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DESCRIPTIVE STATISTICS FOR NONPARAMETRIC 

MODELS IV. SPREAD 

by 

P. J. BICKEL (1)*, AND E. L. LEHMANN (2)** 

1. Ordering by spread 

In the preceding paper of this series [1] (to which we refer as BL III) we studied the 

dispersion of a symmetric distribution about its center of symmetry. In the present 

paper we study a related aspect of dispersion, which does not require the assumption 

of symmetry but which even in the symmetric case does not coincide with the concept 

considered in BL III. Roughly speaking, instead of looking at dispersion relative 

to a fixed point, we now consider the spread of a random variable throughout its 

distribution. The difference is perhaps best explained in terms of an example. 

Example 1. Let, 

(1.1) JP(x) = fp if jxj ~ 1, 

= t(1 - p) if 1 < lxl ~ 2, 

for 0 < p < 1. Let X have distribution F with density fP, Yhave distribution G with 

density j 1 _ P for p > f. Then it follows from (1.2) of BL III that I Yl is stochastically 

larger than lXI and hence Y is more dispersed about 0 than X according to the 

definition of BL III. This corresponds to our intuitive feeling that in a global sense G 

is more dispersed than F since it can be obtained by pushing some of the central mass 

ofF into the tails. Yet, locally for 1 < lXI < 2, G is more concentrated than F since 

it has a higher uniform density there. 

The basic definition of BL III for calling a symmetric distribution G more 

dispersed about its center of symmetry than a distribution F about its center of sym

metry is equivalent to 

(1.2) 
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In the present paper, we shall call an arbitrary (i.e. not necessarily symmetric) 

distribution G more spread out than a distribution F if 

(1.3) G- 1(v) - G- 1(u) ~ F- 1(v)- F- 1(u) for all 0 < u < v < 1, 

where p-l is defined by F- 1(u) =sup {x: F(x) ~ u}, that is, if two percentage 

points of G are at least as far apart as the corresponding percentage points of F. 

A concept which contains the essence of this definition was introduced by Brown 

and Tukey (1946). 

Note that the definition (1.3) reflects the greater concentration ofF throughout, 

and it of course does not require symmetry, thus fulfilling the two desiderata men

tioned above. Furthermore, a comparison of (1.3) with (1.2) shows that for symmetric 

distributions (1.2) is satisfied whenever (1.3) holds; that (1.3) is in fact more stringent 

follows from Example 1. 

Two properties of (1.2) noted for symmetric distributions in BL III are seen to 

be implied for arbitrary distributions by (1.3), namely, 

(a) Any random variable is more spread out than a constant; 

(b) aX is more spread out than X if a > 1. 

Note however, that the ordering is not invariant under monotone trans

formations: G- 1(u) - F- 1(u)t does not imply h[G- 1(u)] - h[F- 1(u)]t. 

In BL III it was noted that ifF and G are symmetric about 0 with densities f 
and g satisfying: g(x)ff(x) is increasing for x > 0, then (1.2) holds. Example 1 
shows that these conditions are not enough to insure (1.3). 

Example 2. Let X take on the values a < b with probabilities p and q (0 < p < 1). 
Then 

(1.4) p- 1(v) - F- 1(u) = 0 if p ~ u or v < p , 

b-a if u<p~v. 

From (1.4) it is easily seen that no continuous strictly increasing distribution can be 

either more or less spread out than F in the sense of (1.3). More generally, con

tinuous distributions and discrete distributions are not comparable. This illustrates 

how strong a requirement (1.3) is. We shall show below that it is nevertheless satisfied 

in many cases. However, it is convenient first to give some alternative expressions 

for condition (1.3). 

Suppose that F- 1 and G- 1 are differentiable. Dividing both sides of (1.3) by 

v - u, it is then clear that (1.3) implies 

(1.5) _! [G- 1(u)] ~ _!.!._ [F- 1(u)] for all u 
du du 
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and conversely (1.5) implies (1.3). Thus, G is more spread out than F if G- 1 is 

nowhere steeper than F- 1 • 

Evaluating the derivatives in ( 1.5), we see that another form of the condition is 

(1.6) 

This is a so~called tail ordering condition introduced by Doksum (1969). 

