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Abstract. Many visual search and matching systems represent images
using sparse sets of “visual words”: descriptors that have been quantized
by assignment to the best-matching symbol in a discrete vocabulary. Er-
rors in this quantization procedure propagate throughout the rest of the
system, either harming performance or requiring correction using addi-
tional storage or processing. This paper aims to reduce these quantization
errors at source, by learning a projection from descriptor space to a new
Euclidean space in which standard clustering techniques are more likely
to assign matching descriptors to the same cluster, and non-matching
descriptors to different clusters.
To achieve this, we learn a non-linear transformation model by minimiz-
ing a novel margin-based cost function, which aims to separate matching
descriptors from two classes of non-matching descriptors. Training data
is generated automatically by leveraging geometric consistency. Scalable,
stochastic gradient methods are used for the optimization.
For the case of particular object retrieval, we demonstrate impressive
gains in performance on a ground truth dataset: our learnt 32-D de-
scriptor without spatial re-ranking outperforms a baseline method using
128-D SIFT descriptors with spatial re-ranking.

1 Introduction

We are interested in the problem of efficiently retrieving occurrences of a par-
ticular object, selected by an image query, in a large unorganized set of images.
Typically, methods in particular object retrieval take a text-retrieval approach
to the problem in order to achieve fast retrieval at run time [1–4]. Interest points
and descriptors are found in every dataset image and the descriptors are then
clustered (usually by k-means or some variant) and quantized to give a visual
word representation for each image in the corpus.

Whilst being ostensibly similar to textual words, visual words as generated
through clustering suffer from a lot more noise and dropout compared to text.
This is caused partly by errors and failures in interest point detection and de-
scription, but also by quantization – descriptors that lie close to a Voronoi bound-
ary after clustering being assigned to the “wrong” visual word. Previous work
attempted to overcome quantization errors by compensating for mis-clustered
descriptors using additional information in the retrieval index, for example by
soft-assigning descriptors [5–7], or by performing more work at query time [1, 8].

Instead, the goal of this work is to reduce these errors at source, by con-
structing a projection from the raw descriptor space to a new Euclidean space
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in which matching descriptors are more likely to land in the same cluster, and
non-matching descriptors are more likely to land in different clusters. By re-
moving the initial quantization errors, we keep the indexes small (for example,
they become less sparse when soft-assignment is used) and the query times fast.
Optionally, our method can also reduce the dimensionality of the projected de-
scriptors resulting in smaller storage requirements for features and increased
clustering and quantization speeds during pre-processing.

There have been several recent applications of distance learning to classi-
fication problems [9–15], however these methods assume clean, labelled data
indicating pairs of points that belong to the same class and pairs that belong
to different classes. In our task, even when the same object appears in two im-
ages, the images typically have different backgrounds and there is a non-trivial
transformation between the views of a common object, so we cannot simply clas-
sify images as being matching or non-matching. At the same time the number
of individual descriptors per image and the complexity of the correspondence
problem between them means that manually labelling the sets of matching and
non-matching descriptors would be unacceptably burdensome. Therefore, in this
work, we introduce a new method for generating training data from a corpus of
unlabelled images using standard techniques from multi-view geometry. In con-
trast to Hua et al. [16], who also generated training pairs from unlabelled image
data via patches matched by the Photo Tourism system [17], here we adopt a
much cheaper pairwise image measure which doesn’t require us to compute a
global bundle adjustment over many image pairs. Thus, we can train on patches
of objects that appear in as few as two images.

Previous works in distance learning use two categories of point pairs for
training: “matching” and “non-matching”, typically derived from known class
labels. In this work, we show that we can significantly improve performance
by forming two “non-matching” categories: random pairs of features; and those
which are easily confused by a baseline method. We adopt a margin-based cost
function to distinguish these three categories of points, and show that this gives
improved performance more than using non-margin-based methods [14, 16].

To optimize this cost function, a fast, stochastic, online learning procedure
is used that permits the use of millions of training pairs. We will show that
non-linear projection methods, previously used for hand-written digit classifi-
cation [13], perform better than the linear projections previously applied to
computer vision distance learning [9–12].

