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Abstract

Background

Tendon pathologies affect a large portion of people with diabetes. This high rate of tendon

pain, injury, and disease appears to manifest independent of well-controlled HbA1c and

fasting blood glucose. Advanced glycation end products (AGEs) are elevated in the serum

of those with diabetes. In vitro, AGEs severely impact tendon fibroblast proliferation and

mitochondrial function. However, the extent that AGEs impact the tendon cell transcriptome

has not been evaluated.

Objective

The purpose of this study was to investigate transcriptome-wide changes that occur to ten-

don-derived fibroblasts following treatment with AGEs. We propose to complete a descrip-

tive approach to pathway profiling to broaden our mechanistic understanding of cell

signaling events that may contribute to the development of tendon pathology.

Methods

Rat Achilles tendon fibroblasts were treated with glycolaldehyde-derived AGEs (200μg/ml)

for 48 hours in normal glucose (5.5mM) conditions. In addition, total RNA was isolated, and

the PolyA+ library was sequenced.

Results

We demonstrate that tendon fibroblasts treated with 200μg/ml of AGEs differentially express

2,159 gene targets compared to fibroblasts treated with an equal amount of BSA-Control. Addi-

tionally, we report in a descriptive and ranked fashion 21 implicated cell-signaling pathways.

Conclusion

Our findings suggest that AGEs disrupt the tendon fibroblast transcriptome on a large scale

and that these pathways may contribute to the development and progression of diabetic
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tendinopathy. Specifically, pathways related to cell cycle progression and extracellular

matrix remodeling were affected in our data set and may play a contributing role in the devel-

opment of diabetic tendon complications.

Introduction

Tendon degeneration and impaired biomechanical function result in significant reductions in

mobility and quality of life for the majority of the ~30 million Americans living with diabetes,

resulting in a substantial economic burden to individuals and society. Compounding the prob-

lem, human [1–3] and rodent [4] studies indicate that improving blood glucose levels does not

normalize tendon properties in individuals with diabetes. Any new approach to enhance ten-

don health in people with diabetes is hindered by a poor understanding of the underlying etiol-

ogy of tendon degeneration and impaired biomechanical properties [1, 2, 5–7].

Our previous cell culture work implicated advanced glycation end-products (AGEs) as a

potential mechanism driving tendon degeneration [8]. AGEs can form non-enzymatic cross-

links with collagen [9], a mechanism that has traditionally been the focus of tendon complica-

tions in persons with diabetes [10]. Yet, recent studies of tendons from humans with diabetes

have found no evidence of greater collagen crosslinking than those without diabetes [1, 11]

and no relationship between tendon AGE content and tensile mechanics [11]. A less explored

mechanism of AGE-mediated effects is the interaction of serum AGEs with AGE receptors

(RAGE). AGEs accumulate in the serum of patients with diabetes [12–14] and our cell culture

data suggest that AGEs can impact tendon cells. Specifically, treatment of cells with AGEs

dose-dependently reduced cell proliferation and mitochondrial ATP production.

A thorough understanding of the cell signaling events contributing to the development of

AGE-mediated diabetic tendinopathies will assist in exploring alternative areas of thought and

developing therapeutic options to target this large patient population. Therefore, to better

understand the effect of AGEs on tendon cells, we sought to characterize the alterations to the

tendon fibroblast transcriptome following exposure to AGEs. Although many of these path-

ways have already been implicated with AGEs from analysis of non-tendon tissues, the pri-

mary goal of this study was to establish a descriptive and ranked evaluation of pathway

disruptions that occur to tendon fibroblasts following an AGE insult.

Materials and methods

Animal protocol

Animals utilized in this study were from a previous investigation [8]. The study was approved by

the Purdue University Institutional Animal Care and Use Committee. All animals were cared

for per the recommendations in the Guide for the Care and Use of Laboratory Animals. Five

eight-week-old female Sprague-Dawley rats were purchased from Charles River Laboratories

(Wilmington, MA) and maintained for an additional eight weeks. Rats were housed on a

12-hour light-dark cycle and provided standard rat chow and water ad libitum. At sixteen weeks

(Final Weights: 256.43±5.19 g), rats were euthanized by decapitation after CO2 inhalation.

