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Desriptions of game ations

Hans P. van Ditmarsh (hans�s.otago.a.nz)
Computer Siene, University of Otago, PO Box 56, Dunedin, New Zealand

Abstrat. To desribe simultaneous knowledge updates for di�erent subgroups we

propose an epistemi language with dynami operators for ations. The language is

interpreted on equivalene states (S5 states). The ations are interpreted as state

transformers. Two ruial ation onstrutors are learning and loal hoie. Learning

is the dynami equivalent of ommon knowledge. Loal hoie aids in onstraining

the interpretation of an ation to a funtional interpretation (state transformer).

Bisimilarity is preserved under exeution of ations. The language is applied to

desribe various ations in ard games.

Keywords: multiagent systems, modal logi, dynami epistemis, ation language

1. Introdution

The area of dynami epistemis, how to update models for reason-

ing about knowledge, has ome to the full attention of the researh

ommunity by the treatment of publi announements in the famous

`Muddy Children Problem' (Fagin et al., 1995; Parikh, 1987). In the

`runs and systems' approah of (Fagin et al., 1995), an update is a

funtional relation between two global states of an interpreted system,

and a run is a sequene of suh transformations. Suh a global state

orresponds in a natural way to a Kripke state where all relations

are equivalene relations: an equivalene (or S5) state. They do not

introdue an objet (logial) language for both updates and epistemi

statements. An early example of suh a dynami epistemi language

is the elegant logi of publi announements as presented in (Plaza,

1989). Plaza models publi announements as binary operators that

have a dynami interpretation. An integrated approah inluding an-

nounements to subgroups has been put forward in (Gerbrandy and

Groeneveld, 1997). Gerbrandy's thesis, (Gerbrandy, 1999), presents this

dynami epistemis in more generality. Gerbrandy's approah is based

on non-well-founded set theory, a non-standard semantis. Based on a

standard semantis, (Baltag et al., 2000) also treats epistemi ations in

general. This is still being extended to an entire framework for dynami

epistemi logi in (Baltag, 1999).

Our researh (van Ditmarsh, 1999; van Ditmarsh, 2000; van Dit-

marsh, 2001a) should probably be seen as a speial ase of the more

general framework as presented by Gerbrandy and under development

 2001 Kluwer Aademi Publishers. Printed in the Netherlands.

HVD-JoLLI.tex; 17/10/2001; 19:08; p.1



2 Hans van Ditmarsh

by Baltag. Part of its interest lies in the detailed desription of new sorts

of epistemi ation, namely ations in games. We restrit ourselves to

equivalene states. We base ourselves on standard Kripke semantis.

Our ontribution onsists of a onise language to desribe equiva-

lene state transformations, and a new relational semantis to interpret

these ations, namely one based on standard Kripke semantis. We de-

sribe and interpret ombined updates for di�erent subgroups by loal

interpretation: �rst omplete the interpretation `loally', for a given

subgroup only, and then use that to determine the global interpretation,

for the entire group of agents. Apart from the usual programming on-

struts: test, sequential exeution, and nondeterministi hoie (Harel,

1984; Harel et al., 2000; Goldblatt, 1992), we introdue as well: learning

and loal hoie. Learning is the dynami equivalent of ommon knowl-

edge (of reexive ommon knowledge (Meyer and van der Hoek, 1995))

and is related to truthful (fative) updating (Gerbrandy, 1999). Loal

hoie aids in making the interpretation of an ation funtional. We

start with some examples to illustrate the need for these operations.

Hexa Three players eah hold one ard. Suppose player 1 holds a red

ard, 2 holds a white ard and 3 holds a blue ard. This is modelled by

a (hexagonal) equivalene state (Hexa; rwb). See Figure 1. There are

six deals of three ards over three players. The model Hexa onsists

of these deals. In deal ijk player 1 holds ard i, 2 holds j and 3 holds

k. Two deals annot be distinguished from eah other by a player if he

holds the same ard in both. The following ations an be exeuted in

this state (Hexa; rwb):

EXAMPLE 1 (table). Player 1 puts the red ard (fae up) on the table.

EXAMPLE 2 (show). Player 1 shows (only) player 2 the red ard.

Player 3 annot see the fae of the shown ard, but noties that a ard

is being shown.

EXAMPLE 3 (whisper). Player 2 asks player 1 to tell him a ard that

he (1) doesn't have. Player 1 whispers in 2's ear \I don't have blue".

Player 3 noties that the question is answered, but annot hear the

answer.

We assume that only the truth is told. In show and whisper, we assume

that it is publily known what 3 an and annot see or hear.

Figure 1 also pitures the states that result from updating the ur-

rent state (Hexa; rwb) with the information ontained in the three

ations. In table it suÆes to eliminate some worlds: after 1's ation,

the four deals of ards where 1 does not hold red are eliminated. It
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Figure 1. The results of exeuting table, show, and whisper in the state (Hexa; rwb)

where 1 holds red, 2 holds white and 3 holds blue. The points of the states are

underlined. Worlds are named by the deals that (atomially) haraterize them.

Assume reexivity and transitivity of aess.

is publily known that they are no longer aessible. This update is a

publi announement. In show we annot eliminate any world. After

this ation, e.g., 1 an imagine that 3 an imagine that 1 has shown

red, but also that 1 has shown white, or blue. However, some links

between worlds have now been severed: whatever the atual deal of

ards, 2 annot imagine any alternatives after exeution of show. In

whisper player 1 an hoose whether to say \not white" or \not blue",

and the resulting game state has twie as many worlds as the urrent

state, beause for eah deal of ards this hoie an be imagined to

have been made.

We an paraphrase some more of the struture of the ations. In

table, all three players learn that player 1 holds the red ard, where

`learning' should be regarded as the dynami equivalent of `ommon

knowledge'. It is hard to give a more preise informal meaning to `learn-

ing'. In partiular, `learning' is not the same as `beoming ommon
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knowledge': indeed in table it beomes ommon knowledge that 1 holds

red; however, imagine that instead of putting his ard on the table, 1

had said to 2: `You don't know that I have the red ard' (interpreted

as: `I have the red ard and you don't know that'). At the moment

of utterane, this statement an be truthfully made in the worlds rwb

and rbw of Hexa, so it results in the same state as exeution of table.