The next section motivates the distance learning task by showing that re-
trieval performance is significantly worse using standard quantized descriptors
than when a much slower, exhaustive search procedure is applied to the raw SIFT
descriptors – this indicates the potential gain achievable from better clustering.
After describing in Section 3 how we automatically generate our training data,
we set out our learning methods in Section 4 and then conclude with results and
a discussion. Improved performance is demonstrated over SIFT descriptors [18]
on standard datasets with learnt descriptors as small as 24-D.
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2 Datasets and the mAP performance gap

To learn and evaluate, we use two publicly available datasets with associated
ground truth: (i) the Oxford Buildings dataset [19]; and (ii) the Paris Buildings
dataset [20]. We show that a significant performance gap (the mAP-gap) is in-
curred by using quantized descriptors compared to using the original descriptors.
It is this gap that we aim to reduce by learning a descriptor projection.

2.1 Datasets and performance measure

Both the Oxford (5.1K images) and Paris (6.3K images) datasets were obtained
from Flickr by querying the associated text tags for famous landmarks, and both
have an associated ground truth for 55 standard queries: 5 queries for each of 11
landmarks in each city. To evaluate retrieval performance, the Average Precision
(AP) is computed as the area under the precision-recall curve for each query.
As in [3], an Average Precision score is computed for each of the 5 queries for
a landmark. These scores are averaged (over 55 query images in total for each
dataset) to obtain an overall mean Average Precision (mAP) score.

Affine-invariant Hessian regions [21] are computed for each image, giving
approximately 3, 300 features per image (1024 × 768 pixels). Each affine region
is represented by a 128-D SIFT descriptor [18].

2.2 Performance loss due to quantization

To assess the performance loss due to quantization, four retrieval systems (RS)
are compared:

The baseline retrieval system (RS1): In this system each image is represented
as a “bag of visual words”. All image descriptors are clustered using the ap-
proximate k-means algorithm [3] into 500K visual words. At indexing and query
time each descriptor is associated with its (approximate) nearest cluster cen-
tre to form a visual word, and a retrieval ranking score is obtained using tf-idf
weighting. No spatial verification is performed. Note that each dataset has its
own vocabulary.

Spatial re-ranking to depth 200 (RS2): For this system a spatial verification
procedure [3] is adopted, estimating an affine homography from single image
correspondences between the query image and each target image. The top 200
images returned from RS1 are re-ranked using the number of inliers found be-
tween the query and target images under the computed homography.

Spatial verification to full depth (RS3): The same method is used as in RS2, but
here all dataset images are ranked using the number of inliers to the computed
homography.

Raw SIFT descriptors with spatial verification (RS4): Putative matches on the
raw SIFT descriptors (no quantization) are found between the query and every
image in the dataset using Lowe’s second nearest neighbour test [18] (threshold
= 0.8). Spatial verification as in RS3 is applied to the set of putative matches.



4 J. Philbin, M. Isard, J. Sivic and A. Zisserman

Item Method Oxford mAP Paris mAP

i. RS1: Baseline (visual words, no spatial) 0.613±0.011 0.643±0.002

ii. RS2: Spatial (visual words, depth=200) 0.647±0.011 0.655±0.002

iii. RS3: Spatial (visual words, depth=FULL) 0.653±0.012 0.663±0.002

iv. RS4: Spatial (raw descriptors, depth=FULL) 0.755 0.672
Table 1. The mAP performance gap between raw SIFT descriptors and

visual words on the Oxford and Paris datasets. In the spatial cases, an affine
homography is computed using RANSAC and the data is re-ranked by the number
of inliers. Using raw SIFT descriptors coupled with Lowe’s second nearest neighbor
test [22] gives a 14% retrieval boost over the baseline method for Oxford. (i)-(iii) all
use a K = 500, 000 vocabulary trained on their respective datasets.

It should be noted that the methods RS3 and RS4 exhaustively match doc-
ument pairs and so are infeasibly slow for real-time, large scale retrieval. RS3
is ∼10 times slower and RS4 is ∼100 times slower than RS2 even on the 5.1K
Oxford dataset. These run-time gaps increase linearly for larger datasets.