Tendon fibroblast isolation and cell culture

Tendon-derived fibroblasts utilized in this study were from a previous investigation [8].

Briefly, Achilles tendons were rinsed with sterile PBS, minced, placed in DMEM containing
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0.2% type I collagenase, and incubated in a 37˚C shaking water bath for four hours. After

digestion, the cell suspension was filtered through a 100μm mesh filter, pelleted by centrifuga-

tion, and resuspended in 5.5mM glucose DMEM containing 10% FBS, 1% sodium pyruvate

(Sigma, St. Louis, MO), and 1% penicillin/streptomycin (Thermo Scientific, Waltham, MA).

Samples were then plated in 100mm collagen-coated dishes. After reaching confluency, tendon

fibroblasts were split and seeded (100,000 cells) in 100mm collagen-coated culture plates. Each

donor animal’s (n = 5) tendon fibroblasts were treated separately with 200μg/ml of BSA-Con-

trol or AGE-BSA for 48 hours for downstream paired DESeq2 analysis. Tendon fibroblasts

treated at passages 2–4 were used for RNA isolation and RNA-sequencing (RNAseq).

Age preparation

Details on the preparation of AGEs have been reported previously [8, 15]. Briefly, sterile fil-

tered 30% BSA solution (Sigma, St. Louis, MO) was incubated with 70mM glycolaldehyde

dimer (Sigma) in sterile PBS for three days at 37˚C. After incubation, the AGE product was

dialyzed against sterile PBS for 24 hours at 4˚C using gamma-irradiated 10kDa cut-off cas-

settes (Thermo Scientific, Waltham, MA) to remove unreacted glycolaldehyde. Unmodified

control BSA was prepared similarly, without the addition of glycolaldehyde dimer. Protein

concentration was determined by BCA assay (Thermo Scientific) and absence of endotoxin

(<0.25Eu/ml) was confirmed via the LAL gel-clot assay (GenScript, Piscataway, NJ).

Fig 1. Volcano plot overview of RNA sequencing results. Each point represents a single gene target. Red (n = 1046) indicates significant

increase in gene expression. Blue (n = 1113) indicates significant decrease in gene expression. Black (n = 10,648) indicates gene targets

that were either unaltered or did not meet our thresholds of q<0.05 and fold change of greater that 1.5 or less than -1.5.

https://doi.org/10.1371/journal.pone.0271770.g001
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The extent of BSA modification was confirmed by fluorescence, absorbance, and loss of pri-

mary amines [15–18]. AGE-BSA and Control-BSA were diluted to 1mg/ml in PBS and fluores-

cent spectra and absorbance were recorded at 335nm excitation/420nm emission and 340nm,

respectively (Molecular Devices, San Jose, CA). For determination of loss of primary amines

AGE-BSA and Control-BSA were diluted to 0.2mg/ml in PBS. An equal volume of ortho-

phthalaldehyde solution (Sigma) was added and fluorescent spectrum was recorded at 340nm

excitation/455nm emission (Molecular Devices). Absorbance readings were completed to

determine the extent of glycation. AGE-BSA showed increased glycation with absorbance

readings of 0.682 AU compared to 0.01 AU for control BSA. AGE-BSA primary amine termi-

nals underwent complete modification (-0.03% accessible amine terminals remaining), while

control BSA retained 81.48% of accessible amine terminals. Negative values were interpreted

as zero, and extent of modification was similar to previous reports [15].

