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Summary 

In recent years a wide variety of methods has been used to describe the 
polarization characteristics of ultra low frequency to 1 Hz) magnetic 
fields. This paper gives a more complete outline of some of the descrip- 
tions derived from the spectral matrices of n-variate stochastic processes. 
The matrices are expanded in three different, standard sets of matrices in 
order to add some simplification to the interpretation of the polarizations. 
One set is composed of n2 trace-orthogonal, hermitean matrices and leads 
directly to a generalization of the Stokes parameters and the degree of 
polarization for n-variate processes. The second set is developed from 
the dyad expansion, which in particular cases is analogous to the spectral 
decomposition of the matrix. The third set is composed of n commuting 
idempotent matrices and proves to be the most useful set when the 
stochastic process is not strictly polarized. Finally, two examples of 
digital records of ULF magnetic fields are analysed to illustrate some of 
the limitations of the methods, and to indicate the biases which are 
inherent in numerical analyses. 

Introduction 
- 1 Hz) electromagnetic waves 

both in space and at the Earth‘s surface, there has arisen a bewildering complexity 
of analysis techniques for describing the characteristics of the perturbations. The 
oldest techniques estimate the waves’ characteristics such as mean periods, mean 
amplitudes, and polarization hodograms directly from amplitude-time recordings 
of the perturbations. The use of hodograms to describe the time-dependent, direc- 
tional properties, or polarization states of the perturbations is especially cumbersome 
and restrictive, and the results are sometimes misleading (see e.g. Pope 1964; 
Paulson 1968; and Fowler et al. 1967). Consequently many researchers have been led 
to develop more sophisticated analysis techniques, some based on direct adaptations 
of techniques used in optics (see e.g. Paulson et al. 1965 and Fowler, Kotick & 
Elliot 1967) and some based on applications of real multivariate analysis (see e.g. 
Cummings, O’Sullivan 8z Coleman 1969). Most of these techniques are rather 
restricted in applications, and the validity of the approach is sometimes not obvious. 
An interesting review of some of the above techniques, and many others, is given 
by McPherron, Russell & Coleman (1972). 
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In the study of ultra-low frequency (ULF, 
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404 J. C. Samson 

In this paper, I shall try to unify some of the techniques based on the use of the 
spectral matrix in describing polarization states. With minor exceptions, the discus- 
sion deals with n-variate stochastic processes, since this approach makes the tech- 
niques much more generalized in application, without adding much more complica- 
tion. Although motivated by the need for accurate descriptions of ULF phenomena, 
the descriptions given in this paper have much more generalized applications, and 
can be used in many fields of research. My hope is that they will be especially useful 
in the geophysical sciences. 

Consider now an n-variate stochastic process 

where x j ( t )  are the components of x ( t )  in an n-dimensional space, and t is time 
(vectors will be written as column matrices). Superscript ' T ' denotes the transpose. 
We shall assume that the stochastic processes x j ( t )  are weakly stationary. That is, 

d{xj(t)} = 0 j = 1, n, (2) 

where d denotes the expectation or ensemble average and the covariance moments 

depend only on the interval u. We shall also assume that the second-order moments 
are adequate for the description of the statistics of the processes. 

The spectral matrix S(v, A j )  of x ( t )  has the elements 

v + A f  OD 

Note that each element is a continuous function of v (frequency) and Af (the 
increment half-width). Equivalently 

where 

We have assumed that the elements of the spectral distribution matrix T are 
absolutely continuous with respect to Lebesque measure. The increments sjk(v, A f )  
form a non-negative, hermitean matrix (see e.g. Hannan 1970, Chapter 2). The 
spectral matrix S(v, A f )  has the minimum set of parameters necessary to charac- 
terize the polarization states of the n-variate stochastic process. 