The results for all four methods are shown in table 1. For methods based
on visual words, the mean and standard deviation over 3 runs of k-means with
different initializations are shown. Going from baseline (i) to baseline plus spa-
tial (ii) gives moderate improvements to both datasets, but reranking signifi-
cantly more documents gives little appreciable further gain. In contrast, using
the raw SIFT descriptors gives a large boost in retrieval performance for both
datasets, demonstrating that the mAP-gap is principally due to quantization
errors. This implies that a lack of visual word matches contributes substantially
more to missed retrievals than reranking too few documents at query time. The
raw-descriptor matching procedure will be used to generate point pairs for our
learning algorithm, so Table 1(iv) gives a rough upper bound to the retrieval im-
provement we can hope to achieve using any learning algorithm based on those
training inputs.

3 Automatic training data generation

In this section, we describe our method to automatically generate training data
for the descriptor projection learning procedure. The training data is generated
by pair-wise image matching, a much cheaper alternative to the full multi-view
reconstruction used in [16, 17], allowing us to generate a large number (3M+) of
training pairs. In addition to positive (matched) examples, we separately collect
“hard” and “easy” negative examples and show later that making this distinction
can significantly improve the learnt projections.

We proceed as follows: (i) An image pair is chosen at random from the
dataset; (ii) A set of putative matches is computed between the image pair.
Each putative match consists of a pair of elliptical features, one in each image,
that pass Lowe’s second nearest neighbour ratio test [18] on their SIFT descrip-
tors; (iii) RANSAC is used to estimate an affine transform between the images
together with a number of inliers consistent with that transform. Point pairs
are only taken from image matches with greater than 20 verified inliers. The
ratio test ensures that putative matches are distinctive for that particular pair
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(a) (b) (c)

Fig. 1. Gathering training point pairs. Three groups of point pairs are shown: (a)
inliers to an affine homography found using RANSAC (positives); (b) outliers which
are nevertheless nearest neighbors in SIFT space (nnN); and (c) random pairs of points
which are usually distant in descriptor space (ranN).

of images. This procedure generates three sets of point pairs, shown in Figure 1,
that we treat distinctly in the learning algorithm:

1. Positives: These are the point pairs found as inliers by RANSAC.
2. Nearest neighbour negatives (nnN): These are pairs marked as out-

liers by RANSAC—they are generally close in descriptor space as they were
found to be descriptor-space nearest neighbors between the two images, but
are spatially inconsistent with the best-fitting affine transformation found
between the images.

3. Random negatives (ranN): These are pairs which are not descriptor-
space nearest neighbours, i.e. random sets of features generally far apart in
the original descriptor space.

A histogram of SIFT distances for the three different sets of point pairs on the
Oxford dataset is shown in Figure 2(b). As expected, the original SIFT descrip-
tor easily separates the random negatives from the positive and NN negative
point pairs, but strongly confuses the positives and NN negatives. Section 5 will
show that the best retrieval performance arises when the positive and NN nega-
tive pairs are separated whilst simultaneously keeping the random negative pairs
distant. It is important to note that, due to the potential for repeated structure
and the limitations of the spatial matching method (only affine planar homogra-
phies are considered), some of the nnN point pairs might be incorrectly labelled
positives – this can lead to significant noise in the training data. We collect 3M
training pairs from the Oxford dataset split equally into positive, NN negative
and random negative pairs, and we also have a separate set of 300K pairs used
as a validation set to determine regularization parameters.

4 Learning the descriptor projection function

Our objective here is to improve on a baseline distance measure that partially
confuses some pairs of points that should be kept apart (the nearest neighbor
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Fig. 2. Multiple margins. (a) Schematic of the multiple margin loss functions. This
encourages the ordering on point pairs to be satisfied as per Equation 1. (b) Histograms
of the raw 128-D SIFT distances for the three types of point pairs.

negatives pairs) with those that should be matched (the positive pairs), as shown
in figure 2(b). There is a danger in learning a projection using only these training
points that are confused in the original descriptor space: although we might learn
a function to bring these points closer together, the projection might (especially
if it is non-linear) “draw in” other points so that a particular pair of points are
no longer nearest neighbours. Being a nearest neighbour explicitly depends on
all other points in the space, so great care must be exercised when ignoring other
points.

