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An overview is given of an approach to the definition of descriptive 

characteristics of populations and to their estimation. The emphasis is on 

the robustness and efficiency of the estimators. Detailed summaries will 

be found in successive papers of the series dealing with the problems of 

location, scale and kurtosis. 

Introduction. Descriptive statistics deals with measures of different aspects 

of a population (or a distribution of population values). The population may 

be finite, as is the case for example when it consists of a set of data, or it may 

be infinite. Typical examples of descriptive measures are the mean and median 

as measures of location, the standard deviation or interquartile range as measures 

of scale, and the classical measures of skewness, kurtosis and correlation. 

When defining such measures, one usually has in mind not a single popula­

tion to which the measure is to be applied but a family of such populations. 

In particular, in statistics one is typically concerned with a family to which the 

given population is assumed to belong. The choice of suitable measures then 

depends strongly on the nature of this family. We shall distinguish a number 

of possibilities. 

1. Parametric models. Here the distribution in question is characterized by 

a small number of (natural) parameters. Examples are the family of normal 

distributions, characterized by expectation and variance; the family of Pearson 

curves, characterized by the first four moments, and hence by the classical 

measures of location, scale, skewness and kurtosis; or the family of stationary, 

two-state Markov chains, characterized by initial and transition probabilities. 

2. Nonparametric neighbourhood models. It has long been recognized that 

the validity of parametric models can at best be approximate, and that the dis­

crepancies due to gross errors and other impurities can have a serious effect on 

the descriptive parameters and their estimates. This has led to the suggestion 

of models in which the main body of the observations come from a distribution 

belonging to a given parametric family ·(for example, the normal family) but a 
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small proportion represent impurities about whose distribution no parametric 

assumptions are made. The result is a parametric model contaminated by a 

small nonparametric admixture, a model which one could describe as a non­

parametric neighbourhood of a parametric family. 

The parameters of interest in such a model are still the parameters of the 

parametric part of the model. However, in estimating or testing these parameters 

one must now guard against the nonparametric disturbances. An important and 

satisfactory body of inference in such models has been constructed by Huber 

( 1964). This work is still in progress; a survey of the present state is given in 

Huber's Wald lecture (1972). 

3. Nonparametric models with natural parameters. The above approach 

seems very well suited to the many situations in which extensive experience 

with the type of data under consideration makes an approximately parametric 

model reliable either for the measurements themselves or for suitable (known) 

transforms of these measurements. However, assumptions such as approximate 

normality will often be unwarranted, for example, in sociological or psycho­

logical investigations, where the observations by the nature of the situations 

are less well controlled. In such cases, one rna y prefer a totally non parametric 

model, in which the observations may, for example, be assumed to be inde­

pendently, identically distributed according to a distribution F, of which nothing 

is assumed except possibly certain smoothness or symmetry conditions. 

However, even in such apparently totally nonparamctric models there may 

exist natural parameters describing important aspects of the model, and the es­

timation or testing of such parameters has in fact been a very active field of 

study in recent years. 

The case which has received the greatest attention is that in which F is a 

univariate distribution which is assumed to be symmetric. The natural location 

parameter for F is then its center of symmetry. A survey of the work concern­

ing the estimation of this center, is given by Andrews et al. (1972). Another 

example is the two-sample shift problem where two distributions are assumed 

to differ only in location and where the difference in location then constitutes 

a natural shift parameter (see, for example, H¢yland (1965)). More generally, 

there is a natural measure of contrasts in linear models, even when the (common) 

shape of the symmetric error distribution i~ unknown (see, for example, Lehmann 

(1963) and SpjS?Stvoll (1968)). 

4. Neighbourhoods of nonparametric models with natural parameters. It 

seems natural to consider the extension of model 3. which parallels the exten­

sion 2. of model I. A typical example would be to assume that we are dealing 

with a sample from an unknown symmetric distribution F which has a slight 

amount of asymmetric contamination; the parameter of interest would be the 

center of symmetry of F. Problems of this kind do not seem to have been 

considered in the literature. 
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The four types of models above share the important feature that there exist 

natural measures of the aspect of the model under consideration. There are 

many possible estimators of these measures, and a central problem is to choose 

among these. 

Let us now turn to situations in which such natural measures do not exist. 

(The model may still possess natural parameters, but these do not correspond 

to the feature of interest. This is the case, for example, when we are concerned 

with the scale of a symmetric distribution.) It is here that the descriptive aspect 

of the problem becomes nontrivial. This problem has been pointed out and 

was discussed from a somewhat similar point of view by Takeuchi (1967). 

