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ABSTRACT 

The Bag-of-visual Words (BoW) image representation has been 
applied for various problems in the fields of multimedia and 
computer vision. The basic idea is to represent images as visual 
documents composed of repeatable and distinctive visual elements, 
which are comparable to the words in texts. However, massive 
experiments show that the commonly used visual words are not as 
expressive as the text words, which is not desirable because it 
hinders their effectiveness in various applications. In this paper, 
Descriptive Visual Words (DVWs) and Descriptive Visual 
Phrases (DVPs) are proposed as the visual correspondences to text 
words and phrases, where visual phrases refer to the frequently 
co-occurring visual word pairs. Since images are the carriers of 
visual objects and scenes, novel descriptive visual element set can 
be composed by the visual words and their combinations which 
are effective in representing certain visual objects or scenes. 
Based on this idea, a general framework is proposed for 
generating DVWs and DVPs from classic visual words for various 
applications. In a large-scale image database containing 1506 
object and scene categories, the visual words and visual word 
pairs descriptive to certain scenes or objects are identified as the 
DVWs and DVPs. Experiments show that the DVWs and DVPs 
are compact and descriptive, thus are more comparable with the 
text words than the classic visual words. We apply the identified 
DVWs and DVPs in several applications including image retrieval, 
image re-ranking, and object recognition. The DVW and DVP 
combination outperforms the classic visual words by 19.5% and 
80% in image retrieval and object recognition tasks, respectively. 
The DVW and DVP based image re-ranking algorithm: 
DWPRank outperforms the state-of-the-art VisualRank by 12.4% 
in accuracy and about 11 times faster in efficiency.   
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1. INTRODUCTION 
Bag-of-visual Words (BoW) image representation has been 
utilized for many multimedia and vision problems, including 
video event detection [27, 30, 34], object recognition [11, 12, 15, 
18, 20, 21, 26], image segmentation [28, 31], and large-scale 
image retrieval [17, 22, 29], etc. Representing an image as a 
visual document composed of repeatable and distinctive basic 
visual elements that are indexable is very desirable. With such a 
representation, lots of mature techniques in information retrieval 
can be leveraged for vision tasks, such as visual search or 
recognition. Recently, it has been demonstrated, BoW image 
representation is one of the most promising approaches for 
retrieval tasks in large-scale image and video databases [17, 22].  

Figure 1. Matched visual words between the same and 

different objects 

However, experimental results of reported work show that the 
commonly generated visual words [15, 17, 22, 28] are still not as 
expressive as the text words. Traditionally, a visual vocabulary is 
trained by clustering a large number of local feature descriptors. 
The exemplar descriptor of each cluster is called a visual word, 
which is then indexed by an integer. In previous works [12, 15, 17, 
18, 20, 22, 27, 28, 30, 31, 34], various numbers of visual words 
are generated for different tasks. There are two general 
observations: 1) using more visual words results in better 
performance [12, 17, 20]. 2) The performance will be saturated 
when the number of visual words reaches certain levels [12, 17, 
20]. Intuitively, larger number of visual words indicates more 
fine-grained partitioning of the descriptor space. Hence the visual 
words become more descriptive in representing certain visual 
contents. The second observation is that increasing the number of 
visual words to certain levels finally saturates the performance of 
vision tasks. This strongly implies the limited descriptive ability 
of a single visual word. A toy example illustrating this 
observation is presented in Fig.1. In Fig. 1, SIFT descriptors are 
extracted on interest points detected by Difference of Gaussian 
(DoG) [14]. The three images are then represented as BoW with a 
visual vocabulary containing 32357 visual words, by replacing 
their SIFT descriptors with the indexes of the closest visual words. 
In the figure, two interest points are connected with red lines if 
they share the same visual word. As we can clearly observe, 
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although the visual appearances of the plane and cat are very 
different, there are still many matched visual words between them. 

There are two problems in the classic visual words, which may be 
the main causes for their limited descriptive power. 1) Single 
visual word contains limited information, thus is not effective in 
presenting the characteristics of objects and scenes. This can be 
explained by an analogy between basic English alphabets and 
commonly used visual words. The English alphabets, which are 
also basic components of documents, present very limited ability 
for describing semantics, if they are not organized in specific 
orders. Similarly, the spatial layouts of different visual words 
need to be taken into consideration to make the classic visual 
words descriptive enough. 2) Previous K-means based visual 
vocabulary generation can not lead to very effective and compact 
visual word set [17, 22, 29]. This is because simply clustering the 
local descriptors generates lots of unnecessary and non-
descriptive visual words in the cluttered background.  

Aiming at the first problem, lots of works are conducted to 
combine multiple visual words with spatial information [1, 12, 15, 
20, 27, 29, 31-33]. In general, this is achieved by identifying 
visual word combinations sharing stable spatial relationships. E.g., 
in [12] the authors select the most discriminative visual word 
combinations with Adaboost [25] for object recognition; visual 
word correlogram and correlaton are utilized for object 
recognition in [20]; the spatial distribution of texton is modeled in 
[1] for scene classification. In a recent work [29], visual words are 
bundled for large-scale near-duplicate image retrieval. Proposed 
as grouped visual phrases in [33], Visual Synset presents better 
discrimination and invariance power than the traditional BoW 
representation in object categorization. As for the second problem, 
lots of works have proposed novel feature quantization algorithms 
[9, 10, 16, 19], targeting for more effective and discriminative 
visual vocabularies. E.g., in [9] the shortcomings of K-means are 
analyzed, and a new acceptance-radius based clustering method is 
proposed to generate better visual codebooks. Another interesting 
work is reported by Lazebnik, et al. [10]. Using the results of K-
means as initializations, the authors generate discriminative 
vocabularies according to the Information Loss Minimization 
theory. In [16], Extremely Randomized Clustering Tree is 
proposed for visual vocabulary generation, which shows 
promising performance in image classification. Although lots of 
approaches have been proposed for effective visual vocabularies 
and show impressive performances in many vision tasks, most of 
them are expensive to compute and are designed for small-scale 
applications. Moreover, most of the generated vocabularies are 
specific problem oriented (i.e., for image classification, object 
recognition, etc.), thus they are still not comparable with the text 
words, which could be used as effective features and perform 
impressively in various information retrieval applications.  