However, in that state is it not ommon knowledge that 2 doesn't know

that 1 has red. To the ontrary: after this announement 2 knows that

1 has red.

We ontinue our oneptual analysis. In show, 1 and 2 learn that

1 holds red, whereas the group onsisting of 1, 2 and 3 learns that 1

and 2 learn whih ard 1 holds, or, in other words: that either 1 and 2

learn that 1 holds red, or that 1 and 2 learn that 1 holds white, or that

1 and 2 learn that 1 holds blue. The hoie made by subgroup f1; 2g
from the three alternatives is loal, i.e. known to them only, beause

it is hidden from player 3. This an be expressed by the `loal hoie'

operator. The need for suh an operator beomes more apparent in the

ase of the ation whisper: the ation of 1 whispering in 2's ear a ard

that he doesn't have, has two di�erent exeutions in any given state.

`Loal hoie' �xes one of those exeutions, in this ase `1 and 2 learn

that 1 doesn't have blue'.

In setion 2 we de�ne the logial language LA and the knowledge

ations KAA. We give desriptions of the ard game ations in the

introdution. In setion 3 we de�ne the interpretation of LA. We also

give some other game ation desriptions. In setion 4 we present some

theoretial results. In setion 5 we disuss extensions of LA and ompare

our researh to that of others.

2. Knowledge ations

To a standard multiagent epistemi language with ommon knowledge

for a set A of agents and a set P of atoms (Meyer and van der Hoek,

1995; Fagin et al., 1995), we add dynami modal operators for programs

that are alled knowledge ations and that desribe ations. The lan-

guage LA and the knowledge ations KAA are de�ned by simultaneous

indution.

DEFINITION 1 (Dynami epistemi logi { LA). LA(P ) is the small-

est set suh that, if p 2 P;';  2 LA(P ); a 2 A;B � A;� 2 KAA(P ),

then

p;:'; (' ^  );Ka';CB'; [�℄' 2 LA(P )
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Formula Ka' stands for a knows ', CB' stands for group B om-

monly know ', and [�℄' stands for ' holds after every exeution

of ation �. Other propositional onnetives and modal operators are

de�ned by abbreviations (let p 2 P ): ' _  := :(:' ^ : ), ' !
 := :' _  , ' $  := (' !  ) ^ ( ! '), EB' :=

V
a2B Ka',

> := p _ :p, ? := p ^ :p. Outermost parentheses of formulae are

deleted whenever onvenient. As we may generally assume an arbitrary

P , write LA instead of LA(P ). The set of agents A is alled the publi.

DEFINITION 2 (Knowledge ations { KAA). Given a set of agents A

and a set of atoms P , the set of knowledge ations KAA(P ) is the

smallest set suh that, if ' 2 LA(P ); �; �
0 2 KAA(P ); B � A, then:

?';LB�; (� ; �0); (� [ �0); (� ! �0) 2 KAA(P )

Outermost parentheses of ations are deleted whenever onvenient. We

generally write KAA instead of KAA(P ). We name knowledge ations

after their main onstrutor. Ation ?' is a test. The program on-

strutor LB is alled the learning operator. LB� stands for group

B learn �. Instead of Lf1;2;:::;ig write L12:::i. Operator `;' stands for

sequential exeution; � ; �0 means �rst exeute � and then exeute

�0. Operator `[' stands for nondeterministi hoie; � [ �0 means

exeute either � or �0. Operator `!' is alled loal hoie; � ! �0 means

from � and �0
, hoose � (loally). Instead of � ! �0, write either !�[�0 or

�0[ !�. This will make the relation between loal and nondeterministi

hoie learer, as we will also see in the examples. In ombination with

learning, loal hoie helps to onstrain the interpretation of a (possibly

nondeterministi) ation to a funtional interpretation.

The sublass of KAA generated by all onstrutors exept `!' is alled

the knowledge ation types or ation types (for A and P ). The

sublass of KAA generated by all onstrutors exept [ is alled the

onrete knowledge ations or onrete ations (for A and P ).

We now give some examples of ations, related to the model Hexa

from the introdutory setion. Assume (nine) atoms a desribing that

player a holds ard :

EXAMPLE 4 (Knowledge ation for table). Player 1 puts the red ard

on the table: L123?r1.

EXAMPLE 5 (Knowledge ation type for show). Player 1 shows (only)

player 2 his ard: L123(L12?r1 [ L12?w1 [ L12?b1).

Assume assoiativity of [ (see proposition 2, in setion 4). The ation

an be paraphrased as `players 1, 2 and 3 learn (that 1 and 2 learn that
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1 holds red, or that 1 and 2 learn that 1 holds white, or that 1 and 2

learn that 1 holds blue)'. This almost desribes the ation show from

example 2, where the red ard was shown. Almost, but not quite: show

an not be exeuted in a state (Hexa; brw) where 1 holds blue, whereas

the ation of showing a ard an be exeuted in that state. The last is

a knowledge ation type, and the �rst a onrete knowledge ation (of

that type).

EXAMPLE 6 (Knowledge ation for show). Player 1 shows (only) player

2 his red ard: L123(!L12?r1 [ L12?w1 [ L12?b1).

The type of show is L123(L12?r1 [L12?w1 [L12?b1). We must be more

preise now and hoose it, e.g., to be L123((L12?r1 [L12?w1)[L12?b1).

We now express what is known to agents 1 and 2, but not to agent

3, from the two hoies to be made: between (L12?r1 [ L12?w1) and

L12?b1), hoose the �rst. So we get L123((L12?r1 [ L12?w1) ! L12?b1).

Between (L12?r1 and L12?w1), again hoose the �rst: L123((L12?r1 !

