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Des
riptions of game a
tions

Hans P. van Ditmars
h (hans�
s.otago.a
.nz)
Computer S
ien
e, University of Otago, PO Box 56, Dunedin, New Zealand

Abstra
t. To des
ribe simultaneous knowledge updates for di�erent subgroups we

propose an epistemi
 language with dynami
 operators for a
tions. The language is

interpreted on equivalen
e states (S5 states). The a
tions are interpreted as state

transformers. Two 
ru
ial a
tion 
onstru
tors are learning and lo
al 
hoi
e. Learning

is the dynami
 equivalent of 
ommon knowledge. Lo
al 
hoi
e aids in 
onstraining

the interpretation of an a
tion to a fun
tional interpretation (state transformer).

Bisimilarity is preserved under exe
ution of a
tions. The language is applied to

des
ribe various a
tions in 
ard games.

Keywords: multiagent systems, modal logi
, dynami
 epistemi
s, a
tion language

1. Introdu
tion

The area of dynami
 epistemi
s, how to update models for reason-

ing about knowledge, has 
ome to the full attention of the resear
h


ommunity by the treatment of publi
 announ
ements in the famous

`Muddy Children Problem' (Fagin et al., 1995; Parikh, 1987). In the

`runs and systems' approa
h of (Fagin et al., 1995), an update is a

fun
tional relation between two global states of an interpreted system,

and a run is a sequen
e of su
h transformations. Su
h a global state


orresponds in a natural way to a Kripke state where all relations

are equivalen
e relations: an equivalen
e (or S5) state. They do not

introdu
e an obje
t (logi
al) language for both updates and epistemi


statements. An early example of su
h a dynami
 epistemi
 language

is the elegant logi
 of publi
 announ
ements as presented in (Plaza,

1989). Plaza models publi
 announ
ements as binary operators that

have a dynami
 interpretation. An integrated approa
h in
luding an-

noun
ements to subgroups has been put forward in (Gerbrandy and

Groeneveld, 1997). Gerbrandy's thesis, (Gerbrandy, 1999), presents this

dynami
 epistemi
s in more generality. Gerbrandy's approa
h is based

on non-well-founded set theory, a non-standard semanti
s. Based on a

standard semanti
s, (Baltag et al., 2000) also treats epistemi
 a
tions in

general. This is still being extended to an entire framework for dynami


epistemi
 logi
 in (Baltag, 1999).

Our resear
h (van Ditmars
h, 1999; van Ditmars
h, 2000; van Dit-

mars
h, 2001a) should probably be seen as a spe
ial 
ase of the more

general framework as presented by Gerbrandy and under development
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by Baltag. Part of its interest lies in the detailed des
ription of new sorts

of epistemi
 a
tion, namely a
tions in games. We restri
t ourselves to

equivalen
e states. We base ourselves on standard Kripke semanti
s.

Our 
ontribution 
onsists of a 
on
ise language to des
ribe equiva-

len
e state transformations, and a new relational semanti
s to interpret

these a
tions, namely one based on standard Kripke semanti
s. We de-

s
ribe and interpret 
ombined updates for di�erent subgroups by lo
al

interpretation: �rst 
omplete the interpretation `lo
ally', for a given

subgroup only, and then use that to determine the global interpretation,

for the entire group of agents. Apart from the usual programming 
on-

stru
ts: test, sequential exe
ution, and nondeterministi
 
hoi
e (Harel,

1984; Harel et al., 2000; Goldblatt, 1992), we introdu
e as well: learning

and lo
al 
hoi
e. Learning is the dynami
 equivalent of 
ommon knowl-

edge (of re
exive 
ommon knowledge (Meyer and van der Hoek, 1995))

and is related to truthful (fa
tive) updating (Gerbrandy, 1999). Lo
al


hoi
e aids in making the interpretation of an a
tion fun
tional. We

start with some examples to illustrate the need for these operations.

Hexa Three players ea
h hold one 
ard. Suppose player 1 holds a red


ard, 2 holds a white 
ard and 3 holds a blue 
ard. This is modelled by

a (hexagonal) equivalen
e state (Hexa; rwb). See Figure 1. There are

six deals of three 
ards over three players. The model Hexa 
onsists

of these deals. In deal ijk player 1 holds 
ard i, 2 holds j and 3 holds

k. Two deals 
annot be distinguished from ea
h other by a player if he

holds the same 
ard in both. The following a
tions 
an be exe
uted in

this state (Hexa; rwb):

EXAMPLE 1 (table). Player 1 puts the red 
ard (fa
e up) on the table.

EXAMPLE 2 (show). Player 1 shows (only) player 2 the red 
ard.

Player 3 
annot see the fa
e of the shown 
ard, but noti
es that a 
ard

is being shown.

EXAMPLE 3 (whisper). Player 2 asks player 1 to tell him a 
ard that

he (1) doesn't have. Player 1 whispers in 2's ear \I don't have blue".

Player 3 noti
es that the question is answered, but 
annot hear the

answer.

We assume that only the truth is told. In show and whisper, we assume

that it is publi
ly known what 3 
an and 
annot see or hear.

Figure 1 also pi
tures the states that result from updating the 
ur-

rent state (Hexa; rwb) with the information 
ontained in the three

a
tions. In table it suÆ
es to eliminate some worlds: after 1's a
tion,

the four deals of 
ards where 1 does not hold red are eliminated. It
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Figure 1. The results of exe
uting table, show, and whisper in the state (Hexa; rwb)

where 1 holds red, 2 holds white and 3 holds blue. The points of the states are

underlined. Worlds are named by the deals that (atomi
ally) 
hara
terize them.

Assume re
exivity and transitivity of a

ess.

is publi
ly known that they are no longer a

essible. This update is a

publi
 announ
ement. In show we 
annot eliminate any world. After

this a
tion, e.g., 1 
an imagine that 3 
an imagine that 1 has shown

red, but also that 1 has shown white, or blue. However, some links

between worlds have now been severed: whatever the a
tual deal of


ards, 2 
annot imagine any alternatives after exe
ution of show. In

whisper player 1 
an 
hoose whether to say \not white" or \not blue",

and the resulting game state has twi
e as many worlds as the 
urrent

state, be
ause for ea
h deal of 
ards this 
hoi
e 
an be imagined to

have been made.

