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Nonlinear time series analysis is an active field of research that studies the structure of complex signals in
order to derive information of the process that generated those series, for understanding, modeling and fore-
casting purposes. In the last years, some methods mapping time series to network representations have been
proposed. The purpose is to investigate on the properties of the series through graph theoretical tools recently
developed in the core of the celebrated complex network theory. Among some other methods, the so-called
visibility algorithm has received much attention, since it has been shown that series correlations are captured
by the algorithm and translated in the associated graph, opening the possibility of building fruitful connections
between time series analysis, nonlinear dynamics, and graph theory. Here we use the horizontal visibility
algorithm to characterize and distinguish between correlated stochastic, uncorrelated and chaotic processes. We
show that in every case the series maps into a graph with exponential degree distribution P(k) ~exp(—A\k),
where the value of \ characterizes the specific process. The frontier between chaotic and correlated stochastic
processes, A=In(3/2), can be calculated exactly, and some other analytical developments confirm the results

provided by extensive numerical simulations and (short) experimental time series.

DOLI: 10.1103/PhysRevE.82.036120

I. INTRODUCTION

Concrete hot topics in nonlinear time series analysis [1]
include the characterization of correlated stochastic pro-
cesses and chaotic phenomena in a plethora of different situ-
ations including long-range correlations in earthquake statis-
tics [2], climate records [3], noncoding DNA sequences [4],
stock market [5], urban growth dynamics [6], or physiologi-
cal series [7,8] to cite but a few, and chaotic processes
[1,9-14].

Both stochastic and chaotic processes share many fea-
tures, and the discrimination between them is indeed very
subtle. The relevance of this problem is to determine whether
the source of unpredictability (production of entropy) has its
origin in a chaotic deterministic or stochastic dynamical sys-
tem, a fundamental issue for modeling and forecasting pur-
poses. Essentially, the majority of methods [1,14] that have
been introduced so far rely on two major differences between
chaotic and stochastic dynamics. The first difference is that
chaotic systems have a finite dimensional attractor, whereas
stochastic processes arise from an infinite-dimensional one.
Being able to reconstruct the attractor is thus clear evidence
showing that the time series has been generated by a deter-
ministic system. The development of sophisticated embed-
ding techniques [1] for attractor reconstruction is the most
representative step forward in this direction. The second dif-
ference is that deterministic systems evidence, as opposed to
random ones, short-time prediction: the time evolution of
two nearby states will diverge exponentially fast for chaotic
ones (finite and positive Lyapunov exponents) while in the
case of a stochastic process such separation is randomly dis-
tributed. Whereas some algorithms relying on the preceding
concepts are nowadays available, the great majority of them
are purely phenomenological and often complicated to per-
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form, computationally speaking. These drawbacks provide
the motivation for a search for new methods that can directly
distinguish, in a reliable way, stochastic from chaotic time
series. This is, for instance, the philosophy behind a recent
work by Rosso and co-workers [28], where the authors
present a two-dimensional (2D) diagram (the so-called
entropy-complexity plane) that relates two information-
theoretical functionals of the time series (entropy and com-
plexity), and compute numerically the coordinates of several
chaotic and stochastic series in this plane. The purpose of
this paper is to offer a different, conceptually simple, and
computationally efficient method to distinguish between de-
terministic and stochastic dynamics.

The proposed method uses an approach to time series
analysis that has been developed in the last years [15,18-22].
In a nutshell, time series are mapped into a network repre-
sentation (where the connections between nodes capture the
series structure according to the mapping criteria) and graph
theoretical tools are subsequently employed to characterize
the properties of the series. Some methods sharing similar
philosophy include recurrence networks, cycle networks, or
correlation networks to cite some (see [20] for a comparative
review). Among these mappings, the so-called visibility al-
gorithm [15] has received much attention, since it has been
shown that series correlations (including periodicity, fractal-
ity, or chaoticity) are captured by the algorithm and trans-
lated in the associated visibility graph [15-17], opening the
possibility of building bridges between time series analysis,
nonlinear dynamics, and graph theory. Accordingly, several
works applying such algorithm in several contexts ranging
from geophysics [24] or turbulence [25] to physiology [26]
or finance [27] have started to appear [23].