We want to stress that in our opinion this ordering corresponds to spread as 

property (b) above indicates. Tail weight should be specified by a scale-free ordering 

such as van Zwet's [ 5] or Lawrence's [ 4] and measured by scale-free functionals 

such as the kurtosis. 

Lemma 2.2 of Doksum [3] states that, for distributions symmetric about 0, 

G ordered with respect to F in Lawrence's sense and g(O) ~ f(O) implies that G is 

more dispersed than F. This is consistent with our point of view. To see this note 

that 1/f(O) is a measure of scale and the condition g(O) ~ f(O) added to the scale-free 

ordering of Lawrence creates a new ordering of spread which possesses properties 

(a) and (b). 

We mention finally a form which for the sake of simplicity we shall state under 

the additional assumption that F and G are strictly increasing. 

Theorem 1. IfF and G are strictly increasing then G is more spread out than F if 

and only if there exists a strictly increasing function h such that 

(i) x < x' implies h(x') - h(x) ~ x' - x 

and 

(ii) if X has distribution F, then h(X) has distribution G. 

Proof. Suppose first that such a function exists. Then (1.3) follows from the relation 

G- 1(u) = h[F- 1(u)]. Conversely, if (1.3) holds, it is easily seen that the function 

h(x) = G- 1 [F(x)J has the desired property. 

Theorem 1 shows that G being more spread out than F means that one can get 

from F to G by spreading all pairs of points further apart. Note also that Theorem 1 

shows that our dispersion ordering depends on G- 1F only. 

Example 3. Let F be the uniform distribution on (0, 1). Since the right-hand side of 

(1.6) is then 1 for all 0 < u < 1, the condition for G with density g to be more spread 

out than F is that 

(1.7) g(x) ~ 1 for all x. 

Similarly, G is less spread out than F if and only if its support is an interval (a, b) 

of length < 1 and if in this interval g( x) ~ 1 for all x. 

Example 4. Let F = P be the standard normal distribution. Then G is more spread 

out than P if and only if the normal probability plot of G, y = q':l- 1 G(x) has slope 

~ 1 at all points. 
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Example 5. Let F be the double exponential distribution with density t exp ( -jxj). 
Then 

(1.8) if 0 < u < t' 

1-u if !<u<1 

and G is more spread out than F if 

(1.9) g(x) ~ G(x) for all x < 0, 

1- G(x) x > 0. 

Alternatively the failure rate of G must be at most 1 when x is interpreted as time 

running in either direction from the origin. 

Example 6. Let F be the logistic distribution with density e-x(l + e-xt 2 • Then, 

G is more spread out than F if and only if g(x) ~ G(x) (1 - G(x)) for all x and less 

spread out if and only if the reverse inequality holds for all x. 

From (1.9) it follows easily, for example, that a normal distribution with suf

ficiently small variance is less spread out than F, but that a normal distribution can 

never be niore spread out than F no matter how large its variance. The situation 

is just the reverse in the case of a Cauchy distribution, which is more spread out than F 

if its scale is sufficiently large, but which can never be less spread out than F. 

Finally, the logistic distribution provides an example of a distribution which is 

more spread out than F for sufficiently large scale and less spread out than F for suf

ficiently small scale. 

An interesting connection between the dispersion ordering of BL III and the 

present ordering by spread is given by the following result. 

Theorem 2. If Y is more spread out than X and if Y', Y" and X', X" are independent 

copies of Y and X respectively, then Y" - Y' is more dispersed than X"- X'. 

Proof. Let h be the function guaranteed by Theorem 1. Then J yn - Y'j = lh(X")
- h(X')j ?; IX" - X'J and hence JY" - Y'J is stochastically larger than JX" - X'j. 

That the converse of Theorem 2 does not hold is shown by the following gener

alization of Example 1. 

Example 7. Let f = fP, g = JP' be defined by (1.1). Then if p > p' !:';;;; !, it is easily 

seen that X" - X' is less dispersed than Y" - Y'; on the other hand, G is not more 

spread out than F. 