RNA sequencing

Total RNA was isolated as previously described [8]. Briefly, RNA was isolated after BSA-Con-

trol or AGE-BSA treatment using the Direct-zol RNA Miniprep kit (Zymo Research, Irvine,

CA). On-column DNase digestion was completed on all samples before elution of RNA. Total

RNA from BSA-Control (n = 5) and AGE-BSA (n = 5) treated tendon fibroblasts was submit-

ted to the Purdue University Genomics Core Facility (West Lafayette, IN) for PolyA+ library

construction. The integrity of input total RNA was assessed using a Bioanalyzer RNA Nano

chip (Agilent 2100, Santa Clara, CA). Libraries from 500ng of input total RNA were con-

structed as directed by the Nugen Universal Plus mRNA-Seq + UDI kit (PN#9144–96), but the

RNA fragmentation time was decreased from 8 minutes to 4 minutes. Final library products

were subjected to a 0.7 Ampure:1 Sample ratio purification to reduce lower molecular weight

Table 1. Most affected gene targets.

Gene log2 Fold Change q Value

Cyp1a1 7.07 6.77E-07

Pipox 4.78 7.59E-04

Btc 4.70 1.87E-05

Slc22a14 4.66 2.49E-04

Tbxas1 4.08 1.46E-02

Itgb2 4.06 3.42E-02

Slc13a3 4.05 4.78E-03

Cldn1 4.03 3.80E-06

Ncf1 4.01 1.19E-03

Tnfrsf17 3.94 9.65E-03

Pimreg -4.94 1.01E-12

Pmch -4.83 1.49E-33

E2f7 -4.45 8.80E-08

Pbk -4.29 3.99E-05

Parpbp -4.24 3.47E-23

Ube2c -4.19 7.41E-24

Troap -4.13 3.23E-07

Cenpf -4.12 8.15E-11

Cldn23 -4.10 4.98E-03

Ccnb2 -4.08 5.44E-25

https://doi.org/10.1371/journal.pone.0271770.t001

PLOS ONE AGEs and RNA sequencing in tendon fibroblasts

PLOS ONE | https://doi.org/10.1371/journal.pone.0271770 July 26, 2022 4 / 30

https://doi.org/10.1371/journal.pone.0271770.t001
https://doi.org/10.1371/journal.pone.0271770


amplicons. The resulting libraries were assessed with an Agilent DNA High Sensitivity Chip

for yield and quality and sequenced by Novogene (Sacramento, CA). Ten libraries were pooled

Fig 2. Cell cycle heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g002
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and evenly distributed across a single HiSeq lane to generate ~40,000,000 2X150bp reads on

the HiSeq 4000 platform (Illumina, San Diego, CA).

Bioinformatics

RNAseq raw data set quality and analysis was completed using Basepair software (New York,

NY) pipelines. Reads were first aligned to the transcriptome derived from rn6 genome assem-

bly using STAR with default parameters [19]. Next, read counts for each transcript were mea-

sured using featureCounts, and differentially expressed genes were determined using DESeq2

using a paired analysis [20, 21]. An adjusted p-value cut-off of 0.05 (corrected for multiple

hypotheses testing) was used. Finally, GSEA was performed on normalized gene expression

Fig 3. ECM and tenogenic markers heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g003
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counts, using gene permutations for calculating p-value. A log2 fold change cut-off of 1.5 was

enforced.

Descriptive pathway profiling

To preserve unbiased gene target selection and maintain a hypothesis-driven pathway selec-

tion, GeneGlobe (Qiagen, Hilden, Germany) pathway database was utilized to complete a

Fig 4. DNA damage heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g004
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descriptive approach to pathway analysis. We generated heat maps based on GeneGlobe RT2

profiler arrays independent of whether those gene targets were significantly altered in our

Fig 5. Cellular senescence heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g005
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dataset. Gene targets in the RT2 profilers but not in our dataset were excluded from heat maps.

The percentage of significantly altered genes, both increased and decreased, was calculated

based on the number of total genes included in each pathway’s respective heat map to rank the

most implicated pathways. This systematic approach was employed to maintain an objective

view of the global data.

Fig 6. p53 signaling heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g006
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Pathway analysis

RNAseq data were imported into Ingenuity Pathway Analysis (IPA, Qiagen) to determine

select pathways and biological functions that were altered in response to AGE-BSA

treatment.

Fig 7. TGF-β signaling heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g007
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Results and discussion

Overview

A total of 2,159 genes within our data set met the criteria of q<0.05 and fold change of greater

than or less than 1.5 (log2 fold change greater than or less than 0.584). One thousand forty-six

genes were significantly increased, and 1,113 were significantly decreased (Fig 1).