In order to overcome the above two problems and generate visual 
element set comparable to the text words, Descriptive Visual 
Words (DVWs) and Descriptive Visual Phrases (DVPs) are 
proposed in this paper. DVWs are defined as the individual visual 
words specifically effective in describing certain objects or scenes. 
Similar to the semantic meaningful phrases in documents, DVPs 
are defined as the distinctive and commonly co-occurring visual 
word pairs in images. Intuitively, once established, DVWs and 
DVPs will lead to compact and effective BoW representation.   

Generating DVW and DVP set seems to be a very difficult 
problem, but statistics in large-scale image datasets might provide 
us some help. Because images are carriers of different visual 

objects or visual scenes, visual elements and their combinations 
that are descriptive to certain objects or scenes could be selected 
as DVWs and DVPs, respectively. The DVWs and DVPs 
composed of these elements and combinations will function more 
similar to the text words than the classic visual words because: 1) 
they are compact to describe specific objects or scenes. 2) Only 
unique and effective visual elements and combinations are 
selected. This significantly reduces the negative effects of visual 
features from the background clutter. Therefore, the DVWs and 
DVPs would be more descriptive. 3) Based on the large-scale 
image training set containing various scenes and objects, DVWs 
and DVPs might present better descriptive ability to the real word 
and could be scalable and capable for various applications. 
Consequently, our algorithms identify and collect DVWs and 
DVPs from a large number of objects and scenes. 

 
Figure 2. The proposed framework for DVW and DVP 

generation and application 

To gather reliable statistics on large-scale image dataset, we 
collected about 376,500 images belonging to 1506 object and 
scene categories, by downloading and selecting images from 
Google Image. The details of our data collection will be presented 
in Section 4.1. Fig. 2 illustrates the framework of our algorithm. A 
classic visual word vocabulary is first generated based on the 
collected image database. Then, the classic visual words extracted 
from each category are considered as the DVW candidates for the 
corresponding category. DVP candidates in each category are 
generated by identifying the co-occurred visual word pairs within 
a certain spatial distance. A novel visual-word-level ranking 
algorithm: VisualWordRank which is similar to that of PageRank 
[2] and VisualRank [8] is proposed for identifying and selecting 
DVWs. Based on the proposed ranking algorithms, DVWs and 
DVPs for different objects or scenes are discriminatively selected. 
The final DVW and DVP set is generated by combining all the 
selected candidates across different categories. Massive 
experiments on image retrieval tasks show that the DVW and 
DVP set presents stronger descriptive power than the classic 
visual words. Furthermore, in image re-ranking and object 
recognition, DVWs and DVPs show promising performances. 

In summary, the contributions of our work are: 
1) The drawbacks of classic visual words are discussed. A novel 

large-scale web image based solution is proposed for 
generating DVWs and DVPs. 



2) The idea of PageRank [2] and VisualRank [8] is leveraged in 
VisualWordRank for DVW selection. Experiments show the 
promising effectiveness and efficiency of VisualWordRank. 

3) The proposed DVWs and DVPs show impressive results in 
three applications: image retrieval, object recognition, and 
web image re-ranking with simple non-parametric algorithms. 
The DVW and DVP combination outperforms classic visual 
words by 19.5% and 80% in image retrieval and object 
recognition tasks, respectively. Moreover, the proposed 
image re-ranking algorithm: DWPRank outperforms the 
recently reported VisualRank [8] by 12.4% in accuracy and 
about 11 times faster in efficiency. 

The rest of the paper is organized as follows. DVW and DVP 
candidate generation will be introduced in Section 2. The DVW 
and DVP selection algorithms are presented in Section 3. Section 
4 discusses the applications and evaluations. Finally, Section 5 
concludes the paper. 

2. CANDIDATE GENERATATION 
In our framework, the classic visual words appearing in each 
image category are taken as the DVW candidates for the 
corresponding category. Moreover, the semantic meaningful 
visual word pairs are identified as DVPs. Thus, generating the 
visual vocabulary and representing each training image as BoW 
are the first steps of our framework. In this section, we introduce 
how we generate the visual vocabulary, and how we generate the 
DVW and DVP candidates.  

2.1 Visual Vocabulary Generation 
Similar to existing work [17, 29], we train visual word vocabulary 
by clustering a large number of SIFT descriptors. Since millions 
of descriptors are used as the training set, we adopt hierarchical 
K-means to conduct the clustering for its high efficiency. Though 
some other clustering methods such as one-step K-means, Affinity 
Propagation [5] or some recent visual vocabulary generation 
methods [9, 10, 16, 19], could also be adopted, they are in general 
less efficient, in terms of either time or space complexity. Another 
advantage of hierarchical K-means is that the generated visual 
words can be organized in the vocabulary tree. Thus, with the 
hierarchical structure, finding the closest visual word for a local 
feature descriptor can be performed very efficiently. More details 
about the vocabulary tree and its applications can be found in [17]. 
After clustering the local feature descriptors, a vocabulary tree is 
generated and the leaf nodes (cluster centers) are considered as the 
classic visual words. By searching hierarchically in the 
vocabulary tree, images in each training category are represented 
as BoW by replacing their SIFT descriptors with the indexes of 
the corresponding nearest visual words [17]. During this process, 
the scale of each interest point is kept for the corresponding visual 
word to achieve scale invariance when computing the DVP 
candidates.  

2.2 DVW Candidate Generation 
For each image category, we define the DVW candidates as the 
contained classic visual words. In our experiment, for a 
vocabulary tree with 32357 visual words, corresponding numbers 
of DVW candidate in 1506 image categories are sorted and shown 
in Fig. 3. In the figure, the numbers of DVW candidates in the 
1506 categories are sorted in ascending order. Thus, the candidate 
number of each category can be intuitively compared with the 
total visual word number (32357). Obviously, the DVW 
candidates in each category are portions of the total visual word 

vocabulary. It can be inferred that only parts of the entire visual 
vocabulary are descriptive to the corresponding objects and scenes. 
Thus, selecting DVWs from their candidate set would be more 
efficient and reasonable than from the entire visual vocabulary.  