We 
an paraphrase some more of the stru
ture of the a
tions. In

table, all three players learn that player 1 holds the red 
ard, where

`learning' should be regarded as the dynami
 equivalent of `
ommon

knowledge'. It is hard to give a more pre
ise informal meaning to `learn-

ing'. In parti
ular, `learning' is not the same as `be
oming 
ommon
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knowledge': indeed in table it be
omes 
ommon knowledge that 1 holds

red; however, imagine that instead of putting his 
ard on the table, 1

had said to 2: `You don't know that I have the red 
ard' (interpreted

as: `I have the red 
ard and you don't know that'). At the moment

of utteran
e, this statement 
an be truthfully made in the worlds rwb

and rbw of Hexa, so it results in the same state as exe
ution of table.

However, in that state is it not 
ommon knowledge that 2 doesn't know

that 1 has red. To the 
ontrary: after this announ
ement 2 knows that

1 has red.

We 
ontinue our 
on
eptual analysis. In show, 1 and 2 learn that

1 holds red, whereas the group 
onsisting of 1, 2 and 3 learns that 1

and 2 learn whi
h 
ard 1 holds, or, in other words: that either 1 and 2

learn that 1 holds red, or that 1 and 2 learn that 1 holds white, or that

1 and 2 learn that 1 holds blue. The 
hoi
e made by subgroup f1; 2g
from the three alternatives is lo
al, i.e. known to them only, be
ause

it is hidden from player 3. This 
an be expressed by the `lo
al 
hoi
e'

operator. The need for su
h an operator be
omes more apparent in the


ase of the a
tion whisper: the a
tion of 1 whispering in 2's ear a 
ard

that he doesn't have, has two di�erent exe
utions in any given state.

`Lo
al 
hoi
e' �xes one of those exe
utions, in this 
ase `1 and 2 learn

that 1 doesn't have blue'.

In se
tion 2 we de�ne the logi
al language LA and the knowledge

a
tions KAA. We give des
riptions of the 
ard game a
tions in the

introdu
tion. In se
tion 3 we de�ne the interpretation of LA. We also

give some other game a
tion des
riptions. In se
tion 4 we present some

theoreti
al results. In se
tion 5 we dis
uss extensions of LA and 
ompare

our resear
h to that of others.

2. Knowledge a
tions

To a standard multiagent epistemi
 language with 
ommon knowledge

for a set A of agents and a set P of atoms (Meyer and van der Hoek,

1995; Fagin et al., 1995), we add dynami
 modal operators for programs

that are 
alled knowledge a
tions and that des
ribe a
tions. The lan-

guage LA and the knowledge a
tions KAA are de�ned by simultaneous

indu
tion.

DEFINITION 1 (Dynami
 epistemi
 logi
 { LA). LA(P ) is the small-

est set su
h that, if p 2 P;';  2 LA(P ); a 2 A;B � A;� 2 KAA(P ),

then

p;:'; (' ^  );Ka';CB'; [�℄' 2 LA(P )
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Formula Ka' stands for a knows ', CB' stands for group B 
om-

monly know ', and [�℄' stands for ' holds after every exe
ution

of a
tion �. Other propositional 
onne
tives and modal operators are

de�ned by abbreviations (let p 2 P ): ' _  := :(:' ^ : ), ' !
 := :' _  , ' $  := (' !  ) ^ ( ! '), EB' :=

V
a2B Ka',

> := p _ :p, ? := p ^ :p. Outermost parentheses of formulae are

deleted whenever 
onvenient. As we may generally assume an arbitrary

P , write LA instead of LA(P ). The set of agents A is 
alled the publi
.

DEFINITION 2 (Knowledge a
tions { KAA). Given a set of agents A

and a set of atoms P , the set of knowledge a
tions KAA(P ) is the

smallest set su
h that, if ' 2 LA(P ); �; �
0 2 KAA(P ); B � A, then:

?';LB�; (� ; �0); (� [ �0); (� ! �0) 2 KAA(P )

Outermost parentheses of a
tions are deleted whenever 
onvenient. We

generally write KAA instead of KAA(P ). We name knowledge a
tions

after their main 
onstru
tor. A
tion ?' is a test. The program 
on-

stru
tor LB is 
alled the learning operator. LB� stands for group

B learn �. Instead of Lf1;2;:::;ig write L12:::i. Operator `;' stands for

sequential exe
ution; � ; �0 means �rst exe
ute � and then exe
ute

�0. Operator `[' stands for nondeterministi
 
hoi
e; � [ �0 means

exe
ute either � or �0. Operator `!' is 
alled lo
al 
hoi
e; � ! �0 means

from � and �0
, 
hoose � (lo
ally). Instead of � ! �0, write either !�[�0 or

�0[ !�. This will make the relation between lo
al and nondeterministi



hoi
e 
learer, as we will also see in the examples. In 
ombination with

learning, lo
al 
hoi
e helps to 
onstrain the interpretation of a (possibly

nondeterministi
) a
tion to a fun
tional interpretation.

The sub
lass of KAA generated by all 
onstru
tors ex
ept `!' is 
alled

the knowledge a
tion types or a
tion types (for A and P ). The

sub
lass of KAA generated by all 
onstru
tors ex
ept [ is 
alled the


on
rete knowledge a
tions or 
on
rete a
tions (for A and P ).

We now give some examples of a
tions, related to the model Hexa

from the introdu
tory se
tion. Assume (nine) atoms 
a des
ribing that

player a holds 
ard 
:

EXAMPLE 4 (Knowledge a
tion for table). Player 1 puts the red 
ard

on the table: L123?r1.

EXAMPLE 5 (Knowledge a
tion type for show). Player 1 shows (only)

player 2 his 
ard: L123(L12?r1 [ L12?w1 [ L12?b1).

Assume asso
iativity of [ (see proposition 2, in se
tion 4). The a
tion


an be paraphrased as `players 1, 2 and 3 learn (that 1 and 2 learn that
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1 holds red, or that 1 and 2 learn that 1 holds white, or that 1 and 2

learn that 1 holds blue)'. This almost des
ribes the a
tion show from

example 2, where the red 
ard was shown. Almost, but not quite: show


an not be exe
uted in a state (Hexa; brw) where 1 holds blue, whereas

the a
tion of showing a 
ard 
an be exe
uted in that state. The last is

a knowledge a
tion type, and the �rst a 
on
rete knowledge a
tion (of

that type).

EXAMPLE 6 (Knowledge a
tion for show). Player 1 shows (only) player

2 his red 
ard: L123(!L12?r1 [ L12?w1 [ L12?b1).

The type of show is L123(L12?r1 [L12?w1 [L12?b1). We must be more

pre
ise now and 
hoose it, e.g., to be L123((L12?r1 [L12?w1)[L12?b1).