Most affected gene targets

The top ten increased, and the top ten decreased gene targets within our data set were identi-

fied based on our log2 fold change and adjusted p-value thresholds. The top ten increased gene

Fig 8. Fibrosis heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g008
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targets in order of highest to lowest positive log2 fold change were Cyp1a1, Pipox, Btc,

Slc22a14, Tbxas1, Itgb2, Slc13a3, Cldn1, Ncf1, and Tnfrsf17 (Table 1). The top ten decreased

gene targets in order of highest to lowest negative log2 fold change were Pimreg, Pmch, E2f7,

Pbk, Parpbp, Ube2c, Troap, Cenpf, Cldn23, and Ccnb2 (Table 1).

Descriptive pathway profiling

A total of 21 GeneGlobe (Qiagen) pathways were explored. Pathway selection was based on

the literature, hypotheses that we have explored previously, and hypotheses we plan to

explore in future studies. Select pathways strongly associated with AGE/RAGE biology were

also included. Pathways were ranked strictly based on the percentage of significantly altered

genes within that respective pathway. Pathways explored, in order from most to least

Fig 9. Oxidative stress heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g009
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implicated, were cell cycle (51.2%, Fig 2), extracellular matrix (ECM) and tenogenic mark-

ers (48.4%, Fig 3), DNA damage (40.3%, Fig 4), cellular senescence (39.2%, Fig 5), p53 sig-

naling (38.7%, Fig 6), TGF-β signaling (32.4%, Fig 7), fibrosis (29.2%, Fig 8), oxidative

stress (28.1%, Fig 9), wound healing (23.8%, Fig 10), growth factors (21.9%, Fig 11), tran-

scription factors (20.6%, Fig 12), cytoskeleton (16%, Fig 13), cytokines (14.9%, Fig 14),

innate and adaptive immunity (13.2%, Fig 15), NF-κB signaling (11.3%, Fig 16), cellular

stress responses (10%, Fig 17), mitochondria (9.5%, Fig 18), apoptosis (8.5%, Fig 19), glyco-

sylation (8.2%, Fig 20), inflammasomes (7.8%, Fig 21), and mitochondrial energy metabo-

lism (2.6%, Fig 22). Pathways, listed in order of most implicated and respective figure

numbers for heat maps, are summarized in Table 2.

Fig 10. Wound healing heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g010
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Pathway analysis

Ten pathways or biological functions were selected using the IPA disease and function tool.

Apoptosis (Z Score: 4.70), morbidity and mortality (Z Score: 4.53), organismal death (Z Score:

4.47), DNA damage (Z Score: 3.36), and diabetes mellitus (Z Score: 2.24) were selected as acti-

vated pathways. Cell survival (Z Score: -4.91), cell viability (Z Score: -4.62), repair of DNA (Z

Score: -3.85), cell proliferation (Z Score: -3.67), and growth of connective tissue (Z Score:

-3.02) were selected as inhibited pathways. IPA pathways are summarized in Table 3 with

respective p-values and activation Z-scores.

Diabetes-related complications, such as those implicating connective tissue, create a large

healthcare burden and reduce quality of life. Our knowledge of diabetes-related tendon degen-

eration has primarily been limited to macroscopic and structural changes with minimal molec-

ular insight exists. Previous work from our laboratory has demonstrated that AGEs induce

Fig 11. Growth factors heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g011
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severe limitations to tendon fibroblast proliferative capacity and mitochondrial function while

increasing mitochondrial DNA content [8]. We have followed up on these previous findings

by completing a descriptive transcriptome profile of Achilles tendon-derived fibroblasts fol-

lowing AGE exposure. The goal of this study was to identify and rank pathways that were most

implicated following AGE exposure, thus providing a more precise mechanistic exploration of

AGE-mediated effects on tendon-derived cells.