 
Figure 3. The number of generated DVW candidates in each 

image category 

2.3 DVP Candidate Generation 
DVPs are defined as the descriptive and commonly co-occurring 
visual word pairs within a constrained spatial distance in certain 
object or scene categories. In order to identify such visual word 
pairs and compute their frequency of co-occurrence, we utilize the 
rotation invariant spatial histogram illustrated in Fig. 4 for DVP 
candidate generation. Spatial histogram is commonly used for 
spatial relationship computation between interest points. More 
details can be found in [12]. In Fig. 4, each visual word pair co-
occurring within the histogram is considered as a DVP candidate. 

 
Figure 4. Spatial histogram for DVP candidate generation 

As shown in Fig.4, the spatial histogram centered at an instance of 
visual word i is defined as: 

[ , ]i jSH t d  

where jt is the number of instances of visual word j that fall in the 

histogram. Thus jt would be 2 in the example illustrated in Fig. 4. 

Note that the radius d is an important parameter related to the 
constraint of co-occurrence. Because objects may have various 
scales in different images, the d should be properly computed to 
achieve scale invariance. Based on the scale information [14] of 
the detected interest points, from which the SIFT descriptors are 
extracted, we compute d with Eq. (1).  

d=Scalei �Pd                                       (1) 

where, Scalei is the scale of the interest point [14] from which the 
instance of visual word i is computed, and Pd is a parameter 
controlling the constraint of co-occurrence. From our experiments, 
larger Pd is necessary for identifying reliable spatial relationships 
between two visual words and overcoming the sparseness of the 
generated DVW candidates. However, large Pd will also increase 
the computational cost and the occurrence of noise. In this paper, 
we experimentally set Pd as 4, a good trade-off between efficiency 
and performance. Intuitively, if tj presents large values, strong co-
occurrence can be indicated between the visual word i and j. 

Suppose visual word i and j co-occur within the spatial histogram 
in an image category. Then, the DVP candidate containing the two 
visual words for this category can be defined as:  

( ) ( )

,[ , , ]C C

i jDVPCandidate i j T  



where, ( )

,

C

i jT is the overall average frequency of co-occurrence 

computed between the visual word i and j in image category C. 
E.g., if visual word i and j frequently co-occur in the spatial 

histogram, ( )

,

C

i jT will present a large value. Hence, ( )

,

C

i jT reflects the 

strength of their spatial relationship in category C. Algorithm 1 

presents the detailed computation of ( )

,

C

i jT in image category C. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Figure 5. The number of generated DVP candidates in each 

image category 

Because each visual word pair is considered as a possible DVP 
candidate, the result of DVP candidate generation in each image 
category can be intuitively seen as a VWnum × VWnum sized 
matrix (VWnum is the size of the visual vocabulary). Each non-
empty element in it is a DVP candidate carrying the frequency of 
co-occurrence information between the corresponding two visual 
words. The numbers of generated DVP candidates in each image 
category are sorted and presented in Fig. 5. It can be seen that, 
although the generated candidates are only small portions of the 
entire possible visual word pairs, their sizes are still very huge. 
Therefore, effective and compact DVP set is needed to be selected 
from the candidates.  

3. DVW AND DVP SELECTION 

3.1 Descriptive Visual Word Selection 
DVWs are designed to capture certain objects or scenes, thus 
several unique features are desired in them: 1) if one object or 
scene appears in some images, the DVWs descriptive to it should 

appear more frequently in these images. Also, they should be less 
frequent in images that do not contain such object or scene. 2) 
They should be frequently located on the object or scene, even 
though the scene or object is surrounded by cluttered background. 
Inspired by PageRank [2] and VisualRank [8], we design a novel 
visual-word-level ranking algorithm: VisualWordRank to 
effectively incorporate the two criteria for DVW selection. 

According to the first criterion, the frequency-of-occurrence 
information of DVW candidates in the total image set and in each 
individual image category would be important for identifying 
DVWs. Fig. 6 (a-d) show the frequencies of occurrence of visual 

words with index number: e.g., 1 410× ~2 410×  in four image 

categories. The frequencies shown are normalized between 0 and 
1 by the maximum and minimum frequencies of the selected 
visual words. It is clear that, the same visual words (e.g., visual 
words with ID 14000-16000) present different frequencies in 
different image categories. Thus, their different significances for 
each category can be indicated.   

 
 
 

 
 
 

Figure 6. The visual word frequencies in different categories 

Besides the frequency information of single visual word, if two 
visual words frequently co-occur within short spatial distance in 
images containing the same object or scene, strong spatial 
consistency could be inferred between them in such images. 
Considering that these images contain same object but different 
backgrounds, the spatially consistent visual words are more likely 
to be located on the object. Hence, the spatial co-occurrence 
information between visual word pairs in Algorithm 1 is adopted 
in DVW selection to depress the negative influences caused by the 
cluttered background.  

Therefore, we use two clues: 1) each DVW candidate’s frequency 
information, and 2) its co-occurrence with other candidates to 
identify DVWs. This can be formalized as a visual word ranking 
problem which is very similar to the one of webpage ranking. 
Thus, we propose the VisualWordRank algorithm which leverages 
the idea of well-known PageRank [2]. In PageRank, a matrix is 
built to record the inherent importance of different webpages and 
the relationships between them. Iterations are then carried out to 
update the weight of each webpage based on this matrix. After 
several iterations, the weights will stay stable and the final 
significance of each webpage is obtained combining both its 
inherent importance and relationships with other webpages [2].  

