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Concept of entropy

THERE are a number of concepts and analytical
techniques directed to quantifying the irregular-

ity of stochastic signals, such as the EEG. One such
concept is entropy. Entropy, when considered as a
physical concept, is proportional to the logarithm of
the number of microstates available to a thermody-
namic system, and is thus related to the amount of
‘disorder’ in the system. For information theory,
entropy was first defined by Shannon and Weaver in
1949 (1), and further applied to a power spectrum of a
signal by Johnson and Shore in 1984 (2). In this con-
text, entropy describes the irregularity, complexity, or
unpredictability characteristics of a signal. In a simple
example, a signal in which sequential values are alter-
nately of one fixed magnitude and then of another
fixed magnitude has an entropy value of zero, i.e. the
signal is completely regular and totally predictable. A
signal in which sequential values are generated by a
random number generator has greater complexity and
higher entropy.
Entropy is an intuitive parameter in the sense that

one can visually distinguish a regular signal from an
irregular one. Entropy also has the property that it is
independent of absolute scales such as the amplitude
or the frequency of the signal: a simple sine wave is
perfectly regular whether it is fast or slow. In an EEG
application, this is a significant property, as it is well
known that there are interindividual variations in the
absolute frequencies of the EEG rhythms.

There are various ways to compute the entropy of a
signal. In time domain, one may consider, for example,
the approximate entropy (3, 4) or Shannon entropy
(1, 4, 5). In frequencydomain, spectral entropy (1, 2, 6, 7)
may be computed. In order to optimize the speed at
which information is derived from the signal, it is desir-
able to construct a combination of time and frequency
domain approaches. Such an algorithm is implemented
in the Datex-Ohmeda EntropyTM Module (Datax-
Ohmeda Division, Instrumentarium Corp., Helsinki,
Finland). The starting point of the algorithm is the spec-
tral entropy, which has the particular advantage that
contributions to entropy from any particular frequency
range can be explicitly separated. For optimal response
time, thecomputationscanbeconstructed insuchaway
that the length of the time window for each particular
frequency is individuallychosen.This leads toaconcept
we will call time-frequency balanced spectral entropy.

Spectral entropy

The starting point of the computations is the spectrum
of the signal. There are various spectral transform-
ations to obtain the spectrum, of which we consider
here the discrete Fourier transformation (8). This pro-
vides a transformation from a set of signal values x(ti)
sampled at time moments ti within a sample of a
signal to a set of an equal number of complex values
X(fi) corresponding to a set of frequencies fi:

XðfiÞ ¼
X
ti

xðtiÞe�i2�fiti ½1�

The spectral components X(fi) can be evaluated using
an effective computational technique called the fast
Fourier transform (FFT) (8).
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The concept of spectral entropy originates from a
measure of information called Shannon entropy (1).
When applied to the power spectrum of a signal,
spectral entropy is obtained (2). The following steps
are required to compute the spectral entropy for a
particular epoch of the signal within a particular fre-
quency range [f1, f2] (6, 7).
From the Fourier transform X(fi) of the signal x(ti),

the power spectrum P(fi) is calculated by squaring the
amplitudes of each element X(fi) of the Fourier trans-
form:

PðfiÞ ¼ XðfiÞ � X^ðfiÞ; ½2�

where X^(fi) is the complex conjugate of the Fourier
component X(fi) and ‘*’ denotes multiplication.
The power spectrum is then normalized. The nor-

malized power spectrum Pn(fi) is computed by setting
a normalization constant Cn so that the sum of the
normalized power spectrum over the selected fre-
quency region [f1, f2] is equal to one:

Xf2
fi¼f1

PnðfiÞ ¼ Cn

Xf2
fi¼f1

PðfiÞ ¼ 1 ½3�

In the summation step, the spectral entropy correspond-
ing to the frequency range [f1,f2] is computed as a sum:

S½fi; f2� ¼
Xf2
fi¼f1

PnðfiÞ log
1

PnðfiÞ

� �
½4�

Thereafter, the entropy value is normalized to range
between 1 (maximum irregularity) and 0 (complete
regularity). The value is divided by the factor log
(N[f1,f2]) where N[f1,f2] is equal to the total number
of frequency components in the range [f1,f2]:

