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A DESCRIPTOR�rVARIABLE APPROACH TO MODELING

AND OPTIMIZATION OF LARGE-SCALE SYSTEMS

ABSTRACT

A new approach to modeling and analysis of systems is presented t
hat exploits

the underlying structure of the system. The development of the approach focuses

on   a new modeling form, called descriptor  var€abLe   systems,   that was first   intro-

duced in this research. Key concepts concerning the classification and solution of

descriptor variable systems are identified, and theories are presented for the linear

case, the time-invariant linear case, and the nonlinear
case. Several standard

systems notions are demonstrated to have interesti
ng interpretations when analyzed

via descriptor variable theory.

The approach developed   also focuses   on the optimization of large-scale   sys tems.

Descriptor variable models are convenient represen
tations of subsystems in an inter-

connected necwork, and optimization of these models via dynamic programming is de-

scribed. A general procedure  for the optimization of large-scale systems, called

spatiaL dynam€c programm€ng, is presented where the optimization is spatially de-

composed in the way standard dynamic programming t
emporally decomposes the optimi-

zation of dynamical systems.  Applications of thi
s approach to large-scale economic

markets and power systems are discussed.
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I.  INTRODUCTION AND OVERVIEW

1.1  PROJECT THEMES the form

This report contains the results of all re- x(k+1) - h (x(k), u(k))
search conducted in the project A Descriptor Var-

k

iab Ze Approach to ModeZing and Optimization of Many issues examined in the context of state-space
Large  Scale   Systems. The project is part of an systems,  such  as  controllability,  optimal  control,
effort to investigate modeling forms chat are and system inversion are handled naturally in che
appropriate for the analysis of large-scale sys- descriptor variable framework. The relevance of
tems.  The guiding philosophy of this research this framework to systems theory is considered at
was to develop mathematical system formulations the end of Chapter II.
that exploit the special structure of the actual

system being modeled. It is believed that a model A central concern in any descriptor system is
is most likely co preserve the natural structure the nature of the solution space for the descriptor
if the system representation is given in terms variables corresponding to some specified trajec-
of actual physical or economic variables that cory of inputs.  Two dual concepts, solvabi Zity and
describe the system operation. Since the systems cond€ tionabi Zi ty, characterize a well-defined   so-
studied in this report accommodate such repre- lution space. Solvability requires that all the
sentations,   the   formulations  have been called descriptor system equations are independent, such
descriptor  var€ab Ze systems. that no relationships are redundant or potentially

contradictory. Conditionability indicates that a
The research effort of this project had two

unique solution can be obtained by properly speci-
major themes: fying conditions on the initial descriptor vector

x(0) and the final descriptor vector x(N).  Solvable
(1) Development of the foundation of descriptor and conditionable descriptor systems can be solved

variable theory, including identification of using a doub Ze-sweep method.  Essentially the so-
basic concepts and derivation of fundamental lucion is determined by propagating the specified
analysis techniques. conditicns on x(0) forward through the cime stages

and the conditions on x(N) backward through the
(2) Investigation of large-scale system optimi- time stages.  The forward and backward propagation

zation, including the development of spatial at any stage k uniquely characterizes x(k).  This
dynamic programming, a technique that ex- double-sweep method is, in fact, a generalization
ploits subsystem interconnection structure. of the single-sweep solution for state-space sys-

tem with given initial conditions. However, a
These themes were initially explored somewhat in- special class of descriptor systems, called reguLar
dependently, however both themes shared the common sys tems   can be solved using   only the forward sweep.
philosophy of preserving structure. Therefore, it These concepts are examined in the context of
was not surprising that the themes interacted linear descriptor systems in Chapter II.
during this research. This interaction is re-
flected in sections of this report, including a Time-invariant linear descriptor systems have
synthesis of the themes in Chapter VIII. The re- several special properties, which are discussed in
mainder of this chapter gives an overview of the Chapter iII. First, any such system is solvable
content of the report. for any number of stages N if and only if it is

conditionable for any N. Second, there is an
1.2  DESCRIPTOR VARLABLE THEORY equivalence between a time-invariant linear system

and a matrix pencil of the form sE-A; the system
A discrete-time system in descriptor form is is solvable if and only if the determinant of the

a set of (vector) relationships: matrix pencil is nonzero for some scalar s. Third,
any system in this class can be expressed in a

fl(x(0), x(1), u(0)) - 0 quasi-state-space form:

fl(x(1), x(2), u(1)) =
0 x(k+1)  - Xx(k) + Bu(k)  + Cu(k+1) +...+ Eu(k+n-1)

Finally, using the equivalence between  time-
invariant linear systems and their corresponding

fN-1(x(N-1),x(N),u(N-1))  = 0 matrix pencils, these systems  can be decomposed
into a maximal number of independent subsystems,

where x(k) is a vector of descriptor variables with each subsystem being a state-space system
and u(k) is a vector of inputs associated with that propagates forward in time or a state-space
increment k.  The descriptor representation system that propagates backward in time.  This
accommodates  a wide range of system formulations, decomposition is useful for system analysis or
including the special class of state-space repre- characterizing valid initial and final conditions.
sentations, where che relationships above   take

1



The concepts developed in the context of way that classical discrete dynamic programming

linear descriptor systems extend to nonlinear sys- optimizes a dynamic   sys tems across time stages.