Based on the same idea, for an image category C, we build a 

VWnum(C) × VWnum(C) matrix ( )CR to combine the frequency and 

co-occurrence clues for DVW selection. 
( )CVWnum is the number 

of DVW candidates for category C. In matrix R(C) we define the 
diagonal element as: 

(a): visual word frequency in 
category “cell phone” 

(b): visual word frequency in 
category “airplane” 

(c): visual word frequency in 
category “ant” 

(d): visual word frequency in 
category “bike” 

Input: Instances of visual word i and j in the P images contained in 
image category C. 

Output: 
( )

,

C

i jT  

Suppose: in image p, the number of instances of visual word i is 

pN , and the total number of visual word instances is 
pM . 

( )

,

C

i jT =0 

For image p, p =1, …, P 

    Initialize pN spatial histograms ( ) ( ) ( )[ , ], 1,..., ,k k k

i j pSH t d k N= use 

each instance of visual word i as the histogram reference center. 

For k=1,…, pN  do 

    Compute d(k) with Eq. (1). 

   Suppose nk instances of visual word j fall into ( ) ( ) ( )[ , ]k k k

i jSH t d  

   Then, ( )k

j kt n=  

    End 

    
( ) ( )

,

1

pN

p k

i j j p
k

T t M
=

=∑  and ( ) ( ) ( )

, , ,

C C p

i j i j i jT T T= +  

End 
( ) ( )

, ,

C C

i j i jT T P=

Algorithm1: compute the co-occurrence frequency ( )

,

C

i jT  



( ) ( )

, ln( )C C

i i i iR f F=                                (2) 

i is a DVW candidate. iF and ( )C

if denote its average frequency in 

all categories and the within-category frequency in category C, 

respectively. ( )

,

C

i iR stands for the inherent-importance of candidate 

i. Thus, i would be inherently more significant to category C 

if ( )

,

C

i iR has larger values. ( )C

if and iF are computed beforehand 

when transforming the images in training dataset into BoW. 

The non-diagonal element ( )

,

C

i jR is defined as the average co-

occurrence frequency of visual word i and j in image category C: 
( ) ( )

, ,

C C

i j i jR T=                                       (3) 

where ( )

,

C

i jT  is from the DVP candidate computed in Algorithm 1. 

After computing the R
(C), we normalize the diagonal elements and 

non-diagonal elements, respectively and assign them with weights: 
Wfreq and Wcooc. The two input weights control the influences of 
frequency factor and co-occurrence factor in VisualWordRank, 
respectively. From extensive experiments, we conclude that 
setting the two weights equal value results in best performance for 

most of the image categories. The detailed computation of ( )CR  is 
summarized in Algorithm 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

With the matrix ( )CR , we set the initial rank value of each DVP 
candidate equal and then start the rank-updating iterations. The 

detailed descriptions of VisualWordRank are presented in 
Algorithm 3. During the iteration, the candidates having large 
inherent-importance and strong co-occurrence with large-
weighted candidates will be highly ranked. After several iterations, 
the DVW set in object category C can be generated by selecting 
the top N ranked DVW candidates or choosing the ones with rank 
values larger than a threshold.   

 
 

 
 

 
 

Figure 7. (a) DVW candidates, (b) DVWs, and (c) matched 

DVWs (red lines) and matched visual words (green lines) 

Fig. 7 (a) shows the DVW candidates in image categories: 
butterfly, ceiling_fan, ant and crab. The selected DVWs in the 
corresponding categories are presented in Fig. 7 (b). Obviously, 
although there are many candidates on the cluttered background, 
most of the selected DVWs appear on the object. In order to show 
the descriptiveness of the selected DVW set, the matched visual 
words and DVWs between same and different objects are 
compared in Fig. 7 (c). In the figure, visual words and DVWs are 
denoted by green dots and red dots, respectively. The identical 
visual words and DVWs across images are connected by green 
lines and red lines, respectively. In the left three images, matches 
are conducted between same objects. It can be observed that, 
though some DVWs exist on the background, most of the matched 
ones locate on the object. In the right three figures, which show 
the matched DVWs and visual words between different objects, 
lots of visual words are wrongly matched. Nonetheless, there are 
very few mismatches occurred between DVWs. Thus it can be 
observed that DVWs are more descriptive and more robust than 
classic visual words.  The detailed evaluations of DVWs will be 
presented in Section 4. 

3.2 Descriptive Visual Phrase Selection 
Similar to the DVW selection, the DVP selection is desired to 
select the visual word pairs descriptive to certain objects or scenes. 
Since the co-occurrence (i.e., spatial relationship) information of 
visual word pair has already been integrated in the generated DVP 
candidates, we now compute the DVP candidate frequencies 
within a certain category and the overall categories. According to 
the TF-IDF weighting in information retrieval theory, a DVP 
candidate is considered important to an category if it appears more 
often in it and less often in others. Based on this strategy, the 
importance of a DVP candidate k to the category C is computed as: 

( ) ( ) ln( )C C

k k kVPI VPf VPF=                          (4) 

where, ( )C

kVPI is the importance of the DVP candidate k to the 

category C, ( )C

kVPf and kVPF stand for the frequencies of 

(a): DVW candidates before VisualWordRank 

(b): Selected DVWs in corresponding categories 

(c): Matched DVWs and visual words between same and different objects

Input:
( )CR ; maximum iteration time: maxiter . 

Output: The rank of each DVW candidate to the category C: 
( )C

iRank , ( )1,..., Ci VWnum=  

Initialize each element in the ( ) 1C
VWnum × sized rank vector: 

( )COldRank  as 1;   Normalize the sum of each column of ( )CR as 1 

[2];   Set iter = 0 
While iter < maxiter 

         
( ) ( ) ( )C C C

NewRank R OldRank= i  

          If ( ( ) ( )C CNewRank OldRank ε− ≤ )            break 

         
( ) ( )C COldRank NewRank=  

     iter++ 

End 
( ) ( )C CRank NewRank=  

Algorithm3: VisualWordRank 

Input: , ;freq coocW W ( ) ( ), , 1,..., ;C C

i iF f i VWnum=  DVP candidates 

in category C. 