SN½f1; f2� ¼
S½f1; f2�

logðN½f1; f2�Þ
½5�

Figures 1—3 illustrate these steps. In Fig. 1(A), 2(A),
and 3(A), three pieces of signals corresponding to
different entropy values are shown. In this simple
example, we consider pieces of signal with eight spec-
tral components, ofwhich the 0-frequency component
is omitted (taken to be equal to zero) so that n¼ 7
frequency components are analyzed. Figure 1(A)
shows a perfect sine wave, Fig. 2(A) a sine wave
superposedwith white noise, and Fig. 3(A) a perfectly
randomwhite noise signal. The discrete Fourier spec-
tra of these signals, normalized according to Eq. 3, are
plotted in Fig. 1(B), 2(B), and 3(B), respectively. The
normalized spectral components Pn(fi) are next

mapped using the Shannon function in Fig. 1(C),
2(C), and 3(C) to obtain the contributions

1

logðN½f1; f2�Þ
PnðfiÞ log

1

PnðfiÞ

� �
½6�

Time-frequency balanced spectral entropy

In real time signal analysis, the signal values x(ti) are
sampled within a finite time window (epoch) of a
selected length with a particular sampling frequency.
This time window is moved step by step to provide
updated estimates of the spectrum. The choice of the
epoch length is linked to the choice of the frequency
range under consideration, as the time window has
to be sufficiently long to allow for the estimation of
the slowest (lowest frequency) variations in the
signal.
An EEG signal consists of a wide selection of fre-

quencies, ranging from slow delta (from 0.5Hz) up to
frequencies in the order of 50Hz. At a frequency of
0.5Hz, a time window as long as 30 s would be
required to obtain 15 full cycles of the 0.5Hz variation.
For a frequency of 50Hz, the same number of full
cycles could be obtained with only 0.3 s of data.
A single time window of fixed length is obviously

not the optimal choice to acquire information as fast
and as reliably as possible. In order to optimize
between time and frequency resolution, the Entropy
Module utilizes a set ofwindow lengths chosen in such
away that each frequency component is obtained from
a time window that is optimal for that particular fre-
quency. In this way, information is extracted from the
signal as fast as possible. The approach is closely
related to the idea of the wavelet transformation,
with wavelets being wave packets with finite vari-
able widths containing an approximately constant
number of variations to optimize between time and
frequency resolution. The selected technique, how-
ever, combines this advantage of wavelet analysis
with those of fast Fourier analysis, such as the pos-
sibility to explicitly consider the contribution from
any particular frequency range, and efficient imple-
mentation in software. The basic idea is illustrated
in Fig. 4.
In the entropy module, a sampling frequency of

400Hz is used. The shortest time window is equal to
1.92 s¼ 768 sample values, and the longest is equal to
60.16 s¼ 24064 sample values. The shortest time win-
dow is used for the frequency range between 32Hz
and 47Hz. The longest time window is used only for
frequencies below 2Hz. For frequencies between 2Hz
and 32Hz, window lengths between these two
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extremes are used. The very short window of less
than 2 s for the range of frequencies from 32Hz to
47Hz ensures that the entropy value rises readily at
arousal. In particular, it provides for immediate indi-
cation of EMG activation.

State entropy and response entropy

A biopotential signal measured from the forehead of a
patient includes a significant electromyographic
(EMG) component, which is created by muscle activ-
ity. The EMG signal has a wide noise-like spectrum
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Fig.1. The perfect sine wave in Fig. 1
includes only one nonzero spectral
component, which is normalized to 1 in
the normalization step (2). In the Shannon
mapping, both values 1 and 0 contribute a
value of 0, thus corresponding to entropy¼ 0.
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Fig.2. Some amount of white noise is
superimposed on top of the sine wave.
After normalization, the spectrum
i n c l u d e s o n e h i g h c omp o n e n t
corresponding to the frequency of the
sine wave, and 6 smaller nonzero
components. In the Shannon mapping,
both types of components contribute
nonzero values to the entropy of the
signal , corresponding to a total
entropy¼ 0.12þ 6 * 0.08¼ 0.60.
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and during anesthesia typically dominates at frequen-
cies higher than 30Hz. The EEG signal component
dominates the lower frequencies (up to about 30Hz)
contained in the biopotentials existing in the elec-
trodes. At higher frequencies, EEG power decreases
exponentially (Fig. 5).
Sudden appearance of EMG signal data often indi-