Here we address the characterization of chaotic, uncorre-
lated, and correlated stochastic processes, as well as the dis-
crimination between them, via the horizontal visibility algo-
rithm. We will show that a given series maps into a graph
with an exponential degree distribution P(k)~exp(—\k),
where N <In(3/2) characterizes a chaotic process whereas
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FIG. 1. (Color online) Graphical illustration of the horizontal
visibility algorithm. A time series is represented in vertical bars, and
in the bottom we plot its associated horizontal visibility graph, ac-
cording to the geometrical criterion encoded in Eq. (1) (see the
text).
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A>1In(3/2) characterizes a correlated stochastic one. The
frontier \,,=In(3/2) corresponds to the uncorrelated situa-
tion and can be calculated exactly [16], thus the method is
well grounded. Some other features are calculated analyti-
cally, confirming our numerical results obtained through ex-
tensive simulations for Gaussian fields with long-range
(power-law) and short-range (exponential) correlations and a
plethora of chaotic maps (Logistic, Hénon, time-delayed
Hénon, Lozi, Kaplan-Yorke, a-map, Arnold cat). Experimen-
tal (short) series of sinus rhythm cardiac interbeats—which
have been shown to evidence long-range correlations—are
also analyzed. Moreover, we will also show that the method
not only distinguishes but also quantifies (by means of the
parameter \) the degree of chaoticity or stochasticity of the
series. The rest of the paper is organized as follows: in Sec.
IT we recall some properties of the method, and in particular
we state the theorem that addresses uncorrelated series. In
Sec. III, we study how the results deviate from this theory in
the presence of correlations, through a systematic analysis of
long-range and short-range stochastic processes. Results are
validated in the case of experimental time series. Similarly,
in Sec. IV, we address time series generated through chaotic
maps. In Secs. V and VI analytical developments and heu-
ristic arguments supporting our previous findings are out-
lined. In Sec. VII we comment on the current limitations of
the algorithm, and in Sec. VIII we conclude.

II. HORIZONTAL VISIBILITY ALGORITHM

The horizontal visibility algorithm has been recently in-
troduced [16] as a map between a time series and a graph and
it is defined as follows. Let {x;},-;_y be a time series of N
real data. The algorithm assigns each datum of the series to a
node in the horizontal visibility graph (HVG). Two nodes i
and j in the graph are connected if one can draw a horizontal
line in the time series joining x; and x; that does not intersect
any intermediate data height (see Fig. 1 for a graphical illus-
tration). Hence, i and j are two connected nodes if the fol-
lowing geometrical criterion is fulfilled within the time se-
ries:
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FIG. 2. (a) semilog plot of the degree distribution P(k) of a
Gaussian correlated series of N=2'3 data with power-law decaying
correlations C(¢) ~¢~7, for y=1.0 and y=2.0. showing an exponen-
tial function. P(k) ~exp(—\k) in both cases, with slope A=0.59 and
N=0.50 respectively. For comparison, the shape of P(k) associated
to a random uncorrelated series is shown, having \,,=In(3/2)
<\, V7. (b) similar results associated to short-range correlated
series generated through an Ornstein-Uhlenbeck process with cor-
relation function C(r) ~exp(~t/7).

XX > X, Vali<n<j. (1)

Some properties of the HVG can be found in [16]. Here we
recall the main theorem for random uncorrelated series,
whose proof can also be found in [16],

Theorem (uncorrelated series) Let x; be a bi-infinite se-
quence of independent and identically distributed random
variables extracted from a continuous probability density
f(x). The degree distribution of its associated horizontal vis-

ibility graph is
1/2 k-2
P(k)=—|~= . 2
) 3(3) @

Note that P(k) can be trivially rewritten as P(k)~exp
(=N\,;k) with N,,,,=In(3/2). Interestingly enough, this result is
independent of the generating probability density f(x), (as
long as it is a continuous one, independently on whether the
support is compact or not). This result shows that there is an
universal equivalency between uncorrelated processes and
A=\,,. In what follows we will investigate how results de-
viate from this theoretical result when correlations are
present.

III. CORRELATED STOCHASTIC SERIES

In order to analyze the effect of correlations between the
data of the series, we focus on two generic and paradigmatic
correlated stochastic processes, namely, long-range (power-
law decaying correlations) and Ornstein-Uhlenbeck (short-
range exponentially decaying correlations) processes. We
have computed the degree distribution of the HVG associ-
ated to different long-range and short-range correlated sto-
chastic series (the method for generating the associated series
is outlined in the next section). In the left panel of Fig. 2, we
plot in a semilog scale the degree distribution for correlated
series with correlation function C(r)=¢"" for different values
of the correlation strength y € [1072—10'], while in the right
panel of the same figure, we plot the results for an exponen-
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FIG. 3. From left to right, up to bottom: semilog plot of the degree distributions of horizontal visibility graphs associated to long-range
correlated series with correlation function C(r) ~ ¢, for different values of 7y (data are averaged over 100 realizations). In every case we find
that the degree distribution is exponential P(k) ~exp(—\k), where the slope A monotonically decreases with . In Fig. 6, we plot the slope
of such degree distribution for increasing values of the correlation strength vy: the convergence toward the uncorrelated situation [A=X\,,
=In(3/2)] is slow, what allows us to distinguish correlated series from uncorrelated ones even when the correlations are very weak.

tially decaying correlation function C(f)=exp(—t/7). Note
that in both cases the degree distribution of the associated
HVG can be fitted for large k by an exponential function
exp(—=\k). The parameter \ depends on y or 7and is, in each
case, a monotonic function that reaches the asymptotic value
N=\,,=In(3/2) in the uncorrelated limit y— o or 7—0, re-
spectively. Detailed results of this phenomenology can be
found in Fig. 3, and in the right panel of Fig. 6 where we plot
the functional relation \(y) and \(7). In all cases, the limit is
reached from above, i.e., A>N\,,. Interestingly enough, for
the power-law correlations the convergence is slow, and
there is still a noticeable deviation from the uncorrelated case
even for weak correlations (y>4.0), whereas the conver-
gence with 7 is faster in the case of exponential correlations.