We now express what is known to agents 1 and 2, but not to agent

3, from the two 
hoi
es to be made: between (L12?r1 [ L12?w1) and

L12?b1), 
hoose the �rst. So we get L123((L12?r1 [ L12?w1) ! L12?b1).

Between (L12?r1 and L12?w1), again 
hoose the �rst: L123((L12?r1 !

L12?w1) ! L12?b1). In the other notation that be
omes L123(!(!L12?r1[
L12?w1)[L12?b1) and assuming asso
iativity again we get L123(!L12?r1[
L12?w1 [ L12?b1). There are two other 
on
rete a
tions of the same

type. These are L123(L12?r1[ !L12?w1 [ L12?b1) (1 shows white to 2)

and L123(L12?r1 [ L12?w1[ !L12?b1) (1 shows blue to 2).

EXAMPLE 7 (Knowledge a
tion type for whisper). Player 1 whispers

in 2's ear a 
ard that he (1) doesn't have: L123(L12?:r1 [ L12?:w1 [
L12?:b1).

EXAMPLE 8 (Knowledge a
tion for whisper). Player 1 whispers in 2's

ear "I don't have blue": L123(L12?:r1 [ L12?:w1[ !L12?:b1).

In the 
ase of whispering a 
ard that you do not have, the three options

are not having a 
ard, instead of having a 
ard. The a
tion whisper is

one of three 
on
rete a
tions of that type.

Even though 3 knows that 1 
an only have whispered `not white' or

`not blue', this is not publi
ly known, e.g. 2 doesn't know that 3 knows

that. The knowledge a
tion des
ribes the publi
ly known alternatives,

therefore all three.

These example a
tions ea
h `involve' pre
isely all agents for whi
h

a

ess is de�ned in Hexa. This is not a

idental, be
ause it apparently


orresponds to our intuition of what a fully spe
i�ed a
tion is: for ea
h

agent o

urring in a state of knowledge, we have to spe
ify how his or

her knowledge is updated.
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We relate an a
tion type to all 
on
rete a
tions of that type by a

simple operation C : KAA ! P(KAA) (C for Con
rete). It is indu
tively

de�ned with 
ru
ial 
lause C(�[�0) = f� ! �0 j � 2 C(�); �0 2 C(�0)g[
f�0 ! � j � 2 C(�); �0 2 C(�0)g (tests are 
on
rete a
tions and the

remaining 
lauses merely 
arry on results). We relate a 
on
rete a
tion

to its type by the simple operation t : KAA ! KAA (t for type). The


ru
ial 
lause in the indu
tive de�nition of t is t(� ! �0) = t(�) [ t(�0)
(tests are types and the remaining 
lauses merely 
arry on results). In

the next se
tion we will see that the interpretation of an a
tion LB� is

de�ned in terms of the interpretation of t(�). In se
tion 4 we will show

that the interpretation of an a
tion � is equivalent to nondeterministi



hoi
e between all its 
on
retizations: � =
S
�2C(�) �.

3. Lo
al interpretation

Given a set of agents A and a set of atoms P , a (Kripke) model

M = hW; fRaga2A; V i 
onsists of a domainW ofworlds, for ea
h agent

a 2 A a binary a

essibility relation Ra on W , and a valuation

V : P ! P(W ). Given a model, the operator gr returns the set of

agents: gr(hW; fRaga2A; V i) = A; this is 
alled the group of the model.

The group of a set of models is the union of the groups of these models.

In an equivalen
e model (also known as an S5 / S5n / S5A model)

all a

essibility relations are equivalen
e relations. We then write �a
for the equivalen
e relation for agent a. If w �a w

0 we say that w is the

same as w0 for a, or that w is equivalent to w0 for a. Write �B for

(
S
a2B �a)

�. For a given modelM , D(M) returns its domain. Instead of

w 2 D(M) we also write w 2M . Given a modelM and a world w 2M ,

(M;w) is 
alled a state, w the point of that state, and M the model

underlying that state. Also, ifM is 
lear from the 
ontext, write w for

(M;w). Similarly, we visually point to a world in a �gure by underlining

it. If s = (M;w), instead of w 2 D(M) we also write w 2 s. All notions

for models are assumed to be similarly de�ned for states. We introdu
e

the abbreviations SA(P ) for the 
lass of equivalen
e states for agents A
and atoms P and S�A(P ) :=

S
B�A SB(P ). As before, drop the `P '. We

write either s is an equivalen
e state or, if the 
ontext requires more

pre
ision, s 2 SA (s 2 S�A).
The semanti
s of LA (on equivalen
e models) is de�ned as usual

(Meyer and van der Hoek, 1995), plus an additional 
lause for the

meaning of dynami
 operators. The interpretation of a dynami
 op-

erator is a relation between equivalen
e states (see also de�nition 5).

These may be (and generally are) states for di�erent groups of agents.
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DEFINITION 3 (Semanti
s of LA). Let (M;w) = s 2 SA and ' 2 LA,
where M = hW; f�aga2A; V i. We de�ne s j= ' by indu
tion on the

stru
ture of '.

M;w j= p :, w 2 V (p)

M;w j= :' :, M;w 6j= '

M;w j= ' ^  :, M;w j= ' and M;w j=  

M;w j= Ka' :, 8w0 : w0 �a w )M;w0 j= '

M;w j= CB' :, 8w0 : w0 �B w )M;w0 j= '

M;w j= [�℄' :, 8s 2 S�A : (M;w)[[�℄℄s ) s j= '

The notion h�i is dual to [�℄ and is de�ned as s j= h�i', 9s0 2 S�A :

s[[�℄℄s0 and s0 j= '.

We lift equivalen
e of worlds in a state to equivalen
e of states. This

is ne
essary be
ause states will o

ur as worlds in de�nition 5 of lo
al

interpretation, so that a

ess between su
h worlds will be based upon

properties of these states.

DEFINITION 4 (Equivalen
e of states). Let (M;w), (M;w0), (M 00; w00)

2 SA, let a 2 A. Then:

(M;w) �a (M;w0) :, w �a w
0

(M;w) �a (M
00; w00) :, 9v 2M : (M;v)$ (M 00; w00) and

(M;w) �a (M;v)

In the se
ond 
lause, $ stands for `is bisimilar to', we refer to (Bla
k-

burn et al., 2001) for a de�nition. The overloading of the notation �a
is justi�able: if s and s0 are states for di�erent (nonsimilar) underlying

models, they 
an by de�nition never be the same for any agent. There-

fore, when s �a s
0 we 
an see �a as the equivalen
e for a in the model

(modulo bisimilarity) underlying both s and s0.