cates that the patient is responding to some external
stimulus, such as a painful stimulus, i.e. nociception,
due to some surgical event. Such a response may
result if the level of analgesia is insufficient. If stimu-
lation continues and no additional analgetic drugs are

administered, it is highly likely that the level of hyp-
nosis eventually starts to lighten. EMG can thus pro-
vide a rapid indication of impending arousal.
Importantly, because of the higher frequency of the
EMG data signal, the sampling time can be signifi-
cantly shorter than that required for the lower fre-
quency EEG signal data. This allows the EMG data
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Fig.3. The sine wave has disappeared, and
there is only white noise left. After
normalization, the noise contributes to
N¼ 7 components that are equal to
Pn(fi)¼ 1/7. These are transformed to
values (1/7)log(7) by the Shannon
mapping. Finally, summation of these
components and normalization by 1/log(7)
give an entropy value¼ 7*(1/7)log(7)/
log(7)¼ 1. White noise has maximal
entropy¼ 1.
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Fig.5. Typical power spectrum of a biopotential signal
measured from the forehead of a patient. The EEG signal
dominates up to frequencies about 30Hz, while the EMG signal
dominates the higher frequency range. The vertical scale is
logarithmic.
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to be computed more frequently so that the overall
diagnostic indicator can quickly indicate changes in
the state of the patient.
It is informative to consider two entropy indicators,

one over the EEG dominant frequency range alone
and another over the complete range of frequencies,
including both EEG and EMG components. State
entropy (SE) is computed over the frequency range
from 0.8Hz to 32Hz. It includes the EEG-dominant
part of the spectrum, and therefore primarily reflects
the cortical state of the patient. The time windows for
SE are chosen optimally for each particular fre-
quency component, and range from 60 s to 15 s
according to the explanation given earlier under
the heading Time-Frequency Balanced Spectral
Entropy. Response entropy (RE) is computed over
a frequency range from 0.8Hz to 47Hz. It includes
both the EEG-dominant and EMG-dominant part of
the spectrum. The time windows for RE are chosen
optimally for each frequency, with the longest time
window equal to 15.36 s and the shortest time win-
dow, applied for frequencies between 32Hz and
47Hz, equal to 1.92 s.
It is advantageous to normalize these two entropy

parameters in such a way that RE becomes equal to SE
when the EMG power (sum of spectral power
between 32Hz and 47Hz) is equal to zero, as the
RE—SE-difference then serves as an indicator for
EMG activation. Let us denote the frequency range
from 0.8Hz to 32Hz as Rlow and the frequency range
from 32Hz to 47Hz as Rhigh; the combined range from
0.8Hz to 47Hz is denoted by Rlowþhigh. It follows
from Eqs 2—5 that when spectral components within
the range Rhigh are zero, the unnormalized entropy
values S[Rlow] and S[Rlow þ Rhigh] coincide whereas
for the normalized entropies one obtains an inequal-
ity: SN[Rlow]> SN[RlowþRhigh]. The normalization
step (5) is therefore redefined for SE in the follow-
ing way:

SE ¼ Sn½Rlow� ¼
S½Rlow�

logðN½Rlowþhigh�Þ

¼ logðN½Rlow�Þ
logðN½Rlowþhigh�Þ

� S½Rlow�
logðN½Rlow�Þ

½7�

For RE, the normalized entropy value is computed
according to (5):

RE ¼ SN½Rlowþhigh� ¼
S½Rlowþhigh�

logðN½Rlowþhigh�Þ
½8�

Consequently, RE varies from 0 to 1, whereas SE
varies from 0 to log(N[Rlow])/log(N[Rlowþhigh])< 1.