A. Minimal subtraction procedure

In what follows we explain the method we have used to
generate series of correlated Gaussian random numbers x; of

zero mean and correlation function (xx;)=C (|i-j|). The clas-
sical method for generating such correlated series is the so-
called Fourier filtering method (FFM). This method proceeds
by filtering the Fourier components of an uncorrelated se-
quence of random numbers with a given filter (usually, a
power-law function) in order to introduce correlations among
the variables. However, the method presents the drawback of
evidencing a finite cutoff in the range where the variables are
actually correlated, rendering it useless in practical situa-
tions. An interesting improvement was introduced some
years ago by Makse et al. [29] in order to remove such
cutoff. This improvement was based on the removal of the
singularity of the power-law correlation function C(r) ~ ™7 at
r=0 and the associated aliasing effects by introducing a well
defined one C(f)=(1+#*)""? and its Fourier transform in
continuous-time space. Accordingly, cutoff effects were re-
moved and variables present the desired correlations in their
whole range.
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FIG. 4. Semilog plot of the degree distribution of the HVG associated to series of healthy subjects interbeat electrocardiogram of 6000
data [30]. These are a prototypical example of a long-range correlated stochastic process [7]. The straight line characterizes the theoretical
result for an uncorrelated process. The degree distribution is exponential with A=0.5>\,,,, corresponding to a correlated stochastic process,
as predicted by our theory. Results correspond to an average over five time series, one of them being depicted in the left panel.

We use here an alternative modification of the FFM that
also removes undesired cutoff effects for generic correlation
functions and takes in consideration the discrete nature of the
series. Our modification is based on the fact that not every
function C(¢) can be considered to be the correlation function
of a Gaussian field, since some mathematical requirements
need to be fulfilled, namely, that the quadratic form
3,x,C(|li-j])x; be positive definite. For instance, let us sup-
pose that we want to represent data with a correlation func-
tion that behaves asymptotically as C(z) ~7". As this func-
tion diverges for r— 0 a regularization is needed. If we take
Cit)=(1+2)7 ?, then the discrete Fourier transform S(k)
=NV 2Ej-\;lexp(i%)c(j) turns out to be negative for some val-
ues of k, which is not acceptable. To overcome this problem,
we introduce the minimal subtraction procedure, defining a
new spectral density as Sy(k)=S(k)—S,,;.(k), being S,,;,(k)
the minimum value of S(k) and using this expression instead
of the former one in the filtering step. The only effect that the
minimal subtraction procedure has on the field correlations is
that C(0) is no longer equal to 1 but adopts the minimal
value required to make the previous quadratic form positive
definite. The modified algorithm is thus the following:

(i) Generate a set {u;},j=1,...,N, of independent Gauss-
ian variables of zero mean and variance one, and compute
the discrete Fourier transform of the sequence, {i;}.

(ii) Correlations are incorporated in the sequence by mul-
tiplying the new set by the desired spectral density S(k),
having in mind that this density is related with the correla-
tion function C(r) through S(k)==,N"? exp(irk)C(r). Make
use of Sy(k)=S(k)-S,,;,,(k) (minimal subtraction procedure)
rather than S(k) in this process. Concretely, the correlated
sequence in Fourier space %, is given by £,=N'25,(k)"%i,.

(iii) Calculate the inverse Fourier transform of X to obtain
the Gaussian field x; with the desired correlations.

B. Application to real cardiac interbeat dynamics

As a further example, we use the dynamics of healthy
sinus rhythm cardiac interbeats, a physiological stochastic
process that has been shown to evidence long-range correla-
tions [7]. In Fig. 4, we have plotted the degree distribution of

the HVG generated by a time series of the beat-to-beat fluc-
tuations of five young subjects (21-34 yr) with healthy sinus
rhythm heartbeat [30]. Even if these time series are short
(about 6000 data), the results match those obtained in the
previous examples, namely, that the associated graph is char-
acterized by an exponential degree distribution with slope
N>\, as it corresponds to a correlated stochastic process.

All these examples provide evidence showing that a time
series of stochastic correlated data can be characterized by its
associated HVG. This graph has an exponential node-degree
distribution with a characteristic parameter \ that always ex-
ceeds the uncorrelated value \,,=In(2/3). This is true even
in the case of weakly correlated processes (large values of
the correlation exponent 7y in the case of power-law, long-
range, decay of correlations, or small values of 7in the case
of an exponential, short-range, decay).