Often the term polarization is used to describe the directional properties of a 
perturbation vector in a real or Euclidean vector space. For example, if we can 
find an orthogonal basis such that the perturbation vector is always along one axis, 
then we can consider the perturbation to be linearly polarized or strictly polarized. 
The other extreme occurs when the powers in all directions are equal and remain 
so for any choice of the co-ordinate axes. The concept of polarization can be further 
generalized by substituting a unitary space for the Euclidean space, and we can 
consider the directional properties or polarization characteristics in the unitary space. 
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Descriptions of polarization states 405 

A perturbation vector can be considered to be strictly polarized if through a unitary 
transformation we can find a new basis such that the perturbation is restricted to one 
axis (i.e. only one eigenvalue of S is non-zero). Conversely, a perturbation vector 
is completely unpolarized if the powers on each axis are equal and remain so under 
any arbitrary unitary transformation (i.e. S = aIn, where a is real and non-negative, 
and 1. is the n-square identity matrix). 

In describing the polarization states of the perturbation vector, we must choose 
parameters which have familiar characteristics. Much confusion arises from the 
fact that many researchers are familiar only with strictly polarized states such as 
sinusoidal waves, which are completely coherent and polarized, and consequently 
have perturbation vectors which follow very simple patterns (i.e. ellipses). Seldom 
does nature provide us with such a pure state, and consequently we must look at the 
spectral matrix in much more detail. 

One procedure which adds some simplifications to the interpretation of the 
spectral matrix is to expand the matrix in sets of matrices with familiar characteristics. 
If at least some of the coefficients in the expansion are zero, or there exists a simple 
relationship between the coefficients, then the interpretation is much simplified. If 
not, then the perturbation vector is possibly too complicated to merit analysis. In 
this paper we shall consider three sets for the expansions although there are clearly 
many more, and in particular cases other sets might prove much more useful than the 
ones to be discussed. 

The first set we shall discuss is composed of n', trace-orthogonal, hermitean 
matrices, and leads to a generalization of the Stokes parameters for n-variate 
processes. It is surprising that these parameters are seldom used in describing ULF 
waves, especially since they lead to a simple and computationally efficient parameter 
for describing the degree of polarization. The second set is developed from the dyad 
expansion, which in particular cases is equivalent to the spectral decomposition of 
the matrix. The third set is composed of n commuting, idempotent matrices and 
appears to be one generalization of the expansion used by Fowler et a/ .  (1967) for 
the case n = 2 (see also Born & Wolf 1959). In the spectral and idempotent expan- 
sions, the matrices in the sets are non-negative and hermitean, all coefficients of the 
expansion are real and non-negative, and consequently each element of the set is a 
representation of an n-variate stochastic process. Specifically this means that S 
is expanded in the form (henceforth the dependence of v and Af is implied and 
will be written only in specific cases) 

n s = c a,'S 
1 = 1  

where 
v + A /  OD 

al'Sj, = 1 1 'Ojk(u) exp (-2nigu)duc/g,  
v - A /  -m 

(7) 

Equations (8) and (9) indicate that each matrix 'S must be non-negative and 
hermitean, and each coefficient a, must be non-negative. 
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406 J. C. Samson 

Expansion of S on a basis of trace-orthogonal matrices 

The first expansion of S that we shall consider has the form 
n * - 1  

l = O  
s = c a,U1, (13) 

where the n-square matrices Ul are hermitean, trU,U, = a,, (8 is the Kronecker 
delta), and consequently 

If we choose Uo = n-* I,,, then tr U1(l # 0) = 0 is required to meet the orthogonality 
condition. If n = 2, a complete set of Ul are given by the four matrices 

a, = tr (SU,). (14) 

u o = 2 - *  [; 3, u 1 = 2 - * [ '  0 -1 01 ' u , = 2 - *  [; J ,  I 
(15) 

The matrices U1, U1, and U3 are clearly recognizable as the Pauli spin matrices. 
Fano (1957) has indicated that the coefficients al(n = 2) in equation (13) are actually 
the Stokes parameters of the stochastic process. The matrices (15) were also used 
by Wiener (1930) in his discussions on harmonic analysis, but he did not note the 
connection between the expansion and the Stokes parameters. 

If n = 3, a complete set of U, are given by the nine matrices 

O i  0 

0 0 0. 

1 0 0  

, u1=2-* 0 0 0 
0 0 -1. 

0 0 1  
[ 

, u4=2-*k  ;] 
0 0 i '  

- i  0 0. 

1 0 0  

0 0 1. 

