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DESCRIPTIVE STATISTICS FOR NONPARAMETRIC MODELS
1I. LOCATION

By P. J. Bicker! AND E. L. LEHMANN?
University of California, Berkeley

Measures of location (without assumption of symmetry) are defined as
functionals satisfying certain equivariance and order conditions. Three
classes of such measures are discussed whose estimators are respectively
linear functions of order statistics, R-estimators and M-estimators. It is
argued that such measures can be compared in terms of the (asymptotic)
efficiencies of their estimators. Of the three classes considered, it is found
that trimmed expectations (and certain other weighted quantiles) are the
only ones which are both robust and whose estimators have guaranteed
high efficiency relative to the mean X for all underlying distributions.

1. Conditions for a location parameter. Since the publication of two funda-
mental papers by Tukey (1960 and 1962), much work has been done on the
problem of robust estimation culminating in the Princeton report “Robust Esti-
mation of Location” and Huber’s Wald lecture (1972) “Robust Statistics: A
review”. Most of this work has been concerned with the estimation of location
parameters, and in keeping with the program suggested by Tukey (1962, Section
13), the effort to date has been concentrated nearly entirely on the case in which
the error distributions are assumed to be symmetric, or at least nearly so. One
of the chief advantages of this restriction, as Tukey pointed out in recommend-
ing it, lies in the fact that it is then clear what is being estimated: for a symmetric
distribution, the only natural location parameter is its center of symmetry.

It is interesting to note that this point was actually made as early as 1920 in
-a paper by Daniell, recently brought to the attention of present-day statisticians
by Stephen Stigler. In this paper, in which Daniell develops a surprisingly
modern and comprehensive theory of linear functions of order statistics for es-
timating location and scale parameters, the author writes: “...however, we
shall only consider cases in which the theoretical distribution is symmetrical,
and this for logical reasons. It is useless to compare the relative merits of the
various kinds of average, for example, the mean and the median, unless they
all tend to coincide when # increases indefinitely.”
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1046 P. J. BICKEL AND E. L. LEHMANN

As was indicated in BL I* and will be discussed in more detail in Section 5,
we in fact disagree with this last statement and believe that meaningful com-
parisons of this kind can, and should, be made. However, we must first lay the
groundwork by defining the parameters we wish to estimate.

By a measure of location (or location parameter) we shall mean a functional
©(F) defined over a suitably large class of distributions (the precise definition
of the class will depend on the context), which satisfies the three conditions
below (these were already indicated briefly in BLI). In stating these conditions
and elsewhere, we shall sometimes find it convenient to write p(X) for u(F)
where X is a random variable with distribution F.

(i) If the parameter is to indicate location, it should take on larger values
for random variables which typically are larger. Formally we shall require that
#(X) £ p(Y) whenever Y is stochastically larger than X.

(i) More specific behaviour is required of ¢ under change of location or
scale, namely

(.1 p@X 4+ by = ap(X) + b if a>0.

(iii) Finally, it seems natural to require a measure of location to change sign
under reflection w.r.t. the origin, i.e., to satisfy

(1.2) M—X) = —p(X) .

While condition (i) seems to us very intuitive, some referees have objected
to it on the grounds that location is sometimes considered as referring only to
the central part of a distribution. The following example shows that no reason-
able version of (i) is possible if that position is adopted since truncation of two
stochastically ordered distributions on a common point may reverse the ordering.

Let G(t) = tfor 0 < ¢t < 1 and let

F@t) =1 for 0<r< (<]

=+ B=hg 1) for p<rsh=g A W00

fy B — 1,
=1 for t>1,,

where t, < A < B < 1. Ttis then easily checked that G(f) < F(r) fort, < t < 1,
but that F*(r) < G*(t) for 0 < t < A4, where F*, G* denote the conditional dis-
tributions given that the random variable is < A.

Related to this remark is the fact that certain important classes of location
measures that have been discussed in the literature do not satisfy condition (i).
This is true in particular for the measures corresponding to Huber’s M-estimators
when scale is estimated simultaneously with location.

THEOREM 1. Conditions (i)-—(iii) imply the following four additional desirable
requirements.

3 BL I refers to part I of the present paper.
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If F is symmetric w.r.t. 0, then u(F) = 0,

In particular, if X = c with probability 1, u(X) = c.
If a £ X < b with probability 1, then a < p(X) < b;
If X is stochastically positive, then p(X) = 0.

PN =

Proor. 1. By (i), it is enough to prove 1. for # = 0. But if X and — X have
the same distribution, it follows from (iii) that g#(X) = —p(X) = 0, as was to
be proved.

3. If a £ X < b with probability 1, then X is stochastically larger than the
constant variable @ and smaller than 4. The assertion now follows from (i) and
2.

4. By definition, X is stochastically positive if there exists a random variable
U, symmetric about 0 and such that X is stochastically larger than U. By the
first part of the theorem, #(U) = 0 and the result now follows from (i).

The following three examples show that conditions (i)—(iii) are independent.

(a) The functional p(F) = F~Y(a) with 0 < a < 1, a # }, satisfies (i) and (ii)
but not (iii);

(b) the functional p(F) = 2E(X) — F-'(}) satisfies (ii) and (iii) but not (i);

(c) finally, (X)) = [E(X)]® satisfies (i) and (iii) but not (ii).

Let us now mention a few standard measures of location, which satisfy all
three conditions:

(a) The expectation of F

(1.3) m(F) = § xdF(x) ;
(b) the median of F
(1.4) UoF) = F7U(3)
and the average of the 1st and 3rd quartile
(1.5) p(F) = $[FY(}) + F()] -

An important class of location measures are the symmetrically trimmed
expectations

(1.6) E(X) = !

1 2a Viye x dF(x)
where F(u,) = a, F(u,_,) = 1 — a. The'mean and median are the limiting cases
corresponding respectively to « = 0 and a = 1.

() As a last example, we mention the pseudo-median p,(F) defined by
Hgyland (1965) as the median of the distribution of }(X; + X,) where X, X,
are independently distributed according to F. If F is continuous, y,(F) is the
solution of the equation

(1.7) | F(20 — x)dF(x) = }.

In the next section, we shall consider two classes of location measures, which
contain the above examples as special cases.
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Two additional properties, which seem attractive although not as compelling
as (i)—(iii) are

(iv) If (F) < p(G) and H = aF + (1 ~ @)G, then (F) < p(H) < ().

(v) Ifu(X) £ (Y)and kisanondecreasing function, then g[A(X)] < p[A(Y)].