tems. The nonlinear theory is constructed from the First, one subsystem is optimized for every com-

viewpoint of differential topology, allowing both bination of interconnections, creating a family of

geometric and algebraic interpretations. A mani- solutions that are each parameterized on the inter-

fold in the space of all possible realizations of connections between that subsystem and the rest of

descriptor vectors characterizes the set of so- the system.  Next, another subsystem is added and

lutions. In a solvable and conditionable system, a family of optimal solutions for the combination

this manifold can be projected in a one-co-one of   the two subsys tems is determined,   with   each   so-

manner to a manifold in the space of x(0) and x(N) lution parameterized on the interconnections be-

vectors, thus creating the manifold of arbitrary tween this composite and the rest of che system.

boundary conditions. The selection of a point This second iteration of optimizations is eased

on this boundary manifold, accompanied by the by the results of the first iteration. The process

creation of equivalent boundary manifolds cor- of adding an additional subsystem and optimizing

responding to shorter time intervals, form the the new composite, while embedding the results of

basis for a nonlinear double-sweep of calculating the previous iterations, is continued until all

the solution. This approach is described in Char subsystems   have been included   in the composite.

cer IV. This procedure leads to a global optimum in a

finite number of iterations and can be applied to

1.3  LARGE-SCALE SYSTEM OPTIMIZATION a wide range of systems and optimization criteria.
A skillful sequencing of the subsystem optimiza-

Large-scale system models can often be ex- tions can efficiently exploit the interconnection

pressed in descriptor form, and therefore methods structure of system. Further description of spa-

for optimizing descriptor variable system are im- tial dynamic programming and demonstration of its

portant tools for large-scale optimization. De- global optimality appear in Chapter VI.

scriptor variable systems with separable perfor-

mance criteria can be optimized using dynamic pro- 1.4  APPLICATIONS

gramming.  However, the principle of optimality

must be reformulated from the principle developed The theoretical results of this study have

for state-space systems, since any optimal tra- been  applied  to cwo classes of large-scale systems:

jectory must be consistent with the final as well economic networks and power systems. Economic net-

as the initial conditions. A more efficient dy- works consist of a set of interconnected markets

namic programming procedure exists for regular linked by the sectors of economy that participate

descriptor systems, where a lower order state in those markets. By properly aggregating these

exists that is not constrained by conditions on sectors into sets, a price-quantity equilibrium

x(N).  The optimal input trajectory for regular model describing the sectors' behavior with re-

descriptor systems can be always expressed as
a spect to these markets can be formulated as a

feedback control law. These dynamic programming descriptor variable system. For certain classes

algorithms for linear descriptor systems are
con- of   networks, the double-sweep solution procedure

sidered in Chapter V. corresponds   to the construc tion of supply   and   de-

mand functions at each market, thereby providing

One approach to optimizing large-scale systems substantial insights into the operation of the

is a two-level approach where at one level the network in addition to an efficient solution pro-

interactions between subsystems are selected, and cedure.  The formulation as a descriptor model

at the other level the subsystems are optimized also permits the application of theoretical re-

for the given interactions.  The combination of
a sults derived for descriptor systems such as the

subsystem model with relationships characterizing effect of particular policy inputs on the network

the fixed interactions often creates a rectangular equilibrium and the optimization of policy inputs.

descriptor system. Since rectangular systems have This application area is discussed in Chapter VII.

more equations than unknowns, these systems are

generally solvable for only a restricted class of Power networks can be modeled as a large-

input trajectories.  The optimal control policy scale system of interconnected generation nodes

corresponding to these subsystem models can be and load points. An ongoing concern to power sys-

expressed as a feedback control law when the sys- tem operators is the determination of a genera-

tem is regular and satisfies a condition called tion mix that minimizes the costs of generation,

uniform comptete mintainab€Zity.  The description operation and maintenance, etc. Spatial dynamic

of this condition and ics application are con- programming readily accommodates such systems and

tained in Chapter V. cost criteria. This technique does not require

simplified linear models of the power flows and

The two-level approach indicated above pro- easily handles dispersed generation of power;

vides the focus for a comprehensive procedure for yet it is capable of minimizing costs for large,

large-scale system optimization, called spatial interconnected networks in a computationally

dynama   progrcumkng. The underlying mo tivation feasible manner.  The formulation of the optimal

is that by performing a sequence of smaller opti- power flow problem and the application of spatial

mization problems, the overall optimal solution dynamic programming to a power network example

can be determined in a tractable manner. The appears in the final section of Chapter VI.

theme of spatial dynamic programming is to opti-

mize across interconnected subsystems in the same

2



II. CONCEPTS OF DESCRIPTOR VARLABLE SYSTEMS

2.1 INTRODUCTION cations are considered in Section 2.6.

Dynamic phenomena represent a special ver- The Descriptor Approach to ModeZing
sion of complexity - where the variables de-
scribing a system at one time are interrelated, Typically, the process of modeling a complex
not only with other variables at that time, situation is initiated by the definition of a col-
but in a special way with variables at other lection of variables that, in some sense, is ade-
times. A general formulation of a set of dy- quate to describe the system. These are conveni-
namic relations is provided by a sec of equa- ently referred to as descriptor vartab Zes.  The
tions of the form descriptor variables generally have inherent mean-

ing, or natural interpretations, within the con-

go(x(0),x(1),u(0))=0 text of the particular situation. They might
represent, for example, positions, velocities, or

gl(.x(1),x(2),u(1))=0 accelerations in Newtonian systems, prices or
quantities   in an economic   system, etc. Initially,