0 0 0  

0 - i  0. 

The coefficients of the expansion, which we might call the Stokes parameters for 
the interval v- A f to v+  A f, are 
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Descriptions of polarization states 407 

An alternative basis for the algebra of 3-square hermitean matrices has been 
constructed by Roman (1959) using the Kemmer algebra (Kernmer 1943). This 
basis is also composed of a set of nine hermitean matrices, but the matrices are not 
pairwise trace-orthogonal. Consequently the coefficients of the expansion, which 
Roman calls the generalized Stokes parameters, differ from those given in equation 
(17). However, the choice of the coefficients of the trace-orthogonal set for the 
Stokes parameters seems to be more consistent. For example, from (14), 
a, = n-f tr S for arbitrary n, but this is not the case in Roman’s basis where a, = SZ2. 

Trace-orthogonal sets for arbitrary n can be constructed by trial. However, some 
of these sets can be found in descriptions of elementary particles (see e.g. Gell- 
Mann 1962 for n = 3), or in group theory where they are the infinitesimal operators 
of the unitary groups V(n).  

In analogy with the procedure followed in optics for the case n = 2, we can 
construct a polarization vector p = [a,, a2 ... un2- and define the degree of 
polarization P (for arbitrary n) by the relation 

where 
P2 = p 2 / [ ( n -  1) ao2] = tr A2/[ (n-  1) a,’] (18) 

n1- 1 

1=1 
a, = n-+trS and A = C alUI. 

If P = 1.0 then the stochastic process is considered to be completely polarized. More 
will be said about this in the discussions of the dyad and idempotent expansions. 

With the possible exceptions of the case n = 2 or the cases where P = 1.0 or 0.0, 
interpretation of the polarization states from the trace-orthogonal expansion is very 
difficult. In most instances it is probably easier to use the dyad and idempotent 
expansions. 

Expansions of S on dyad bases 

Consider a complete set of n vectors u,(I = 1, n) which are pairwise orthonormal 
(i.e. ul+ uk = 81k where the superscript + denotes the hermitean adjoint). From 
these vectors we can construct n2 matrices Elk = uluk+ (the subscripts Ik identify 
the matrix and not its elements). Since the set u1 was assumed to be complete, the 
set of n-square matrices Elk can be used as a basis for the algebra of n-square matrices. 
Thus we can expand S in the form: 

n 

s = c 
1, k = l  

where 

The matrices E,, are idempotent (i.e. Elt2 = Ell) have rank one, are hermitean, and 
consequently are also non-negative and hermitean. The matrices Etk(l # k) are not 
hermitean. 

If the vectors ul are the eigenvectors of S (or any matrix which has distinct eigen- 
values and commutes with S), then (Ilk = 0 if 1 # k, and a[k = ilk if I = k, where I, 
is the appropriate eigenvalue of S (i.e. suk = &uk). Consequently 

a[k = ul+ suk. 
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408 J. C. Samson 

Since the eigenvalues A, are non-negative, each element I, E,, can be considered to 
be the spectral matrix of an n-variate stochastic process (see equations (7)-(12)). 

In addition, the matrices Ell are idempotent and disjoint i.e. E,, Ekk = 0 (k # I ) ,  
2 E,, = I,,) and consequently expansion (20) is identical to the spectral decomposi- 

tion of the matrix S if A, # A2 ... # A,, (see e.g. Mal'Cev 1963, Chapter 5) .  
Obviously many other sets for the expansion of S can be constructed with 

( 
1 = 1  

elements A, = jj a l k  Ekk ( I  = 1, n) such that the A, constitute a set of linearly 
independent n-square matrices. Not all these sets will be particularly useful. 