2. Measures of spread 

The axioms for a measure of spread coincide with those for a measure of dispersion 

given in BL III except that in {1.9) of that paper dispersion ordering is replaced by 

the present spread ordering and that minor differences result from the dropping of 
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the assumption of symmetry. For the sake of completeness, we shall now restate the 

full set of axioms. 

A measure of spread is a functional ..d(F) (also denoted by ..d(X) where X is 

a random variable with distribution F) defined over a sufficiently large class of 

distributions which is closed under changes of location and scale. We shall require ..1 
to be nonnegative and to satisfy 

(2.1) 

(2.2) 

and 

(2.3) 

..d(aX) = !a!..d(X) for a > 0, 

..d(X + b) = ..d(X) for all b, 

..1( -X)= ..1(X). 

As before, these conditions imply that 

(2.4) ..1( c) = 0 for any constant c . 

The converse: ..d(X) = 0 implies X = c, is false for measures of spread as well as for 

measures of dispersion. Let ..1 be the measure given in (2.12) below and F assign 

mass ! each to the points ± 1 and t to 0. Then ..d(F) = 0. A nonnegative functional 

satisfying (2.1), (2.2) and (2.3) will be called a measure of spread if it satisfies in 

addition 

(2.5) ..d(F) ~ ..1( G) whenever G is more spread out than F. 

Note that if ..d(F) is a measure of spread, so is x ..d(F) for any x > 0. 

A large and interesting class of measures of spread is obtained when the fol

lowing theorem is applied to some of the results of BL III. 

Theorem 3. Let 't(X) be a measure of dispersion in the sense of BL III and let X', X" 

be two independent copies of X. Then 

(2.6) ..d(F) = -r(X" - X') 

is a measure of spread. 

Proof. That ..1 satisfies (2.1)-(2.3) is obvious from the fact that t satisfies the 

corresponding conditions. To prove (2.5), suppose that G is more spread out than F. 

Then X" - X' and Y" - Y' are symmetric about 0 and it follows from Theorem 2 

that Y" - Y' is more dispersed than X" - X' and hence from the fact that -r is a mea

sure of dispersion that ..d(F) = 't(X" -X') ~ -r(Y" - Y') = ..d(G) as was to be 

proved. 

Example 8. As a first example let 't(F) be the standard deviation of X, which was 

seen in BL III to be a measure of dispersion. Then 

..d(F) = {E(X" - X')2p1 2 = J(2) [ 't(F)]. 



524

P. J. BICKEL AND E. L. LEHMANN 

It follows that LI(F) is a measure of spread, and hence also that 

(2.7) LI(F) = SD(F) 

is a measure of spread although no longer restricted to symmetric F. 

An obvious generalization, obtained by starting with the pth power deviations 

considered in BL III are the measures 

(2.8) 

Example 9. Similarly, by starting with t(F) = med \XI, we find that 

(2.9) LI(F) = med IX'' - X'l 
is a measure of spread. 

Example 10. A class of examples not having the above structure is given by 

(2.10) LI(F) = F- 1(t) - F- 1(1 - t) for any t > -!-, 

which obviously satisfies (2.1)-(2.3) and (2.5). The same is true of the more general 

class 

{2.11) [f l ]1/y 
LI(F) = 

112 
(F-1(t) - F-1(1 - t)]Y dA(t) 

where A is any finite measure on (t, 1 ). 

A case of particular interest is t = !, and hence 

(2.12) 

the interquartile range of F. In BL III, this was seen to be a measure of dispersion for 

symmetric distribution; it now follows that it is a measure of spread for arbitrary 

distributions. More generally, the class of measures (2.11) when restricted to sym

metric distributions for suitable A coincides with the class of dispersion measures 

(1.10) of BL III. Note, however, that even for y = 2 and A = Lebesgue measure, the 

measure ( 2.11) is not a multiple of the ,SD when F is asymmetric. 

That not every measure of spread, when restricted to symmetric distributions, 

reduces to a measure of dispersion is shown by the following example. 