(2.1) no attempt is made to select a minimal set of

variables; the objective being simply to obtain

an adequate set.  Once the variables are defined,
relations among the descriptor variables are de-

%n-1(x(N-1),x(N),u(N-1))=Q
veloped as dictated  by the system  laws.     Some  of
the resulting relations  will, in general,   be  dy-

where
namic, in that they involve variables at different

time instants, and some of the relations will be

purely static, representing identity relationsx(k) is an n-dimensional descriptor vector
for each k=0,1,2,...,N

that hold becween variables. The result of this

process of modeling is a set of equations ex-
pressed in terms of variables that are natural

u(k) is an m-dimensional input vector for
each k=0,1,...N-1 descriptors of the system.  This approach to the

modeling of physical systems is emphasized in

gk   is a function taking values in
several standard texts (e.g., [4 ]).

n-dimensional space. Lirge-Scale Interconnected Systems

Throughout this report, a set of equations of
Often a large-scale system is most effectivelythis form is referred to as a set of dynam€c

equations in descriptor form.
regarded as a collection of interconnected sub-

systems [ 5]. Each subsystem i may have a repre-
sentation of the formA special case is represented by the set

of linear equations
xi(k+1)-Aixi(k)+Bivi(k)

Ek+lx(k+1)-Akx(k)+u(k), k=0,1 '...,N-1
Zi(k)-Cixi(k)+Divi(k)

(2.2)

Each A  and E  is an nXn matrix.  Again each where xi(k),vi(k), and zi(k) are, respectively,
state, input, and output vectors. These can be

x(k) is an n-dimensional descriptor vector and
I

combined, in the obvious way, to produce thenow each u(k) is an n-dimensional input vector.
overall subsys tem equations(In many situations the actual input enters the

equations with some coefficient matrix, say

Bk, but from the present viewpoint this serves x(k+1)-Ax(k)+Bv(k)

only to redefine the inpuc vector.)
z(k)-Cx(k)+Dv(k).

The descriptor formulations (2.1) and (2.2)
The interconnections between subsystems and the

above contain as special cases many standard
forms. Some of these, of course, are most con- overall input u(k) and overall output y(k) might

be defined by linear relatinns of the general
veniently treated directly with standard tech-
niques [ 1]-[ 3], without need fpr the more

form

general representation. There are, however,
several important classes of situations in v(k)-Kz(k)+Mu(k)+Ny(k).

which the descriptor representation is either
a natural starting point or an essential char-

y(k)-Pz(k)+Qu(k)+Rv(k).

acteristic. Some ways in which such represen- The resulting interconnected   sys tem cannot readily
tations arise are outlined below.  Other appli- be transformed to state vector form. Indeed, it

3



is known that a state vector representation may The exposition of this chapter is restricted

not  exist [6] . Nevertheless, the complete set to the case of linear equations, although much of

of equations is easily seen to be a special
case the development will be extended (at least in

of (2.2), with descriptor vector equal to principle) to the nonlinear case in Chapter IV.

(x(k),v(k),z(k),y(k)), and therefore they
can In the development use is made of an old concept

always be treated by the methods of this report. in dynamic systems;   that of initial conditions.

An initial condition vector can be propagated

mondiagonaL E Matrices through the system, much like a state, even when

a scate vector does not exist. Indeed the solu-

The equations of many large-scale systems tion to most dynamic equations can be obtained

(e. g., electric power systems - see [7 ] or [8 ]) by propagating initial conditions forward to the

or systems of equations representing partial
dif- final cime point and then solving backward. This

ferential equations often have natural represen- is referred to as the "double sweep" method of

cations of the form (2.2) where the correspond- solution and is one of the main results in Sec-

ing  matrices   E are nonsingular  but not diagonal. tion 2.3.

Sometimes these matrices have simple structure,

such as a tridiagonal form, and it may be con- One aim of the chapter is to determine con-

venient to maintain the simplicity of this struc- ditions under which a set of dynamic equations

cure in the equations. In such cases one would can be decomposed into dynamic and static com-

work with the form (2.2) rather than, or in con- ponents. This amounts to determining conditions

junction with, the more standard form obtained by under which there is a state space dynamic system

multiplying   by E l.
buried somewhere within the original dynamic equa-

tions.  The existence of a state implies that the          
  I

solutions to che original equations can be deter-
Perturbation Equations

mined recursively as the successive u(k)'s are

A very powerful method for dealing with large specified.  Equacions that fulfill these require-

systems is that of perturbation analysis where ments  are referred  to  as  regu Lar dynamic equations,

small constants in a system are set to zero
co and are considered in Section 2.4.

produce a simplified system which serves as basis

for an initial control design [9 ].  The singular In a completely initialized state-space sys-

perturbation method works with systems of
the tem, a state variable will be sensitive to previ-

form ous inputs, but not present or future inputs.