How do we measure the location of a nonsymmetric distribution? How do 

we measure or describe its spread, its skewness or kurtosis? What do we even 

mean by kurtosis: does it describe the tail-behavior of a distribution, its peaked­

ness, or, as has recently been argued (Darlington (1970), Chissom (1970)), its 

tendency to biomodality? 

It is this kind of question, of course, with which we must begin the descrip­

tion of a particular aspect of a distribution, and we shall find it convenient to 

answer it by defining in each case when a distribution G (or a random variable 

Y with distribution G) possesses the attribute under consideration more strongly 

than a distribution F (or random variable X). 

The literature contains many examples of such partial orderings. We may, 

for example, say that Y is "to the right" of X if Y is stochastically larger than 

X (a concept introduced by Mann and Whitney (1947) and studied further 

by Lehmann (1955)). A stronger definition is obtained by requiring mono­

tone likelihood ratio. Partial orderings corresponding to the comparison of 

the skewness of two distributions, or of their kurtosis were introduced by van 

Zwet (1964) and by Barlow and Proschan (1966). Comparisons for disper­

sion were discussed by Z. W. Birnbaum (1948) and for the degree of positive 

association between the two components of a bivaria.te distribution by Lehmann 

(1966), Esary, Proschan and Walkup (1967), and Esary and Proschan (1972). 

Suppose now that there has been defined a partial ordering, with F -< G mean­

ing that G possesses the attribute under consideration more strongly than F. 

Then the first condition required of a measure 8 of this attribute is that 

(l) O(F) ~ O(G) whenever F -< G . 

A second condition characterizes the behaviour of O(F) (which we shall also 

denote by B(X) when X is a random variable with distribution F) under linear 

transformations. Thus, a measure of location should satisfy 

(2) O(aX + b) = aO(X) + b for all a, b, 

and a measure of scale 

(3) O(aX + b) = jajO(X) for all a =1= 0 and all b : 

A referee has pointed out that (3) is evidently desirable in the scale case if 
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b = 0 and a > 0. However he feels, and we agree, that if, for example, X is 

known to be positive, the constraints imposed by (3) for b =f=. 0 andfor a < 0 

are much less appealing. We here assume that no such restriction on X is given 

and that X must be considered totally unknown. In this case we feel that (3) 

is acceptable as stated. 

To illustrate a slightly more complicated situation, suppose that the quantity 

in question is a standardized measure of location, of which E(X)f[Var (X)]' is a 

typical example. We should characterize this as a ratio 0 = 01f02 of a location 

parameter 81 satisfying (2), divided by a scale parameter 02 satisfying (3). 

Another example of this kind is provided by a measure of kurtosis, which in 

a latter part of this paper we shall define as the ratio 0 = 0d02 of two scale 

parameters which satisfies ( 1) when F -< G is the partial order introduced by 

Barlow and Proschari (1966) or the stronger ordering introduced by van Zwet 

(1964). 

Once the conditions have been laid down which a measure 0 is to satisfy, 

there typically will exist an infinity of measures satisfying these conditions. In 

the location case, for example, the functionals 

(4) O(F) = ~~ F-1(t) dK(t) 

where K is any distribution function on (0, 1) which is symmetric with respect 

to t defines a large (but by no means exhaustive) class of such measures. 

How should one choose among this great variety of possibilities? An additional 

condition one might like to impose is that of robustness; that is, small changes 

in F should result in small changes of 8. An early discussion of the need for 

such a condition was given by Bahadur and Savage (1956). For a rigorous 

formulation of the condition, which is essentially a continuity requirement , 

and a detailed analysis of the problem see Hampel (1968, 1971 ). Such a con­

dition would rule out, for example, expectation as a measure of location and 

standard deviation in the scale case. Even with this restriction, there will still 

be available an infinity of measures. The location measures (4), for example, 

will be robust provided K is continuous and assigns probability 1 to some in­

terval (u , v) with 0 < u < v < 1. 

To make a choice among these measures let us now recall that it will be 

necessary to estimate the chosen O(F) from the data, and let us compare dif­

ferent O's in terms of the accuracy wiih which they can be estimated. The 

most natural estimator of O(F) is O(F) where P denotes the empirical cdf; that 

is, the values of 0 for the whole population is estimated by its value for the 

subpopula tion made up of the sample values. One might conjecture that in a 

very strong sense O(F) is also the best estimator. This conjecture is invalidated 

by the phenomenon of superefficiency which we exemplify in BL II, Section 4. 

Nevertheless, the estimators O(F) are the ones with which we shall be concerned. 