Here, we aim to overcome these problems by incorporating the distances be-
tween a large set of random point pairs directly into our cost function. These
are precisely the pairs which can “crowd in” and tend to reduce the precision
of clusters during vocabulary building if they are not explicitly considered. This
effect has previously been ignored. It will be shown that, if this third set (the
random negatives) is not explicitly considered, then a learnt mapping can reduce
the confusion between positive and NN negative training pairs, but this simul-
taneously reduces the distance between random negative point pairs, leading to
increased confusion. The solution we propose here is to add an additional loss
function to prevent this confusion (and we quantify its benefit in Section 5).

More formally, given a set of positive training pairs P, NN negative training
pairs nnN, and random negatives ranN, our aim is to learn a projection function
T : RD → R

M , where D is the dimension of the original descriptor space (e.g.
D = 128 for SIFT) and M is the dimension of the projected descriptor, such
that:

d(T (pi), T (pj)) < d(T (pk), T (pl)) and d(T (pi), T (pj)) ≪ d(T (pm), T (pn)) (1)

for pi, pj ∈ P, pk, pl ∈ nnN and pm, pn ∈ ranN.
In practice, it is not possible to fully separate these pairwise distances because

of noise in the training data and restricted model complexity, so instead a margin
based approach will be used which encourages the distance between the three
classes of point pairs to separate without enforcing the distance ordering as a
hard constraint. The loss function for this situation is illustrated in Figure 2(a).
The first margin aims to separate the positive and NN negative point pairs
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confused by SIFT in the original space. The second margin applies a force to
the random negatives to keep them distant from the positive pairs – ideally
the overlap in histograms between the positive and random negative point pairs
should be small. This motivates learning the projection function by minimizing
the cost function:

f(λ,W ) =
∑

x,y∈P

L
(

b1 − dW (x, y)
)

+
∑

x,y∈nnN

L
(

dW (x, y)− b1
)

+
∑

x,y∈ranN

L
(

dW (x, y)− b2
)

+
λ

2
‖W‖2 (2)

where L(z) = log(1+exp(−z)) is the logistic-loss, a smooth approximation to the
hinge loss which is more suitable for learning with gradient-based optimization,
dW (x, y) = ‖T (x;W ) − T (y;W )‖2 is the standard Euclidean distance between
the projected points, and W are the parameters of the projection function T .

The first three terms in (2) give the loss for the three different margins used,
and the fourth is a regularization term, controlled by λ, which is used to limit the
model complexity and stop over-fitting on the training data. b1 and b2 are the
positions of the left-hand and right-hand margin biases in projected distance
space. f(λ,W ) can be differentiated w.r.t. W by repeated application of the
chain rule provided T is also differentiable. The absolute values of b1 and b2 are
unimportant due to the scaling freedom in the projection functions – it is the
ratio b1/b2 which is important.

4.1 Projection function models

We consider two different forms for the projection function T : a linear model
of the form Wx; and a non-linear form for T based on a deep belief network
(DBN). For the linear model, the projection function T is parameterized as
T (x;W ) = Wx, with derivative ∂Ti

∂Wij
= xj , where W is a real valued D′ × 128

matrix and so projects x linearly to a D′-dimensional space. This is equivalent
to learning a Mahalanobis matrix M = W⊤W , therefore the linear model is
equivalent in power to that used in [9, 10, 16]. Because W is real valued, M is
positive semi-definite, and by learning W directly one can avoid the complica-
tions of adding semi-definiteness constraints into the learning routine. Though
the projection function T is linear, the cost function (2) is not convex in W due
to the square roots in d(·). However, previous work [13, 23] has shown that, in
practice, optimizing this cost over W does not lead to serious problems with
poor local minima.