These sensitivities are readily determined from

X1(k+1)-Allxl(k)+Al.2x2(k)+Blu(k)
the state-space formulation. In the more general

descriptor formulation descriptor variables can

Ex2(k+1)-A2ixl(k)+A22x2(k)+824(k)
be sensitive to previous and future inputs.  How-

ever, descriptor systems decompose inco a state-

where the perturbation parameter g is small.
The space system plus an independent system that be-

case E=O corresponds to a singular perturbation. haves as a state-space system moving backward

It changes the dynamic order and leads to a
set through time.  This decomposition allows a con-

of equations of type (2.2). venient determination of variable sensitivities,

as described in Section 2.5.

NoncausaL Systems
The results in this chapter concerning de-

A system expressed (or expressible) in state- scriptor variable  sys tems assume the existence  of

space form is causal, in that its state vector
is well-defined solution sets. The notion of a well-

not influenced by future inputs. For some pur- defined solution set is characterized by cwo dual

poses, however, causality is a limitation. For concepts, solvability and conditionability.  These

instance, some important linear data processing two   concepts   and   the dual nature are describ ed   in

schemes are noncausal but can be represented by the next section.

che general descriptor representation (2.2).
2.2  SOLVABILITY, CONDITIONABILITY, AND DUALITY

Identification Prob Zems In the general linear case (to which the for-

An important branch of dynamics, encompassing mal development is restricted) dynamic equations

much  o f the disciplines of standard system theory, have the form

econometrics, and various social sciences, is that

of identification - where parameters of a dynamic E-
x(k+1)=Akx(k)+u(k),

k-0,1,...,N-1
-k+1

representation are fitted to data. In difficult (2.2)

situations, the structure postulated for identifi-

cation must be sufficiently general to allow for where, as before, each A, c and E  is an
nXn matrix,

an uncertainty in the underlying dynamic order, each x(k) is an n-dimensional descriptor vector,

or even for an uncertainty of the causality pat- and each u(k) is an n-dimensional input vector.

tern (i.e., which variables depend on previous This set can be written out in block matrix form

values of which others).  The structure of general as

descriptor equations (2.2) is sufficiently rich

for these purposes, while more conventional forms

often are not.

4



- -- -

-Ao El X(0) i.e.. soZvab€Zity of the whote impLies soLvab€Zity

0   -Al E2 X(1) of a subset.

Conditionab€Lity

As shown above, a set of dynamic equations

EN-1
0 x(N-1) always has more unknowns than equations, and

therefore, if a solution exists, it will not be
unique. Additional relacions, or conditions,

0 -AN-1   EL  L. (N)- must be specified to define a unique solution.
-- There is usually great flexibility available for
U(0) this specification. These additional relations

might, for example, specify fixed values for var-
U(1) ious descriptor variables at certain values of k.

or they might specify values for various linear
(2.3) combinations of descriptor variables at various

values of k.

In the study of dynamic equations, it is
u(N-1) most natural to define the required additional--

conditions in terms of the descriptor variables
The block matrix form, with each block being nXn, at the end points of the given time interval.
explicitly displays the fact chat the set of dy- However, for some sets of dynamic equations a
namic equations can be regarded as one (large) unique solution can be specified only by im-
system of linear equations. posing additional requirements on descriptor

variables at intermediate time periods.  Such
So Zvabi Zity equations are in a certain sense dynamically de-

generate since they contain variables which are
In (2.3) there are N+1 unknown x(k) vectors not influenced by conditions at either end.  A

(each of which is n-dimensional), but there are criteria for assuring that this does not occur
only N matrix equations (each of which n-dimen- is made formal by the definition of conditiona-
sional). There is, therefore, an excess of one bility given below.
vector unknown over equations - or in terms of
scalar quantities, an excess of n unknowns to Corresponding to the set of equations (2.3),
equations. Under standard nondegeneracy con- denote by G(O,N) the matrix (expressed in block
ditions, one expects accordingly that the system form)
(2.2) will possess not one but a family of n -

linearly independent solutions. This is forma-                     E
1lized by the notion of solvability introduced

-A    Ebelow.
1     2

-A
2For convenience, denote the coefficient ma-

trix of the system (2.3) by F(O,N).  It can be G(O,N) -            '
regarded as an N X (N+1) block matrix, or in
ordinary terms as an nN X n(N+1) matrix.

EN-1
Definition:  A set of dynamic equations (2.3) is

-AN-1said to be sotvable if its coefficient matrix -

F(O,N) is of full rank.
The matrix G(O,N) is the submatrix of F(O,N), ob-
tained by eliminating the first n and the last n

In considering the set of dynamic equations
columns. It is referred to as the condition ma-(2.2) it is often convenient to consider a subset

obtained by deleting some of che first (or some-
times the last) equations. (This deleting is

Definition:  A set of dynamic equations (2.3) isdone, of course, by dropping whole groups of n
said co be conditionab Ze if the matrix G(O,N) isequacions from the block form, not individual
of full rank.equations from the detailed form.) This corre-

sponds to a restriction co a subinterval of the
It can be seen that conditionability isfull time interval over which the original set of

equivalent to the property that any two distinct
equations is defined. If a number of equations

solutions to the set of equations (2.3) must dif-
are deleted in this way so that the first unknown

fer in at least one end-point descriptor variable.
descriptor vector is x(k ) and the last is x(kl)'