Example 11. Let X take on the values -1, 0, 1 with probabilities pf2, 1 - p, pf2 

respectively. Then 

and it is easily seen that for r < 1, the left-hand side is not an increasing function 

of p. Since lXI is stochastically increasing with p, this means that [E{IX" - xt}]tfr 
is not a measure of dispersion for symmetric distributions although it is a measure 

of spread. 
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3. Choice of measure 

The choice of a measure of spread, as was the case for measures of location and of 

dispersion will be based largely on the accuracy with which it can be esti

mated, and the appropriate measure of accuracy is the same of that discussed in 

BL III for dispersion, the standardized asymptotic variance, i.e. the asymptotic 

variance of the estimator of LI(F) divided by LI 2(F). As in the earlier paper one would 

again try to find measures which behave satisfactorily (a) in relation to robustness, 

either by being robust or at least more robust than L1 1(F); and (b) possessing good 

efficiency relative to LI 1(F), ideally for all F, but if this cannot be achieved at least 

for the type of F likely to occur in practice. 

We have not carried out this program in the present case. The work of BL III 

suggests that in terms of the indicated properties no completely satisfactory measure 

is likely to exist. It suggests further that the following two types of measures may be 

reasonable compromise solutions. 

(i) The pth power measures (2.8). While not robust, for p < 2 these measures 

are presumably more robust than LI(F), which corresponds to the case p = 2. 

The natural estimator of LI(F) is J(F) or the asymptotically equivalent statistic 

(3.1) 

Since this is aU-statistic, it follows from the work ofHoeffdingthat.J(n). [J - LI(F)] 

is asymptotically normal. It seems plausible to conjecture that for values of p ~ 1.5 

the asymptotic efficiency of LiP relative to the standard deviation L12 will be reasonably 

high at least for typical distributions. 

( ii) Trimmed standard deviations. There are two possible versions of trimmed 

standard deviations in this context. 

(a) We can take y = 2 and A the uniform distribution on (!, 1 - /3) in (2.11). 

(b) We can consider -r(X -X', ex, {3) where -r(X, ex, {3) is given by (3.1) of BL III. 

(As usual we let X represent its distribution.) 

It is easy to see that if 0 < ex < 1 - f3 < 1 both of these measures are robust. 

Their estimates are given by (essentially), 

(a) 

(b) [( ) J-1/2 (~) (1-11) 

n (1 - {3 - ex) [ L: (X - X')fk)]l 12 

2 k= (~) 
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where Xcl) ~ ... ~ Xcnl are the order statistics of X 1, ••• , Xn and (X- X')< 1> ~ ••• 

. . . ~ (X - X')(~) are the order statistics of the pseudo sample X 1 - Xi, i < j. 

Asymptotic normality with variance of the order 1/n of these estimates is evident 

only for case (a) when y = 1. It seems plausible that this property holds in general 

and that the resulting efficiencies with respect to the S.D. have the same general 

numerical features as we found for their analogues in studying dispersion. However, 

we do not pursue this. We do not know a fortiori which of the measures (a) or (b) 

is preferable and leave these interesting questions open. 

References 

[1] BICKEL, P. J.- LEHMAN, E. L. (1976). Descriptive ~tatistics for nonparametric models III. 

Dispersion. Ann. Statist., 4, 1139...:._1158. 

[2] BROWN, G.- TUKEY, J. W. (1946). Some distributions of sample means. Ann. Math. Statist. 

7, 1-12. 

[3] DoKSUM, K. (1969). Starshaped transformations and the power of rank tests. Ann. Math. 

Statist., 40, 1167-1176. 

[4] LAWRENCE, M. J. (1975). Inequalities of s-ordered distributions. Ann. Statist., 3, 413-428. 

(5] ZwET, VAN, W. R. (1964). Convex transformations of random variables. Math. Centrum, 

Amsterdam. 

(1), (2) UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA, U.S.A. 

Received October 1975 


	DESCRIPTIVE STATISTICS FOR NONPARAMETRIC MODELS IV. SPREAD
	1. Ordering by spread
	2. Measures of spread
	3. Choice of measure
	References