L12?w1) ! L12?b1). In the other notation that beomes L123(!(!L12?r1[
L12?w1)[L12?b1) and assuming assoiativity again we get L123(!L12?r1[
L12?w1 [ L12?b1). There are two other onrete ations of the same

type. These are L123(L12?r1[ !L12?w1 [ L12?b1) (1 shows white to 2)

and L123(L12?r1 [ L12?w1[ !L12?b1) (1 shows blue to 2).

EXAMPLE 7 (Knowledge ation type for whisper). Player 1 whispers

in 2's ear a ard that he (1) doesn't have: L123(L12?:r1 [ L12?:w1 [
L12?:b1).

EXAMPLE 8 (Knowledge ation for whisper). Player 1 whispers in 2's

ear "I don't have blue": L123(L12?:r1 [ L12?:w1[ !L12?:b1).

In the ase of whispering a ard that you do not have, the three options

are not having a ard, instead of having a ard. The ation whisper is

one of three onrete ations of that type.

Even though 3 knows that 1 an only have whispered `not white' or

`not blue', this is not publily known, e.g. 2 doesn't know that 3 knows

that. The knowledge ation desribes the publily known alternatives,

therefore all three.

These example ations eah `involve' preisely all agents for whih

aess is de�ned in Hexa. This is not aidental, beause it apparently

orresponds to our intuition of what a fully spei�ed ation is: for eah

agent ourring in a state of knowledge, we have to speify how his or

her knowledge is updated.
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We relate an ation type to all onrete ations of that type by a

simple operation C : KAA ! P(KAA) (C for Conrete). It is indutively

de�ned with ruial lause C(�[�0) = f� ! �0 j � 2 C(�); �0 2 C(�0)g[
f�0 ! � j � 2 C(�); �0 2 C(�0)g (tests are onrete ations and the

remaining lauses merely arry on results). We relate a onrete ation

to its type by the simple operation t : KAA ! KAA (t for type). The

ruial lause in the indutive de�nition of t is t(� ! �0) = t(�) [ t(�0)
(tests are types and the remaining lauses merely arry on results). In

the next setion we will see that the interpretation of an ation LB� is

de�ned in terms of the interpretation of t(�). In setion 4 we will show

that the interpretation of an ation � is equivalent to nondeterministi

hoie between all its onretizations: � =
S
�2C(�) �.

3. Loal interpretation

Given a set of agents A and a set of atoms P , a (Kripke) model

M = hW; fRaga2A; V i onsists of a domainW ofworlds, for eah agent

a 2 A a binary aessibility relation Ra on W , and a valuation

V : P ! P(W ). Given a model, the operator gr returns the set of

agents: gr(hW; fRaga2A; V i) = A; this is alled the group of the model.

The group of a set of models is the union of the groups of these models.

In an equivalene model (also known as an S5 / S5n / S5A model)

all aessibility relations are equivalene relations. We then write �a
for the equivalene relation for agent a. If w �a w

0 we say that w is the

same as w0 for a, or that w is equivalent to w0 for a. Write �B for

(
S
a2B �a)

�. For a given modelM , D(M) returns its domain. Instead of

w 2 D(M) we also write w 2M . Given a modelM and a world w 2M ,

(M;w) is alled a state, w the point of that state, and M the model

underlying that state. Also, ifM is lear from the ontext, write w for

(M;w). Similarly, we visually point to a world in a �gure by underlining

it. If s = (M;w), instead of w 2 D(M) we also write w 2 s. All notions

for models are assumed to be similarly de�ned for states. We introdue

the abbreviations SA(P ) for the lass of equivalene states for agents A
and atoms P and S�A(P ) :=

S
B�A SB(P ). As before, drop the `P '. We

write either s is an equivalene state or, if the ontext requires more

preision, s 2 SA (s 2 S�A).
The semantis of LA (on equivalene models) is de�ned as usual

(Meyer and van der Hoek, 1995), plus an additional lause for the

meaning of dynami operators. The interpretation of a dynami op-

erator is a relation between equivalene states (see also de�nition 5).

These may be (and generally are) states for di�erent groups of agents.
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DEFINITION 3 (Semantis of LA). Let (M;w) = s 2 SA and ' 2 LA,
where M = hW; f�aga2A; V i. We de�ne s j= ' by indution on the

struture of '.

M;w j= p :, w 2 V (p)

M;w j= :' :, M;w 6j= '

M;w j= ' ^  :, M;w j= ' and M;w j=  

M;w j= Ka' :, 8w0 : w0 �a w )M;w0 j= '

M;w j= CB' :, 8w0 : w0 �B w )M;w0 j= '

M;w j= [�℄' :, 8s 2 S�A : (M;w)[[�℄℄s ) s j= '

The notion h�i is dual to [�℄ and is de�ned as s j= h�i', 9s0 2 S�A :

s[[�℄℄s0 and s0 j= '.

We lift equivalene of worlds in a state to equivalene of states. This

is neessary beause states will our as worlds in de�nition 5 of loal

interpretation, so that aess between suh worlds will be based upon

properties of these states.

DEFINITION 4 (Equivalene of states). Let (M;w), (M;w0), (M 00; w00)

2 SA, let a 2 A. Then:

(M;w) �a (M;w0) :, w �a w
0

(M;w) �a (M
00; w00) :, 9v 2M : (M;v)$ (M 00; w00) and

(M;w) �a (M;v)

In the seond lause, $ stands for `is bisimilar to', we refer to (Blak-

burn et al., 2001) for a de�nition. The overloading of the notation �a
is justi�able: if s and s0 are states for di�erent (nonsimilar) underlying

models, they an by de�nition never be the same for any agent. There-

fore, when s �a s
0 we an see �a as the equivalene for a in the model

(modulo bisimilarity) underlying both s and s0.

We now ontinue with de�ning the loal interpretation of knowledge

ations.