The two entropy values coincide when P(fi)¼ 0 for
all fi within the range [Rhigh]. When there is EMG
activity, spectral components within the range
[Rhigh] differ significantly from zero and RE is larger
than SE.
With these definitions, SE and RE both serve their

own informative purposes for the anesthesiologists.
State entropy is a stable indicator of the effect of
hypnotics on the cortex. The time windows for SE
are selected in such a way that transient fluctuations
are removed from the data. Response entropy, on
the other hand, reacts fast to changes. A typical
situation in which the different roles of these para-
meters is demonstrated is during arousal, when RE
rises first simultaneously with muscle activation and
is some seconds later followed by SE.

Entropy during burst suppression

When burst suppression pattern (Fig. 6) sets in,
entropy values RE and SE are in principle computed
in the same way as they are calculated at lighter levels
of hypnosis. The part of the signal that contains sup-
pressed EEG is treated as a perfectly regular signal
with zero entropy, whereas the entropy associated
with the bursts is computed as described previously.
It is customary to quantify burst suppression by

presenting the relative amount of suppression, called
burst suppression ratio (BSR), within 1min to obtain a
sufficiently stable estimate. A 1-min window includes
a sufficiently long sample of both bursts and suppres-
sion to provide a stable indication of the relative
amount of suppressed EEG, whereas much shorter
time windows would produce highly fluctuating
BSR values. For the same reason, a 1-min window,
instead of the set of varying time windows, is applied
for all frequency components of the SE and RE values
whenever suppressed epochs have been detected
during the last minute of data.
Burst suppression is detected by applying the

technique described by Särkelä et al. (9). In order to
eliminate baseline fluctuations, a local average is
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Fig.6. EEG signal containing bursts and suppression. Suppressed
periods in EEG are denoted with ’’BS’’.
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subtracted from each signal sample. The signal is then
divided into two frequency bands by elliptic filters.
Cut-off frequencies of these low-pass and high-pass
filters are 20Hz and 75Hz, respectively. At this point
the signal sampling frequency is 200Hz. The low-
frequency band is used to detect the burst suppres-
sion pattern and the high-frequency band to detect
artifacts. A non-linear energy operator (nleo) is
derived in both bands for each 0.05-s epoch (eq. 9).
NLEO (eq. 10) is applied to estimate the signal
power from overlapping 1-s frames offset by 0.05 s:

nleoðjÞ ¼
Xj�10

i¼j

jxði� 1Þxði� 2Þ � xðiÞxði� 3Þj ½9�

NLEOðkÞ ¼
Xk�20

j¼k

nleoðjÞ ½10�

During suppression periods, ECG artifacts may cor-
rupt classification and therefore their interference is
eliminated in the burst suppression band. This is
performed by replacing the current nleo by the aver-
age nleo from the frame of 1 s, if the following rules are
fulfillled:

A The squared difference between the current nleo
from the 0.05 second epoch and the average nleo for
the 1-s frame is over three times bigger than the mean
of all the squared differences in the frame of 1 s, and
B The 1-s frame includes at most four epochs that
fulfill condition A.

Suppression is detected if NLEO is below a fixed
threshold for at least 0.5 s and artifacts are not present.
The BSR is the percentage of 0.05-s epochs in the last
60 s that were considered suppressed.

Modifications for enhanced usability

The parameters RE and SE have been designed to be
used in conjunction with a substantial amount of
other important information on the same monitor
screen. This complicated set of information is inter-
preted by a professional clinician in an utmost
demanding dynamically varying clinical situation. In
order to provide the entropy information as effect-
ively as possible, certain modifications to the presen-
tation of these parameters were made to optimize
their usability.
A two-digit integer value such as 56 on a monitor

screen can be perceived more rapidly than a deci-
mal value such as 0.56 or a three-digit number such
as 562. For this reason, the original entropy values

that vary continuously between 0 and 1 were trans-
formed to a scale of full integers between 0 and 100.
A relatively large portion of the original mathema-