We now 
ontinue with de�ning the lo
al interpretation of knowledge

a
tions.

DEFINITION 5 (Lo
al interpretation of knowledge a
tions). Let � 2
KAA and (M;w) 2 SA, where M = hW; f�aga2A; V i. Let (M 0; w0) 2
S�A. The lo
al interpretation [[�℄℄ of � in (M;w) is de�ned by

indu
tive 
ases:

(M;w)[[?'℄℄(M 0; w0) , M 0 = hW'; ;; V �W'i and w
0 = w

(M;w)[[LB�
0℄℄(M 0; w0) , M 0 = hW 0; f�0

aga2B ; V
0i;

(M;w)[[�0℄℄w0; and gr(W 0) � B

(M;w)[[�0 ; �00℄℄(M 0; w0) , (M;w)([[�0℄℄ Æ [[�00℄℄)(M 0; w0)

(M;w)[[�0 [ �00℄℄(M 0; w0) , (M;w)([[�0℄℄ [ [[�00℄℄)(M 0; w0)

(M;w)[[�0 ! �00℄℄(M 0; w0) , (M;w)[[�0℄℄(M 0; w0)
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In the 
lause for ?', W' is the restri
tion of W to the worlds where

' holds: W' = fv 2 W j M;v j= 'g. In the 
lause for interpret-

ing LB�
0
, the model hW 0; f�0

aga2B ; V
0i is de�ned as follows. Domain:

W 0 := fs j 9v 2 M : v �B w and (M;v)[[t(�0)℄℄sg; Valuation: Let

s = (hW s;�s; V si; ws) 2 W 0
, p 2 P , then: s 2 V 0(p) , ws 2 V s(p);

A

ess: Let s1; s2 2W 0; a 2 B, then:

s1 �
0
a s2 , s1 �a s2 or [ a 62 gr(s1) [ gr(s2) and 9v1; v2 2M :

(M;v1)[[t(�
0)℄℄s1; (M;v2)[[t(�

0)℄℄s2 and v1 �a v2 ℄:

We start with general observations on the de�nition. We 
ontinue with

introdu
ing a notational abbreviation and additional terminology. After

that we give examples of lo
al interpretation.

In dynami
 logi
, a su

essful test does not 
hange the 
urrent state. In

our framework, a test removes all worlds in the 
urrent state where the

test does not hold and removes all a

ess between worlds. Therefore, a

test generally results in a di�erent state. What remains un
hanged is

merely the point of the 
urrent state.

To interpret an a
tion LB�
0 in a state s, we do not just have to

interpret �0 in s. We also have to interpret any a
tion of the same type

as �0 in any other state s0 that is �B-a

essible from s. The results are

the worlds in the state that results from interpreting LB�
0 in s. Su
h

worlds 
an be distinguished from ea
h other by an agent a 2 B in two


ases: either a o

urs in both states and he 
annot distinguish between

them, or a doesn't o

ur in either state but he 
ould not distinguish

their [[t(�0)℄℄-origins.

The 
onstraint that gr(W 0) � B for interpreting LB�
0 guarantees

that agents in B learn only about groups of agents that already o

ur

in t(�0). Without this 
onstraint some a
tions would be in
orre
tly

interpreted, e.g., if 1 and 2 learn about an a
tion involving 1 and 3,

then in the resulting state 3 would not 
onsider the a
tual state, where 2

also knows something, to be possible. The resulting state will therefore

not be an equivalen
e state. However, also without this 
onstraint the


omputations in de�nition 5 would result in an equivalen
e state, that

therefore would be in
orre
t. (Alternatively to this semanti
 restri
tion,

we 
ould have made a synta
ti
 restri
tion on the formation of LB�
0

when de�ning 
lass KAA.)

The 
ase �0 ; �00 uses ordinary 
omposition Æ of binary relations,

the 
ase �0 [ �00 union of binary relations.

The interpretation of �0 ! �00 is that of �0. However, the fun
tion

of �0 ! �00 is to 
onstrain the interpretation of �0 [ �00 to that of �0.

This is be
ause the use of �0 ! �00, even though its interpretation is


ompositional, depends on the 
ontext of a learning operator LB that
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binds it (even: of all learning operators that bind it). The 
hoi
e made

for �0 in �0 ! �00 is lo
al, i.e. for agents o

urring in �0 or �00 only. For

agents in B not o

urring in �0 or �00, �0 ! �00 is the same as �0 [ �00.

If the relation [[�℄℄ is fun
tional, write s[[�℄℄ for the unique s0 su
h

that s[[�℄℄s0. Note that all a
tions ?' and LB� have a fun
tional in-

terpretation (are state transformers). An a
tion � is exe
utable in an

equivalen
e state s, if the lo
al interpretation of � in s is not empty.

Lo
al interpretation is 
alled lo
al, be
ause we only interpret the

agents that are a
tually learning something in the a
tion. In 
ontrast

to (Gerbrandy, 1999), we do not worry about what other agents have

learnt at that stage of the interpretation, i.e. we postpone 
omputing

the global e�e
ts of learning. See se
tion 5.

We illustrate de�nition 5 by 
omputing in detail the interpretation of

the a
tion show in the state (Hexa; rwb). After that, we remark shortly

on the interpretation of table and whisper in that same state.

EXAMPLE 9 (Lo
al interpretation of show). In state (Hexa; rwb), play-

er 1 shows his red 
ard (only) to player 2: L123(!L12?r1[ L12?w1[
L12?b1).

We apply 
lause LB of de�nition 5. To interpret show = L123(!L12?r1[
L12?w1 [ L12?b1) in rwb = (Hexa; rwb), we �rst interpret the type

L12?r1 [L12?w1 [L12?b1 of !L12?r1 [ L12?w1 [ L12?b1 in any state of

Hexa that is f1; 2; 3g-a

essible from rwb, i.e. in all states of Hexa.

The resulting states will make up the domain of rwb[[show℄℄. We then


ompute a

ess on that domain, and, �nally, the required image is

rwb[[!L12?r1 [ L12?w1 [ L12?b1℄℄. We start with the �rst.

A
tion L12?r1 [ L12?w1 [ L12?b1 has a nonempty interpretation in

any state of Hexa. We give two examples. Apply 
lause [ of de�ni-

tion 5 (assuming asso
iativity again): L12?r1 [ L12?w1 [ L12?b1 
an

be interpreted in rwb be
ause L12?r1 
an be interpreted in that state.