Output: The matrix ( )CR  

For i and j=1,…, ( )CVWnum  do 

     Assign the value of ( )

,

C

i jR based on Eq. (2) and Eq. (3) 

     Get the sum of diagonal elements: diagSum  

     Get the sum of non-diagonal elements: non diagSum −  

End 

For i, and j=1,…, ( )CVWnum  do 

If ( i j≠ )   ( ) ( )

, ,

C C

i j cooc i j non diag
R W R Sum −= i  

If ( i j== ) ( ) ( )

, ,

C C

i j freq i j diagR W R Sum= i    

End 

Algorithm2: Compute matrix R(C) for image category C



occurrence of candidate k in category C and all categories, 
respectively. Suppose there are M image categories and the two 
visual words contained in k are visual word i and visual word j, 

respectively, then ( )C

kVPf and kVPF can be
 
computed with Eq. (5). 

( ) ( ) ( )

, ,

1

M
C C m

k i j k i j

m

VPf T VPF T M
=

= =∑                 (5) 

Consequently, after computing the importance of each DVP 
candidate, the DVPs for category C could be identified and 
selected from the top ranked VPI(C).  

 
 

 
 

Figure 8. The selected DVPs and the matched DVPs between 

the same and different objects 

In Fig. 8 (a), the visual words are denoted as green dots and the 
dots connected by red lines denote the selected DVPs. Because 
there are dense visual words on the background in each image, it 
can be inferred that there would be a lot of DVP candidates 
generated on the object and background. As we can clearly 
observe, most of the selected DVPs appear on the object and 
maintain obvious spatial characteristics of the corresponding 
object. Fig. 8 (b) shows the matched DVPs across same and 
different objects. All the DVPs in the example images are denoted 
as red lines and the matched ones are connected by blue lines. It 
can be seen that, many DVPs are correctly matched between same 
objects, while between images containing different objects, none 
of the DVPs is matched. Therefore, it can be concluded that the 
selected DVPs are valid and descriptive. It also can be inferred 
that DVPs are more effective in describing objects than single 
visual words. The performance of DVPs will be further evaluated 
in the Section 4. 

4. APPLICATIONS AND EVALUATIONS 

4.1 Image Dataset Collection 
The DVW and DVP generation is based on the statistics of their 
candidates in different image categories. Moreover, the DVW and 
DVP set is desired to be semantic meaningful and descriptive for 
various objects and scenes. Thus, representative image database 
with enough object and scene categories is an important basis for 
DVW and DVP set. Decades ago, it was very hard to collect such 
large-scale labeled image database because of the limited data 
source and hardware ability. However, the boom of web image 
search engines and the explosively increasing images on internet 
have already made it feasible to collect and store large-scale 
image databases. Representative start-of-the-art work of 
knowledge mining from web-scale images can be found in [3, 24]. 
In [24], the authors propose simple but robust methods for 

challenging tasks such as person detection, scene recognition, 
object classification, etc., based on the large-scale loosely-labeled 
web images. Similarly, large-scale labeled web image database: 
ImageNet is collected and released in [3]. Therefore, collecting 
meaningful training dataset from Internet has been proved feasible.  

We spend a huge amount of time and energy to systematically 
select our training dataset. The raw image dataset is collected with 
the method similar to [3, 24]. We first use WordNet V.2.1 [4] to 
get a comprehensive list of objects and scenes by extracting 
117097 non-abstract nouns. The extracted list is then used for 
searching and downloading image categories from Google Image. 
The top 250 returned images of each query are saved. The 
downloading task is finished within one month by 13 servers and 
65 downloading processes. In the collected raw database, 
categories with images less than 100 are filtered. Then, from the 
remaining images, we carefully selected 1506 categories with 
visually consistent single objects or scenes, by viewing the 
thumbnails in each category. Finally, we form a dataset composed 
of about 376,500 images. To the best of our knowledge, our 
collected dataset is one of the most representative large-scale 
image training sets in literature. Thus, extracting and selecting 
DVWs and DVPs based on it would be statically meaningful.  

Based on the collected dataset, a vocabulary tree containing 32357 
visual words is generated. We do not generate larger numbers of 
visual words because of the following three considerations: 1) 
Large visual vocabulary will result in huge number of possible 
visual word pairs, and low repeatability of each DVP candidate. 2) 
Single visual word shows limited descriptive ability, no matter 
how fine-scaled it is [12, 17, 20]. 3) The training images are 
evenly selected from the representative database to obtain better 
description of the feature space as much as possible. Based on the 
generated visual words, the entire image dataset (376,500) is then 
used for candidate generation and final DVW and DVP selection. 

4.2 Image Retrieval based on DVW and DVP 
In recent work, BoW image representation has been proven 
promising in large-scale image retrieval [17]. Thus, experiments 
are carried out to compare classic visual words with the proposed 
DVWs and DVPs on image retrieval tasks. We choose Corel 5000 
as the testset because it is a widely used benchmark dataset in 
CBIR community. In this dataset, 50 image categories are 
included and each contains 100 images. Each image in the 
database is first represented as BoW, then, indexed with the 
contained visual words using inverted file structure. Similarly, the 
images are also indexed with the DVWs and DVPs within them, 
respectively. In the retrieval process, TF-IDF weighting is applied 
to compute the similarities between images. The retrieval 
precision of the first k returned images is computed with Eq. (6): 

k kPrecision Correct k=                           (6) 

where, Correctk is the number of relevant images among the first k 

returned images. 

To make the performance comparisons between classic visual 
words and DVWs and DVPs more visible, we use PrecisionRatio 
computed with Eq. (7) as a measurement. 

( ) ( )a b

k k kPrecisionRatio Precision Precision=                (7) 

where, ( )a

kPrecision  and ( )b

kPrecision are the precision values 

based on two different image features (e.g. classic visual word, 
DVW, or DVP) in the first k returned images, respectively. Thus, 
if PrecisionRatiok=1, these two image features show the same 
performance. The classic visual word [17] is used as Precisionk

(b). 