Using a clinically-relevant concentration of AGEs [12, 22], we have previously demon-

strated incorporation of synthetic nucleoside 5-ethynyl-2´-deoxyuridine (EdU) in tendon-

derived fibroblasts to be ~3% following AGE-BSA (200μg/ml) exposure as compared to ~53%

in the BSA-Control exposed group, which proliferate normally [8]. Further, we noted a

Fig 12. Transcription factors heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g012

PLOS ONE AGEs and RNA sequencing in tendon fibroblasts

PLOS ONE | https://doi.org/10.1371/journal.pone.0271770 July 26, 2022 15 / 30

https://doi.org/10.1371/journal.pone.0271770.g012
https://doi.org/10.1371/journal.pone.0271770


Fig 13. Cytoskeleton heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g013
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reduction in proliferative gene markers, Mybl2 and Pcna, and reduced absorbance values of

cytostatic MTT with AGE-BSA treatment in tendon fibroblasts. Our RNAseq data corrobo-

rated our previous findings of reduced Mybl2 and Pcna gene expression and revealed several

additional genes responsible for cell cycle progression to be significantly impacted (Fig 2). In

fact, our transcriptome analysis revealed that genes associated with the cell cycle are the most

impacted by AGE treatment (Fig 2 and Table 2). Tendon fibroblast proliferation is vital for

tendon development and adaptation [23, 24]. The inability of tenocytes to proliferate in the

presence of AGEs could precipitate the development of tendon degeneration by limiting adap-

tations to loading [25]. Tendon healing requires a phase of increased cellular proliferation [23,

24, 26], thus AGE-induced limitations in cell proliferation could contribute to delayed in heal-

ing noted in those with diabetes [27–29]. In fact, would healing was identified as one of the top

10 GeneGlobe Pathways impacted by AGE treatment (Table 2 and Fig 10).

Gene targets associated with ECM maintenance and remodeling were also dramatically

affected in our dataset (Fig 3). The ECM is vital to tendon tissue health and serves several vital

functions, including cell adhesion, communication, and differentiation. Additionally, the

ECM provides structural and biochemical support to the surrounding resident cell population.

The tendon ECM consists primarily of type I and type III collagen fibers surrounded by pro-

teoglycans that assist collagen fibrils’ assembly and stability [30]. A precise and linear

Fig 14. Cytokines heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g014
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arrangement of collagen fibrils is vital to tissue integrity and, therefore, mechanical function

[31]. The inclusion of multiple collagen isoforms allows the ECM to specialize and adapt to

specific mechanical loading and functional responses [32]. For instance, type I collagen

(Col1a1) is a stronger collagen isoform. In contrast, type III collagen (Col3a1) is weaker and

generally upregulated in the early stages of tissue remodeling following exercise or during the

initial stages of healing [33, 34]. Col3a1 can provide temporary tensile strength to the tissue

assembly until it is later replaced by stronger Col1a1 [35]. Although Col1a1 mRNA was unaf-

fected in our RNAseq data set, Col3a1 mRNA expression was increased (Fig 3). Similarly, our

previous report indicated Col3a1 mRNA expression increased with 50μg/ml and 100μg/ml

AGE exposure compared to an equal dose of BSA-Control [8]. This increase in Col3a1 mRNA

expression is likely in response to the AGE insult and an attempt to maintain the ECM

environment.

Further, the most abundant tendon proteoglycan gene expression of decorin (Dcn)

increased in our RNAseq data set (Fig 3). Dcn aids in the maintenance and regulation of colla-

gen fibril structure and resident fibroblast proliferation [31]. As a critical regulator in matrix

assembly, loss of Dcn would likely prove to be unfavorable to the strength of the tendon assem-

bly, which would decrease the tissue’s ability to withstand sudden strain [31]. Our observed

Fig 15. Innate and adaptive immunity heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g015
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increase in Dcn gene expression may be a compensatory response that results in response to

the AGE insult. However, impacts to Dcn content and gene expression would need to be exter-

nally validated in a whole diabetic tendon.