Similaryly, L12?r1[L12?w1[L12?b1 
an be interpreted in brw be
ause

L12?b1 
an be interpreted in that state. We 
ompute the �rst.

Again, we apply 
lause LB of de�nition 5. To interpret L12?r1 in

rwb, we interpret ?r1 in any state of Hexa that is f1; 2g-a

essible
from rwb, i.e. in all states of Hexa. The interpretation is not empty

when 1 holds red, i.e. in rwb and in rbw. We 
ompute the �rst.

We now apply 
lause ?' of de�nition 5. The state rwb[[?r1℄℄ is the

restri
tion of Hexa to worlds where r1 holds, i.e. rwb and rbw, with

empty a

ess, and with point rwb. Figure 2 pi
tures the result.

Having unravelled the interpretation of show to that of its atomi



onstituents, we 
an now start to 
ompute a

ess on the intermediate
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brw

wrb

rwb rbw

bwr

wbr

1

1

1

2 2

23

3 3

rwb rbw rwb rbw1

brw

wrb

rwb rbw

bwr

wbr

1

1

1

3

3 3

?r1

L12?r1

L123(L12?r1 [ L12?w1 [ L12?b1)

Figure 2. Stages in the 
omputation of (Hexa; rwb)[[show℄℄. The linked frames visu-

ally emphasize identi
al obje
ts: large frames en
lose states that reappear as small

framed worlds in the next stage of the 
omputation.

stages of our interpretation. The state rwb[[?r1℄℄ is one of the worlds of

the domain of rwb[[L12?r1℄℄ (as visualized in Figure 2 by linked frames)

and is also the point of that state. The other world is rbw[[?r1℄℄. As

agent 1 does not o

ur in either of these, and their origins under the

interpretation of ?r1 are the same to him (rwb �1 rbw in Hexa), there-

fore rwb[[?r1℄℄ �
0
1 rbw[[?r1℄℄ in rwb[[L12?r1℄℄. For the same reason, both

worlds are re
exive for both 1 and 2 in rwb[[L12?r1℄℄. Further note that

rwb[[?r1℄℄ 6�
0
2 rbw[[?r1℄℄, be
ause in rwb 6�2 rbw in Hexa. The valuation

of atoms does not 
hange. Therefore world rwb[[?r1℄℄ is named rwb, and

world rbw[[?r1℄℄ is named rbw in Figure 2 that pi
tures the result.

Similarly to the 
omputation of rwb[[L12?r1℄℄, 
ompute the �ve other

states where 1 and 2 learn 1's 
ard. These form the domain of rwb[[show℄℄.

We 
ompute a

ess on the model in some typi
al 
ases. Again, re
exiv-

ity follows for all worlds: either be
ause an agent o

urs in that world

and the �rst 
ase applies, or be
ause an agent doesn't o

ur in that

world and the origins are identi
al, so obviously the same for that

agent. We have that rwb[[L12?r1℄℄ �
0
1 rbw[[L12?r1℄℄ (as worlds), be
ause

rwb[[L12?r1℄℄ �1 rbw[[L12?r1℄℄ (as states), be
ause, applying de�nition

4, the points rwb[[?r1℄℄ and rbw[[?r1℄℄ are the same for 1 in (the domain

of the model underlying the) state rwb[[L12?r1℄℄. We also have that
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rwb[[L12?r1℄℄ �
0
3 wrb[[L12?w1℄℄, be
ause 3 62 f1; 2g and rwb �3 wrb in

Hexa. However, on the other hand rwb[[L12?r1℄℄ 6�
0
2 bwr[[L12?b1℄℄ (as

worlds), be
ause 2 o

urs in both and rwb[[L12?r1℄℄ 6�2 bwr[[L12?b1℄℄ (as

states), be
ause rwb[[L12?r1℄℄ 6$ bwr[[L12?b1℄℄.

Again, the valuation of atoms in the worlds of rwb[[show℄℄ does not


hange. Therefore world rwb[[L12?r1℄℄ is named rwb in Figure 2, et
.

The point of rwb[[show℄℄ is rwb[[L12?r1℄℄, be
ause rwb[[!L12?r1[L12?w1[
L12?b1℄℄ = rwb[[L12?r1℄℄ (a more instru
tive point 
an be 
omputed in

whisper, next). We have now 
ompleted the interpretation. Figure 2

pi
tures the result.

Note that in any world of the resulting model, player 2 knows the

deal of 
ards. Player 1 doesn't know the 
ards of 2 and 3, although he

knows that 2 knows it. Player 3 knows that 2 knows the deal of 
ards.

EXAMPLE 10 (Lo
al interpretation of table). In state (Hexa; rwb),

player 1 puts the red 
ard on the table: L123?r1.

We do not show details of the 
omputation. Figure 1 pi
tures the result.

World rwb is a
tually state rwb[[?r1℄℄ and world rbw is a
tually state

rwb[[?r1℄℄.

EXAMPLE 11 (Lo
al interpretation of whisper). In state (Hexa; rwb)

player 1 whispers in 2's ear `I do not have the blue 
ard': L123(L12?:r1[
L12?:w1[ !L12?:b1).

We do not show details of the 
omputation. Figure 1 pi
tures the

result. Note that a

ess is assumed to be transitive. Again, we have

named the worlds by their atomi
 
hara
terizations. We 
an distin-

guish worlds with the same name from ea
h other, be
ause they have

di�erent a

ess to other worlds. A
tually, e.g. the world rwb `in front'

is the state rwb[[L12?:w1℄℄ and the world rwb `at the ba
k' is the

state rwb[[L12?:b1℄℄. The last is also the point. This 
an be observed

by 
omputing 
onstraint (M;w)[[�0℄℄w0 in 
lause LB in de�nition 5:

rwb[[L12?:r1 [ L12?:w1[ !L12?:b1℄℄w
0 , rwb[[L12?:b1 ! (L12?:r1 !

L12?:w1)℄℄w
0 , rwb[[L12?:b1℄℄w

0 so w0 = rwb[[L12?:b1℄℄.
In the `ba
k' rwb, that 
orresponds to the answer `not blue', 2 knows

that 1 holds red. In the `front' rwb, that 
orresponds to the answer `not

white', 2 still 
onsiders bwr to be an alternative, so 2 does not know

the 
ard of 1. In both the `ba
k' and the `front' rwb, neither 1 nor 3

know whether 2 knows 1's 
ard!

We 
on
lude with some other examples of a
tions in games.