For the non-linear model the projection function is based on a DBN [24] using
a series of restricted Boltzmann machines (RBM). In this case W contains the
projection parameters and biases for all the layers of the DBN. For one hidden
layer, the projection function is of the form:

T (x;W1,W2,W3, h0, h1, h2) = W3σ(W2σ(W1σ(x+ h0) + h1) + h2)

where σ is an element-wise logistic sigmoid function, Wi are matrices and hi

are column vectors (the hi act as per-layer biases for the transformation). For
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a DBN projecting a 128-D SIFT descriptor to a 32-D descriptor with a single
hidden layer of size 384-D, the number of parameters is = 128×384+384×384+
384×32+128+384+384 = 209, 792. We adopt a DBN architecture because we
expect non-linearities to allow the distance function to adapt itself depending
on the statistics of the local neighborhood of the features being considered,
and so improve the separation in distances between matching and non-matching
point pairs. While a kernel method might be thought of as a natural alternative
mechanism to introduce non-linearity, this would rule out the direct mapping of
descriptors that we seek. DBNs have previously proven successful for distance
learning in simple vision tasks, such as handwritten digit classification [13].

One potential problem with DBNs is that again (2) is not a convex function
of the parameters W . Nevertheless, with a large amount of training data and
good stochastic learning routines (see below), we find solutions which empirically
seem to generalize well to unseen data.

4.2 Optimization

The task is to minimize the cost function, f(λ,W ), w.r.t. to the parameterized
weights, W . In this work we use stochastic gradient descent (SGD) methods
to optimize the loss function, for two main reasons. First, stochastic gradient
methods scale linearly with the number of training points and have constant
memory requirements. This makes them attractive in online learning or when
the amount of training data is very large as in our case—here we use 3M train-
ing pairs, though more could easily be generated. Second, although stochastic
gradient methods may require a large number of steps to converge, they often
learn models which generalize well to unseen data [25].

SGD incrementally minimizes a cost function f by examining just a few data
points at a time. If f(X,W ) is the function to minimize, and X is the data, the
SGD update is:

Wt+1 = Wt −Θt∇wf(Xm..n,Wt)

The parameter vector W is updated according to the negative gradient of the
cost computed on just a few examples Xm..n. Θt is a learning rate which should
decrease over time to ensure convergence. Here, we use “mini-batches” of 200
point pairs (with labels positive, NN negative, and random negative) per pa-
rameter update step. In each mini-batch there are about equal numbers of the
three types of point pairs. In practice SGD can converge slowly so, to speed up
convergence, we use a pseudo second order method known as Stochastic Meta
Descent (SMD) [26]. SMD uses a per-parameter learning rate based on an ap-
proximation of the local curvature. One difference from the method used in [26]
is that here, we estimate the Hessian-vector product using finite-differences:
Hv ≈ (∇f(Wt + ǫv)−∇f(Wt))/ǫ, rather than using an analytical approach.

4.3 DBN implementation details

The weights in the model are initialized using a generative procedure that pro-
ceeds layer-by-layer, optimizing weights using contrastive divergence [24]. This
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Descriptor Notes Descriptor Dataset mAP
size RS1 RS2 RS4

(i) SIFT 128 Oxford 0.613 0.647 0.755

(ii) Learnt Linear 32 Oxford 0.599 0.634

(iii) Learnt Linear 64 Oxford 0.636 0.665

(iv) Learnt Non-linear 24 Oxford 0.606 0.649

(v) Learnt Non-linear 32 Oxford 0.644 0.681

(vi) Learnt Non-linear 64 Oxford 0.662 0.707

(vii) SIFT 128 Paris 0.655 0.669 0.683

(viii) Learnt Non-linear 32 Paris 0.669 0.680

(ix) Learnt Non-linear 64 Paris 0.678 0.689

(x) SIFT 128 Oxford-100K 0.490 0.541 DNF1

(xi) Learnt Non-linear 32 Oxford-100K 0.524 0.592

(xii) Learnt Non-linear 64 Oxford-100K 0.541 0.615

Table 2. Comparison of several different retrieval methods. The results for the
proposed methods are shown under the “Learnt” descriptor. The results for the baseline
and raw-matching methods are duplicated from table 1 for completeness. DNF1: RS4
is too slow to be run on this dataset.

performs an initialization that empirically speeds up convergence of the subse-
quent discriminative training. The generative training is run layer-by-layer for
one pass of the training data and takes around 30 minutes on a modern processor.

After this initialization, W is learnt discriminatively by optimizing (2): each
point pair of a mini-batch is pushed through the network to give the transformed
descriptors. The differentiable cost function (2) is then used to compute the
gradient on the output layer based on all the points in the minibatch. Back-
propagation is used to compute the gradient for the other layers in the network.