At this point , a difficulty arises, which we have only been able to overcome 

in each case separately through an ad hoc argument adjusted to the case. This 
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difficulty (to which reference is made also in Daniell ( 1920) and Tukey ( 1960)) 

concerns the role played by the functionals h(O), where his any strictly increasing 

function. In a sense, these functionals are all equivalent since each is determined 

by any other. However, they differ widely in the ease with which they can be 

estimated. Suppose now that we wish to compare two functionals 01 and 0 2 which 

are not equivalent in this sense, and suppose we use variance (or asymptotic 

variance) as our measure of accuracy. Then it will clearly make a rather es­

sential difference whether we compare 01 with 02, or with 02/100. In fact, we 

can make any given 0 as accurate as we please by dividing it by a sufficiently 

large constant. 

This problem is greatly simplified when 0 is required to satisfy equivariance 

conditions such as (2) or (3). For if 0 satisfies these conditions, then the only 

functions for which the condition can hold are linear functions. Let us now 

briefly indicate how the difficulty remaining after this reduction can be resolved 

in the three cases which will be studied in the later parts of this paper. 

(i) Location. If 0 is a functional satisfying (2), then the only functions h for 

which h(O) satisfies (2) are 

(5) h(O) = 0 + b 

where b is an arbitrary constant. Since our estimator of (5) is 0 + b and since 

addition of a constant does not affect the variance of the estimator, the choice 

of a member of (5) is immaterial. 

(ii) Scale. If 0 is a functional satisfying (3), the only functions h for which 

h(O) satisfies (3) are 

(6) h( 0) = aO , a > 0 . 

For a given 0 satisfying (3), we could thus choose instead aO, which would be 

estimated by a&, and thereby multiply the variance by a 2• These choices will 

become equivalent if we measure the accuracy of 0 not by its variance (or 

asymptotic variance) but by its standardized variance 

(7) 

which is invariant under the transformations (6). With this definition of accu­

racy, it is now possible to compare diffefent measures 01 and 02 • 

There is an alternative way of arriving at (7). If the distribution of X is sym­

metric about f.J., attention can be restricted to the variables IX- f.l.i· By taking 

logarithms, the scale problem is then reduced to the location problem (i). If 0 

is any measure of scale and log 0 the corresponding location measure, the latter 

is estimated by log 0; the asymptotic variance of log 0 under suitable regularity 

conditions is just the asymptotic variance of 8 divided by 02• 

(iii) Kurtosis. As mentioned above, we shall define a measure of kurtosis as 

a suitable ratio of the form O(F) = r-iF)/r-1(F) where r-1 and r-2 are measures of 
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scale and hence satisfy (3) . If r 1 and r 2 are two such functionals, the only 

functions ht('r 1) and h2(r2) with which they could be replaced are h,(r,) =air,; 

hence the only functions of() with which we need to be concerned are those 

satisfying (6) . The same argument as in (ii) shows that these choices become 

equivalent provided we use the standardized variance or asymptotic variance 

as our measure of accuracy. 

At this point, we find ourselves in the following position. We have available 

a large class of measures of the characteristic in question. From this class we 

should like to choose a member which is robust and the estimator of which has 

good accuracy globally, i.e. for a large (nonparametric) family of distributions 

F. In the symmetric location case this turned out to be fairly easy. For esti­

mating the center of symmetry of a symmetric distribution there exist a variety 

of estimators which are nearly as efficient as the mean for all F, and more 

efficient for many F. This is a piece of good luck, which one cannot expect in 

general. In the symmetric location case, a theoretically even more appealing 

possibility exists if one is willing to forego robustness. It was shown by Stein 

(1956), van Eeden (1970) and Takeuchi (1971) that in this case it is possible to 

find a fully efficient estimator, essentially by estimating the shape of F and 

adapting the estimator of the center to this estimated shape. The efficiency 

of this procedure depends heavily on the symmetry of F, and it seems unlikely 

that a similar approach would work in the cases considered here. 

How should a measure be chosen if it cannot be simultaneously robust and 

estimated with high efficiency (either absolute or relative to a standard estimator) 

for all distributions satisfying the assumptions of the model? Two possibilities 

are the following. 

(i) We can relax the condition of robustness. Instead of requiring the measure 

(and its estimator) to be totally robust, we may be satisfied if it is significantly 

more robust than the standard measure. (For details of such a comparative 

concept of robustness, see Section 4 of the following second part of this paper). 

(ii) Alternatively, we can put additional restrictions on the model, which 

one could expect to be satisfied in practice, (for example, restrictions on the 

heaviness of the tails of the distributions). Such restrictions may make it easier 

for the estimators to be either robust or to have high efficiency for all distribu­

tions in the restricted model, or both .. 
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