IV. CHAOTIC MAPS

We now focus on processes generated by chaotic maps. In
a preceding work [16], we conjectured that the Poincaré re-
currence theorem suggests that the degree distribution of
HVGs associated to chaotic series should be asymptotically
exponential. Here we address several deterministic time se-
ries generated by chaotic maps, and analyze the possible de-
viations from the uncorrelated results. Concretely, we tackle
the following maps:

(1) the a-map f(x)=1-|2x—1|¢, that reduces to the logis-
tic and tent maps in their fully chaotic region for a=2 and
a=1 respectively, for different values of «,

(2) the 2D Hénon map (x,,,=y,+1—ax?, y,,;=bx,) in the
fully chaotic region (a=1.4, b=0.3);

(3) a time-delayed variant of the Hénon map: x,,,=bx,_,
+1 —ax,2 in the region (a=1.6, b=0.1), where it shows cha-
otic behavior with an attractor dimension that increases lin-
early with the delay d [31]. This model has also been used
for chaos control purposes [32], although here we set the
parameters a and b to values for which we find high-
dimensional chaos for almost every initial condition [31];

(4) the Lozi map, a piecewise-linear variant of the Hénon
map given by x,.;=1+y,—alx,|, y, =bx, in the chaotic re-
gime a=1.7 and b=0.5;
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FIG. 5. From left to right, up to bottom: semilog plot of the degree distributions of Horizontal visibility graphs associated to series
generated through chaotic maps with different correlation dimension (data are averaged over 100 realizations). In every case we find that the
degree distribution is exponential P(k) ~exp(—Ak), where the slope N monotonically increases with the correlation dimension D. In the
bottom right we plot the functional relation between A and D, showing that the values of N converge toward the uncorrelated situation [\

=Nu=In(3/2)] for increasing values of the chaos dimensionality.

(5) the Kaplan-Yorke map x,,;=2x, mod(1), y,;=\y,
+cos(47x,)mod(1); and

(6) the Arnold cat map x,;=x,+y, mod(1), v, =x,
+2y, mod(1), a conservative system with integer Kaplan-
Yorke dimension. References for these maps can be found in
[33].

In Fig. 5 we plot in semilog the degree distribution of
chaotic series of 2'® data generated through several chaotic
maps (logistic, tent, @-map with =3 and 4, Hénon, delayed
Hénon with a delay d=10, Lozi, Kaplan-Yorke and Arnold
cat). We find that the tails of the degree distribution can be
well approximated by an exponential function P(k)~exp
(—\k). Remarkably, we find that N\ <\, in every case, where
\ seems to increase monotonically as a function of the chaos
dimensionality [34], with an asymptotic value A —1n(3/2)
for large values of the attractor dimension (see the right-hand
side bottom of the figure where we plot the specific values of
\ as a function of the correlation dimension of the map [33]).
Again, we deduce that the degree distribution for uncorre-

lated series is a limiting case of the degree distribution for
chaotic series but, as opposed to what we found for stochas-
tic processes, the convergence flow toward \,, is from be-
low, and therefore N=1In(3/2) plays the role of an effective
frontier between correlated stochastic and chaotic processes
(see left part of Fig. 6 for an illustration).

A summary of all data series analyzed can be seen in the
right panel of Fig. 6, where we plot the fitted slope N of
particular series generated through power-law correlated (as
a function of correlation y) and exponentially correlated (as a
function of correlation time 7) stochastic processes, and
through the aforementioned chaotic maps (as a function of
the correlation dimension D). In the following sections we
will provide some analytical developments and heuristic ar-
guments supporting our findings.

V. HEURISTICS

We argue first that correlated series show lower data vari-
ability than uncorrelated ones, so decreasing the possibility
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FIG. 6. (a) \ diagram: for A <In(3/2), we have a chaotic process, whereas A >1n(3/2) corresponds to a correlated stochastic process. The
frontier value A=1In(3/2) corresponds to the uncorrelated case. Note that this latter value is an exact result of the theory [16]. (b) Plot of the
values of N\ for several processes, namely: (i) for power-law correlated stochastic series with correlation function C(¢)=7"7, as a function of
the correlation v, (ii) for Ornstein-Uhlenbeck series with correlation function C(¢)=exp(—t/7), as a function of the correlation time 7, and
(iii) for different chaotic maps, as a function of their correlation dimension D. Errors in the estimation of \ are incorporated in the size of
the dots. Notice that stochastic processes cluster in the region \>\,, whereas chaotic series belong to the opposite region N <<\,,,
evidencing a convergence toward the uncorrelated value \,,,=In(3/2) [16] for decreasing correlations or increasing chaos dimensionality,

respectively.

of a node to reach far visibility and hence decreasing (statis-
tically speaking) the probability of appearance of a large de-
gree. Hence, the correlation tends to decrease the number of
nodes with large degree as compared to the uncorrelated
counterpart. Indeed, in the limit of infinitely large correla-
tions (y—0 or 7— ), the variability reduces to zero and the
series become constant. The degree distribution in this limit
case is, trivially,

P(k) = 8(k-2) = lim %exp(— Nk=2]),
A—©
that is to say, infinitely large correlations would be associated
to a diverging value of \. This tendency is on agreement with
the numerical simulations (right panel of Fig. 6) where we
show that A monotonically increases with decreasing values
of vy or increasing values of 7, respectively. Having in mind
that in the limit of small correlations the theorem previously
stated implies that N —\,,=In(3/2), we can therefore con-
clude that for a correlated stochastic process Ag,cj, > N,
Concerning chaotic series, remember that they are gener-
ated through a deterministic process whose orbit is continu-
ous along the attractor. This continuity introduces a smooth-
ing effect in the series that, statistically speaking, increases
the probability of a given node to have a larger degree (un-
correlated series are rougher and hence it is more likely to
have more nodes with smaller degree). Now, since in every
case we have exponential degree distributions (this fact be-
ing related with the Poincaré recurrence theorem for chaotic
series and with the return distribution in Poisson processes
for stochastic series [16]), we conclude that the deviations
must be encoded in the slope N\ of the exponentials, such that
Nenaos < Nun < Ngoen» 1N good agreement with our numerical
results.