If G(x) < F(x) for all x, then both (iv) and (v) are consequences of (i). How-
ever, in general both of these conditions are very restrictive. Of the examples
(1.3) to (1.7) it is not difficult to see that p, satisfies both (iv) and (v), that g,
satisfies (iv) but not (v) and that none of the other measures satisfy either (iv)
or (v). For most location parameters neither (iv) or (v) will hold; for instance,
the median is the only location parameter of the type defined by (3.2) that
satisfies (v). We shall not consider these conditions any further here.

There is one last condition, with which we shall be concerned. We shall be
interested in measures which are robust in the sense that small changes in F
will not result in large changes in p. Mathematically, this means that p should
be continuous with respect to a suitable metric such as that of Lévy, and then
a fortiori also that of Kolmogorov. For a detailed discussion of this and related
concepts, see Hampel (1968, 1971); the idea is fore-shadowed in Bahadur and
Savage (1956). It is well-known and not difficult to see, (and will follow from
the results of Section 4) that of the examples above, y,(F) is not robust, but z,(F)
to p,(F) are under mild restrictions on F, and so is F,(X) forany 0 < a < 3.

2. Some examples. Let us now examine somewhat more closely the location
parameters which were given as examples in the preceding section. Consider
first the three parameters s, #, and g, i.e. the expectation, median and pseudo
median. What can be said about their relative positions? Clearly, p,(F) can
be either larger or smaller than y,(F) since p(F) < p(F) implies that p(—F) <
po(— F). Furthermore, regardless of their relative positions, /,(F) can be to the
left of both, to the right of both, or between them. This follows from the fact
that the position of y,(F) can be moved from —oo to + oo by moving an arbi-
trarily small probability mass, which would result in only very small changes
of p,(F) and 1,(F).

Nevertheless, p,(F) can be bounded between certain quantiles. In fact, if F
is continuous

2.1) F—1<1 - 2%) < p(F) < F~ <2%>

To see this let x,(F) = ¢ and let p = P(X < §), ¢ = P(X > 6). Then
p[iiz_’ﬁ<g]gpz, P<X_‘;‘¥_,>0>gq2

and the result follows from the definition of y(F).
To get an idea of the values of the parameters ,, p, and g, in particular situa-
tions, consider as a first example the case that F is a y*-distribution with v degrees
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TABLE 2.1
Location parameters for 7.?
m(F) =v 1 2 3 4 5
wa(F) .69 1.68 2.67 3.67 4.67
#(F) .45 1.39 2.37 3.36 4.35
TABLE 2.2
Differences of location parameters for y.*
v 1 2 3 4 5 oo
m(F) — p(F) .31 .32 .33 .33 .33 %
po(F) — pa(F) .24 .29 .30 .31 .32 3

of freedom. Then the table above gives the values of p(F) = v, p(F) and p,(F)
forv =1,2,3,4and 5. In spite of the rather different shapes of the distribu-
tions (which however are all skewed to the right), the differences /1,(F) — p,(F)
and p(F) — p(F) are remarkably constant, as is shown in Table 2.2 above.
The limiting value as v — oo, shown in the last column comes from the well-
known Cornish-Fisher expansion for the solution of the equation P(y,*< x? ) = e:

2N\t 2 2w? 1
S IREE RSSO}
. y[+w 9y 3u+3u —f—ou
where w, = ®-'(¢c) with @ denoting the standard normal distribution. Putting
e = 1, we see that

m(F)=x, =v—3%+o(l).

Now p,(F) is the median of (X 4+ X’)/2 where X and X’ are independently dis-
tributed as ¥2,. The median of X 4 X’ thus satisfies

Xy, =2v- 34 0(l)
and
H(Fy=v—3140(1).

Comparison with ,(F) and y,(F) = v gives the desired result.

It is interesting to note that in the above examples and those computed below,
¢, is always between y, and g,. This is not too surprising (although all orders
are possible) since 1,(X) = p[3(X; + Xy)] and p,(X) = p[3(X, + X,)]. By the
central limit theorem one might expect (X; + X,) to be closer to symmetry
than is X, and g, to be closer to y, for {(X; 4+ X,) than for X.

As a second example, consider the family of distributions

(2.2) Fy = yN(1, 1) + (1 — p)N(k, &%)

where N(a, b%) denotes a normal distribution with mean a and standard deviation

b. The following table shows the values of p,, ¢, and p, for y = § and k =

2, 3,5 and 10. The last column gives the limiting value as k — co. To see how
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TABLE 2.3
Location parameter for normal mixtures
k 2 3 5 10 oo
" 2 3.25 oo
e . . 1.26 1.27 1.29
1 1.18 1.27 1.35 1.45 1.53

this is obtained for y, and p,, consider for example y, and let », be the solution
of the equation

(2.3) rQu— 1)+ (1 -7 (” ; k> =1

with y = 4. As u — oo, the first term on the left hand side tends to § which is
too large. Thus u, must remain bounded as k — oo. This means that the second
term tends to $®(—1) = .0397 and «,, is the solution of the equation

30 — 1) = .4603 .

The argument for p, is quite analogous.

Consider next the family (2.2) for a value of y less than . This time, as
k — oo any finite value of u is too small so that u, — co. The first term then
tends to 7, and », must satisfy the equation

o(% — )i,
k 1—7
Proceeding in the same way for g, (F), we find that as k — oo, we have for
example for y = }

mF) g5, 4F) _ ge0.  tlFD) _, 705
k k k

As a last example, consider the Gumbel distribution with density
f(x) =efe, —oco<<x< 0.
Here the values of p,, ¢, and p, are respectively
po= 577, ut, = 464, t, = 366 .

Of those, 1, and p, can be found for example in Johnson and Kotz (1970). To
calculate p, we note that, )

P[%—A:Z‘ é y] = S?—ow e—e—my—xl_z_e—a: dX

e W

= {r exp—{# + w} dw
w
— e~2y S:):o e-—e_zllze—l/z dZ

= 2e77K (2e7)
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TABLE 24
Trimmed expectations for exponential distributions
a 0 .01 .07 .03 .05 .1 .5
E(X) 1 .963 .939 .919 . 888 .831 .693

where K, is the Bessel function of the second kind with imaginary argument (cf.
Churchill (1958)). The value of g, is now obtainable from the British Associa-
tion Tables 6 (1958).