DEFINITION 5 (Loal interpretation of knowledge ations). Let � 2
KAA and (M;w) 2 SA, where M = hW; f�aga2A; V i. Let (M 0; w0) 2
S�A. The loal interpretation [[�℄℄ of � in (M;w) is de�ned by

indutive ases:

(M;w)[[?'℄℄(M 0; w0) , M 0 = hW'; ;; V �W'i and w
0 = w

(M;w)[[LB�
0℄℄(M 0; w0) , M 0 = hW 0; f�0

aga2B ; V
0i;

(M;w)[[�0℄℄w0; and gr(W 0) � B

(M;w)[[�0 ; �00℄℄(M 0; w0) , (M;w)([[�0℄℄ Æ [[�00℄℄)(M 0; w0)

(M;w)[[�0 [ �00℄℄(M 0; w0) , (M;w)([[�0℄℄ [ [[�00℄℄)(M 0; w0)

(M;w)[[�0 ! �00℄℄(M 0; w0) , (M;w)[[�0℄℄(M 0; w0)
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In the lause for ?', W' is the restrition of W to the worlds where

' holds: W' = fv 2 W j M;v j= 'g. In the lause for interpret-

ing LB�
0
, the model hW 0; f�0

aga2B ; V
0i is de�ned as follows. Domain:

W 0 := fs j 9v 2 M : v �B w and (M;v)[[t(�0)℄℄sg; Valuation: Let

s = (hW s;�s; V si; ws) 2 W 0
, p 2 P , then: s 2 V 0(p) , ws 2 V s(p);

Aess: Let s1; s2 2W 0; a 2 B, then:

s1 �
0
a s2 , s1 �a s2 or [ a 62 gr(s1) [ gr(s2) and 9v1; v2 2M :

(M;v1)[[t(�
0)℄℄s1; (M;v2)[[t(�

0)℄℄s2 and v1 �a v2 ℄:

We start with general observations on the de�nition. We ontinue with

introduing a notational abbreviation and additional terminology. After

that we give examples of loal interpretation.

In dynami logi, a suessful test does not hange the urrent state. In

our framework, a test removes all worlds in the urrent state where the

test does not hold and removes all aess between worlds. Therefore, a

test generally results in a di�erent state. What remains unhanged is

merely the point of the urrent state.

To interpret an ation LB�
0 in a state s, we do not just have to

interpret �0 in s. We also have to interpret any ation of the same type

as �0 in any other state s0 that is �B-aessible from s. The results are

the worlds in the state that results from interpreting LB�
0 in s. Suh

worlds an be distinguished from eah other by an agent a 2 B in two

ases: either a ours in both states and he annot distinguish between

them, or a doesn't our in either state but he ould not distinguish

their [[t(�0)℄℄-origins.

The onstraint that gr(W 0) � B for interpreting LB�
0 guarantees

that agents in B learn only about groups of agents that already our

in t(�0). Without this onstraint some ations would be inorretly

interpreted, e.g., if 1 and 2 learn about an ation involving 1 and 3,

then in the resulting state 3 would not onsider the atual state, where 2

also knows something, to be possible. The resulting state will therefore

not be an equivalene state. However, also without this onstraint the

omputations in de�nition 5 would result in an equivalene state, that

therefore would be inorret. (Alternatively to this semanti restrition,

we ould have made a syntati restrition on the formation of LB�
0

when de�ning lass KAA.)

The ase �0 ; �00 uses ordinary omposition Æ of binary relations,

the ase �0 [ �00 union of binary relations.

The interpretation of �0 ! �00 is that of �0. However, the funtion

of �0 ! �00 is to onstrain the interpretation of �0 [ �00 to that of �0.

This is beause the use of �0 ! �00, even though its interpretation is

ompositional, depends on the ontext of a learning operator LB that
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binds it (even: of all learning operators that bind it). The hoie made

for �0 in �0 ! �00 is loal, i.e. for agents ourring in �0 or �00 only. For

agents in B not ourring in �0 or �00, �0 ! �00 is the same as �0 [ �00.

If the relation [[�℄℄ is funtional, write s[[�℄℄ for the unique s0 suh

that s[[�℄℄s0. Note that all ations ?' and LB� have a funtional in-

terpretation (are state transformers). An ation � is exeutable in an

equivalene state s, if the loal interpretation of � in s is not empty.

Loal interpretation is alled loal, beause we only interpret the

agents that are atually learning something in the ation. In ontrast

to (Gerbrandy, 1999), we do not worry about what other agents have

learnt at that stage of the interpretation, i.e. we postpone omputing

the global e�ets of learning. See setion 5.

We illustrate de�nition 5 by omputing in detail the interpretation of

the ation show in the state (Hexa; rwb). After that, we remark shortly

on the interpretation of table and whisper in that same state.

EXAMPLE 9 (Loal interpretation of show). In state (Hexa; rwb), play-

er 1 shows his red ard (only) to player 2: L123(!L12?r1[ L12?w1[
L12?b1).

We apply lause LB of de�nition 5. To interpret show = L123(!L12?r1[
L12?w1 [ L12?b1) in rwb = (Hexa; rwb), we �rst interpret the type

L12?r1 [L12?w1 [L12?b1 of !L12?r1 [ L12?w1 [ L12?b1 in any state of

Hexa that is f1; 2; 3g-aessible from rwb, i.e. in all states of Hexa.

The resulting states will make up the domain of rwb[[show℄℄. We then

ompute aess on that domain, and, �nally, the required image is

rwb[[!L12?r1 [ L12?w1 [ L12?b1℄℄. We start with the �rst.

Ation L12?r1 [ L12?w1 [ L12?b1 has a nonempty interpretation in

any state of Hexa. We give two examples. Apply lause [ of de�ni-

tion 5 (assuming assoiativity again): L12?r1 [ L12?w1 [ L12?b1 an

be interpreted in rwb beause L12?r1 an be interpreted in that state.

Similaryly, L12?r1[L12?w1[L12?b1 an be interpreted in brw beause

L12?b1 an be interpreted in that state. We ompute the �rst.

Again, we apply lause LB of de�nition 5. To interpret L12?r1 in

rwb, we interpret ?r1 in any state of Hexa that is f1; 2g-aessible
from rwb, i.e. in all states of Hexa. The interpretation is not empty

when 1 holds red, i.e. in rwb and in rbw. We ompute the �rst.