VI. ANALYTICAL DEVELOPMENTS

In [16] we proved that P(k)=(1/3)(2/3)*2 for uncorre-
lated random series. To find out a similar closed expression

in the case of generic chaotic or stochastic correlated pro-
cesses is a very difficult task, concretely since variables can
be long-range correlated and hence the probabilities cannot
be separated (lack of independence). This leads to a very
involved calculation which is typically impossible to solve in
the general case. However, some analytical developments
can be made in order to compare them with our numerical
results. Concretely, for Markovian systems global depen-
dence is reduced to a one-step dependence. We will make use
of such property to derive exact expressions for P(2) and
P(3) in some Markovian systems (both deterministic and sto-
chastic). In order to compare the theoretical calculations of
P(2) and P(3) in the case of an Ornstein-Uhlenbeck process
(detailed in Sec. III) with the numerical results, in Table I we
have depicted the associated numerical results for different
correlation times.

A. Ornstein-Uhlenbeck process

Suppose a short-range correlated series (exponentially de-
caying correlations) of infinite size generated through an
Ornstein-Uhlenbeck process, and generate its associated
HVG. Let us consider the probability that a node chosen at

TABLE 1. Numerical results of P(2) and P(3) associated to (i)
an Ornstein-Uhlenbeck series of N=2'8 data with correlation func-
tion C(¢)=exp(-t/7), for different values of the correlation time 7,
and (ii) to a series of N=2'3 data extracted from a logistic map in its
fully chaotic region, e-map with a=2. To be compared with exact
results derived in Sec. VI.

T POU(Z) POU(3) Plug(z) Plug(3)
1.0 0.3012 0.232
0.5 0.3211 0.227
0.1 0.3333 0.222
0.3333 0.3332
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random has degree k=2. This node is associated to a datum
labeled x, without lack of generality. Now, this node will
have degree k=2 if the datum first neighbors, x; and x_; have
values larger than x,

P(k=2)=P(x_; > xo N x| > xp).

If series data were random and uncorrelated, we would have

Pun(2)=f dxof(xo)f dx—lf(x—l)f dx,f(x;) =1/3,
3)

where we have used the properties of the cumulative prob-
ability distribution (note that this result holds for any con-
tinuous probability density f(x), as shown in [16]). Now, in
our case the variables are correlated, so in general we should
have

POU(2)=f dxof dx_IJ dx f(x_y,x0,x1). (4)

We use the Markov property  f(x_;,Xg,X;)
=f(x_1)f(xo|x_;)f(x;|xo), that holds for an Ornstein-
Uhlenbeck process with correlation function C(f)~exp
(-=t/7) [35],

exp[— (x, — Kx))%2(1 = K?)]
V2m(1 - K?)

fxalxy) = , (5)

where K=exp(-1/7).

Numerical integration allows us to calculate P,y(2) for
every given value of the correlation time 7. For instance, we
ﬁnd POU(2)|7=10:O3012’ POU(2)|7=0.5:O'3211’
Poy(2)]20.1=0.3331, in perfect agreement with our previous
numerical results (see Table I).

An arbitrary datum x, of a series extracted from an
Ornstein-Uhlenbeck will have an associated node with de-
gree k=3 with a certain probability P,(3) which is the sum
of the probabilities associated to two possible scenarios,
namely, (i) the probability that x, has two visible data in its
right-hand side and a single one in its left-hand side, labeled
P{,(3), and (ii) the probability that x, has two visible data in
its left-hand side and a single one in its right-hand side,
labeled Py,,(3). In the very particular case of stationary Mar-
kovian processes (such as the Ornstein-Uhlenbeck), time in-
variance yields Py(3)=2P,,(3). Let us tackle now the cal-
culation of Py,(3). Let us quote x,x, the right-hand side
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FIG. 7. Schematic representation of a situa-
tion where datum x, has right visibility of two
data [P,(2)], x; and x,. An arbitrary number of
hidden data can be placed between x; and x,, and
this has to be taken into account in the calculation
of P(3).

“p Xz

visible data of x( and x_; the left-hand side visible one. For-
mally, we have

PBU(3)=J dxof dx_yf(x_))f(xolx_) P4 (2]x0),  (6)

where P,(2]x) is the probability that x, sees two data on its
right-hand side (see Fig. 7 for a graphical illustration). Of
course in P,(2|x,) we have to take into account the possibil-
ity of having an arbitrary number of hidden (non visible)
data between the first and the second visible datum, so

Pl = [ an f s v (ool

+J dxlf dZ1J dxaf (x1x)f(z1|x 1) f(xa21)

X0 X1 X1
+f dxlf dZIJ dz,

XJ dxaof (x1|x0) f(z1|x ) f(za] 21) fxal20) + ..