So far, we have compared the parameters s, ¢, and p, for a number of different
distributions. Let us next illustrate the trimmed expectations E (X) defined by
(1.6). As a first illustration, let F be the exponential distribution with density
e~®, x > 0. Then E,(X) is shown above for a number of values of «. The values
corresponding to « = 0 and a = .5 are of course the expectation and median
respectively. The pseudo median in this case is .84.

As a second illustration, consider the mixture F(x) = 3®@(x) + 1®(x — 1).
Some values of E,(X) in this case are

TABLE 2.5
Trimmed expectations for a normal mixture
a 0 .05 .1 .15 .5
EW(X) .25 .248 .239 .238 .23

The pseudo median is .243.

3. Three classes of location parameters. Among the estimators of the center
of symmetry of a symmetric distribution F, three classes have been found to be
of particular interest (see for example Jaeckel (1971), Andrews et al. (1972), and
Huber (1972)): linear combinations of order statistics, estimators derived from
rank tests, and the maximum likelihood type estimators introduced by Huber.
We shall now consider the quantities estimated by these estimators when F is
no longer assumed to be symmetric, under restrictions which assure that they
are measures of location in the sense of Section 1.

(A) If p(X) satisfies conditions (i) and (ii) of Section 1 but not necessarily
condition (iii), then it is easily seen that
(3.1) (X)) — r(—X)]
satisfies all three conditions, i.e. is a location parameter. Furthermore, if {#,(X)}
is a countable collection of functionals which satisfy (i)-—(iii) then so does
2. a; 1(X) for any nonnegative a’s which add up to 1. This latter remark clearly
extends also to noncountable collections.

As an application of these remarks consider the functional #(X) = F~'(a) for
some fixed a between 0 and 1- This clearly satisfies conditions (i) and (ii). Since
w(—X) = —F(1 — a), it follows that }[F~Y(a) + F~(1 — a)] is a location pa-
rameter for any 0 < a < 1. Forming convex combinations of these parameters,
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we then see that the weighted quantile average
(3.2) §(F) = V3 F-(1) dK(1)

is a location parameter, where K is any distribution function on (0, 1) which is
symmetric with respect to .

Important special cases of (3.2) are the symmetrically trimmed expectations
(1.6), as is seen by rewriting (1.6) as

63 B(X) = (s (e P dr,

and their limiting cases, the expectation and the median.
(B) To obtain the second class of location parameters, consider the probability

(3.4) P(X — 6| < x) = F(x + 0) — F(—x + 6) .

It seems natural to define as center of F the number ¢ for which the probabilities
(3.4) are, in some average sense, as large as possible. Let L be an increasing
convex function on [0, 1] which is bounded and such that L(0) = 0. Define
¢(F) as the number § that maximizes

(3.5) §& {LIF(x + 0) — F(—x + 0)] — L[F(x) — F(=x)]}dx.

Here the subtraction of L[F(x) — F(—x)] under the integral sign is intended to
aid convergence. It may be shown that if L’ is bounded in absolute value, the
functional (3.5) is always defined. (See Kniisel (1969) for a closely related
remark.)

It is sometimes more convenient to extend L so that it is an even function on
[—1, 1], and it is then equivalent to maximize

(3.6) (2 {L[F(x + 0) — F(—x + 0)] — L[F(x) — F(—x)]}dx
= (= {L[F(x) — F(20 — x)] — L[F(x) — F(—x)]}dx .

Suppose that F has a density f, L is continuously differentiable, that M = L’,
and that (3.6) can be differentiated under the integral sign. It can then be shown
exactly as was done by Kniisel (1969) for a related but somewhat different class
of functionals that the equation

(= L[F(x) — F(20 — x)]f(20 — x)dx =0,
or, equivalently ‘
3.7 (=, L'[F(x) — F20 — x)]f(x) dx =0

has at least one solution. If L’ is strictly increasing, this solution is unique and
hence is the desired maximizing value. (These measures are the quantities esti-
mated by estimators derived from rank tests; see for example Andrews et al.
(1972)).

In particular if L(y) = y? it is seen that (3.7) reduces to

3.%) § F20 — x)f(x)dx = §
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so that @ is the pseudo median y,(F) of F. As another example suppose that in
(3.5) we take L(y) = y. Then differentiation shows ¢ to be the median f,(F).

To see that the measure y(F) uniquely defined through (3.7) is a location
parameter for F continuous, rewrite (3.7) as

(3.9 § L'[t — F20 — F'(t))]dt = 0.
To check condition (i), suppose that G(x) < F(x) for all x. Then for any fixed
value of 4, we have F[20 — F~'(¢)] = G[20 — G~'(1)], and since L’ is an increas-
ing function, it follows that
(Lt — FR0 — F7'(1)]dt < § L[t — G20 — GY(1))] dr .

In this last inequality, let # = ¢(G) so that the right hand side is zero. Since
the left hand side is a decreasing function of ¢, the value x(F) of § which will
make the left hand side equal to zero will be less than or equal to ¢(G), as was
to be proved. That conditions (ii) and (iii) are also satisfied, is easily seen by
replacing F(x) by F((x — b)/a) in (3.7).

(C) The third class is obtained from the quantities estimated by Huber’s M-
estimators. These are the quantities § = w(F) which minimize
(3.10) § p(x — 0)dF(x)

where we shall assume p to be positive, even, convex and twice differentiable
with derivative p’ = ¢. (It is possible to enlarge the domain of definition of
6(F) by minimizing {*, [o(x — 0) — p(x)] dF(x) instead, as was done by Kniisel
(1969).) Essentially we shall now show that only a one-parameter subclass of
(C) satisfies the conditions of Section 1.

THEOREM 2. Suppose that p(F) is defined as minimizing (3.10) on a set %~ which
is convex, contains all point masses, is closed under changes of scale, and contains a
distribution F° symmetric about O such that

V() dF°(x + 1) < oo forall t and
% § g — 1) dF°(x) = —§ ¢'(x — 1) dF°(x) .
For any given distribution F, denote by F, the distribution defined by F,(x) =
F(x/o). Suppose that
(3.11) w(F) = ou(F) forall Fe %, 6>0.
(This is part of the assumption (1.1)). Then
(3.12) O(x) = cjx|*sgnx  forsome a >0, ¢>0.
Proor. The measure p(F) is the solution of
(3.13) {d(x — O dF(x) =0
Using our assumptions, we calculate

lim, A0 = OF° +ed] — p(F) _ ()
€ (% ¢'(x) dF°(x)
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and similarly

lim, A= OF° + e,)) —p(F*) __ pox)
e i #'(ay) dF°()
From (3.11)
$(0) _ s¢(x)

{2 §'(0) dF° ()~ $7u /() dF°(y)
Differentiating both sides with respect to x for x > 0 leads to

¢'(ox) I A C))
§¢'(oy)dFe(y)  § ¢'(y) dFo(y)

and hence
Plox) _ 90X gor x>0,
P'(x)  od(x)

Put x = 1 to get

¢'(o) _ ¢'(1) 1 _ D o0 s
¢(0)_W7 or logg/:_mlog +c, >0

and this completes the proof.