EXAMPLE 12 (Win and pass). A
tions su
h as showing and telling

other agents about your 
ard(s), o

ur in 
ard games where players
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also perform other a
tions. We 
all these games knowledge games (van

Ditmars
h, 2001a). The goal of the game is to be the �rst to know (or

guess rightly) the deal of 
ards, or some property derived from that.

In Hexa, the 
ondition of player 2 knowing the deal of 
ards 
an be

des
ribed as win2 := K2Ærwb [ K2Ærbw [ :::. Here Æijk is the atomi


des
ription of world (deal) ijk, e.g. Ærwb := r1 ^ :r2 ^ :r3 ^ :w1 ^
w2 ^ :w3 ^ :b1 ^ :b2 ^ b3. The a
tion of player 2 winning is therefore

des
ribed as the publi
 announ
ement of that knowledge: L123?win2.

If the players are perfe
tly rational, ending one's move and passing

to the next player also amounts to an a
tion, namely announ
ing that

you do not yet have enough knowledge to win. In the 
ase of player 2:

L123?:win2.

EXAMPLE 13 (Cluedo). The `murder dete
tion game' Cluedo is a


on
rete example of a knowledge game. The game 
onsists of 21 
ards

and is played by six players. Ea
h player has three 
ards and there are

three 
ards on the table. The �rst player to guess those 
ards wins the

game. The following a
tions are possible in Cluedo (and only those

a
tions): showing (only to the requesting player) one of three requested


ards (of di�erent types, namely a murder suspe
t 
ard, a weapon 
ard,

and a room 
ard), 
on�rming that you do not hold any of three requested


ards (by publi
 announ
ement), and `ending your move', i.e. announ
-

ing that you 
annot win. As ea
h player has three 
ards, and there is no

restri
tion on what 
ards are asked, a show a
tion may involve a
tual


hoi
e, as in whisper. That `ending your move' informs other perfe
tly

rational players had previously not been noted.

A play of the game Cluedo 
an therefore be des
ribed by a sequen
e

of these di�erent a
tions, so in a way by a single KAA a
tion. See (van

Ditmars
h, 2000) for details.

Other standard appli
ations of multiagent dynami
s, su
h as the muddy


hildren problem, also have simple des
riptions in LA.

4. Theory

In this se
tion we prove some properties of knowledge a
tions and their

interpretation.

FACT 1 (Equivalen
e preservation). The 
lass of equivalen
e states is


losed under exe
ution of knowledge a
tions.

This trivially follows from de�nition 5.
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PROPOSITION 2 (A
tion algebra). Let �; �0; �� 2 KAA. Then:

(a) (� [ �0) [ �� = � [ (�0 [ ��)

(b) (� ; �0) ; �� = � ; (�0 ; ��)

(
) (� [ �0) ; �� = (� ; ��) [ (�0 ; ��)

(d) (� ; �0) [ �� = (� [ ��) ; (�0 [ ��)

Proof. By using simple relational algebra. We show (
), the rest

is similar: [[(� [ �0) ; ��℄℄ = [[� [ �0℄℄ Æ [[��℄℄ = ([[�℄℄ [ [[�0℄℄) Æ [[��℄℄ =

([[�℄℄ Æ [[�0℄℄)[ ([[�℄℄ Æ [[��℄℄) = [[� ; �0℄℄[ [[� ; ��℄℄ = [[(� ; �0) [ (� ; ��)℄℄.

�

We have not further investigated algebrai
 properties of a
tion type

operators. The next proposition relates 
on
rete a
tions and a
tion

types to other a
tions.

PROPOSITION 3 (Con
rete a
tions). Let s; s0 be equivalen
e models,

let � 2 KA. Then:

(a) [[�℄℄ � [[t(�)℄℄

(b) 
on
rete a
tions have a fun
tional interpretation

(
) s[[�℄℄s0 ) 9� 2 C(�) : s[[�℄℄s0

(d) [[�℄℄ = [[
S
�2C(�) �℄℄

Proof.

(a) Indu
tion on �. The only nontrivial 
ase is �0 ! �00. We have

that: [[�0 ! �00℄℄ = [[�0℄℄ � [[�0 [ �00℄℄ = [[�0℄℄[ [[�00℄℄ �IH [[t(�0)℄℄[ [[t(�00)℄℄ =

[[t(�0) [ t(�00)℄℄ = [[t(�0 ! �00)℄℄.

(b) Indu
tion on �. The only nontrivial 
ase is nondeterministi



hoi
e. Let � 2 C(�0 [ �00). Then either � = �0 ! �00 or � = �00 ! �0,

with �0 2 C(�0) and �00 2 C(�00). In the �rst 
ase, by indu
tion [[�0℄℄ is

fun
tional, and therefore also [[�0 ! �00℄℄ = [[�0℄℄. In the se
ond 
ase, this

follows from the fun
tionality of [[�00℄℄.

(
) Indu
tion on �. A typi
al 
ase: If s[[�0 [ �00℄℄s0, then either s[[�0℄℄s0

or s[[�00℄℄s0. If s[[�0℄℄s0 then, by indu
tion, there is a �0 2 C(�0) su
h that

s[[�0℄℄s0. Let �00 2 C(�00) be arbitrary. Then �0 ! �00 2 C(�0 [ �00) and

s[[�0℄℄s0 = s[[�0 ! �00℄℄s0.

(d) Indu
tion on �. Some 
ases. Case �0 ; �00: use proposition 2:


and 2:d. Case �0 [ �00: [[�0 [ �00℄℄ =IH [[
S
�02C(�0) �

0 [
S
�002C(�00) �

00℄℄ =

[[
S
�02C(�0);�002C(�00)(�

0 ! �00) [
S
�02C(�0);�002C(�00)(�

00 ! �0)℄℄ = [[
S
�2C(�) �℄℄.

Case LB�
0: use that s[[LB�

0℄℄(M 0; w0) implies s[[�0℄℄w0. �

Proposition 3:a expresses that the interpretation of an a
tion is


ontained in the interpretation of its type. Proposition 3:b expresses

that 
on
rete a
tions are state transformers. Proposition 3:
 expresses

that every state that results from a
tion exe
ution 
an be seen as the
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result of a 
on
rete a
tion. Proposition 3:d expresses that every a
tion is

equivalent to nondeterministi
 
hoi
e between all its 
on
retizations (a

kind of normal form, therefore). In parti
ular, all 
lauses of proposition

3 hold when the arbitrary a
tion is an a
tion type or a 
on
rete a
tion.

That suits the intuition even better: the interpretation of a 
on
rete

a
tion is in
luded in that of its type (a), an a
tion type is equivalent

to 
hoi
e between all a
tions of that type (d), et
.