Once the gradient has been computed for all the DBN weights and hidden
biases, the parameters W are updated using SMD. This is done once per mini-
batch of points for a number of iterations over the dataset. For a DBN with
one hidden layer of size 384-D projecting to 32-D, training one iteration of 3M
point pairs takes just under 35 minutes on a single core of a modern processor.
Training is performed for 50 iterations over the training data – after this we see
rapidly diminishing returns.

5 Results

Our objective is to reduce the mAP-gap, and so our principal evaluation measure
will be the mAP of the retrieval system. However, as mAP is computed after
many steps of processing (and also involves a weighting function, tf-idf, in two of
the retrieval systems), in some cases we also show a simpler measure which is the
cluster true positive rate (CTPR): this is simply the proportion of true positive
validation pairs which cluster to the same visual word – for a fixed vocabulary
size it is a measure of the recall of each word, and is closer to the informal goal
stated in the introduction. In practice the two measures are closely correlated.
In the following we learn the projection function on the Oxford dataset. Where
results are stated with error bars, these are computed as a standard deviation
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over 3 vocabularies learnt from different initializations of the k-means clustering,
with k = 500, 000. For the baseline system RS1, CTPR is 0.336 ± 0.005. The
regularization parameter, λ, is optimized on the validation set. Other than the
generalization experiments, all results are produced on the Oxford dataset.
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Fig. 3. Adjusting the margin ratio. The (a) CTPR, and (b) mAP retrieval per-
formance as a function of the margin ratio, b2/b1 (see Equation 2). The hidden layer
dimension and final dimension are 384 and 32 respectively. “+L” indicates that a learnt
model is used.
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Fig. 4. Histograms of pair distances. The distance histograms of validation pairs
after training for (a) b2/b1 = 1.0 (b) b2/b1 = 1.6 (c) b2/b1 = 2.5. The histograms show
the positive, NN negative and random negative point pairs.

Choosing the margin ratio: Figure 3 examines the retrieval performance as a
function of the margin ratio b2/b1 for a non-linear model with one hidden layer
of size 384 projecting down to 32-D. This ratio controls the extent to which the
random negative pairs should be separated from the positive pairs. At b2/b1 =
1.0, both margins are the same, which mimics previous methods that use just
two types of point pairs: if the ratio is set too low, the random negative pairs
start to be clustered with the positive pairs; if it is set too high then the learning
algorithm focuses all its attention on separating the random negatives and isn’t
able to separate the positive and NN negative pairs. Distance histograms for
different margin ratios are shown in Figure 4. As the ratio is increased, there is
a peak in performance between 1.6 and 1.7. In all subsequent experiments, this
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Fig. 5. (a) Linear model: mAP performance as the final dimension D′ is varied. (b)
Non-linear model: mAP performance as the hidden layer dimension is varied. The
output dimension is fixed to 32.

ratio is set to 1.6 with b1 = 20.0. These results clearly demonstrate the value of
considering both sets of negative point pairs.

Linear model: Results for the linear model are given in Table 2 and are shown in
Figure 5(a). Performance increases only up to 64-D and then plateaus. At 64-D
the performance without spatial re-ranking is 0.636± 0.002, an improvement of
3.4% over RS1. With spatial re-ranking the mAP is 0.665± 0.003, an improve-
ment of 1.8% over RS2. Therefore, a learned linear projection leads to a slight
but significant performance improvement, and we can reduce the dimensionality
of the original descriptors by using this linear projection with no degradation in
performance.

We compare to the linear discriminant method of Hua et al. [16], using a local
implementation of their algorithm on our data. For this method, we used the
ranN pairs as the negatives for training (performance was worse when nnN pairs
were used as the negatives). Using 1M positive and 1M random negative pairs,
reducing the output dimension to 32-D, gives a performance of 0.585 without
spatial re-ranking; and 0.625 with spatial re-ranking. This is slightly worse than
our linear results which gives an mAP of 0.600 and 0.634 respectively. The
difference in performance can be explained by our use of a different margin-based
cost function and the consideration of both the nnN and ranN point pairs.