REMARKS.

(1) The conclusion of this theorem was stated by Takeuchi (1967) without
proof or regularity conditions.

(2) One of the referees has pointed out that the theorem also holds under a
weaker set of conditions not including differentiability.

4. Robustness. Following Hampel (1968, 1971) and earlier writers, we shall
define a functional ¢ to be robust at a point F, if g is continuous at F, with
respect to Lévy (or equivalently Prohorov) distance. However, this concept
does not completely correspond to our intuitive notion of robustness since even
the median is not continuous at all ¥. An easy example is provided by distribu-
tions for which F(x) = % on a nondegenerate interval. On the other hand, the
median is robust at every point of the set of all distributions having a unique
median.

(A) Consider now the functionals ¢ defined by (3.2) and suppose that X is
continuous. Then a necessary and sufficient condition for # to be continuous
at all points of & is that K assigns probability zero to the intervals (0, @) and
(1 — a, 1) for some a > 0.

The necessity of this condition (which does not require the continuity of K)
was pointed out by Huber (1972). Sufficiency follows from the fact that con-
vergence in law of F, implies bounded convergence, except on a countable set,
for F,~* on the intervals (@, 1 — a).

(B) For measures p defined through (3.7), suppose that L is bounded and L’
is nondecreasing. Huber (1972) has shown that 4 is continuous at any distribu-
tion F for which (3.6) can be differentiated under the integral sign and such
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that the resulting equation (3.7) has a unique solution. An alternative argument
employs the following representation which may have some independent interest.
Define a distribution Q on the unit square by the cdf.

1

(4.1) Q(u, v) = 2

3 [ — 1) — L'(—0)]dt .

Then p(F) is the median of the distribution of [ F~(U) + F~'(V)] where (U, V)
has distribution Q. Since Q is continuous, convergence in law of the cdf F, to
F implies convergence in law of [F,~Y(U) + F,7(V)] to L[F-}(U) 4 F~Y(V)].
It follows that p is continuous at any F for which it is uniquely defined.

(C) Of the measures defined by (3.12) and (3.13), it is easy to see that none
are robust. However, it is clear that in a suitable sense if « < 8, p, is more
robust than s,.

It seems reasonable that if v is to be considered more robust than p, then for
any sequence F, tending in law to F for which u(F,) — u(F), we should also have
v(F,) — v(F). Unfortunately this definition seems to lead to noncomparability
for the nonrobust functionals we have considered. All we need do is to consider
sequences F, converging in law to F such that pu(F,) — p(F) “fortuitously”.
For example let F, assign mass 1 — [1/n]V* — [1/n]"*"/= to 0 and mass [1/n]"= to
n and [1/n]'*"* to —n®. Then F, tends to point mass at 0 and the expectations
under F, converge to that under F. However, 4,(F,) converges to 1. To remedy
this difficulty we formulate the following notion of comparative robustness,
which gives us some needed control over the tails of the F,. For any cdf Fand
any constant M > 0 let us define,

F(x,M)=0, x<0,
= F(M), 0<x<M
= F(x), x=M

F(x, M) = F(x), x< —M,
= F(—M), -M=<x<0,
=1, x=0.

Given a functional T we define a mode of convergence and hence a topology
on its set of definition & (which as usual is assumed to be large enough) as
follows.

F,—,F
(i) F,—F inlaw;
(iy TF,) —T(F);
(ili) limy ., lim sup, {T(F,(+, M)) + |T(Fy(+, M))|} = 0.
(Note that by our assumptions if T is a measure of location, T(F) = 0, T(F) < 0).

DEerINITION. We shall call T, more robust than T, if and only if T, is con-
tinuous with respect to the topology induced by T,.
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This permits us to make comparisons between different measures of type (A)
and (C) which are not robust in the absolute sense considered previously. For
convenience in what follows we suppose all functionals to be defined on the
space of distributions with compact support.

THEOREM 3. Let T, and T, be two (L) measures defined by (3.2), say,
(4.2) T(F) = \LF(t)dK(f) i=1,2,
and suppose that K,, K, are continuous probability measures. Then T, is more robust
than T, if there exists 0 < ¢ < § such that
(4.3) Ky Z K1) forall 0<t<e, and
Ki(t) £ K1) forall 1 —c¢<t<1.
Proor. Note that
(4.4) T[F(s, M)] = Soun F7H () dK (1), and
TLF(-, M)] = {70 F(1) dK,(1) -
Therefore, for functionals defined by (3.2), (with 7 in place of (), if (i) holds
it follows that (ii) and (iii) are equivalent to
(4.5) lim, ., lim sup, {|§} F;(2) dK()| + |§5 F*(r) dK())[} = O .
Now suppose that F, —, F. To show that Ty(F,) — T,F) note that
[To(F,) — To(F)| < [§i7|F.7(0) — FT(0)] dKy(0)]
(4.6) + 155 F () dEy(n)] + 155 F(1) dKy(0)]
+ 155 F,7(0) dKy(n)] + 152 F7(1) dK()]
and that the first term on the right hand side of (4.6) converges to 0 for each
fixed ¢ by dominated convergence.
Therefore, we need only establish that
4.7) lim,_, lim sup, {|{! F,~(t) dKy(1)| + |§§ F.7 (1) dKy()|} = O .

To prove (4.7) begin by supposing that 0 < F(0 —) < F(0) < 1. Then, for
¢ sufficiently small, F,7'(f) = O forallt = 1 — ¢ and < 0 forallt < candall n.
Hence,
155 F,70) dE(1)] = —§5 F, (1) dKy(t) < —§5 F,7(0) dKa(r)

= |§5 F.7(1) dKy()]

by our hypothesis on the K,. Similar inequalities hold for §}_, and (4.7) follows
from the hypothesis ¥, —; F in view of (4.5).
The two cases when F(0) = 1 or F(0 —) = 0 are argued similarly. []
Consider next the estimators of type (C) satisfying (3.12).

THEOREM 4. Suppose that 0 < a, < a, and T, corresponds to ¢,. Then T, is
more robust than T,,.