Preservation of bisimilarity We may expe
t that bisimilarity of

states is preserved under exe
ution of a
tions. This is indeed the 
ase

(theorem 5). However, to prove this we also need to show that bisimilar

states have the same theory (theorem 4). This is not trivial, be
ause

modal formulas may 
ontain dynami
 modal operators for the e�e
t of

a
tions. We prove the theorems by simultaneous indu
tion, assuming

that ' is less 
omplex than ?' and that both � and ' are less 
omplex

than [�℄'.

THEOREM 4 (Bisimilarity implies modal equivalen
e). Let ' 2 LA.
Let (M;w); (M 0; w0) be equivalen
e states. If (M;w)$ (M 0; w0), then

M;w j= ',M 0; w0 j= '.

Proof. By indu
tion of the stru
ture of '. The proof is standard

ex
ept for the 
lause ' = [�℄ that we therefore present in detail.

Assume M;w j= [�℄ . We have to prove M 0; w0 j= [�℄ . Let (M�; w�)

be arbitrary su
h that (M 0; w0)[[�℄℄(M�; w�). By simultaneous indu
-

tion hypothesis (theorem 5) it follows from (M 0; w0)[[�℄℄(M�; w�) and

(M;w)$(M 0; w0) that there is a (M�; w�) su
h that (M;w)[[�℄℄(M�; w�)

and (M�; w�)$(M�; w�). FromM;w j= [�℄ (given) and (M; w)[[�℄℄(M�;

w�) follows M�; w� j=  . From (M�; w�)$ (M�; w�) and M�; w� j=  

follows, by indu
tion, that M�; w� j=  . AsM�; w� was arbitrary, from

(M 0; w0)[[�℄℄(M�; w�) and M�; w� j=  follows M 0; w0 j= [�℄ .

THEOREM 5 (A
tion exe
ution preserves bisimilarity). Let � 2 KAA.
Let (M;w), (M 0; w0) be equivalen
e states. For every equivalen
e state

(M�; w�) there is an equivalen
e state (M�; w�) su
h that:

If (M;w)$(M 0; w0) and (M;w)[[�℄℄(M� ; w�), then (M 0; w0)[[�℄℄(M�; w�)

and (M�; w�)$ (M�; w�).

Proof. By indu
tion on the stru
ture of �. The proof 
onsists of


onstru
ting a proper bisimulation R� from a given bisimulation R,

for ea
h indu
tive 
ase.

Case ?': Suppose R : (M;w)$ (M 0; w0) and (M;w)[[?'℄℄(M�; w�).

Then (M�; w�) = (M;w)[[?'℄℄ and w = w�. By simultaneous indu
tion

hypothesis (theorem 4) it follows from (M;w)$(M 0; w0) andM;w j= '
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that M 0; w0 j= '. Therefore (M 0; w0)[[?'℄℄ exists. For all worlds v� 2
M� and v� 2 (M 0; w0)[[?'℄℄, de�ne R?'(v�; v�) :, R(v�; v�). Then

R
?' : (M�; w�)$ (M 0; w0)[[?'℄℄, be
ause (Points:) R?'(w;w0), (Ba
k

and Forth:) both states have empty a

ess, and (Valuation:)R?'(v�; v�)

implies R(v�; v�) implies, for all p 2 P : v� 2 V (p), v� 2 V (p).

Case LB�
0: Suppose R : (M;w)$ (M 0; w0) and (M;w)[[LB�

0℄℄(M�;

w�). Note that (M 0; w0)[[LB�
0℄℄ exists, as its domain is not empty: by in-

du
tion its point is a state bisimilar to w�. We 
laim that (M 0; w0)[[LB�
0℄℄

is the (M�; w�) that we are looking for, and we de�ne a RLB�
0

to

establish the the required bisimulation.

The relation RLB�
0

between (M�; w�) and (M 0; w0)[[LB�
0℄℄ is de-

�ned as follows: Let w�
1 2 (M�; w�) and w�

1 2 (M 0; w0)[[LB�
0℄℄. A
-


ording to the 
onstru
tion of LB�
0, there is a v1 2 M su
h that

(M;v1)[[t(�
0)℄℄w�

1 and v1 �B w, and there is a v01 2 M 0 su
h that

(M 0; v01)[[t(�
0)℄℄w�

1 and v01 �B w0. If R(v1; v
0
1), then by indu
tion there

is a Rt(�0) su
h that Rt(�0) : w�
1 $ w�

1 relates the points of w�
1 and w�

1.

De�ne RLB�
0

(w�
1; w

�
1) :, R

t(�0) : w�
1 $ w�

1. It is important to observe

that the de�nition is well-de�ned: be
ause w �B v1 inM , world v1 will

have an R-image in M 0, and vi
e versa.

We now pro
eed to prove that RLB�
0

: (M�; w�)$ (M 0; w0)[[LB�
0℄℄.

(Points:) RLB�
0

(w�; w�), be
ause Rt(�0)(w�; w�), be
ause R(w;w0)

(given).

(Forth:) Let a 2 B, w�
2 2 M�, w�

1 �
0
a w

�
2, and R

LB�
0

(w�
1; w

�
1). As-

sume (M;v2)[[t(�
0)℄℄w�

2. We distinguish 
ase a 2 gr(w�
1) (and, be
ause

of w�
1 �

0
a w

�
2, therefore also a 2 gr(w�

2)) from 
ase a 62 gr(w�
1)[ gr(w

�
2).

In the �rst 
ase we use that Rt(�0) is a bisimulation to establish the

required world w�
2, in the se
ond 
ase we use that R is a bisimulation

and that Rt(�0) preserves bisimilarity, to establish that.

If a 2 gr(w�
1), then from w�

1 �0
a w�

2 follows w�
1 �a w�

2 (i.e., as

states), so the points of these states are the same for a as well. From

R
LB�

0

(w�
1 ; w

�
1) follows Rt(�0) : w�

1 $ w�
1, therefore R

t(�0) relates the

points of w�
1 and w

�
1. From that and from the fa
t that the points of w�

1

and w�
2 are the same for a, and be
ause Rt(�0) is a bisimulation, follows

that there is a w�
2 su
h that the point of w�

1 is the same for a as the

point of w�
2 and Rt(�0) : w�

2$w�
2. But we now also have RLB�

0

(w�
2; w

�
2)

and w�
1 �

0
a w

�
2 (as worlds)!