Suppose tf the coltrary that x(0),x(1),...,x(N)the associated coefficient matrix of the reduced
and x(0),x(1),...x(N-1),x(N) are both solutions.set of equations is F(ko,kl)     It is clear that
Then the difference of these solutions, which isif the equations of the original set were linearly
zero in the first and last descriptor vectors,independent the equations of this reduced set will
must satisfy the homogeneous equation corre-be  also. This shows that solvability is preserved
sponding to (2.3) .  However, when the first and

under the fundamental device of time restriction,
last vectors are excluded, the coefficient matrix

5



of this homogeneous system is G(O,N).  There will equations defined by a given pair of E and A ma-
be solutions to this restricted homogeneous equa- trices, and corresponding to
tion if and only if that matrix is of less than

full rank. Ex(k+1)=Ax(k)+u(k),     k-0,1,2,... . (2.4)

Conditionability is also equivalent to the Then, since this infinite duration process is sol-

property that conditions in terms of end-points vable or condicionable only if the corresponding
are sufficient co uniquely specify a solution. rank conditions hold for all N, it follows that

This interpretation, which of course motivates these properties depend only on the pair of mat-

the terminology, is discussed in Section 2.3. rices E and A. The following result shows that in
this case the two properties are not only linked

Conditionability, just as is solvability, is by duality, but they are identical.

preserved under the formation of subsets of dy-
namic equations.  That is, conditionab€Zity of Theorem  2.3:    A time invariant  set of dynamic  equa-
the whoZe implies conditionab€Zity of a subset. tions is solvable if and only if it is condition-

able.

DuaZity
proof: The proof is by contradiction.  Suppose

Solvability and conditionability are in a that there is an N such that the corresponding

very natural sense dual concepts. Corresponding finite set of dynamic equations is not condition-
to a set of equations (2.2), we define the sub- able. This means, equivalently, chat the macrix
duaL set of dynamic equations by                      G(O,N) is not of full rank. Its rank is, in fact,

no greater than n(N-1)-1, since the matrix con-

E 1(k-1)=A X(k)+v(k),
k-1,2,...,N-1. tains n(N-1) columas.  Now let BZn(N-1)+1.  The

larger matrix G(O,N), correspotding  to   the  set  of
This set of dynamic equations must be interpreted equations terminating at time N, will have the

as having time running backward, since each equa- structure

tion involves X(k),X(k-1), and v(k). It should -

be noted that the subdual set is smaller than the

primal, since it has descriptor vectors 1(k) only        E
for k-0,1....,N-1. This is necessary because the

-A  Eoriginal set contains only N-1 pairs of E 'Ak ma-
trices with the same time indices. It is for this -A .

reason that the term subdual rather than dual is
employed.

E

In terms of this definition one may easily -A  E
state the following two duality results.

-A  E

Theorem 2.1:  A set of dynamic equations is con-

ditionable if and only if its subdual is solvable.

Proof: The coefficient matrix of the subdual set                               E
of equations is G(O,N)T.  It will be of full rank

-A
if and only if its transpose is of full rank.   I

Theorem 2.2: If a sec of dynamic equations is

solvable then its subdual is conditionable.
E

proof: Solvability of the original set is equiv- -A  E
alent to the statement the coefficient matrix

F(O,N) is of full rank. It follows that the sub-

matrix F(l,N-1) is also of full rank. The trans-

pose of this submatrix, however, is the condition E
matrix of the subdual set of equations.                                                           -A

- -

Time-Invariance
-2

According to the basic definition, a set of It has a total of n(N-1)-2n (N-1) columns and con-

dynamic equations is defined with respect to a
sists of 2n blocks of the same basic structure

specific time interval of finite length.  Systems
that made up the original G(O,N).  Accordingly,

of infinite duration are considered to be solvable
the rank of this matrix can be no greater than

22[n(N-1)-1].or conditionable only if the corresponding finite
sets of equations, terminating at a fixed N, are

solvable or conditionable, respectively, for every
The  correspondin£ coeff icient matrik  F(O,N)

is identical with G(O,N) except that it has 2n
value of N.

additional columns. Thus, the maximum rank that

The notion of infinite duration dynamic equa-
this

ciefficient
matrix can have is 2n[n(N-1)-1]

tions is especially valuable in connection with
+2n-2n (N-1). However, to be of full rank this
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2
matrix must be of rank 09-2n (N-1)+ n, since this Now let I be the set of indices i corre-
is the number  of  rows it contains. Therefore, the sponding to tho2e columns not selected in the first
set of equations defined over the interval 0 to Y

group of n columns.  Similarly, lee IN denote the
is not solvable. i     set of indices corresponding to chose columns not

selected  in  the last group  of n columns.   (Both  in-
It follows from the above argument that if a dex sets I  and

IN
consist of integers between 1

time- invariant  sec od dynamic equations is solva- and n) .   T gether' Io  and IN consists of rrhd  ele-
ble it is also conditionable. the reverse 1mpli- ments.
cation follows from the duality result of Theorem