If only one eigenvalue of S is non-zero, all the principal minors except the diagonal 
elements are identically zero, and we can consider the process to be strictly polarized. 
Conversely, if all the eigenvalues are equal (A, = A, ... = A,,), S is invariant under 
any unitary transformation, and we can consider the process to have maximum 
randomness or to be completely unpolarized. These features suggest that the eigen- 
values of S also give us some indication of the degree of polarization, and that we 
should choose an appropriate function f ( A , ,  A,, ..., A,,) with the limiting values 
f =  0 if all eigenvalues are equal and f =  1.0 if only one eigenvalue is non-zero. 
Such a function can be derived from the definition of the degree of polarization given 
by the Stokes parameters (equation 18). Since ao2 = n-'(tr S)' and tr A' are 
invariant under any unitary transformation of S, the degree of polarization P is not 
dependent on the particular choice of co-ordinates (which should be the case, other- 
wise the meaning would be ambiguous). If s, = 

k =  I 

U+ SU = . .A,.: = diag [Al ,  A, ... A,,], [i. 0 ... ..* A,, 01 

where U is an appropriate unitary matrix, then we have 

A = S,-n-* a, I,, 
=diag[I,-n-'trS,I,-n-'  trS, ..., A,,-n-'trS]. 

Thus 

p 2  = trAZ = 5 (A,- (I ,+12+. . .+I , , )n)2 .  
1=1  

Equation (22) can be reduced to 

Thus the degree of polarization P is given by the relation 

The definition of the degree of polarization given by equation (24) fits the desired 
characteristics for f (Al, A2 ... An) in that if all the eigenvalues are equal, then P = 0.0, 
and if only one is non-zero then P = 1.0. In analogy with the variance ellipsoid of 
real multivariate analysis, P might be considered to be a measure of the eccentricity 
of a hyperellipsoid in a unitary space, with n axes of lengths Al, A, ... I,,. When 
P = 0.0 the hyperellipsoid becomes a hypersphere, and when P = 1.0 the hyper- 
ellipsoid becomes a line. 
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Expansion of S in non-disjoint idempotent matrices 

In the preceding discussion we found that any hermitean non-negative matrix 
can be written as a linear combination of disjoint idempotent matrices, each of rank 
one, and furthermore all the coefficients in the expansion are non-negative. S can 
also be expanded in sets of non-disjoint idempotent matrices. One such expansion 
which is particularly simple is 

n 

1=1  
s = c a,D,, (25) 

where each n-square matrix D, is idempotent, and has rank (D,) = I ,  and D, Dk = D, 
(k < I). If the coefficients a, are chosen to be non-negative, then this expansion is 
unique. Since D, Dk = D,, each element of the set commutes with all other elements 
and the set D, has many of the characteristics of an Abelian group. Note, however, 
that the matrices D, (I # n) have no inverses. One more useful point is that any 
linear combination of the matrices D, has rank less than or equal to the largest sub- 
script I in the combination. 

The set of matrices D, can be constructed from the set El, (equation 20). How- 
ever, we shall go about it in a slightly different fashion. Since any element D, com- 
mutes with all other elements, the matrices D, have a set of eigenvectors in common. 
If U is the unitary matrix formed from these eigenvectors, then U+ SU must be 
diagonal. The n diagonal elements give us the set of equations 

From (26) by successive subtractions we obtain the set of equations 

a, = A,-A,+ , (A,+ = 0, I = 1, n). (27) 

Inspection of (27) shows that if we wish all the coefficients a, to be non-negative we 
must choose the eigenvalues such that A, 2 A2 ... 2 A,. Consequently 

D, = U diag [Il, On-,] U+, (28) 

where U+ SU = diag [A,, A2,  A3 ... A,], A, 2 A2 2 ... A,, and On-, is the @ - I ) -  
square null matrix. We have thus expanded our stochastic process in a set of n un- 
correlated stochastic processes Ix (I = 1, n), each with the degree of polarization 

n-1 
nl-1 

p,2 = ~ , 

"x is unpolarized (Pn = 0) and 'x is strictly polarized (PI = 1.0). All principal 
minors of D,, except the diagonal elements, are zero and consequently all the multi- 
variate coherencies of ' x ( t )  are equal to unity (e.g. the bivariate coherencies 
D,Z/D,, D k k  = 1.0). In most cases it is this strictly polarized or pure state which is 
interesting to researchers. 

The total power in the intervals v- Afto v+ Afin each of the stochastic processes 
'x is tr (a, D,) = l(A,-A,+ ,) and consequently a convenient measure of the relative 
amounts of power in each is given by the relations 
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where 

J. C. Samson 

n C RI = 1.0. 
1 = 1  

0 < R, < 1.0, 

For example, if n = 2 

This expansion is identical to that given by Born & Wolf (1959) and Fowler et al. 
(1967, equation 3). 