X0

= 2 I(plxo) )
p=0

where f(x|y) is the Ornstein-Uhlenbeck transition probability
defined in Eq. (5), and z, is the pth hidden data located
between x; and x, (note that there can be an eventually infi-
nite amount of hidden data between x; and x, and these
configurations have to be taken into account in the calcula-
tion). Here I(p|x,) characterizes the probability that x, sees
two data on its right-hand side with p hidden data between
them.
A little algebra allows us to write

X0
1(plxo) =f dx, f(x,]x0) G, (x1,x1,%0), (®)
where the function G, satisfies a recursive relation,

GO(-x’y’Z) = J f(h|y)dh’ (9)
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X

dhf(h|y)G,_ (x.h,2), p=1. (10)

—o0

Gp(x’yvz) =

This is a convolutionlike equation that can be formally re-
written as G,=TG,_,, or G,=T"G,, with an integral operator
T=[*.dhf(h|y). Accordingly, we have

P+(2|X0) =J dxlf(x1|x0)2 Gp(xl,xl,xo)

0 p=0

EJ’ dx, f(xy]x0) S (x1.x1.%0) . (11)

—o0

where we have defined the summation S(x,y,z) as

[

- 1
S(x,y,Z) = 2 Gp(x’y’z) = 2 TpGO: _GO’ (12)
p=0 p=0 1-7

where in the last equality we have used the summation and
convergence properties of geometric series (Picard se-
quence). This is valid whenever the spectral radius of the
linear operator r(7) <1, that is, if

lim[|| 7]V < 1, (13)

n—oo

where [|T{|=max .. J .. dh|f(h|y)| is the norm of T. Now,
this condition is trivially fulfilled given the fact that f(x|y) is
a Markov transition probability. Then Eq. (12) can be written
as (1-T)S=G,, or more concretely

S(x,y,z)=Go(x,y,z)+f dnf(hly)S(x,h,z),  (14)

which is a Volterra equation of the second kind [36] for
S(x,y,z). Note that it can also be seen as a multidimensional
convolutionlike equation since the argument in the Markov
transition probability f(|y) has the shape h—y’, where y’
=exp(—1/7)y. Hence f can be understood as the kernel of the
convolution.

Typical one-dimensional Volterra integral equations can
be numerically solved applying quadrature formulas for ap-
proximate the integral operator [36]. The technique can be
easily extended whenever the integral equation involves
more than one variable, as it is our case. Specifically, a
Simpson-type integration scheme leads to a recursion rela-
tion with a step & to compute the function S(x,y,z). One
technical point is that one needs to replace the —o° limit in the
integral by a sufficiently small number a. We have found that
a=-10 is enough for a good convergence of the algorithm.
Given a value of z the recursion relation

S(a,a+né,z) = Gyla,a+né,z),

S(a+ké,a+néd,z)
k-1
=Gyla,a+né,z) + 52, fla+ idla+nd)
i=0

XSla+(k=1)8,a+i8z) +0(8), (15)
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for k=0,1,2,... and n=0,1,..
S(x,y,z) for y=x.

Summing up, the procedure to compute P, (3) is the fol-
lowing: calculate S(x;,x;,x;) using the previous recursion
relation and use this value to obtain P,(2|x,) from a numeri-
cal integration of the right-hand side of Eq. (11) (again, the
lower limit will be replaced by x;=a). Finally, integrate nu-
merically Eq. (6) to obtain P},,(3) from which it readily
follows P,y(3). Applying this methodology for an integra-
tion step 6=4X10"0 we find Pyy(3)|~10=0.230,
Pou(3)]=05=0.226, or Pyy(3)|~0:=0.221, in good agree-
ment with numerical results (Table I).

..k, allows us to compute

B. Logistic map

A chaotic map of the form x,,,,=F(x,) does also have the
Markov property, and therefore a similar analysis can there-
fore apply (even if chaotic maps are deterministic). For cha-
otic dynamical systems whose trajectories belong to the at-
tractor, there exists a probability measure that characterizes
the long-run proportion of time spent by the system in the
various regions of the attractor. In the case of the logistic
map F(x,)=mux,(1—x,) with parameter u=4, the attractor is
the whole interval [0,1] and the probability measure f(x)
corresponds to the beta distribution with parameters a=0.5
and b=0.5,

x—O.S(l _x)—O‘S

f(X)=W- (16)

Now, for a deterministic system, the transition probability is

f(xn+l |'xn) = 6[xn+l - F(-xn)]a (17)

where &(x) is the Dirac delta distribution. Departing from Eq.
(4), for the logistic map F(x,)=4x,(1-x,) and x, € [0,1], we
have

| | I
Pye(2) =f dxof f(x_l)f(x0|x_1)dx_1J Jlx|xo)dx,
0 Xq X0

1 1
=j dxof fleoy) dlxg = Fx_y) ldx_,
0 X0

1
Xf x; — F(xp)ldx,. (18)

Now, notice that, using the properties of the Dirac delta dis-
tribution, [ ;Oé(xl—F (xg))dx; is equal to one if F(xy)
€ [xo, 1], what will happen if 0<x,<3/4, and zero other-
wise. Therefore the only effect of this integral is to restrict
the integration range of x, to be [0,3/4].