We now apply lause ?' of de�nition 5. The state rwb[[?r1℄℄ is the

restrition of Hexa to worlds where r1 holds, i.e. rwb and rbw, with

empty aess, and with point rwb. Figure 2 pitures the result.

Having unravelled the interpretation of show to that of its atomi

onstituents, we an now start to ompute aess on the intermediate
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wbr
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rwb rbw rwb rbw1

brw

wrb

rwb rbw

bwr

wbr

1

1

1

3
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?r1

L12?r1

L123(L12?r1 [ L12?w1 [ L12?b1)

Figure 2. Stages in the omputation of (Hexa; rwb)[[show℄℄. The linked frames visu-

ally emphasize idential objets: large frames enlose states that reappear as small

framed worlds in the next stage of the omputation.

stages of our interpretation. The state rwb[[?r1℄℄ is one of the worlds of

the domain of rwb[[L12?r1℄℄ (as visualized in Figure 2 by linked frames)

and is also the point of that state. The other world is rbw[[?r1℄℄. As

agent 1 does not our in either of these, and their origins under the

interpretation of ?r1 are the same to him (rwb �1 rbw in Hexa), there-

fore rwb[[?r1℄℄ �
0
1 rbw[[?r1℄℄ in rwb[[L12?r1℄℄. For the same reason, both

worlds are reexive for both 1 and 2 in rwb[[L12?r1℄℄. Further note that

rwb[[?r1℄℄ 6�
0
2 rbw[[?r1℄℄, beause in rwb 6�2 rbw in Hexa. The valuation

of atoms does not hange. Therefore world rwb[[?r1℄℄ is named rwb, and

world rbw[[?r1℄℄ is named rbw in Figure 2 that pitures the result.

Similarly to the omputation of rwb[[L12?r1℄℄, ompute the �ve other

states where 1 and 2 learn 1's ard. These form the domain of rwb[[show℄℄.

We ompute aess on the model in some typial ases. Again, reexiv-

ity follows for all worlds: either beause an agent ours in that world

and the �rst ase applies, or beause an agent doesn't our in that

world and the origins are idential, so obviously the same for that

agent. We have that rwb[[L12?r1℄℄ �
0
1 rbw[[L12?r1℄℄ (as worlds), beause

rwb[[L12?r1℄℄ �1 rbw[[L12?r1℄℄ (as states), beause, applying de�nition

4, the points rwb[[?r1℄℄ and rbw[[?r1℄℄ are the same for 1 in (the domain

of the model underlying the) state rwb[[L12?r1℄℄. We also have that
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12 Hans van Ditmarsh

rwb[[L12?r1℄℄ �
0
3 wrb[[L12?w1℄℄, beause 3 62 f1; 2g and rwb �3 wrb in

Hexa. However, on the other hand rwb[[L12?r1℄℄ 6�
0
2 bwr[[L12?b1℄℄ (as

worlds), beause 2 ours in both and rwb[[L12?r1℄℄ 6�2 bwr[[L12?b1℄℄ (as

states), beause rwb[[L12?r1℄℄ 6$ bwr[[L12?b1℄℄.

Again, the valuation of atoms in the worlds of rwb[[show℄℄ does not

hange. Therefore world rwb[[L12?r1℄℄ is named rwb in Figure 2, et.

The point of rwb[[show℄℄ is rwb[[L12?r1℄℄, beause rwb[[!L12?r1[L12?w1[
L12?b1℄℄ = rwb[[L12?r1℄℄ (a more instrutive point an be omputed in

whisper, next). We have now ompleted the interpretation. Figure 2

pitures the result.

Note that in any world of the resulting model, player 2 knows the

deal of ards. Player 1 doesn't know the ards of 2 and 3, although he

knows that 2 knows it. Player 3 knows that 2 knows the deal of ards.

EXAMPLE 10 (Loal interpretation of table). In state (Hexa; rwb),

player 1 puts the red ard on the table: L123?r1.

We do not show details of the omputation. Figure 1 pitures the result.

World rwb is atually state rwb[[?r1℄℄ and world rbw is atually state

rwb[[?r1℄℄.

EXAMPLE 11 (Loal interpretation of whisper). In state (Hexa; rwb)

player 1 whispers in 2's ear `I do not have the blue ard': L123(L12?:r1[
L12?:w1[ !L12?:b1).

We do not show details of the omputation. Figure 1 pitures the

result. Note that aess is assumed to be transitive. Again, we have

named the worlds by their atomi haraterizations. We an distin-

guish worlds with the same name from eah other, beause they have

di�erent aess to other worlds. Atually, e.g. the world rwb `in front'

is the state rwb[[L12?:w1℄℄ and the world rwb `at the bak' is the

state rwb[[L12?:b1℄℄. The last is also the point. This an be observed

by omputing onstraint (M;w)[[�0℄℄w0 in lause LB in de�nition 5:

rwb[[L12?:r1 [ L12?:w1[ !L12?:b1℄℄w
0 , rwb[[L12?:b1 ! (L12?:r1 !

L12?:w1)℄℄w
0 , rwb[[L12?:b1℄℄w

0 so w0 = rwb[[L12?:b1℄℄.
In the `bak' rwb, that orresponds to the answer `not blue', 2 knows

that 1 holds red. In the `front' rwb, that orresponds to the answer `not

white', 2 still onsiders bwr to be an alternative, so 2 does not know

the ard of 1. In both the `bak' and the `front' rwb, neither 1 nor 3

know whether 2 knows 1's ard!

We onlude with some other examples of ations in games.

EXAMPLE 12 (Win and pass). Ations suh as showing and telling

other agents about your ard(s), our in ard games where players
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Desriptions of game ations 13

also perform other ations. We all these games knowledge games (van

Ditmarsh, 2001a). The goal of the game is to be the �rst to know (or

guess rightly) the deal of ards, or some property derived from that.

