 

respectively. The material parameters used in these 

analyses are listed in Tables 3 and 4. 

Precise simulations were performed for all the test 

data obtained from the monotonic and cyclic (pulsating 

and two-way) sliding behaviors up to the finite sliding 

displacements between sands and metals using the 

subloading-friction model. 

 

Fig. 6 Comparison with the test data by Uesugi et al. [50] in 
one-way cyclic (pulsating) sliding between sand and steel. 

 

Fig. 7 Comparison with the test data by Uesugi et al. [50] in 

two-way cyclic siding between sand and steel. 

 
Table 3 Material parameters used in the simulation of the one- 
way cyclic (pulsating) sliding test [50] shown in Fig. 6. 

Parameter Value 

s  

k  
1(mm )   

1(s )   
1(mm )u   

3
n (kN mm )   

3
t (kN mm )   

0.74 

0.52 

1.3 

0.0014 

15 

5,000 

5,000 

Table 4 Material parameters used in the simulation of the two- 
way cyclic sliding test [50] shown in Fig. 7. 

Parameter Value 

s  

k  
1(mm )   

1(s )   
1(mm )u   

3
n (kN mm )   

3
t (kN mm )   

1.1 

0.50 

1.2 

0.00091 

2.0 

50,000 

50,000 

6 Conclusions 

In this study, we verified the applicability of the 

subloading-friction model for describing the frictional 

sliding behavior on soil–metal interface by comparing 

its results with the experimental data of monotonic and 

cyclic sliding behaviors under various conditions. The 

main features of the proposed model are summarized 

as follows:  

1) The irreversible sliding caused by the change in 

contact traction below the sliding yield traction was 

successfully described via the subloading surface 

concept, i.e., the irreversible sliding rate develops 

gradually as the contact traction approaches the 

sliding-yield surface. 

2) The smooth transition from static friction to 

kinetic friction was described. 

3) The recovery of the friction coefficient after the 

sliding suspended, or the sliding velocity decreased 

to an extremely slow velocity. 

4) Not only the monotonic sliding but also the 

cyclic sliding behavior can be described. 

5) The finite sliding behaviors involving large 
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nonlinear sliding displacements and rotations of the 

soil–metal interface can be described appropriately. 

The validity of the subloading-friction model for 

describing the friction behavior between various sands 

and metals was demonstrated in this study based on 

the simulation of the test results under monotonic 

and cyclic sliding displacements. Consequently, the 

subloading-friction model would contribute to the 

prediction of the frictional sliding behavior occurring 

in various geotechnical structures, e.g., foundation 

piles, retaining walls, and construction machinery. 
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