(a): Selected DVPs in: “inline skate”, “revolver”, “cannon”, and “accordion”

(b): Matched DVPs between the same and different objects 



 
Figure 9. Performance comparisons between DVWs and 

classic visual words 

Fig. 9 demonstrates the performance comparisons between classic 
visual words and DVWs. All the 32357 classic visual words are 
utilized. While, 3484, 7562, 13057, 24410, and 26280 DVWs are 
collected from the training image categories. All the 5000 images 
in the testset are indexed and used for retrieval. The ratio curves 
in the figure are computed based on the overall average precisions 
of the 5000 queries. From Fig. 9, it can be seen that DVW set with 
the size 13057 shows obvious improvements over the classic 
visual words. This result proves that DVW set has stronger 
descriptive ability with more compact size. It is also interesting in 
Fig. 9 that, DVW sets with the size 3484 and 7562 show worse 
performance in the first 25 returned images, but outperform 
classic visual words when more images are returned. This can be 
explained by the fact that, for the relevant images presenting weak 
visual similarities to the query image (e.g., the relevant images 
ranked after 25 in the returned image list), the correctly matched 
visual words between them and the query image are more likely to 
be disturbed by the negative effects of background clutter. 
Because the DVW set with small size keeps the most descriptive 
visual words and has filtered most of the noisy ones, the 
interferences of such background noise are depressed. As a result, 
the correct matches would be relatively stronger than the noisy 
ones. Consequently, DVWs perform better than the classic visual 
words in the case when more noises exist. Since DVWs are 
selected from the 32357 classic visual words, DVW sets with 
larger size will contain more noises and thus will function more 
similar to the classic visual words. This could explain why if more 
DVWs are selected (e.g., DVW set with the size 26280), their 
performance will start to decrease. Therefore, we could conclude 
that DVWs with an appropriate size are more compact, descriptive 
and robust than classic visual words. 

 
Figure 10. Performance comparisons between DVPs and 

classic visual words 

To evaluate the performance of the DVPs, we adopt the classic 
visual words as the baseline. DVP sets with different sizes are 
collected based on different thresholds. Images are indexed and 
retrieved based on the DVPs they contain just like the previous 
experiment. The selected DVP numbers and the corresponding 
experimental results are presented in Fig. 10. From the figure, it 

can be observed that the DVP set with larger number shows better 
performance. This indicates valid DVPs are selected by our 
algorithm from the huge possible visual phrase space. Since DVP 
candidates contain both spatial and appearance information, they 
are assumed to be more informative than the classic visual words. 
This might be the reason why the performance of DVPs remains 
increasing even with large size. Since DVP set with the size 
9.0× 106 is still a very small portion of the possible visual word 
pairs (i.e., 323572), we could conclude that the selected DVP set is 
compact. From the figure, it can also be observed that image 
retrieval based on DVPs cannot guarantee that the first returned 
image is the query one. This is because some query images in 
categories such as “Beach” and “Wave” do not present consistent 
spatial characteristics and contain very few or even zero DVPs. 
Thus DVPs do not work well for these cases. Because each object 
commonly presents several different typical appearances (e.g., 
photos of “car” taken from different viewpoints present different 
spatial characteristics), a DVP from one category may be only 
descriptive to a certain appearance of the corresponding object. 
Therefore, the DVPs can only effectively recognize the near-
duplicate images showing similar appearances with the query one. 
This is the reason why DVPs show obvious advantages in the first 
several returned images but perform worse when the returned 
images exceed certain numbers. On the other hand, it can be 
observed that DVPs and DVWs show very distinct performances 
and can be complemented to each other. Thus, the performance of 
DVW+DVP is further evaluated. 

To test the overall performance of the obtained DVWs and DVPs, 
we compare different combinations of them with classic visual 
words. The compared combinations corresponding experimental 
results are presented in Fig. 11. 
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Figure 11. Performance comparisons between classic visual 

words and the combinations of DVW and DVP 

From Fig.11, it can be observed that medium number of DVWs 
plus a large number of DVPs show the best performance. The 

combination containing 13057 DVWs and 69 10× DVPs shows the 

best performance in the figure and it outperforms the classic 
visual words by 19.5% in term of MAP (Mean Average Precision) 
computed in the top 100 returned images. Accordingly, we can 
come to the conclusion that, our proposed DVWs and DVPs are 
more effective for BoW image representation and more suitable 
for image retrieval than the widely used classic visual words. In 
the next sections, DVWs and DVPs are further evaluated on 
object recognition and image re-ranking applications. 

4.3 Object Recognition 
Object recognition has been a popular research topic for many 
years. Based on the well-designed features and classifiers, lots of 
recently reported works show promising performance in 



challenging recognition tasks [11, 12, 20, 21, 26, 28]. Since 
DVWs and DVPs are designed to effectively describe certain 
objects or scenes. It is straightforward that the selected DVWs and 
DVPs in each image category should be discriminative for the 
corresponding object. Consequently, we utilize the object 
recognition task to illustrate the discriminative ability of DVWs 
and DVPs. Besides that, this experiment is also carried out to test 
the effectiveness of our algorithm in improving the discriminative 
power of original visual words, form which DVWs and DVPs are 
generated. Thus, classic visual word is utilized as the baseline 
feature. From Caltech101 and Caltech256 dataset, we select 15 
commonly used object categories as the testset. For each test 
category, the training image category containing the same object 
is selected from the image database collected from Google Image. 
The query words of training categories and the corresponding test 
categories are listed in Table 1. Note that each training category 
contains 250 images, some of which are irrelative ones. 