This result is an easy consequence of the following lemma.
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LeMMA. Ifa >0, F, —g, F e

(4.8a) F,— F inlaw
and
(4.8b) lim,, ,, lim sup, §;.15u [X[*dF,(x) = 0.

ProoF. Suppose that F, — F in law and that (4.8a) and (4.8 b) hold. Then
) Qulx — 0) dF(x, M) — § ¢o(x — 0) dF(x, M)
for all 4, M and hence
(4.9) To(Fo(+s M) — To(F(+, M)
Convergence similarly holds for T,(F,(-, M)) and T, (F,). Since
limy 1o {ITF(«, M))| + |To(E(, M)} = 0

and T (F,(+, M)) is decreasing in M for fixed n it can easily be argued that (4.9)
implies lim,, lim sup, [T (F,(+, M))| = 0. Similarly,

lim,, lim sup,, [T (F,(+, M))| = 0

and the “only if” part of the lemma follows. Conversely, suppose that F, — 5, F.
Then, for M sufficiently large and all #, by the definition of T, for any ¢ > 0,
the solutions T,(F,(+, M)) and T (F,(+, M)), of
5 (x — 0)° dF,(x) = 6F(M)
and
V2% (0 — x)*dF,(x) = |0](1 — F(—M))
lie in the interval (—e, ¢).
Then
3 [x]|* dF ,(x) < 2%
and
§2¥ x| dF,(x) < 2%,
The lemma follows.

5. Estimation. The measures defined by (3.2) and (3.7) all satisfy conditions
(i)—(iii) of Section 1, and are robust under mild conditions. There is therefore
little to choose among them on this basis. We have, however, so far neglected
an important aspect of these measures: how to estimate them.

The situation here is rather different from that in the symmetric location case.
There are many reasonable estimators of the center of symmetry of a symmetric
distribution, and much work has been devoted to comparing the accuracies of
different such estimators. Without the assumption of symmetry, there is typi-
cally only one natural estimator of a location parameter p(F), namely ¢ evaluated
at the empirical distribution function.

The problem of choosing among different estimators of the same location
parameter therefore does not arise. Instead, we are faced with the problem of
comparing location parameters in terms of the ease with which they can be
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estimated. It may at first seem strange to compare estimators of different pa-
rameters. However, such comparisons appear justified, philosophically because
primarily we are not comparing the estimators but just these parameters, and
mathematically because a shift in origin leaves the problem of estimating loca-
tion essentially unchanged. This latter point becomes clearer through a com-
parison with the scale problem. Here the corresponding fact is not true since
the formal expression for the accuracy with which a scale parameter can be
estimated depends on the unit of measurement. (See also the related discussion
in BL I.)

Note. We stated above that typically there is only one natural estimator of
a location parameter p(F), namely p(F) where F is the empirical cdf. However,
unless additional restrictions are imposed on the estimators, the phenomenon
of superefficiency can occur. Consider, for example, the problem of estimating
the median of a completely unknown continuous strictly increasing distribution
function. If T, is an estimator based on n observations from F, one might con-
jecture that, asymptotically, the sample median is uniformly best among all
estimators which are consistent estimators of the population median, and which
satisfy the equivariance condition

T, (aX,+ b, .--,aX, + by =aT,(X,, ---,X,) + b.

Consider however the estimator T,* defined by

T, %Xy, -o0 X)) = 4 if inf, , sup,

F(x) — @ (ﬂ)\ < nt
[
= A, otherwise

where £, and g, denote the sample mean and sample median respectively. Then
it is easy to see that 7', * is equivariant, consistent for y, and superefficient when
F is normal. In view of the results of Le Cam, Huber, Hijek (see Hajek (1970)),
one might conjecture that such phenomena can be excluded by requiring con-
tinuity (in a suitable sense) of the asymptotic variance of the estimator.

We shall now consider from the above point of view the three classes of
estimators obtained from the classes (A), (B) and (C) of location measures de-
scribed in Section 3 by replacing the true distribution function F in x(F) by the
empirical distribution function £,.

5A. Linear functions of order statistics. The estimators corresponding to the
measures (3.2) are linear functions of order statistics (see for example Andrews
et al. (1972)). Let us compare the estimators of two such measures

(5.1) p(F) = Vi F-(0) dK (1) i=1,2
where the K; are two distributions on (0, 1) with densities K,(¢).
THEOREM 5. Suppose that the densities K,' satisfy

(5.2) 0< K/(O/K(t) < A where 1< A.
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Then if T, is the estimator of pu(F) obtained by replacing F by the empirical cdf,
the asymptotic variances of T, satisfy

(5.3) o (F) < A6 XF)  forall F,

under the regularity conditions permitting the representation (5.5) below. Under these
conditions 1] A* is then a lower bound for the efficiency of T, relative to T, i.e.

(5.4) eTz,Tl(F)g%z forall F,

and the lower bound is sharp in the sense that if Ais the sharp bound on K;'[K there
exists a sequence F, for which the efficiency tends to 1]/ A*.

Proor. The asymptotic variance of niT, (cf. Huber (1972)) is

(5.5) o X(F) = Var [Uy(T)]
where T is uniform over (0, 1) and

= KO
(5.6) Uy =§ FED] t

Let T, T, be independent, uniform over (0, 1). Then
20 (F) = Var [U(T,) — U(T)] = E[UL(T,) — U(T)]*

= £ (S oy @)

Since K,/ (1) < AK,'(¢) it follows that
0, (F) £ A% (F).
Let us next show that this upper bound for ¢, is sharp. For this purpose suppose
that
K)(t) = (1 — )4K/(1) for a<t£h,
and let us write
20}(F) = E(Si=03 KTFW)] aw)* = 2 $Soct,co,a (VE71082) K/F(w)] dw) i, dt, .
Then
03(F) Z $Noceycyar A1 — (YRGS EL) K TF(w)] dw) dty dt, .

Suppose we choose F so that F~'(a) = u, F~'(b) = v and we put all mass to the
left of » and the right of v very close to « and v respectively. Then 7, < a
implies that F~(T,) is close to F~'(a) with high probability and 1, > 5 implies
that F~(T,) is close to F~'(b) with high probability so that for a suitable sequence
F

Voctyctyar (Vi KV[F(w)] dw)* dty dt, = §§ (§571%) K,/[F(w)] dw)* dr, dt,

and this completes the proof.
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In the above, we have not used the symmetry of K. If K is symmetric about
§, it is easily seen that we can choose the sequence F, to be symmetric, so that
A* is the sharp lower bound even if F is restricted to be symmetric. Thus,
provided (5.2) holds, the lower bound is the same when F is permitted to be
asymmetric as under the assumption of symmetry.