If n = 3, the expansion has the form 

and 

Further simplicity in interpreting D, can be found by diagonaliziiig the real 
symmetric part of D, (denoted by Re DJ. Consider first the submatrix F composed 
of the elements F l k  = JIk ( I ,  k = 1,3), where 

J = RTD1 R and RTR,D1 R = diag [ J , , ,  J z z  ... J,,,,]. 

It is possible to show that since F,, F k k - F [ k 2  = 0, at least one of F , ~  must be zero. 
From this starting point we can prove by induction that J can have at most two 
non-zero diagonal elements. Thus we can always find an orthogonal transformation 
R such that 

RT D, R = diag [J, On-2], 

The matrix J is identical to that for an elliptically polarized wave (see e.g. Fowler 
et al. 1967). The eigenvector corresponding to the larger of J , ,  and Jz2 is along 
the principal axis of the ellipse, and the ellipticity is Jl2/JI1, where JII  is the larger 
of J ,  and J z z .  The sign of the ellipticity gives the sense of rotation. In practice the 
concept of an elliptically polarized wave is meaningful only if ' ~ ( t )  is quasi-mono- 
chromatic,i.e. lim (Al(v, Af)-&(v, Af))/Af has a local maximum at a frequency 
vo with a peak width Av such that Av/v, < 1. The concept of an elliptically polarized 
wave is also difficult to interpret if n > 3. 

A / + O  
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Descriptions of polarization states 41 1 

All the characteristics of D, apply to the matrices E,, (equation (20)), implying 
that we can also interpret any arbitrary perturbation-vector as the incoherent super- 
position of n elliptically polarized waves. 

Discussion of the case n = 3 

In the analysis of ULF phenomena one is normally concerned only with 
perturbations with three spatial components, so an expanded discussion of the 
case n = 3 is in order. 

Equation (33) indicates that in general the strictly polarized process is restricted 
to a plane determined by the real eigenvectors rl and r, corresponding to the eigen- 
values J , ,  and J2 , .  If ' x ( t )  is not linearly polarized (i.e. J , , ,  J , ,  # 0-0), then the 
third eigenvector r3, which is perpendicular to the plane, can be obtained directly 
from the imaginary part of D, by noting that 

where 

(34) 

Equation (34) is simply a representation of the vector product of rl and T,, and the 
matrix on the right-hand side is the 3-square antisymmetric matrix representation of 
the 3-dimensional vector r3 (see, e.g. Jeffreys 1963, Chapter 1). Equation (33) indi- 
cates that r3 is also an eigenvector of D1, but this does not imply that it is an eigen- 
vector of D, and S, because r3 corresponds an eigenvalue (zero) for which D, has a 
two-fold degeneracy. If R ,  = R3 = 0.0, and the wave is known to be polarized trans- 
verse to the direction of propagation, then r3 is parallel or antiparallel to the wave- 
normal direction. Means (1972) has discussed this case in some detail. 

More general conditions for the existence of a preferred plane of polarization 
are that R 2 / R ,  < 1.0 or that one eigenvalue of R,D2 be zero (i.e. there exists a real 
vector r such that Re Dz r = 0). If Re D, r = 0, then it is a simple matter to show 
that since D, and D, commute, D, r = D2 r = 0, and 

where R is the orthogonal matrix from equation (33). Thus 

RTSR = diag [K, &I, (36) 
where A3 is the minimum eigenvalue of S, and 

1 0  
K =  I ,  [o +(A,-&)  [ iJ12] . 