On the other hand,

Y fE)IF ()

x:\F(xZ):xO

)

1
f SO dlxg = Fx_y)Jdx_y =

that is, the sum over the roots of the equation F(x)=x,, if
F(x_;) >x,. But since x_; € [xy, 1] in the latter integral, it is
easy to see that again, this is verified if 0<xy<3/4 (as a
matter of fact, if 0<<xy<<3/4 there is always a single value

036120-8



DESCRIPTION OF STOCHASTIC AND CHAOTIC SERIES...

ndisy beriodic series’
0.9

0.8 |

0.7

x(t)

0.6

05

04 1

e —
(@) 10 20 30 40 50 60 70 80 90 100
t

FIG. 8. (a) periodic series of 220

PHYSICAL REVIEW E 82, 036120 (2010)

0
10 — —
. noisy periodic series  +
theory ———
10” +
S
-
.
10-2 N
.
3 .
o
103 ¢ o
-
o
104 | .
+ N
10° ¢
(b) 5 10 15 20 25

k

data generated through the logistic map x,,,;=ux,(1-x,) for ©=3.2 (where the map shows periodic

behavior with period 2) polluted with extrinsic white Gaussian noise extracted from a Gaussian distribution N(0,0.05). (b) dots represent the
degree distribution of the associated HVG, whereas the straight line is Eq. (21) (the plot is in semilog). Note that P(2)=1/2, also as theory
predicts, and that P(3) is not exactly zero due to boundary effects in the time series. The algorithm efficiently detects both signals and

therefore easily distinguishes extrinsic noise.

of x_; €[xy,1] such that F(x_;)=x,, so the sum restricts to
the adequate root). It is easy to see that the particular value is
x=( +v’rx0)/ 2. Making use of these piecewise solutions
and Eq. (16), we finally have

3/4 s
Prg(2) = f D) =13
0

(19)
4\”1 — X0

which is in perfect agreement with the numerical results (see
Table I). Note that a similar development can be fruitfully
applied to other chaotic maps, provided that they have a well
defined natural measure.

The approach for analytically calculating Pj,,(3) in the
case of a chaotic map with a well defined natural measure—
such as the logistic map in its fully chaotic region u=4.0—is
very similar to the one adopted for an Ornstein-Uhlenbeck
process, again replacing the probability density and Markov-
ian transition probability with Egs. (16) and (17). Remark-
ably, applying the properties of the Dirac delta and the logis-
tic map it can be easily proved that 7(0)=1 and I(p)=0Vp
>0 provided that x is restricted to the range 3/4 <x,<<1.
The whole calculation therefore reduces to
1 *

SO = e,

P} (3)=
o 34 4V1 = xp

(20)
that yields P,,,g(3)=2Pj’Dg(3)= 1/3, in perfect agreement with
numerical results (see Table I). Again, similar developments
can be straightforwardly applied to other chaotic maps with
well defined natural measure.

VII. COMMENT ON NOISY PERIODIC MAPS

Periodic series have an associated HVG with a degree
distribution formed by a finite number of peaks, these peaks
being related to the series period, what is reminiscent of the
discrete Fourier spectrum of a periodic series [15,16]. The

reason is straightforward: a periodic series maps into an
HVG which, by construction, is a repetition of a root motif.
Now, if we superpose a small amount of noise to a periodic
series (a so-called extrinsic noise), while the degree of the
nodes with associated small values will remain rather similar,
the nodes associated to higher values will eventually increase
their visibility and hence reach larger degrees. Accordingly,
the deltalike structure of the degree distribution will be per-
turbed, and an exponential tail will arise due to the presence
of such noise. Can the algorithm characterize such kind of
series? The answer is positive, since the degree distribution
can be analytically calculated as it follows: Consider for sim-
plicity a period-2 time series polluted with white noise (see
the left part of Fig. 8 for a graphical illustration). The HVG
is formed by two kind of nodes: those associated to high data
with values [(i},i3,i5,...) in the figure] and those associated
to data with small values [(i,,i4,ig,...)]. These latter nodes
will have, by construction, degree k=2. On the other hand,
the subgraph formed by the odd nodes (i;,i3,is,...) will es-
sentially reduce to the one associated to an uncorrelated se-
ries, i.e., its degree distribution will follow Eq. (2). Now,
considering the whole graph, the resulting degree distribu-
tion will be such that

P(2)=1/2,

P(3)=0,

1/2 k=2
P(k+2)=_(_> s k22,
3\3

< P(k) = 41_1

[

2

3

)k—3

k=4,

(21)

that is to say, introducing a small amount of extrinsic uncor-
related noise in a periodic signal introduces an exponential
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FIG. 9. Semilog plots of the degree distributions of power-law
correlated stochastic series of different sizes with correlation y
=1.5 (see Fig. 3). Crosses represent the degree distribution of the
associated HVG for each realization of the stochastic process (10
time series). Notice that statistical deviations from A=0.54 (which
are more acute in the tail of the distribution, where statistics are
poor) decrease with system’s size.

tail in the HVG’s degree distribution with slope In(3/2). In
the left part of Fig. 8 we plot in semilog the degree distribu-
tion of a periodic-2 series of 22° data polluted with an extrin-
sic white Gaussian noise extracted from a Gaussian distribu-
tion N(0,0.05). Numerical results confirm the validity of Eq.
(21). Note that this methodology can be extended to every
integrable deterministic system, and therefore we conclude
that extrinsic noise in a mixed time series is well captured by
the algorithm.