As an example, consider the weight functions K, with densities

(5.7) Kn=1, K/@O=6(1—1 for 0<r<l1.

The estimator correspoding to K, was proposed by Bickel (1973), and it follows
from Theorem 5 that its asymptotic efficiency relative to X is always > (¢)* = $.

As an important class of estimators whose comparison with X is covered by
Theorem 5, let us now consider the trimmed means X,. These estimate the
measures E,(X) defined by (1.6) from which they are obtained by replacing F
by £,. For this comparison, (5.2) holds with 4 = 1 — 2a. The efficiency e,(F)
of X, to X thus satisfies

(5.8) e(F) = (1 —2a)* forall F.

For symmetric F, this was shown earlier by Bickel (1965).

If more is known about F, it may of course be possible to sharpen the bound
(5.8). Typically, one would expect ¢,(F) to increase as the tail of the distribu-
tion becomes heavier. An ordering of distributions which reflect this property
was introduced by Barlow and Proschan (1966) (see also Doksum (1969)), and
Lawrence (1966), who suggest that if G has heavier tails than F one would
expect that

(5.9) G~'(w)/F~'(u) s increasing .
THEOREM 6. If F and G are symmetric distributions satisfying (5.9), then
(5.10) e (F) < e (G) forany 0<a=<}$.

The proof is based on the following lemmas which will be useful also for
proving some later results.

LeEMMA 1. Let F, G be two distributions defined on (0, co) such that the cdf
defined by

(5.11) F*(1) = (s a(x) dF(x)/§7 a(x) dF(x)

is stochastically smaller than the cdf G* obrained when F is replaced by G, for all
nonnegative functions a which are integrable with respect to F and G. Then

(5.12) | b(x) dF(x) _ § b(x) dG(x)
§ a(x) dF(x) = § a(x) dG(x)

for all nonnegative functions a, b for which b(x)/a(x) is nondecreasing.

Proor. The left hand side can be written as

§ 7(x) dF*(x)
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where r(x) = b(x)/a(x), and the result follows from a well known property of
stochastically ordered distributions.

LEMMA 2. The conclusion of Lemma 1 will hold if b(x)/a(x) is nondecreasing and
if the functions a, F and G satisfy one of the following three conditions:
(a) dG(x)/dF(x) is nondecreasing;*
(b) The function a is nondecreasing and F is obtained from G by truncation at
some point u: i.e.,
F(xy=G(x) for x<u
Fixy=1 for x=u.
(¢) Fand G are obtained from a distribution H by truncation at points u < v,
respectively.

PRrOOF. (a) Since dG*(x)/dF*(x) is proportional to dG(x)/dF(x), it is nonde-
creasing, and hence G* is stochastically larger than F*.
(b) For any ¢ < u, since F(x) = G(x) for x < u,
{sa(x) dG(x) _ {ia(x) dF(x)
5 a(x)d6(x) 7 a(x) dG(x)
Since a(x) is nondecreasing, g a(x)dG(x) = {¢ a(x) dF(x), and hence G*(t) <
F*(t) for t < u.
For any t = u, we have
ia(x) dG(x) _ | _ Sia(x)dF(x)
(7 a() d6(x) =~ {7 a(x) dF(x)
and this completes the proof.
(c) This follows from (b) since F can be obtained from G through truncation.

PROOF oF THEOREM 6. Without loss of generality suppose that F and G are
symmetric about 0, and let

(5.13) F(x) =2F(x) — 1, G(x) =2G(x) — 1, 0<x< oo.
If in (5.5) and (5.6) we substitute dK, = dr and
dK, =dt|(1 — 2a), a<t<1l—a
= 0 otherwise,
we obtain for the efficiency e, (F)
(5-14)  eu(F) = (1 — 2a)° [} [P0 dA0) /5 [F(0) ] dA(s)
where A, and A, are respectively the uniform distribution on (0, 1) and the

uniform distribution truncated at 1 — 2a. The result now follows from Lemma
2(b) with

A, inplace of F; A, in place of G;
b(t) =[G,  a() = [F)].

4 This part of the lemma is given in Goldstein (1973).
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To apply the lemma, we need only check that

o0 _ [G:l(t) :lz is nondecreasing for > 0,
a(ty LE)

which is assured by the assumptions of the theorem; and that a(r) = [F-(£)]? is
nondecreasing for ¢ > 0, which is obvious. Finally, A, is obtained from A,
through truncation, and this completes the proof for « < }. For the case a = %,
the result follows by letting @ — % in the inequality (5.10).

A number of interesting examples of this theorem are obtained by considering
the families &(F) of distribution G obtained as scale mixtures from a given dis-
tribution F, which is symmetric about 0,

(5.15) G(x) = | F (%) dv(o)

where v is an arbitrary probability distribution on (0, o). It will be proved in
a later paper of this series that F and any G € Z/(F) satisfy (5.9), and hence that

(5.16) e,(G) = e (F) forall Ge I(F),

provided the one-parameter family of distributions F(ox), 0 < ¢ < oo, have
densities with monotone likelihood ratio. This condition holds, for example,
when F is normal, a mixture of two normals with the same mean, or when it
is double exponential. For the first of these cases, the family “(F) has been
shown in Andrews et al. (1972) to be a very wide class of heavy-tailed distribu-
tions. It was recently pointed out by Stigler (1973) that this family was in fact
proposed as representing distributions with tails heavier than the normal by
Newcomb (1882 and particularly 1886).

The following table shows the lower bound ¢, (F) for « = .05, .1, .15, 25, .5
and the following four distributions:

(1) The standard normal distribution N(O, 1);
(2a) and (2b) The contaminated normal distribution (Tukey model)

(1 — &)N(0, 1) + eN(0, 0% for ¢=.05 and .25 and o = 3;
(3) The double exponential distribution.

These efficiencies are obtained from the corresponding asymptotic variances
in Dachs (1972). The last column, for the sake of comparison, gives the uni-
versal lower bound (1 — 2a)2

TABLE 5.1
Efficiency lower bound e.(F)

a (Y (2a) (2b) (©) (1 —2ay?

.05 971 1.186 1.402 1.212 .81
.1 .943 1.197 1.622 1.342 .64
.15 .909 1.197 1.786 1.449 .49
.25 .833 1.085 1.667 1.626 .25

.5 .637 .833 1.327 2 0
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From Theorem 6 it also follows easily that if 7 is uniform, inequality (5.10)
holds whenever G has a symmetric unimodal density. This result was proved
differently by Bickel (1965).