In Hexa, the ondition of player 2 knowing the deal of ards an be

desribed as win2 := K2Ærwb [ K2Ærbw [ :::. Here Æijk is the atomi

desription of world (deal) ijk, e.g. Ærwb := r1 ^ :r2 ^ :r3 ^ :w1 ^
w2 ^ :w3 ^ :b1 ^ :b2 ^ b3. The ation of player 2 winning is therefore

desribed as the publi announement of that knowledge: L123?win2.

If the players are perfetly rational, ending one's move and passing

to the next player also amounts to an ation, namely announing that

you do not yet have enough knowledge to win. In the ase of player 2:

L123?:win2.

EXAMPLE 13 (Cluedo). The `murder detetion game' Cluedo is a

onrete example of a knowledge game. The game onsists of 21 ards

and is played by six players. Eah player has three ards and there are

three ards on the table. The �rst player to guess those ards wins the

game. The following ations are possible in Cluedo (and only those

ations): showing (only to the requesting player) one of three requested

ards (of di�erent types, namely a murder suspet ard, a weapon ard,

and a room ard), on�rming that you do not hold any of three requested

ards (by publi announement), and `ending your move', i.e. announ-

ing that you annot win. As eah player has three ards, and there is no

restrition on what ards are asked, a show ation may involve atual

hoie, as in whisper. That `ending your move' informs other perfetly

rational players had previously not been noted.

A play of the game Cluedo an therefore be desribed by a sequene

of these di�erent ations, so in a way by a single KAA ation. See (van

Ditmarsh, 2000) for details.

Other standard appliations of multiagent dynamis, suh as the muddy

hildren problem, also have simple desriptions in LA.

4. Theory

In this setion we prove some properties of knowledge ations and their

interpretation.

FACT 1 (Equivalene preservation). The lass of equivalene states is

losed under exeution of knowledge ations.

This trivially follows from de�nition 5.
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14 Hans van Ditmarsh

PROPOSITION 2 (Ation algebra). Let �; �0; �� 2 KAA. Then:

(a) (� [ �0) [ �� = � [ (�0 [ ��)

(b) (� ; �0) ; �� = � ; (�0 ; ��)

() (� [ �0) ; �� = (� ; ��) [ (�0 ; ��)

(d) (� ; �0) [ �� = (� [ ��) ; (�0 [ ��)

Proof. By using simple relational algebra. We show (), the rest

is similar: [[(� [ �0) ; ��℄℄ = [[� [ �0℄℄ Æ [[��℄℄ = ([[�℄℄ [ [[�0℄℄) Æ [[��℄℄ =

([[�℄℄ Æ [[�0℄℄)[ ([[�℄℄ Æ [[��℄℄) = [[� ; �0℄℄[ [[� ; ��℄℄ = [[(� ; �0) [ (� ; ��)℄℄.

�

We have not further investigated algebrai properties of ation type

operators. The next proposition relates onrete ations and ation

types to other ations.

PROPOSITION 3 (Conrete ations). Let s; s0 be equivalene models,

let � 2 KA. Then:

(a) [[�℄℄ � [[t(�)℄℄

(b) onrete ations have a funtional interpretation

() s[[�℄℄s0 ) 9� 2 C(�) : s[[�℄℄s0

(d) [[�℄℄ = [[
S
�2C(�) �℄℄

Proof.

(a) Indution on �. The only nontrivial ase is �0 ! �00. We have

that: [[�0 ! �00℄℄ = [[�0℄℄ � [[�0 [ �00℄℄ = [[�0℄℄[ [[�00℄℄ �IH [[t(�0)℄℄[ [[t(�00)℄℄ =

[[t(�0) [ t(�00)℄℄ = [[t(�0 ! �00)℄℄.

(b) Indution on �. The only nontrivial ase is nondeterministi

hoie. Let � 2 C(�0 [ �00). Then either � = �0 ! �00 or � = �00 ! �0,

with �0 2 C(�0) and �00 2 C(�00). In the �rst ase, by indution [[�0℄℄ is

funtional, and therefore also [[�0 ! �00℄℄ = [[�0℄℄. In the seond ase, this

follows from the funtionality of [[�00℄℄.

() Indution on �. A typial ase: If s[[�0 [ �00℄℄s0, then either s[[�0℄℄s0

or s[[�00℄℄s0. If s[[�0℄℄s0 then, by indution, there is a �0 2 C(�0) suh that

s[[�0℄℄s0. Let �00 2 C(�00) be arbitrary. Then �0 ! �00 2 C(�0 [ �00) and

s[[�0℄℄s0 = s[[�0 ! �00℄℄s0.

(d) Indution on �. Some ases. Case �0 ; �00: use proposition 2:

and 2:d. Case �0 [ �00: [[�0 [ �00℄℄ =IH [[
S
�02C(�0) �

0 [
S
�002C(�00) �

00℄℄ =

[[
S
�02C(�0);�002C(�00)(�

0 ! �00) [
S
�02C(�0);�002C(�00)(�

00 ! �0)℄℄ = [[
S
�2C(�) �℄℄.

Case LB�
0: use that s[[LB�

0℄℄(M 0; w0) implies s[[�0℄℄w0. �

Proposition 3:a expresses that the interpretation of an ation is

ontained in the interpretation of its type. Proposition 3:b expresses

that onrete ations are state transformers. Proposition 3: expresses

that every state that results from ation exeution an be seen as the
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Desriptions of game ations 15

result of a onrete ation. Proposition 3:d expresses that every ation is

equivalent to nondeterministi hoie between all its onretizations (a

kind of normal form, therefore). In partiular, all lauses of proposition

3 hold when the arbitrary ation is an ation type or a onrete ation.

That suits the intuition even better: the interpretation of a onrete

ation is inluded in that of its type (a), an ation type is equivalent

to hoie between all ations of that type (d), et.

Preservation of bisimilarity We may expet that bisimilarity of

states is preserved under exeution of ations. This is indeed the ase

(theorem 5). However, to prove this we also need to show that bisimilar

states have the same theory (theorem 4). This is not trivial, beause

modal formulas may ontain dynami modal operators for the e�et of

ations. We prove the theorems by simultaneous indution, assuming

that ' is less omplex than ?' and that both � and ' are less omplex

than [�℄'.