Table 1. The query words of selected training categories and 

corresponding test categories 

Query word 
Piano 

Accordion 

Pocket 

Calculator 
Dueler Euphonium 

Golden Gate 

Bridge 

Test category Accordion Calculator Car-tire Euphonium
Golden-Gate-

Bridge 

Query word  Headphone 
Semiautomatic 

Pistol 
Panda Lotus Scissors 

Test category Headphone Revolver Panda Lotus Scissors 

Query word  
Adjustable 

Wrench 
Motorbike  

Hockey 

Skate 
Spinet 

Lander-Back 

Chair 

Test category Wrench Motorbike 
Inline-
skate 

Grand-piano Windsor-chair

 

In the experiment, we first identify and collect 150 DVWs and 
6000 DVPs from each training category with the algorithms 
introduced in previous sections. Then, for each object, we 
establish three discriminative feature pools containing DVWs, 
DVPs and both of them, respectively. In the testing phase, all the 
DVW and DVP candidates in each test image are first extracted. 
Then, a naïve vote-based classifier is utilized. E.g., if most of the 
DVW candidates of an image appear in the DVW feature pool of 
“Accordion”, then this image will be recognized as “Accordion”. 
In similar way, another two recognition results based on DVP and 
DVW+DVP can also be obtained. In the baseline algorithm, each 
test image is recognized by computing its 10 nearest neighbors in 
the training dataset. Classic visual word histogram is computed in 
each image, and histogram intersection is used as the distance 
metric. Note that since simple non-parametric classifiers are used, 
the discriminative abilities of different features can be clearly 
illustrated. Experimental results are presented in Fig.12.  
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Figure 12. The comparisons of object recognition precision 

between DVWs, DVPs and classic visual words (baseline) 

Obviously from Fig.12, the DVWs and DVPs outperform the 
baseline feature by a large margin for most of the categories. It 
can also be observed that the extracted DVPs are more 
discriminative than the DVWs. This is mainly because DVPs 
contain more spatial information, which significantly improves 
their descriptive power for different objects. The DVWs perform 
better than the classic visual words, from which they are selected. 
This shows the validity of our VisualWordRank algorithm. From 
the figure, it can be concluded that the combination of DVWs and 
DVPs presents the best performance and achieves significant 
improvement over the baseline by 80% in average. Thus, the 
discriminative ability of the selected DVWs and DVPs can be 
illustrated. The object recognition confusion matrix obtained by 
DVW+DVP is presented in Fig. 13. 
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Accordion 83.6  9.1  3.6  0  0  0  0  0  0  0  0  0  0  3.6  0 
Calculator 1.0  89.0  2.0  0  2.0  1.0  0  0  2.0  0  0  0  0  3.0  0 

Car-tire 1.1  2.2  70.0  2.2  2.2  0  1.1  5.6  2.2  0  0  6.7  3.3  3.3  1.1 
Euphonium 1.6  1.6  3.1 84.4 3.1  1.6  0  0  0  0  0  0  3.1  0  1.6 

Golden-
Gate-Bridge 

2.5 0 0 1.3 87.5 0  0  2.5  1.3  1.3  1.3 1.3 0 0 1.3 

Grand-Piano 9.4 6.3 2.1 2.1 4.2 36.8 1.1  8.4  5.3  1.1  8.4 0 4.2 4.2 7.4 

Headphone 4.8 4.8 12.0 0 4.8 2.4  16.7 9.5  12.0 0  9.5 14.3 0 4.8 4.8 

Lotus  1.5 0 1.5 0 1.5 3.0  0  83.3 3.0  1.5  1.5 1.5 0 0 1.5 

Motorbike 3.6 8.1 4.5 2.1 1.2 4.5  2.6  1.4  58.1 1.2  3.8 2.6 1.2 1.0 4.0 

Panda  0 0 0 0 0 0  0  0  5.3  94.7 0 0 0 0 0 

Revolver 2.4 0 0 4.8 0 0  0  1.2  0  0  87.8 0 0 2.4 1.2 

Scissors 4.9 0 0 0 0 0  0  0  0  0  0 91.0 0 0 4.9 

Inline-skate 0 0 6.5 0 0 0  3.2  0  0  3.2  0 3.2 83.9 3.2 0 

Windsor-
Chair  

3.6 0 3.6 0 0 0  0  0  0  0  0 0 0 92.8 0 

Wrench 2.6 2.6 0 0 0 0  0  0  0  0  0 0 0 0 94.8 

Figure 13. The confusion matrix obtained with DVW + DVP 

From the confusion matrix in Fig. 13, it can be observed that, 
DVW and DVP combination shows recognition accuracy over 
80% for most of the objects, even with a simple classifier. 
Especially for the category: Panda, Scissors, Windsor-Chair and 
Wrench, recognition accuracies over 90% are achieved. The good 
performance comes from two aspects: 1) our training set collected 
from Google Image is representative of these objects, thus 
meaningful DVWs and DVPs can be obtained from the training 
set. 2) The selected objects present relatively constant 
appearances and obvious spatial characteristics, thus they can be 
effectively described by the more discriminative DVPs. The bad 
performances for the two categories: Grand-piano and 
Headphone, show the weakness of our selected training dataset 
for these two objects. This is because the 250 images used to 
generate DVWs and DVPs are hard to cover all the possible 
appearances of some objects (e.g. Grand-piano and Headphone). 
For this consideration, we are collecting more training categories 
from other image search engines. Moreover, more classifiers will 
be designed and tested based on DVWs and DVPs in our future 
work. It is expected, with an enlarged training dataset, and well-
designed classifiers, the object recognition accuracy would be 
improved and comparable with the state-of-the-art [11, 12, 20, 21, 
26, 28] in more challenging recognition tasks. 

4.4 Image Re-ranking 

Image re-ranking is a research problem catching more and more 
attentions in recent years [7, 8, 13, 23]. The goal is to resort the 
images returned by text-based search engines according to their 



visual appearances to make the top-ranked images more relevant 
to the query. As a state-of-the-art work, VisualRank [8] computes 
the visual similarities between images and leverages the algorithm 
similar to PageRank [2] to re-rank the we images. Based on the 
DVW and DVP set, we propose a novel image re-ranking 
algorithm: DWPRank. Experiments and comparisons between 
VisualRank show that our DWPRank presents better performance 
in terms of both accuracy and efficiency. 