We mention finally that the bound (5.8) and Theorem 6 have obvious exten-
sions to the comparison of two trimmed means, say X, and X,. If « > g and
e, (F) denotes the efficiency of X, w.r.t. X, we have from Theorem 5,

1 — 2a\?
5.17 F z( )
( ) eﬂ:ﬁ( ) =\1_ 2‘3
and from Lemma 2b that
(5.18) €, (F) < e, (G)

whenever F and G satisfy (5.9).

Another interesting class of examples is provided by r-distributions with low
degrees of freedom. Takeuchi (1973) in his review of Andrews et al. (1972)
expresses the view that in the choice of estimator “at least four cases should be
distinguished”: (i) from the normal to the ¢-distribution with four to five degrees
of freedom; (ii) to the ¢ with two degrees of freedom and grossly contaminated
normals; (iii) to the Cauchy; and (iv) to beyond the Cauchy. For the Cauchy
and ¢ with 2 degrees of freedom the efficiency e,(F) are of course infinite. The
following table gives the values of e,(F) for @ = .05 when F is the ¢-distribution
with v = 3, 4 or 5 degrees of freedom:

TABLE 5.2
eq(F) for t-distribution with v d.f.
v 3 4 5 o0
eo(F) 1.70 1.32 1.20 .97

It follows from our earlier results and the work of Van Zwet (1964) that if F
and G are t-distributions with v > v’ degrees of freedom respectively, then (5.16)
will hold. Takeuchi’s remarks and Tables 5.1 and 5.2 suggest that a 59, trimmed
mean seems to be a highly satisfying competitor to the mean.

5B. R-estimators. Consider next the estimators obtained from (3.9) by re-
placing the true distribution function F in y(F) by the empirical distribution
function #,. Such an estimator may not be defined since the equation (3.9)
may not have a solution. However, we can always define it as the median of
F, U) + F,”%(V)] where (U, V) has the cdf (4.1). The resulting estimators
form the class known as R-estimators, which can be derived from rank tests
and are described, for example, in Section 4.3 of Huber’s survey paper (1972).
The functions L’ of (3.7) and J of Huber’s paper are related through the equation
L'(u) = J[4(u + 1)]. In particular, if L(y) = |y|, the estimator reduces to g,, for
L(y) = y* itreduces to g, = med,; [(X, + X;)/2], while for L(y) = O [4(y + 1)]
it reduces to the estimator based on Normal Scores.
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The attraction of these latter two estimators for estimating the center of sym-
metry of a symmetric distribution, stems from the fact that their asymptotic
efficiency relative to X is respectively > .864 and > 1 for all symmetric F. As
was pointed out by Hgyland (1965), the first of these inequalities breaks down
completely when F is not restricted to be symmetric. In that case, there exist
distributions for which the asymptotic efficiency of f, relative to X is zero.

We shall now prove

THEOREM 7. For any R-estimator there exist distributions F such that the asymp-
totic efficiency of the R-estimator relative to X is zero.

The discrepancy of this result with those in the symmetric case is perhaps not
too surprising since the signed-rank tests from which these estimators derive
are tests of symmetry with respect to a given point.

Proor. Recall (for example from Huber (1972)) that the variance of the R-
estimator corresponding to L is, under suitable regularity conditions,

(5.19) o*(§ U'(x)f(x) dx)?Var [U(X)]

where X is distributed according to F and where

(5.20) U(x) = §* L"[F(y) — FQ0 — »)]f20 — y) dy ,

¢ being the solution of (3.9). We shall determine F in such a way that
(5.21) { L'[F(x) — F(—x)]f(x)dx =0

and

(5.22) VU (0)f(x)dx =0,

while Var [U(X)] > 0.
If (5.21) holds, (5.22) becomes

(5.23) § L'[F(x) — F(— )] f()f(—x) dx = 0,
and this is satisfied whenever f(x)f(—x) = 0 for all x. For example, we can take
(as Hgyland did)

(5.24) flx)y=p if —1<«x
=g if 1<x<2; p+tg=1,

and (5.23) will be satisfied.

To show that there exist p for which (5.21) holds, note that (5.21) states that
the solution & of (3.7) is zero. Now for p = 1, this solution must lie between
—1 and 0, and for p = 0 it must lie between 1 and 2 (by Theorem 1, part 2).
The existence of the required p then follows by continuity, and this completes
the proof.

When F is not restricted to be symmetric, the asymptotic efficiency of, for
example, f, or f, relative to X, can take on any value between 0 and co. It may
be argued that this result is not very meaningful since distributions such as (5.24)
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are not likely to obtain in practice. What can be said if F is restricted to some
more reasonable class, say unimodal distribution? We shall now show that for
1, the lower bound is then positive; and this is also true for g, if F is restricted
to be strongly unimodal.

The asymptotic efficiency of f, relative to g, = X is

(5.25) e,; = 40 [F'(})] .

Without loss of generality suppose that F~'(4) = 0 and that the mode of F is
< 0 so that f(x) is nonincreasing for all x = 0. Then

ey = 4f%0) {7 (x — p)f(x) dx,
where y is the expectation of F. Let g be the probability density defined by
g(x) = 2f(x) for x=0
=0 for x< 0.
Denoting the mean of g by v, we have

(5.26) ey, = $0%(0) 3 (x — vYg(x) dx .

We shall now prove that the right hand side of (5.26) is minimized, among all
densities on (0, co) which are nonincreasing, when g is the density of a uniform
distribution whose left hand end point is zero. This is a consequence of the
following lemma.

LEMMA 3. Subject to {5 xg(x)dx = v, if 9(x) = O for x < 0 and is nonincreasing
for x > 0, the integral {7 x*g(x) dx (and hence the variance of g) is minimized when
g9(x) = 1/2v for 0 < x < 2v.

The proof of this lemma is completely analogous to the proof of the second
part of Theorem 8 below, and we shall therefore omit it here.

To prove the desired result note that for fixed v, the uniform distribution also
minimizes g(0). The right hanc side of (5.26) is of course scale invariant, and
hence is minimized for the uniform distribution over any interval (0, a). The
associated minimum value of (5.26) is ;.

The lower bound ;i is presumably not sharp. To see what values can be
obtained, consider the density

(5.27) f(x) = }a if —a<x<0
1 if 0Zx<4¥.