-

2.1. The conditions x
(0)-al'i€Io and x.(N)=b ,j€IN where the ai and  i are real numberJ, can be

Time invariant systems of form (2.4) are in- specified arbitrarily and the total set of equa-
cluded within the scope of earlier work (see tions, consisting of these and the original set of
e. g. [ 10] ) employing techniques of modern algebra dynamic equations, will be of full rank.         I
and related to classical transform methods.  A
standard assumption in this framework is thac Suppose that a system is both solvable and
detjA-s E|#0.  This condition will be shown to be conditionable and that a complete set of n aux-
equivalent to solvability (Chapter III). There- iliary conditions is specified in terms of m
fore the two definitions of solvability and con- initial conditions and n-m terminal conditions.
ditionability together appear to be the natural It is convenient co view the conditions as the
extension of the standard assumption, providing components  of two separate condition vectors.
the bridge becween existing time-invariant theory

Thus, one defines the vector y(0)=r x(0) where
and a more general theory for time-varying sys- r  is an mXn matrix of rank m, and specifies the
tems. The time-invariant case is investigated m'initial conditions in the form y(0)-a  where a
further in Chapter III. is  an arbitrary m-dimensional vector. Likewise

a final condition vector of dimension n-m is de-
2.3  CONDITION VECTORS AND TIME DOUBLE SWEEP fined by

z(N)-#Ix(N),  and the
final condition is

written z(N)=b: A solution to the solvable and
InitiaL and Final Conditions

conditionable system is specified uniquely in
terms of the values of its initial and final con-

The set of additional conditions required dition vectors y(0) and z(N).
to completely specify a solution to a set of dy-
namic equations  may  cake a variety of forms. Propagation   of  Condition   Vectors
The equations will each, in general, involve
descriptor and input variables at several time Suppose initial and final conditions are
points. A special form of additional relation, specified for a set so that a unique solution is
however, which   is of great importance,   is the defined. Consider the subset of equations, ob-
pure initial or pure final condition which in- tained by deleting the first (n-dimensional) equa-
volves, respectively, only x(0) or only x(N), tion, corresponding to a set of dynamic equations
and no input values. The next theorem shows the starting at time 1 rather than time 0. A set of
universality of this special form of relation. initial conditions for this subset can be speci-

fied, along with the original final conditions, so
Theorem 2.4: If a set of dynamic equations is that the unique solution of this subset of equa-
conditionable, then a complete set of additional tions will agree in x(k), k=1,2,...,N with the
conditions can be specified in terms of pure previously defined solution of the original full
initial and pure final conditions. set of equations.  These initial conditions, now

specified  at  k-1,  can be regarded  as the propaga-
proof: Consider a set of equations defined on the tion through one stage, of the original initial
interval 0 to N. As before, let F(O,N) and G(O,N) conditions.  The propagation process can be re-
denote, respectively, the coefficient and con- peated successively all the way to the final end-
dition matrix of the set of equations. Under the point.
assumption chat the set is conditionable, the ma-

trix G(O,N) has full rank, equal to n(N-1).  It              There are a number of ways to display the
follows that the matrix F(O,N) must have rank at explicit formula for condition vector propagation.
least this great, but of course it can be no Since the essential ingredient of the procedure is
greater than the number of its rows. Thus, the the solution of a rectangular system of linear
rank of F(O,N) must lie between n(N-1) and aN. equations, many methods convenient for computation
Denote this rank by r, and the difference nN-r by involve matrix partitioning, matrix augmentation,
d.      ( In the usual case where  F(O,N)   is  of full or  formation of pseudoinverses. The method   em-
rank, d=0.) ployed below is chosen for its relatively stream-

lined notation.
The   matrix   G( O, N) is defined   as the subma-

trix of F(O,N) obtained by deleting the first and Lemma: Let r be an mXn matrix of rank m, and let
last n columns.  Now imagine adding some of these A be an nXn matrix. Then there exists an mXn ma-
columns back to G(O,N) in order to get a total of trix P of rank m and an mXm matrix R such that
r columns, all of which are linearly independent. Rr=PA.
A suitable selection is always possible since the

full matrix F(O,N) has rank r. There will be

n=d columns added in this way.
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proof:    The  (n+m) X n composite matrix The recursive propagation process is characterized
by the following theorem:

 A                              Theorem
2.6: Suppose the set of dynamic equations

(2.3) is both solvable and conditionable.  Let

z(N)=A  (N) be
a final condition vector of dimen-

has rank no greater than n. Thus, there are m sion n-m. Then the corresponding successive pre-

linearly independent row vectors of dimension n+m vious condition vectors z(k)=Akx(k)
are defined by

that are orthogonal to the columns of this com- recursive relations

posite matrix. Let these form the rows of an

mX(0+m) matrix [R,-P], where R is mXI, and P is z(k-1)-Skz(k)-Qku(k-1)

mXn.  By construction Rr-PA.

SkAIC=QkEk
It remains to be shown chat P is of full rank.