The problem of image re-ranking can be seen as identifying the 
common visual concept (i.e., scene, object, etc.) contained in the 
returned images from search engines and re-ranking the images 
based on how well each one fits the identified concept. DVWs and 
DVPs are effective in describing the objects and scenes, from 
which they are selected. Therefore, they can be utilized to 
measure the relevance between images and the concept. Based on 
this idea we proposed a novel image re-ranking algorithm: 
DWPRank, which is detailedly presented in Algorithm 4. 

 

 
 

 

 
 

 

 
 

 

 
 

Figure 14. Examples of the re-ranked images by DWPRank 

To illustrate the validity of DWPRank, we first carry out 
DWPRank on our collected database which contains the top 250 
images returned from Google Image. Some examples of the re-
ranking results are presented in Fig. 14. Obviously from Fig. 14, 
the relevant images are highly ranked, while the irrelevant ones 
from Google Image are ranked in the end of the list. 

Extensive tests of DWPRank are carried out by comparing it with 
VisualRank on the same testset. In our experiment, an image re-
ranking testset is collected by selecting 40 image categories from 
the image database introduced in Section 4.1. Each selected 
category contains 250 images and presents obvious visual concept 

(i.e., same objects or scenes). Hence, we assume all the 250 
images are relevant to the concept. After that, 100 randomly 
selected images are added (random mixture) to each of these 
categories. Finally, we construct a dataset containing 40 
categories and 14000 images to compare our DWPRank with 
VisualRank. AP (Average Precision) computed in Eq. (8) is 
adopted to measure the effectiveness of the re-ranking algorithm. 

250

1

250i

i

AP correct i
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑                               (8) 

where, icorrect is the number of relevant images in the top i re-

ranked images. Thus, if AP=1, it can be inferred that all of the 
irrelevant images are in the end of the re-ranked image list, which 
is the most ideal case in image re-ranking. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

In our experiment, we run the standard VisualRank algorithm and 
DWPRank on the collected image database. 150 DVWs and 6000 
DVPs are selected from each category. Three groups of 
DWPRank based on DVW, DVP and DVW+DVP are carried out 
by setting WDVW, WDVP in Algorithm 4 as (1, 0), (0, 1) and (1, 1) 
respectively. The results of the DWPRank and VisualRank are 
presented in Fig. 15.  

 
Figure 15. The comparisons between DWPRank and 

VisualRank 

Obviously from Fig. 15, DWPRank outperforms VisualRank for 
most of the cases. The main reasons for the improvement are from 
two parts. 1) More information and constrains (i.e., spatial and 
frequency clues) are considered in DVW and DVP selection, thus 
DVWs and DVPs are more effective in identifying and describing 
the visual concepts in returned images; 2) VisualRank computes 
the image-pair similarities based on all the SIFT descriptors in 
each image, thus the SIFT features on the background might 
disturb its performance during the re-ranking. Differently, such 
influences are mush depressed in DWPRank through DVW and 

Input: Images returned from the image search engine: 

, ( 1,..., );iI i N=  weight of DVW and DVP: WDVW, WDVP.  

Output: Re-ranked image list: IReRankedi, (i=1,…,N)  
Suppose: Reli, (i=1,…,N) describes the relevance between image Ii 
and the query concept. 
In Ii, (i=1,…, N), generate the DVW and DVP candidates. 
In Ii, (i=1,…, N), select DVWs and DVPs. 
For i = 1: N  do 

       Reli=0 

       For each DVW or DVP candidate D in image i do 

            if (D is a DVW)   Reli=Reli+WDVW 
            if (D is a DVP)     Reli=Reli+WDVP 

      End 

End 

For i = 1: N  do 

       Find Im which has the i-th largest Rel value. 
       IReRankedi=Im 

End 

Algorithm4: DWPRank 

Top and last 20 re-ranked images by DWPRank in category “all-terrain bike”

Top and last 20 re-ranked images by DWPRank in category “bolt cutter”

Top and last 10 returned images by Google Image with the query “all-terrain bike”

Top and last 10 returned images by Google Image with the query “bolt cutter”



DVP selection. From Fig. 15, it can be also seen that compared 
with DVWs, DVPs are more effective in image re-ranking. Again, 
this can be explained by the fact that DVPs capture more spatial 
information and are more descriptive. The Mean Average 
Precision (MAP) values obtained by DWPRank and VisualRank 
are presented in Figure 16 (a). From the figure, we conclude that 
improvements of 7.4%, 12.4%, and 10.1% over the VisualRank 
are achieved by DWPRank with DVWs, DVPs and their 
combination, respectively. 

 
 
 
 

Figure 16. The comparisons of accuracy and efficiency 

between VisualRank and DWPRank  

Besides the obvious improvements on accuracy, it is necessary to 
point out that, DWPRank is more efficient than VisualRank. The 
above experiments are carried out on 12 workstations with 8 GB 
memory and 4-core 2.83 Ghz processor. The average time needed 
by VisualRank and DWPRank for re-ranking 350 images are 
compared in Fig. 16(b). Obviously, about 11 times of 
improvement is achieved by DWPRank. The low efficiency of 
VisualRank is mainly rooted in the expensive image pair 
similarity computation based on SIFT and LSH [6]. However, in 
DWPRank, DVP candidate generation and DVW selection, which 
are the most time-consuming operations, can be finished very 
efficiently with simple spatial histogram and efficient 
VisualWordRank. In short, DWPRank shows significant 
advantages on both accuracy and efficiency over the VisualRank. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose the DVWs and DVPs, which are 
designed to be the visual correspondences to text words. A novel 
framework is proposed for generating DVWs and DVPs for 
various applications based on a representative training set 
collected from web images. Comprehensive tests show that our 
selected DVWs and DVPs are compact and descriptive. Moreover, 
DVWs and DVPs show promising performances in tasks of image 
retrieval, object recognition and image re-ranking. 

Future work will be carried out focusing on the following three 
aspects. 1) Multi-million-scale training database will be collected. 
2) More effective visual vocabularies (e.g., the ones in [9, 10, 16, 
19]) will be tested for DVW and DVP generation; DVP candidate 
generation and selection algorithms will be further studied. 3) 
DVW and DVP based applications will be further explored. 
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