Formula (5.25) is not applicable because of the discontinuity of f'at zero. How-
ever, f can be approximated by a sequence of densities, continuous in (—a, §)
and with f(0) = 1. Lettinga — 0, it is then seen that e,, — 5, so that the sharp
lower bound lies between 2 = .057 and 7 = .104.

Much higher values for the lower bound are obtained if F is restricted to the
subfamilies (5.15) considered in Section SA. That (5.16) holds for 2, when F
and G satisfy (5.9) and hence for the four examples considered in Table 5.1 is
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in fact the case « = } of Theorem 6. The values of the efficiency e, , of 7, relative
to X for these four distributions F (and hence the lower bounds for the associated
(F)) are shown in the last row of Table 5.1.

Consider next 4,. The asymptotic efficiency e, , of this estimator relative to
X is given by (see again Andrews et al. (1972))

(5.28) €, = o*(§ f(—2)f(x) dx)*[§ [§ — F(—x)Jf(x) dx
provided g,(F) = 0. Now §{ f(—x)f(x) dx is the density of X + X’ at 0, where
X, X’ are independent identically distributed with density f. If the density of
X + X’ is unimodal, since the denominator of (5.28) is bounded above by %, we
can apply the preceding result to get the crude lower bound .021. This bound
holds whenever the density of X 4 X’ is unimodal and hence by a well-known
result of Ibragimov (1956) whenever f is strongly unimodal.

Although crude, the bound is of the right order of magnitude. To see this,
consider the following example. Let

(5.29) f(x) = q/a if —a<x<0
= plb if 0<x<b, p+qg=1.
It is easily computed that the pseudo median of F is zero when ¢ — 12t as a — 0,
and that then e, , — .071.
We shall finally show that (5.16) holds when e, is replaced by e, ,, the efficiency
of 4, relative of X when F is normal. If F is a distribution symmetric with

respect to 0 and if F « F denotes the convolution of F with itself, the efficiency
e,, can be written as

(5.30) e, ((F) = 6[(F « FY(0)]* { x*d(F » F)(x) .
Consider now the class (@) defined by (5.15) with F as the standard normal
distribution @. Then when F ¢ (D), also F x F ¢ £(®) and hence

(5.31) inf,. . (q [e,(F)] = inf, . .o, 6] f(O)]* | x* dF(x) .
However, except for the constant the expression being minimized on the right

hand side of (5.31) is just the minimum efficiency of e, ,(F) over ¥{(®), and this
minimum was shown earlier to be attained at F = ®. It thus follows that

. 3
inf, o [€.(F)] = 6[e(0)]* = —= .955.
5C. M-estimators. Consider finally the class of “(M)” location parameters
characterized by Theorem 2. Let p,(F) minimize {=, |t — p|**! dF(x) where
0 < a = 1. (Note that y, here is the mean). Let T, be the estimator obtained
by replacing F by the empirical cdf in g,. The asymptotic variance of

n¥(T, — p,(F)) is then under some regularity conditions given by (cf. Huber
(1964))

5.32 o AF) = So—ooo ¢a2(t —_ /ln(F)) dF(t) f a 0 ,
G2 ) =G ey aEay
where ¢, is given in (3.12).
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The following result is the analogue of the lower bound for the efficiency of
trimmed means.
THEOREM 8. If0 < a < 1,
(3-33) 0 (F) = 0, (F)[a’;
that is the efficiency of T, to X is at least a® whatever be the underlying distribution

for which the representation (5.32) of the asymptotic variance is valid.
If F is known to be unimodal and symmetric about some point and (5.32) is valid,

3
2a0 + 1

(5.34) 7. (F) = a(F);

that is, the efficiency of T, to X for symmetric unimodal distributions is at least
(2a 4 1)/3. Both bounds are sharp. They are achieved for (5.33) when F assigns
mass } to each of +1 and for (5.34) when F is the uniform distribution on an interval.

Proor. To prove (5.33) we note that if we fix ¢, %(F) = lsince2a —~1<a <1
§ 20 9t — pa(F)) dF (1)
S [12a |t — sl F)*dF()] < [§2a [t — pu(F)|* dF (1)
S [(26 (0 — w(F)dF(@)]* = 1.
Similarly,

§=o ¢t — 1o FY) dF(2) !

&P e dF(1)
|t — pF)e

af§Zu |t — po(F)[=" dF (1)

af[{%n (t — w(F)) dF()]**" = a,

and (5.33) follows. That the bound is sharp is clear. A proof of (5.34) is given
by Loynes (1970) who also proved (5.33) under the restriction of symmetry.

We can generalize Loynes’ result somewhat along the lines of Theorem 6.
Suppose that F is symmetric about 0 and that ¥7(F) is defined as in the remarks
following that theorem. Then for G ¢ ¥(F) we have ¢, (G) = 0 and if G is given
by (5.15)

v v

0 (G) = 35 L) D) V70 ™ dF ()
’ (8¢ ¢a/(r) d(OP[§ 2o Jo|* 7" dF(N)]?

Hence, .
a(G) | § 2o [ dF ()

6, (G) = .
o [§2 [t dE(O] 2. 12 dF (1)

More generally, if 0 < a < 8 < 1, by Lemma 1 of Loynes

V2o [t dF()[§ 2. [P~ dF (1))
[§Za [t dE ()] {2, |¢ dF(1)

2.6) = (6) - ¥

with equality if and only if there exists ¢ such that G(x) = F(x/o) for all x.
If F is the uniform distribution on (—1, 1), &(F) is the family of symmetric
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unimodal distributions and we obtain Loynes’ Theorem 2:

2 +1
= " oG
with equality if and only if G is uniform.

If F is a normal distribution with mean zero, we find

0(6) = Ne D[ FTGRT )

0 (G) £

I8 + $) Lal'(a/2)
_ T+ HTrE2+H7 .,
T+ D) [F(a/Z + 1)] #(9)

with equality if and only if G is normal. Passage to the limit as « — 0 is easily
seen to be justified and the results then agree with those for the efficiency of the
median with respect to the mean stated after Theorem 6.

6. Conclusion. We set out in this paper to find measures of location in the
asymmetric case, which would be robust and at the same time could be estimated
efficiently. If by efficient we mean a guaranteed high efficiency relative to the
mean, we have shown that measures estimated by R-estimators are robust but
do not satisfy this efficiency criterion, while the situation is just the reverse for
the rather narrow class of location measures estimated by M-estimators. How-
ever, within the class of weighted quantiles, we have found measures satisfying
both criteria. In particular, this is the case for the trimmed means, which
appear to constitute a simple and satisfactory solution to our problem.
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