THEOREM 4 (Bisimilarity implies modal equivalene). Let ' 2 LA.
Let (M;w); (M 0; w0) be equivalene states. If (M;w)$ (M 0; w0), then

M;w j= ',M 0; w0 j= '.

Proof. By indution of the struture of '. The proof is standard

exept for the lause ' = [�℄ that we therefore present in detail.

Assume M;w j= [�℄ . We have to prove M 0; w0 j= [�℄ . Let (M�; w�)

be arbitrary suh that (M 0; w0)[[�℄℄(M�; w�). By simultaneous indu-

tion hypothesis (theorem 5) it follows from (M 0; w0)[[�℄℄(M�; w�) and

(M;w)$(M 0; w0) that there is a (M�; w�) suh that (M;w)[[�℄℄(M�; w�)

and (M�; w�)$(M�; w�). FromM;w j= [�℄ (given) and (M; w)[[�℄℄(M�;

w�) follows M�; w� j=  . From (M�; w�)$ (M�; w�) and M�; w� j=  

follows, by indution, that M�; w� j=  . AsM�; w� was arbitrary, from

(M 0; w0)[[�℄℄(M�; w�) and M�; w� j=  follows M 0; w0 j= [�℄ .

THEOREM 5 (Ation exeution preserves bisimilarity). Let � 2 KAA.
Let (M;w), (M 0; w0) be equivalene states. For every equivalene state

(M�; w�) there is an equivalene state (M�; w�) suh that:

If (M;w)$(M 0; w0) and (M;w)[[�℄℄(M� ; w�), then (M 0; w0)[[�℄℄(M�; w�)

and (M�; w�)$ (M�; w�).

Proof. By indution on the struture of �. The proof onsists of

onstruting a proper bisimulation R� from a given bisimulation R,

for eah indutive ase.

Case ?': Suppose R : (M;w)$ (M 0; w0) and (M;w)[[?'℄℄(M�; w�).

Then (M�; w�) = (M;w)[[?'℄℄ and w = w�. By simultaneous indution

hypothesis (theorem 4) it follows from (M;w)$(M 0; w0) andM;w j= '
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16 Hans van Ditmarsh

that M 0; w0 j= '. Therefore (M 0; w0)[[?'℄℄ exists. For all worlds v� 2
M� and v� 2 (M 0; w0)[[?'℄℄, de�ne R?'(v�; v�) :, R(v�; v�). Then

R
?' : (M�; w�)$ (M 0; w0)[[?'℄℄, beause (Points:) R?'(w;w0), (Bak

and Forth:) both states have empty aess, and (Valuation:)R?'(v�; v�)

implies R(v�; v�) implies, for all p 2 P : v� 2 V (p), v� 2 V (p).

Case LB�
0: Suppose R : (M;w)$ (M 0; w0) and (M;w)[[LB�

0℄℄(M�;

w�). Note that (M 0; w0)[[LB�
0℄℄ exists, as its domain is not empty: by in-

dution its point is a state bisimilar to w�. We laim that (M 0; w0)[[LB�
0℄℄

is the (M�; w�) that we are looking for, and we de�ne a RLB�
0

to

establish the the required bisimulation.

The relation RLB�
0

between (M�; w�) and (M 0; w0)[[LB�
0℄℄ is de-

�ned as follows: Let w�
1 2 (M�; w�) and w�

1 2 (M 0; w0)[[LB�
0℄℄. A-

ording to the onstrution of LB�
0, there is a v1 2 M suh that

(M;v1)[[t(�
0)℄℄w�

1 and v1 �B w, and there is a v01 2 M 0 suh that

(M 0; v01)[[t(�
0)℄℄w�

1 and v01 �B w0. If R(v1; v
0
1), then by indution there

is a Rt(�0) suh that Rt(�0) : w�
1 $ w�

1 relates the points of w�
1 and w�

1.

De�ne RLB�
0

(w�
1; w

�
1) :, R

t(�0) : w�
1 $ w�

1. It is important to observe

that the de�nition is well-de�ned: beause w �B v1 inM , world v1 will

have an R-image in M 0, and vie versa.

We now proeed to prove that RLB�
0

: (M�; w�)$ (M 0; w0)[[LB�
0℄℄.

(Points:) RLB�
0

(w�; w�), beause Rt(�0)(w�; w�), beause R(w;w0)

(given).

(Forth:) Let a 2 B, w�
2 2 M�, w�

1 �
0
a w

�
2, and R

LB�
0

(w�
1; w

�
1). As-

sume (M;v2)[[t(�
0)℄℄w�

2. We distinguish ase a 2 gr(w�
1) (and, beause

of w�
1 �

0
a w

�
2, therefore also a 2 gr(w�

2)) from ase a 62 gr(w�
1)[ gr(w

�
2).

In the �rst ase we use that Rt(�0) is a bisimulation to establish the

required world w�
2, in the seond ase we use that R is a bisimulation

and that Rt(�0) preserves bisimilarity, to establish that.

If a 2 gr(w�
1), then from w�

1 �0
a w�

2 follows w�
1 �a w�

2 (i.e., as

states), so the points of these states are the same for a as well. From

R
LB�

0

(w�
1 ; w

�
1) follows Rt(�0) : w�

1 $ w�
1, therefore R

t(�0) relates the

points of w�
1 and w

�
1. From that and from the fat that the points of w�

1

and w�
2 are the same for a, and beause Rt(�0) is a bisimulation, follows

that there is a w�
2 suh that the point of w�

1 is the same for a as the

point of w�
2 and Rt(�0) : w�

2$w�
2. But we now also have RLB�

0

(w�
2; w

�
2)

and w�
1 �

0
a w

�
2 (as worlds)!