-"1z J 2 z  
(37) 

The structure of the matrix on the right-hand side of (36) implies that the concept 
of a preferred plane is meaningful in this case, because the wave can be considered 
to be the incoherent superposition of a plane wave and a completely unpolarized 
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wave. The condition R 2 / R  Q 1.0 is trivial because (37) reduces to 

- - iJ l2  J 2 2  
K x A1 

Examples 

In this section I would like to give some examples of the numerical computation 
of the parameters discussed in the previous section. First one should note that 
particular care must be used in interpreting the numerical estimates of the polarization 
ratio P and the ratios R, since the expectation and variance of these parameters is 
intimately related to the actual process of analysis. For example, if no smoothing 
of the spectral estimates is used, P = R ,  = 1.0 and R 2  = R ,  = ... R,  = 0.0 indepen- 
dent of the statistical nature of the multivariate stochastic process (see Jenkins & 
Watts 1968 for a discussion of the analogous case for the bivariate coherencies). 

To interpret the parameters accurately we must find some method to determine 
the bias and variance of the elements of the estimated spectral matrix and the 
parameters determined from this matrix. In the examples that follow, the estimated 
spectral matrix S,(v, A f )  is computed from 

where 

1 = 0, 1,  

1 
T(0 = z(1) 2+(1), 

N- 1 

70r 6ot 

1 
00 0.1 0.2 0 3  04 05 06 07 0.8 0.9 1.0 

P ,R, (n= 2) 
FIG. 1. Histogram of the values of P(n = 2) and R, which were calculated using a 

spectral window with 7 degrees of freedom (k = 7). 
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FIG. 2. Fluxgate recordings of geomagnetic micropulsations. The sensitivity is 
12.0 y The time scale is marked in hours of 
universal time. Xis  magnetic north, Y is magnetic east, and Z is vertical (down- 
ward). These recordings have been detrended with a 1-20mHz digital filter. 

gauss) per dashed line. 

1530 1600 1630 1700 1730 
UNIVERSAL TIME 

FIG. 3. Contour-plots of the frequency-dependent and time-dependent polarization 
characteristics of the pulsations in the Xand Ycomponents shown in Fig. 2. Top to 
bottom: P(rz = 2), ellipticity ( J l l / J I I ) ,  and log (AI-A2) (see equation (30)). 
A,  and XI are in units of y2.  The data window has 7 degrees of freedom and the 

corresponding width (2Af) is -7 .0 mHz. 

C 
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is the sampled vector time series, N is the number of sample points, and At is the 
sample interval. In certain cases kSE has a complex Wishart distribution of dimen- 
sion n, degrees of freedom k = 2m+ 1 (see Goodman 1963; Parzen 1969; and 
Hannan 1970 for more details). Although the distribution of SE can be approximated, 
it still remains a formidable task to estimate the distribution functions of many of the 
parameters discussed in this paper. Almost all are non-linear functions of random 
variables. Probably the simplest approach is to make specific assumptions about 
the statistical properties of the n-variate stochastic process, and then by numerical 
methods generate empirical tables of the distribution functions of the various 
parameters. 

Fig. 1 shows a histogram of values of P(n = 2) which were obtained using this 
simple technique. The values of P were computed from two, uncorrelated, gaussian 
processes which were produced by a computer random number generator. In this 
case the spectral window had 7 degrees of freedom (k = 7), and obviously the 
estimates are highly biased. The mean values of P and R, are near 0.4 - 0.5. 
However, 95 per cent of the estimates are below 0.75, and there are no estimates 
greater than 0.90. In using the value of P as a criterion for the existence of strictly 
polarized waves it is probably safe to choose P, R, > 0.90. Conversely, to make an 
accurate estimate of 2A2 and &-A2) in data where one suspects P to be less than 
0.90 will require a data window with more degrees of freedom, leading to a loss in 
the spectral resolution. 

To illustrate the usefulness of the descriptions of the polarization states, I have 
chosen two examples of 3-component time series of magnetic fluctuations which 
were recorded by a ground-based fluxgate magnetometer-system. The first recording 
(Fig. 2) shows examples of Pc4 geomagnetic micropulsations (see Jacobs 1970 for a 
description of the nomenclature), with the pulsations beginning at approximately 
1530 UT and continuing with variable amplitude to 1730 UT. In this example, 
there is little power in the 2 component and consequently a simplified analysis of 
only the X and Y components (n = 2) should be adequate. 

70r 

FIG. 4. Histogram of the values of P(n = 3) which were calculated using a spectral 
window with 7 degrees of freedom. 
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FIG. 5. Histograms of the values of R1 (dotted line), R2 (solid line), and R3 (dashed line) 
which were calculated using a spectral window with 7 degrees of freedom. 