Conversely, introducing a small amount of intrinsic noise
in a periodic series is more tricky. For instance, consider the
noisy logistic map defined as

X1 = px(1 = x,) + &,

where & are independent random numbers extracted from a
Gaussian distribution N(0,o) with zero mean and standard
deviation o. For some values of u< ., (that is, in the peri-
odic regime of the associated noise-free logistic map), small
amounts of intrinsic noise can produce orbits very similar to
those generated by the noise-free version of the map in the
chaotic regime [14], in the sense that, superposed to the
deltalike shape of P(k), an asymptotic exponential tail with
A<\, may eventually develop. Besides the deltalike struc-
ture of P(k) appearing for short values of k (reminiscent of
the periodicity of the noise-free map), the algorithm fails in
determining the source of entropy of the system (which is
stochastic here, and therefore A=\,,). This is a typical
pathological case [14,37] where chaos and noise are difficult
to distinguish. Indeed, it has been pointed out that rather
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sophisticated methods such as finite size Lyapunov expo-
nents or (€, 7)-entropies have difficulties to determine the
chaotic/stochastic nature of these maps for finite resolution
[37]. This limitation of the algorithm should be investigated
in detail in further work.

VIII. CONCLUSION

To conclude, we have shown that correlated stochastic
series map into an horizontal visibility graph with an expo-
nential degree distribution with slope A>1n(3/2), that
slowly tends to its asymptotic value for very weak correla-
tions. Results are confirmed for a real physiological time
series that has been previously shown to evidence long-range
correlations [7]. Similar results have been obtained for the
case of chaotic series, with the peculiarity that the slope of
the degree distribution converges to In(3/2) in the opposite
direction [A <In(3/2)]. In a preceding work we analytically
proved that for an uncorrelated random series, the slope is
exactly In(3/2), independently of the probability density. We
therefore conclude that chaotic maps and correlated stochas-
tic processes seem to belong to different regions of the A\
diagram, where A=In(3/2) plays the role of an effective
frontier between both processes. It is worth commenting that
the horizontal visibility algorithm is very fast (as a guide, the
generation of the associated graph for a series of N=2'® data
in a standard personal computer takes a computation time of
the order of a few seconds). Applications include direct char-
acterization of complex signals such as physiological series
or series extracted from natural phenomena, as a first step
where to discriminate among several modeling framework
approaches. Questions for future work include a deeper char-
acterization of this method, concretely the incorporation of
Lyapunov exponents and the associated short-term memory
effects within the visibility framework, and the study of
noisy maps, which hitherto constitute a limitation of the al-
gorithm. The characterization of flows that produce
continuous-time series is also an open problem for future
research.
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APPENDIX: STATISTICAL ERROR IN A

The calculation of N comes straightforwardly from the
fitting of the HVG’s degree distribution (concretely, the tail)
to an exponential function. Two possible sources of uncer-
tainty in this calculation are present, namely: (i) the finite
size effects associated to finite time series induce a lack of
statistics for large values of the graph degree k, and (ii) ex-
perimental time series are often polluted with measurement
errors. While a detailed and systematic analysis of these is-
sues is beyond the scope of this work, at this point we can
outline the following comments: (i) for the stochastic corre-
lated and chaotic systems considered in this work, finite size
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effects seem to be irrrelevant for relatively large time series
(N>2'%), in the sense that the region [k,,, k] Where an
exponential function is very well fitted is large enough (see
Figs. 3 and 5) and accordingly, the error associated to \ can
be simply estimated as the error of the exponential fitting. (ii)
In general, the procedure to check the effect of finite size is
the following: consider a stationary series of N data. The
error in the calculation of N can be estimated by partitioning
the original series in s samples of N/s data, labeled
S1,..-,8y;, Accordingly, each series generates an HVG
whose degree distribution can be fitted to an exponential
function with slope A, such that (A):%Efﬂ)\% and the asso-
ciated error is simply the standard deviation from the mean
(this is equivalent to performing a time average). (iii) In
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practice, this latter procedure is not appropriate for very short
time series [N of order O(10%)]; in this case an ensemble
average is better suited (note at this point that stationarity is
needed in order to guarantee that averaging over ensembles
and over time yield equivalent results).

For illustration purposes, we address the case of a power-
law correlated stochastic process with correlation function
C(r)=r"7, with y=1.5, for which a previous analysis shows
that the associated HVG has an exponential degree distribu-
tion with slope N=0.54 (see Fig. 3). For a given time series
size N, we generate ten series and plot the degree distribution
of the associated HVGs in Fig. 9. The statistical deviations
associated to finite size effects decrease with N.
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