If a 62 gr(w�
1) [ gr(w�

2), then v1 �a v2 in M , by the de�nition of

aess in (M�; w�). From v1 �a v2 and R(v1; v
0
1), and beause R is a

bisimulation, follows that there is a v02 2 M 0 suh that v01 �a v02 in

M 0 and R(v2; v
0
2). By indution we may assume that Rt(�0) preserves

bisimilarity, therefore there is a w�
2 suh that (M 0; v02)[[t(�

0)℄℄w�
2 and
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Desriptions of game ations 17

R
t(�0) : w�

2 $ w�
2. We now have that w�

1 �
0
a w

�
2 (from v01 �a v

0
2) and

R
LB�

0

(w�
2 ; w

�
2) (from R

t(�0) : w�
2 $ w�

2). Done.

(Bak:) Similar to forth.

(Valuation:) Obvious.

Case �0 ; �00: SupposeR : (M;w)$(M 0; w0) and (M;w)[[�0 ; �00℄℄(M�;

w�). As [[�0 ; �00℄℄ = [[�0℄℄ Æ [[�00℄℄, there is an (M1; w1) suh that (M;

w)[[�0℄℄(M1; w1) and (M1; w1)[[�
00℄℄(M�; w�). By indution we have an

(M 0
1; w

0
1) suh that (M 0; w0)[[�0℄℄(M 0

1; w
0
1) andR

�0

: (M1; w1)$(M 0
1; w

0
1).

Again by indution we have an (M�; w�) and an R�0;�00

suh that

(M 0
1; w

0
1)[[�

00℄℄(M�; w�) and R�0;�00

: (M�; w�)$ (M�; w�). R�0;�00

is the

required bisimulationR�0 ; �00

, as we also have (M 0; w0)[[�0 ; �00℄℄(M�; w�).

Case �0[�00: SupposeR : (M;w)$(M 0; w0) and (M;w)[[�0[�00℄℄(M�;

w�). Then either (M;w)[[�0℄℄(M�; w�) or (M;w)[[�00℄℄(M�; w�). If (M;

w)[[�0℄℄(M�; w�), then by indution there is an (M�; w�) and a R�0

suh that (M 0; w0)[[�0℄℄(M�; w�) and R�0

: (M�; w�)$ (M�; w�). From

(M 0; w0)[[�0℄℄(M�; w�) follows (M 0; w0)[[�0 [ �00℄℄(M�; w�), so R�0

is the

required bisimulation. Similarly, if (M;w)[[�00℄℄(M�; w�).

Case �0 ! �00. Similar to �0 [ �00. �

A diret onsequene of theorem 5 is:

COROLLARY 6. Let s; s0 be equivalene states and � a onrete a-

tion. Then s$ s0 ) s[[�℄℄$ s0[[�℄℄.

5. Further observations

The interpretation of some LA formulas is unde�ned. An obvious ex-

ample is the following: The formula [?K1r1℄K1r1 { `after a test on

1 knowing red, 1 knows red' { an not be interpreted on any state.

Suppose rwb j= [?K1r1℄K1r1, then rwb[[?K1r1℄℄ j= K1r1. However,

gr(rwb[[?K1r1℄℄) = ;: it is an equivalene state with empty aess,

on whih K1r1 an therefore not be interpreted. For similar reasons,

formulas as [L12?r1 ; L123?r1℄r1 are uninterpretable. Expanding the

notion gr of `group' to inlude ations may provide a solution. We then

put a onstraint ' 2 Lgr(�) on the formation of [�℄' in de�nition 2,

so that formulas suh as [?K1r1℄K1r1 are no longer well-formed. With

this syntax restrition we an derive validities as [?'℄ $ (' !  ).

We have not yet ompleted the axiomatization of LA. It appears to
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18 Hans van Ditmarsh

beome the axiomatization of a `family' of logis LB for all B � A

(given a global set of atoms P ).

We have extended the language with the operation of onurrent

exeution (van Ditmarsh, 2001b). This relates to (Peleg, 1987; Gold-

blatt, 1992). Using onurreny, we an desribe that a player shows

two ards simultaneously to di�erent players, say, one with his left hand

and the other one with his right hand. The notion of loal interpretation

is `lifted' from a relation between states to a relation between states

and sets of states.

The ation language would be further enhaned if we ould refer

not just to the urrent game state, but also the ation history. We

ould then desribe, e.g., that a player asks another player to show him

`another' ard.

We make some losing remarks on the relation of our work to that

of others.

A publi update with formula ' in (Plaza, 1989) naturally orre-

sponds to learning: (' +  ) is equivalent to [LA?'℄ (where A is the

publi).

Learning is rather similar to updating in (Gerbrandy, 1999). The

semantis of ations is also relational. However, in Gerbrandy out-

siders to a group learning (`updating') something are assumed to learn

nothing at all. We do not make that assumption. Beause outsiders

learn nothing, they annot imagine the atual state of the world: no

reexivity. Indeed, his approah is more general than for equivalene

states only. In (Gerbrandy, 1999) the ruial operator is the (sub)group

update UB. Ations LA� (for the publi A, i.e. fully spei�ed ations)

orrespond to `truthful updates' (� ; UB�) �a la Gerbrandy.

Apart from interpreting an ation as a relation between states, an

ation an also be interpreted as a semanti objet orresponding to a

Kripke frame, an `ation frame'. Exeuting an ation in a state then

amounts to omputing a diret produt of that state and that frame.

This is the approah in (Baltag, 1999; Baltag et al., 2000). See also

(van Ditmarsh, 2000; van Ditmarsh, 2001a). The di�erent notions

of interpretation orrespond up to bisimilarity (van Ditmarsh, 2000).

It is also interesting to observe that a onrete ation orresponds to

a pointed ation frame (a state transformer), whereas an ation type

orresponds to an `ordinary' ation frame (i.e. with no point).
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6. Conlusion

We proposed a dynami epistemi language LA, that inludes a lan-

guage KAA of knowledge ations. Basi to our approah is the onept

of loal interpretation of an ation type in a model: the interpretation

for a subgroup of agents only. We performed detailed omputations on

some example knowledge ations taken from ard games, to illustrate

the language and its interpretation. We ompared our researh to that

of others.
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