Non-linear model: Figure 5(b) shows the results of adjusting the dimension of
the hidden layer. The hidden layer dimension only affects the time taken to train
the model and project the features into the new space and doesn’t affect storage
requirements or clustering/assignment speed. From the figure, one can see that
retrieval performance increases up to around 384-D before leveling off, and for
subsequent experiments we fix the hidden layer dimension at 384-D.

Figure 6 and Table 2 show the effect on performance of adjusting the output
dimension of the projection function. The learnt descriptor attains the same
performance as SIFT at just over 24-D, a saving in storage of over 5 times. At
32-D, but without spatial re-ranking, the learnt descriptor performs as well as
using SIFT with spatial re-ranking (RS2). After 32-D, the performance gains
start to level off, but still improve up to 64-D. Using a 64-D descriptor with
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Fig. 6. Non-linear model: variation with output dimension for (a) CTPR and
(b) mAP performance. The hidden layer dimension is fixed at 384. (a) the CTPR rate
increases as the output dimension increases to 48, then flattens. Similarly, (b) shows
that at D = 32 the projected descriptors without spatial re-ranking (system RS1)
achieve performance equal to the original descriptors with spatial re-ranking (system
RS2). Performance continues to increase toD = 64 and then plateaus. Spatial reranking
on the projected descriptors beats RS2 by 5.9% (0.647 to 0.706 mAP).

spatial re-ranking beats RS2 by 5.9% (0.647 to 0.706 mAP). Note also that the
non-linear model greatly improves performance over the linear model (0.665 to
0.706 mAP). The non-linear model substantially closes the mAP-gap and brings
the quantized visual word method much closer in performance to the raw SIFT
method. This is achieved with no increase in query times or index size.

Generalization: Here we examine the generalization of the learnt descriptor to
the held-out Paris dataset. Spatial re-ranking on the raw SIFT descriptors for
Paris gave a much lower performance gain than for Oxford, so there is less
that our method can do. Nevertheless, we still increase performance over the
baseline method. Our 64-D descriptor, learnt on Oxford, gives a score without
spatial re-ranking of 0.678 (compared to 0.655) and with spatial re-ranking gives
0.689 (compared to 0.669), slightly exceeding the performance from using the
raw descriptors of 0.683. This is principally due to the many non-planar queries
present in the Paris dataset which is challenging for the RS4 method.

In figure 7, we qualitatively examine the spatially verified inliers between
some image pairs for the baseline method, our quantized learnt method and the
raw descriptor method. The quantized learnt descriptor gives more inliers to the
computed homography and closes the gap on the raw matching method.

Table 2(x)-(xii) gives retrieval results for Oxford combined with a large set
of 100K images [3]. The additional images do not contain the landmarks and
so act as “distractors” for retrieval. Using the quantized learnt descriptor with
D=64 and spatial re-ranking gives a substantial boost in performance from 0.541
to 0.615. Again this illustrates that the learnt projection function is able to
generalize to other datasets, whilst still boosting retrieval performance.

6 Conclusion

We have shown that, by transforming descriptors prior to clustering, we can
boost performance considerably over a baseline retrieval method and can pro-
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Fig. 7. Qualitative examples on the Paris dataset. Demonstrating the improve-
ments in matching using our quantized learnt descriptor. The number of inliers found
are listed beneath each image pair. The four columns are: (a) the original image pair;
(b) matches found by the baseline visual words; (c) matches found by our learnt visual
words; (d) matches found by the raw SIFT matching method.

duce results using visual words alone that are as good as the baseline method
combined with spatial re-ranking. We have considerably closed the performance
gap between the raw SIFT matching method and the much faster quantized re-
trieval method for both datasets considered here. This performance boost comes
at zero runtime cost (though some offline cost) and with reduced data storage.

Since the descriptors are transformed before quantization, they can easily be
used in conjunction with other recent works that have improved performance
over a raw bag of visual words approach, such as [27, 28].

We have illustrated the method for SIFT and for two types of projection
functions, but clearly the framework of automatically generating training data
and learning the projection function through optimization of (2) could be applied
to other descriptors, e.g. the DAISY descriptor of [29] or even directly to image
patches.
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