Lysine and hydroxylysine are found within the collagen amino acid sequence and play

an essential role in cross-link formation. Oxidation of lysine and hydroxylysine by lysyl

oxidase (Lox) forms cross-links within collagen fibrils, contributing to tissue integrity by

increasing tensile strength and stabilizing the collagen fibril assembly. Strength and stabil-

ity of the tissue assembly are essential, especially given the high contractile forces tendons

Fig 16. NF-κB signaling heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g016
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are responsible for transmitting from muscle to bone. Our dataset revealed Lox gene

expression to be significantly reduced following AGE exposure (Fig 3). If reduced mRNA

expression of Lox coincides with reduced enzymatic cross-link formation, AGEs may con-

tribute to a weakened tendon assembly due to loss of enzymatic cross-links between adja-

cent collagen fibrils. Tendons of diabetic animals generally have a reduced load to failure

capacity, which may be a result of greater tissue degeneration at the macroscopic level [4,

11, 28, 36]. More work is needed to determine the impact of AGEs on the whole tendon

fibril assembly.

Fig 17. Cellular stress responses heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g017
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Remodeling of the ECM is primarily regulated by enzymes known as matrix metallopro-

teinases (MMPs), which are responsible for the degradation portion of ECM remodeling.

Collagenases such as MMP-1 and MMP-13 cleave type I collagen molecules in the ECM.

Similarly, gelatinases, such as MMP-2 and MMP-9, degrade collagen isoforms in the ECM.

MMPs are transcribed and translated as proenzymes and then secreted into the ECM,

Fig 18. Mitochondria heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g018

PLOS ONE AGEs and RNA sequencing in tendon fibroblasts

PLOS ONE | https://doi.org/10.1371/journal.pone.0271770 July 26, 2022 21 / 30

https://doi.org/10.1371/journal.pone.0271770.g018
https://doi.org/10.1371/journal.pone.0271770


where they are activated through proteolytic cleavage of the N-terminal. Although MMP

activity is degenerative, it facilitates ECM remodeling and tendon tissue adaptation. In turn,

MMP activity can be reversibly inhibited by a group of enzymes known as tissue inhibitors

of metalloproteinases (TIMPs). TIMPs play an essential role in ECM remodeling by limiting

MMP activity and preventing excessive degradation. Counter-regulation via TIMP activity

tightly regulates the breakdown and synthesis of collagen in response to external stresses,

Fig 19. Apoptosis heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g019
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such as mechanical loading. Loss of ECM regulation, such as favoring degradation over syn-

thesis, could alter the ECM responses to damage the tissue assembly. It is no surprise that

the dysregulation of degenerative enzymes, such as MMPs, has been thought to play an

essential role in developing tendon pathology in diabetes as overexpression of MMPs may

favor ECM degradation [37]. Similarly, if inhibitory TIMPs are less expressed, the

Fig 20. Glycosylation heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g020
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environment may also favor degradation by allowing MMPs to act on the ECM for a more

extended period. Previous reports have indicated that AGEs increase MMP -2, -3, -9, and

-13 secretion and expression in chondrocytes with 100μg/ml of AGEs [38, 39]. Further,

mRNA expression of MMP -1, -3, and -13 in porcine chondrocytes was increased with

100μg/ml of AGE exposure [40]. Our previous work in Achilles tendon-derived fibroblasts

demonstrated an increase in MMP -2 and -3 but no significant changes to MMP-9 and -13

[8]. Our RNAseq analysis confirmed MMP -2 and -3 to be elevated, along with MMP -15

and -17. However, we did not observe any changes to TIMP -1, -2, -3, or -4 in our RNAseq

dataset, suggesting that MMPs may be exerting their function in an unorganized fashion

that would favor a degenerative ECM environment. MMP gene expression data is limited in

Fig 21. Inflammasomes heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g021
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scope as it does not account for ECM secretion and N-terminal cleavage. However, the large

impact that AGE exposure has on the dysregulation of ECM-related gene expression is fur-

ther evidence that elevated serum AGEs may be contributing to the development of connec-

tive tissue pathology in diabetic populations (Fig 3).