tical scale of the entropy values is in a range in which
the level of hypnosis can be considered too deep,
whereas the most interesting range of adequate hyp-
nosis and emergence lies between 0.5 and 1.0. Sim-
ple division of the original scale into equidistant
integer values from 0 to 100 would therefore result
in a somewhat compromised resolution in the inter-
esting range and unnecessarily high resolution in
the very deep levels. For this reason, the transfor-
mation from the original continuous entropy scale
[0 . . . 1] to the integer scale [0 . . . 100] has been
performed by a non-linear transformation. This
transformation is defined by a particular monoto-
nous spline function F(S) that maps the scale [0 . . . 1]
to the scale [0 . . . 100].
Any spline function has the property that it is con-

tinuous and its derivatives of any order are continu-
ous. Therefore, a transformation operation defined by
a monotonous spline function is perfectly smooth
with no discontinuities or ‘kinks’. The function F(S)
employed for the transformation is presented in Fig. 7.
As can be seen in Fig. 7, the slope of the function is
highest in the range of clinical anesthesia and emer-
gence for optimal resolution in this range. Response
entropy ranges from 0 to 100, whereas SE varies
between 0 and 91.
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If the amplitudes of the low-frequency components
are particularly high, as may occur in very deep
anesthesia, the difference between RE and SE, as
they are originally obtained from Eqs 7 and 8, may
fall below the integer resolution used on the monitor
screen. In order to provide a detectable indication of
EMG activity, the treatment of frequency components
in the range [Rhigh]¼[32Hz, 47Hz] is modified.
Instead of applying the normalization constant Cn

according to Eq. 3 to all frequency components, a dis-
tinct normalization constant Cn

high is used for the
range [Rhigh] in this situation. As long as Cn has a
value below a particular threshold Cn

limit, Cn
high is

taken to be equal to Cn, but if Cn exceeds Cn
limit, Cn

high

is taken to be equal to Cn
limit. This modification

ensures that active EMG is detectable on the monitor
screen in any situation.

Treatment of the raw signal for artifact
detection and removal

For artifact analysis, the EEG signal is divided into
epochs of 0.64 s (including 256 signal values). These
epochs are inspected to detect and remove the follow-
ing artifacts:

Electrocautery artifact
The hardware of the entropy module tolerates sub-
stantial electrocautery, so that it rarely occurs that
any data needs to be rejected during electrocautery.
In order to detect these situations, power in the
frequency range from 200 kHz to 1000 kHz is con-
tinuously measured. If this power exceeds a set
threshold value, the collected EEG data in the fre-
quency range of 66—86Hz is inspected to check
whether electrocautery affects the signal or not. If
this is the case, the epoch is rejected from further
analysis.

ECG and pacer artifacts
The high sampling frequency of 400Hz ensures that
the sharp peaks associated with ECG and pacer can be
readily distinguished from the underlying EEG signal.
These artifacts are subsequently removed by subtract-
ing the distortion from the underlying signal, which
can be used for entropy calculations.

Electromyography (EMG)
As discussed earlier under the heading State Entropy
and Response Entropy, EMG is treated as a component
signal rather than an artifact.

Eye movements and blinks, movement artifacts
The epoch length of 0.64 s is too short, as such, to
reliably detect all epochs that contain these artifacts.
Therefore, these artifacts are considered in two steps:

Step 1: A stationarity analysis is performed for the
signal within a time window of 24*0.64¼ 15.36 s
(including 6144 signal values). The signal is classified
either stationary or non-stationary depending on the
statistical distribution of the signal values among and
within these 24 epochs.
Step 2: For each epoch, five signal characteristics in
time and frequency domains are computed. These
characteristics are considered simultaneously in the
corresponding five-dimensional parameter space that
has been divided to regions of ‘normal signal’ and
‘artifact contaminated signal’. Each epoch is either
accepted or rejected depending on the region in the
parameter space that the epoch belongs to. There are
two sets of rejection rules: a ‘stronger’ set of rules,
which is applied if the analyzed piece of the signal
has been classified as non-stationary in Step 1; and a
‘weaker’ set of rules if the analyzed piece of the signal
has been classified as stationary.

Acknowledgements
Following persons are acknowledged for their valuable con-
tribution in data collection and analysis: Clinical Specialists
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