If a 62 gr(w�
1) [ gr(w�

2), then v1 �a v2 in M , by the de�nition of

a

ess in (M�; w�). From v1 �a v2 and R(v1; v
0
1), and be
ause R is a

bisimulation, follows that there is a v02 2 M 0 su
h that v01 �a v02 in

M 0 and R(v2; v
0
2). By indu
tion we may assume that Rt(�0) preserves

bisimilarity, therefore there is a w�
2 su
h that (M 0; v02)[[t(�

0)℄℄w�
2 and
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R
t(�0) : w�

2 $ w�
2. We now have that w�

1 �
0
a w

�
2 (from v01 �a v

0
2) and

R
LB�

0

(w�
2 ; w

�
2) (from R

t(�0) : w�
2 $ w�

2). Done.

(Ba
k:) Similar to forth.

(Valuation:) Obvious.

Case �0 ; �00: SupposeR : (M;w)$(M 0; w0) and (M;w)[[�0 ; �00℄℄(M�;

w�). As [[�0 ; �00℄℄ = [[�0℄℄ Æ [[�00℄℄, there is an (M1; w1) su
h that (M;

w)[[�0℄℄(M1; w1) and (M1; w1)[[�
00℄℄(M�; w�). By indu
tion we have an

(M 0
1; w

0
1) su
h that (M 0; w0)[[�0℄℄(M 0

1; w
0
1) andR

�0

: (M1; w1)$(M 0
1; w

0
1).

Again by indu
tion we have an (M�; w�) and an R�0;�00

su
h that

(M 0
1; w

0
1)[[�

00℄℄(M�; w�) and R�0;�00

: (M�; w�)$ (M�; w�). R�0;�00

is the

required bisimulationR�0 ; �00

, as we also have (M 0; w0)[[�0 ; �00℄℄(M�; w�).

Case �0[�00: SupposeR : (M;w)$(M 0; w0) and (M;w)[[�0[�00℄℄(M�;

w�). Then either (M;w)[[�0℄℄(M�; w�) or (M;w)[[�00℄℄(M�; w�). If (M;

w)[[�0℄℄(M�; w�), then by indu
tion there is an (M�; w�) and a R�0

su
h that (M 0; w0)[[�0℄℄(M�; w�) and R�0

: (M�; w�)$ (M�; w�). From

(M 0; w0)[[�0℄℄(M�; w�) follows (M 0; w0)[[�0 [ �00℄℄(M�; w�), so R�0

is the

required bisimulation. Similarly, if (M;w)[[�00℄℄(M�; w�).

Case �0 ! �00. Similar to �0 [ �00. �

A dire
t 
onsequen
e of theorem 5 is:

COROLLARY 6. Let s; s0 be equivalen
e states and � a 
on
rete a
-

tion. Then s$ s0 ) s[[�℄℄$ s0[[�℄℄.

5. Further observations

The interpretation of some LA formulas is unde�ned. An obvious ex-

ample is the following: The formula [?K1r1℄K1r1 { `after a test on

1 knowing red, 1 knows red' { 
an not be interpreted on any state.

Suppose rwb j= [?K1r1℄K1r1, then rwb[[?K1r1℄℄ j= K1r1. However,

gr(rwb[[?K1r1℄℄) = ;: it is an equivalen
e state with empty a

ess,

on whi
h K1r1 
an therefore not be interpreted. For similar reasons,

formulas as [L12?r1 ; L123?r1℄r1 are uninterpretable. Expanding the

notion gr of `group' to in
lude a
tions may provide a solution. We then

put a 
onstraint ' 2 Lgr(�) on the formation of [�℄' in de�nition 2,

so that formulas su
h as [?K1r1℄K1r1 are no longer well-formed. With

this syntax restri
tion we 
an derive validities as [?'℄ $ (' !  ).

We have not yet 
ompleted the axiomatization of LA. It appears to
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be
ome the axiomatization of a `family' of logi
s LB for all B � A

(given a global set of atoms P ).

We have extended the language with the operation of 
on
urrent

exe
ution (van Ditmars
h, 2001b). This relates to (Peleg, 1987; Gold-

blatt, 1992). Using 
on
urren
y, we 
an des
ribe that a player shows

two 
ards simultaneously to di�erent players, say, one with his left hand

and the other one with his right hand. The notion of lo
al interpretation

is `lifted' from a relation between states to a relation between states

and sets of states.

The a
tion language would be further enhan
ed if we 
ould refer

not just to the 
urrent game state, but also the a
tion history. We


ould then des
ribe, e.g., that a player asks another player to show him

`another' 
ard.

We make some 
losing remarks on the relation of our work to that

of others.

A publi
 update with formula ' in (Plaza, 1989) naturally 
orre-

sponds to learning: (' +  ) is equivalent to [LA?'℄ (where A is the

publi
).

Learning is rather similar to updating in (Gerbrandy, 1999). The

semanti
s of a
tions is also relational. However, in Gerbrandy out-

siders to a group learning (`updating') something are assumed to learn

nothing at all. We do not make that assumption. Be
ause outsiders

learn nothing, they 
annot imagine the a
tual state of the world: no

re
exivity. Indeed, his approa
h is more general than for equivalen
e

states only. In (Gerbrandy, 1999) the 
ru
ial operator is the (sub)group

update UB. A
tions LA� (for the publi
 A, i.e. fully spe
i�ed a
tions)


orrespond to `truthful updates' (� ; UB�) �a la Gerbrandy.

Apart from interpreting an a
tion as a relation between states, an

a
tion 
an also be interpreted as a semanti
 obje
t 
orresponding to a

Kripke frame, an `a
tion frame'. Exe
uting an a
tion in a state then

amounts to 
omputing a dire
t produ
t of that state and that frame.

This is the approa
h in (Baltag, 1999; Baltag et al., 2000). See also

(van Ditmars
h, 2000; van Ditmars
h, 2001a). The di�erent notions

of interpretation 
orrespond up to bisimilarity (van Ditmars
h, 2000).

It is also interesting to observe that a 
on
rete a
tion 
orresponds to

a pointed a
tion frame (a state transformer), whereas an a
tion type


orresponds to an `ordinary' a
tion frame (i.e. with no point).
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6. Con
lusion

We proposed a dynami
 epistemi
 language LA, that in
ludes a lan-

guage KAA of knowledge a
tions. Basi
 to our approa
h is the 
on
ept

of lo
al interpretation of an a
tion type in a model: the interpretation

for a subgroup of agents only. We performed detailed 
omputations on

some example knowledge a
tions taken from 
ard games, to illustrate

the language and its interpretation. We 
ompared our resear
h to that

of others.
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