Suppose to the contrary that there was a nonzero, ik-1=QkAk-1
m-dimensional vector X such that XTP.O.  It would

then follow thac 0-AT(Rr-PA)-ATRr.  However, since
where in each case Qk is chosen to have full rank.

r   is  of   full  rank this would imply  XTR-0.     Thus,

XT[R,-p]=0, contradicting the original construe- The proof is similar co the proof of Theorem 2.5.

tion.                                          
The   Doub Ze Sweep Method of Solution

Theorem 2.S: Suppose the set of dynamic equa-

tions (2.3) is both solvable and conditionable. Any solvable and conditionable set of dynamic

Let y(0)=r x(0) be an initial condition vector equations, augmented by any complete set of  n

of dimensi8n m.  Then the corresponding succes- initial and final conditions, can be solved by a

sive condition vectors y(k)-rkx(k) are defined double sweep mechod.  One starts with the given

by the recursive relations initial conditions and propagates them forward, as

described above, all the way to the termination

y(k+1)-Rky(k)+Pku(k) (2.5a) point N.  At this point n independent relations

will be determined, and x(N) can be calculated.

(2.5b) Knowing this vector and all previous condition vec-
Rkrk-Fk42 tors,   one  can chen progress backward solving  one

(2.5c) at a time for all other descriptor vectors.
*k+1=PkEk+1

where in each case Pk is chosen to have
full The backward phase of the solution progresses

rank. as follows. Given x(k+1) one considers the equa-

tionS

Proof:  Assume thac  k has been defined and y(k) -

rkx(k)
computed. Starting with the original rkx(k)-7(k)

equation
Ek+lx(k,+1)-Akx(k)411(k).

Ek+lx(k+1)-Akx(k)+u(k) (2.6)
These are the only equations involving x(k) in the

multiply the matrix Pic to obtain subset of equations on the time interval k to N.

It must therefore be possible to solve for x(k) is

FkEk+lx(k+1) -FkAkx(k)+Pku(k).
x(k+1),y(k) and w(k) are specified.  In particular

the composite matrix

Using the definition of Pk from (55) this reduces
 rk-CO

FkEk+lx(k+1)-Rky(k)+Pku(k). (2.7)                        LAk_

Now,  since 1)  y(k) is independent of u(k),  2) u(k)
must be of full rank.  Let [hc,M[.] be a left in-

is arbitrary, and 3) P  has full rank, it follows verse of this composite, L c is n*m, M  is nXn, and
that the right-hand sihe of (2.7) is arbitrary.

LkrklkAk= I. Then one may write the Dackward re-
Since the system is solvable it must follow chat cursion

P F    is of full rank.  Thus, it is legitimate

th  * 
rk+1=PkEk+1

leading to x(k)-Lky(k)+MkEk+lx(k+1)-Mku(k). (2.8)

7(k+1)-Rky(k)+Pku(k).                    i This is the back sweep which determines the suc-

cessive descriptor vectors.
An interesting and important corollary of the

formula rktl-PkEk+1
An alternative explanation of the doublederived in the proof is that

the rank or r can be no greater than the rank
k+1 sweep can be constructed, as a combination of a

of Ek+1.  Thus, the Ek of minimal rank establishes forward propagation of the initial conditions and

an upper bound on the number of initial conditions. a backward propagation of the final conditions.

By determining the forward condition vector y(k)

In a similar manner, the final conditions can and the backward condition vector z(k), the de-
be  propagated backward through  the time stages.

scriptor vector x(k) can be recovered by the
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equation Theorem 2.7: A condition vector y(k)=rkx(k) is a

'Ck)-Ir,   4-' 1

state for the sec of equations (2.9) if and only
9(k)                             if

the matrix

Lz(k)]                                               -r
k

wherel rk  Ak I is always square and nonsingular (2.10)D
k

for solvable and conditionable systems. Thus,
instead of a forward propagation of y(k) followed is square and nonsingulaf.

by a reverse propagation to recover x(k), y(k) and
proof: T° solve for x(k) in terms of y(k) and

z(k) can be independently propagated and then pro-
cessed to determine x(k).

u(k) one must be able to recombine the given
linear equations in such a way as to produce a

There are many special versions of this gene-
nonsingular set of n equations from which x(k) can
be determined.  However, none of the equationsral double sweep method, depending on the nature
from time periods other chan k can appear in suchof the detailed structure of the original set of
a combination because each of them involves aequations and on the form of the additional con-

ditions. If, for example, the original set were separate arbitrary input. Of the equations cor-

actually static (with E +1-0 for all k=0,1,2,...,
responding to time k, only those without x(k+1)

may be used. Since T has full rank, it fol-N-1), then all n conditions must be specified at k+1
the final time.  The forward sweep degenerates to

lows that the only equations chat can be used are

nothing,   and   each   s tage could be solved indi-
rkx(k)-y(k)vidually. If, as another example, the set repre-

(2.11)sented a standard dynamic system and n initial
conditions were specified , the whole solution Dkx(k)--u2(k).

would be determined by the forward sweep. Then for these to uniquely determine x(k), the

2.4  STATE VECTORS AND REGULAR SYSTEMS
matrix (2.10) must be of rank n. However, the
number of rows in the matrix rk is never greater

State Vectors the  discussion  following  The  In  2.5).    Therefore,

than the number of rows in T (as explained in

In conjunction with systems in descriptor
the matrix (2.10) never has more than n rows.  It
follows that it must be both square and non-form, the following definition of a state is em-

ployed. singular.

Definition: A condition vector y(k)=r x(k) is a
The above argument establishes that the non-

state for a set of dynamic equations i  knowledge
singularity condition is necessary for y(k)-r x(k)
to be a state. The sufficiency follows direc ly,of its value and the value of u(k) are sufficient
since x(k) can be found from (2.11).             Ito uniquely determine the descriptor vector x(k).