- 
e 

TIME (seconds 100) 

FIG. 6. Fluxgate recordings of geomagnetic micropulsations. The solid cirdes 
depict the sample points for the digital data. These recordings have been detrendcd 

with a 1-20 mHz digital filter. 
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0.0 20 40 60 80 100 120 140 I60 
FREQUENCY (rnHz) ( C )  

FIG. 7. (a) Power spectra of the X component (solid circles), the Y component 
(open circles) and the 2 component (crosses) in Fig. 6. The spectral window has 
7 degrees of freedom and a corresponding width (2Af) of -2  mHz. (b) Power 
spectra of ( A ,  - A,) (solid circles), 2(A2 - A,) (open circles), and 3A3 (crosses). 

(c) P(n = 3), R, ,  R2 and R3 for the recordings depicted in Fig. 6. 
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Table 1 

The transformed matrices D,(v = 4 . 2  mHz) and D,(v = 4 . 2  mHz). 

P = 0.91,  R1 = 0.90,  R, = 0.08, R3 = 0.02 

0.94 -0.34 0.04 0.47 0.89 

R. = [ 0.23 0'72 0.651 Rb = b::: 0.42 -:I:;] 
-0.25 -0.60 0.76 -0.27 0.95 

0.75 0.43i @MI [ 1.0 0.0 0.0 
RbTD2Rb = 0.0 0.71 -0.45i 

0.0 0.0 0.0 0.0 0.45i 0-29 
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Fig. 3 depicts the frequency-dependent and time-dependent changes in the 
polarization characteristics of pulsations in the X and Y components. The contour 
plot of the polarized power ( A ,  - A,) shows distinct spectral peaks in the Pc4 spectral 
band, with the largest peaks occurring near 1610, 1635, and 1720UT. The centre 
frequency in the peaks changes from N 13 mHz at 1630 UT to - 16 mHz at 1730 UT. 
The contour plots of the ellipticity (Jlz/Jll) and P(n = 2) indicate that P is greater 
than 0.95 for these pulsations and that the ellipticity is very stable with values 
between +0.3 and +0.6.  In this example, a positive ellipticity indicates counter- 
clockwise polarization in the X- Y plane, when viewed in the 2 direction. All these 
features are typical of Pc4's occurring in the morning hours in northern latitudes 
at the Earth's surface. One further point of interest is the correlation of the stable 
ellipticities with large values of P. Apparently when P is less than 0.75, the ellipticity 
is much more variable. 

When we consider three-variate (n = 3) stochastic processes, the interpretation 
of the polarization states becomes much more complicated. Figs 4 and 5 give histo- 
grams of the values of P(n = 3), R1, R,, and R, which were derived from computer- 
generated gaussian processes. In this case, the mean value of P is approximately 
04-0-45, but the variance appears to be somewhat less than for P(n = 2). In using 
the value of P or R, to indicate the presence of a strictly polarized wave, the require- 
ment that P, R1 > 0.8 should be adequate. 

The second set of data to be analysed is depicted in Fig. 6 .  The most prominent 
waves in these plots are Pc5 geomagnetic micropulsations with a mean frequency of 
about 4.2 mHz (period = 240 s). The pulsations are evident in all three components, 
especially at 0s and 1800s. The plots of the power spectra Fig. 7(a) show marked 

Table 2 

The transformed matrices D,(v = 12.2mHz) and D,(v = 12.2 mHz) 

P = 0.62,  R1 = 0.48,  R, = 0.43,  RJ = 0.08 
-0.50 0.86 0.98 -0.10 0.19 

R. = [ 0.85 0.47 :::I] Rb = [ 0.05 0.97 0.261 
-0.16 -0.18 0.97 -0.21 -0.24 0.95 

0.99 -0.lOi 
0.0 0.10i 0.01 

0.60 -0.49i 

0-49i 0.40 i::] R b T D ~ R b  = 1 . 0  

0.0 0.0 0.0 
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spectral peaks for both the X and 2 components, indicating that a quasi-mono- 
chromatic interpretation of the polarization characteristics would be useful. There 
are no other significant peaks in the three spectra. 