Fig 22. Mitochondrial energy metabolism heat map. Bold text indicates significantly altered gene targets.

https://doi.org/10.1371/journal.pone.0271770.g022
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Delayed and abnormal healing is a common complication of types I and II diabetes [27,

41]. Not only does it appear that diabetic patients are at risk of developing tendon tears, but

healing post-repair is also impaired [42–44]. Interestingly, transforming growth factor (TGF)

β1 expression was significantly reduced in our RNAseq data (Fig 7). In addition to TGFβ1

being one of the affected genes in the wound-healing pathway (Fig 10), the GeneGlobe TGFβ
signaling pathway was also strongly influenced by AGE treatment (Table 2 and Fig 7). TGFβ is

a critical factor in fibrosis and modulation of ECM homeostasis [45]. It has previously been

demonstrated that TGFβ levels are significantly reduced in diseased human rotator cuff ten-

don samples [45]. In addition, TGFβ is known to modulate inflammatory responses by influ-

encing fibroblast recruitment and stimulating collagen production [46, 47].

Table 2. Descriptive pathway profiling.

Figure GeneGlobe Pathway Altered Genes in Pathway Total Genes in Pathway Percent of Affected Genes

2 Cell Cycle 42 82 51.2

3 ECM and Tenogenic Markers 31 64 48.4

4 DNA Damage 29 72 40.3

5 Cellular Senescence 31 79 39.2

6 p53 Signaling 29 75 38.7

7 TGF-β Signaling 24 74 32.4

8 Fibrosis 19 65 29.2

9 Oxidative Stress 18 64 28.1

10 Wound Healing 15 63 23.8

11 Growth Factors 14 64 21.9

12 Transcription Factors 14 68 20.6

13 Cytoskeleton 13 81 16

14 Cytokines 7 47 14.9

15 Innate and Adaptive Immunity 7 53 13.2

16 NF-κB Signaling 8 71 11.3

17 Cellular Stress Responses 7 70 10

18 Mitochondria 7 74 9.5

19 Apoptosis 6 71 8.5

20 Glycosylation 6 73 8.2

21 Inflammasomes 5 64 7.8

22 Mitochondrial Energy Metabolism 2 77 2.6

https://doi.org/10.1371/journal.pone.0271770.t002

Table 3. Select IPA pathway analysis.

Pathway p Value Activation Z Score

Apoptosis 1.45E-33 4.70

Morbidity or Mortality 4.62E-34 4.53

Organismal Death 2.06E-33 4.47

DNA Damage 7.32E-09 3.36

Diabetes Mellitus 1.27E-13 2.24

Cell Survival 4.74E-25 -4.91

Cell Viability 5.59E-23 -4.62

Repair of DNA 7.15E-15 -3.85

Cell Proliferation (Fibroblast) 7.59E-12 -3.67

Growth of Connective Tissue 5.10E-23 -3.02

https://doi.org/10.1371/journal.pone.0271770.t003
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Inconsistent with known effect of TGFβ on collagen production [46, 47], Col1a1 was

unchanged in our RNAseq dataset, and Col3a1 was increased (Fig 3). However, mRNA expres-

sion of Col5a1, Col5a2, and Col5a3 expression was significantly reduced in our RNAseq data-

set. Type V is a fibrillar collagen isoform found less abundantly in a tendon but exists to

provide support to tissues that do contain high levels of type V collagen isoforms [48]. While

the wound healing GeneGlobe pathway was not as affected as other pathways, it is still likely

that these gene targets contribute in some manner to the delayed healing response that is com-

monly observed following tendon injury in diabetic patients.

Conclusions

Several studies have shown that the risk of developing tendinopathy is greater in those with

diabetes mellitus [42–44, 49]. Our new data highlights cell-signaling pathways that may assist

with expanding our understanding of diabetic tendon pathology and failed healing responses.

While our discussion is limited in scope, and we provide only transcriptome data, the purpose

of this study was to complete a descriptive profile of the AGE insult to tendon fibroblasts. This

work is the first data set to utilize RNAseq methodology to study the tendon fibroblast tran-

scriptome following AGE exposure. These data will be helpful for further elucidation of the

diabetic tendon disease process.
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