The power spectra of ' x ( t ) ,  z ~ ( t ) ,  and ,x(t) are plotted in Fig. 7(b). The spectrum 
of 'x(t), i.e. (&(v, A f ) - l , ( v ,  Af)) shows a distinct peak centred at 4.2mHz, and 
although the pulsations depicted in Fig. 6 may appear to be rather irregular, the 
plots in Fig. 7(c) show that they are highly polarized. Both P(n = 3) and R1 exceed 
0.90 in the region of the spectral peak. Another feature which is evident in Fig. 7(c) 
is that the variances of P, R,, R, and R, are large when P is less than 0.7. 

Table 1 shows the computed matrices D, (v  = 4-2 mHz) and Dz (v = 4.2 mHz), 
transformed such that the real off-diagonal terms are zero (see equation (33)). The 
corresponding orthogonal transformations are R,, and Rb, respectively. Inspection 
of R, and RUTD1 R, indicates that ' x ( t )  is highly elliptical with an ellipticity of 
+0.60, and that the principal axis is very close to the X direction (note that a unit 
vector in the X direction has components [l, 0, 0IT and in the Y direction 
[O, 1,0]'. Rb and RbTD2 Rb show that ' ~ ( t )  is restricted largely to the X- Y plane, 
although ' x ( t )  is definitely not a simple plane wave. In any case, Rz is very small 
and consequently Dz probably has little physical significance. 

Table 2 gives the matrices RUT D, (v = 12.2 mHz) R,, and RbT Dz(v = 12.2 mHz) Rb. 
At this frequency, one diagonal element of Rb Dz Rb is almost zero, and consequently 
both D, and Dz have real eigenvectors which are approximately parallel (see R,, and 
Rb in Table 2). In this example the eigenvectors are directed in the 2 direction as 
would be expected from an inspection of the spectra in Fig. 7(a). Thus at this 
frequency, the waves can be considered to be plane polarized, and restricted to the 
X- Y plane (see equations (35), (36) and (37)). 

Summary 

The expansions of the spectral matrix which are given in this paper can lead to 
more simplified and objective descriptions of the polarization states of vector pro- 
cesses. In selecting strictly polarized waves, the degree of polarization P can be 
determined directly from the Stokes parameters, and then only those waves for 
which P m 1 *O can be chosen for analysis. The interpretation of the polarization states 
of these waves is simplified by diagonalizing the real part of S, and if the wave is 
quasi-monochromatic, the parameters of the polarization ellipse can be computed 
directly from the elements of the transformed matrix. Conversely, if n = 3 and 
only the vector perpendicular to the plane of an elliptically polarized wave is required, 
then this vector can be computed directly from S without first transforming the 
matrix. 

Interpretation of polarization states when P is less than 1.0 is more difficult, and 
in these cases it is probably easiest to expand S in the set of commuting, idempotent 
matrices. Although the general form of the idempotent expansion can be very compli- 
cated, interpretation of the cases n = 2 and n = 3 can be considerably simplified by 
diagonalizing the real parts of the idempotent matrices. By following this procedure, 
the information in D1 can always be represented by a two-square matrix. This pro- 
cedure also gives an indication of whether al D1 +az Dz(n = 3) can be considered 
to be the matrix of a plane wave. 

The descriptions of the polarization states which are outlined in this paper should 
be particularly useful in analysing the frequency-dependent polarization characteris- 
tics of irregular waveforms, or waves accompanied by broad band noise. Some 
examples of ULF magnetic fluctuations for which the descriptions should be very 
useful are continuous emissions, which may in some cases have structured com- 
ponents (see, e.g. Jacobs 1970), Pi2 micropulsations accompanying geomagnetic 
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substorms, and the irregular Pc5's which occur during the recovery phase of sub- 
storms (see, e.g., McPherron et al. 1972). Objective descriptions of the polarization 
states of these waves will certainly lead to a better understanding of the physical 
processes which are involved, will allow more direct comparisons of the data with 
pertinent theories, and will simplify the comparison of data obtained through 
different experiments. 
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