In preparation for addressing the problem of
The criterion for a condition vector to

serve as a state depends on the time period k.  Itcharacterizing the situations in which a given is entirely possible that, starting with a givencondition vector y(k)=rkx(k) is a state, it is
useful to apply some slight manipulation to the

condition vector, its propagation through succes-

original set of equations (2.2). Suppose that
sive time periods may produce state vectors at

the matrix E_ has rank m.  Then by elementary
if the ranks of the E<+ ' s vary with k, for a con-

some time periods but not others. This is likely
row operatio tl(that is, by forming linear com-
binations of the various equations) it is possible

dition vector can only  e a state vector for

periods k where it has dimension equal to the rankto transform (2.2) to che form
of 4+1'

 +1-    Ck ul(k) If a point is reached where the conditionI x(k+1)- x(k)+ (2.9)

-0  -        LDk_ -u2(k)- as a kind of regeneration point.  The descriptor

vector is a state vector, chen that point serves

where T
is an mXn matrix of rank m, and C  and

vectors for all previous time periods can be de-
k+1 termined without further propagation of the con-D  are respectively, mXn and (n-m)Xn matrices.

T te u(k) vectors are partitioned, correspondingly, dition vector. Thus, state vectors greatly sim-
plify the solution of a set of dynamic equations,

into sections of height m and n-m.  The new Ak ma- even  if they occur  at  only  some time points.trix (partitioned into Cl- and D ) is not the same
as before, since it also-has ha  its rows linearly

Regular Systemscombined. Likewise, the new u(k) vector is not
quite the same as before. The definition of the

From a computational viewpoint, a most idealvector x(k) remains unchanged. Rather than intro-

duce new notation for the corresponding new un-
situation is where the set of dynamic equations

partitioned  £6,   A.9,   and u(k), however,   it  is has a state vector at every time instant. Sets of

assumed that Ehe system (2.2) as originally defined
equations with this property are said to be regu Zar.
Regularity is essentially equivalent to "real-is in the form (2.9).
time  representation" or causality,   and  is  an  ex-
tremely important special case of the general
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descriptor variable framework. space form as

Definition:  A sec of dynamic equations is said to y(k+1)=Cksky (k) -Ckvk 2(k)+ul (k) (2.14a)

be reguZar if there is an initial condition vector

which when propagated forward serves as a state x(k)-SkY(k)-Vku2(k)
(2.14b)

vector for every time period.
where --1

It can be noted, in order .to relate this def- r 1 7 -Tk
inition  to the previous sections,   that   if   a state

L Sk  :  Vk]

I (2.14c)

exists at every time period, the set of equations                       _Dk-
is both solvable and conditionable. It is solv-

able because there is a unique x(k) for every

u(k). It is conditionable because there is a
proof: First consider the necessity of the con-

complete set of initial (and final) conditions.
dition. Suppose that there is a state of dimen-

sion m at every time period defined by y(k)=rkx(k).
Then by Theorem 6 it follows chat the matrices

There is a simple characterization of regu-

larity in terms of the structure of the matrices
(2.13) k-0,1,2,...,N-1 must all be square and non-

singular.  In particular, this means that all Dk
involved. It is best described in terms of the matrices must have dimension (n-m)Xn. Also from
partitioned form of equations used in Section IV.

Specifically, the equations are written as
the proof of Theorem 2.5 we know chat rk'k>0 can

be written in the form rk-QkTk for some mXm matrix-- -     -

rk+1                               Ck-                        u    (k)
Qk.  In fact Qk must be nonsingular since rk is of

x(k+1)=
1

x(k)+ (2.12)
1                     full rank. It follows chat (2.13) is nonsingular

for k-1,2,...,N-1.  Now let T =r , and let DN be

-0    LDk_ u (k)
2                       any (n-m)Xn matrix which will'ma&e (2.13) non-

singular for k=N.  Then the required statements

where Tl,-61 has full rank, Ck has the
same dimen-

sion as-tk+1' and u(k) is partitioned consistently
are all fulfilled.

with the rest of the equation. Although chere
To prove sufficiency, suppose that the non-

are the same number of Tk and Dk matrices in
these

singularity property holds and suppose TQ and DN
equations, their indexing is dihplaced  by  one unit. are found So that che matrices
They  can be considered in corresponding pairs,

--

however, if a definition of To and of DN is in-                                 Tktroduced. This notational device is used in the

characterization of regularity.                                                  Dk
--

Before stating the formal version of the re-

sult, it is worth pointing out one of its immed- k=0,1,2,...,N are all square and nonsingular.

iate consequences. The characterization of regu- Suppose  that the common
dimension  of   the  Tk' S   is

larity is that the matrices mXn. Let --

Tk
-1

F i.1                                          [sk E 'kl .
'k

(2.14c)

L Dk1                                                                           -     -

all be square and nonsingular. Since the dimen- where SIC is  nXrn and Vk is  nX(n-m)
. Define  the

state

sion of Dk is determined by the dimension of T +1
and not by that of Tk' it follows immediately

y(k)-Tkx(k).
chat each of the T matrices must have the same

dimension.      Thus,   ko be regular   a   set  mus t   have
Then given y(k) and u(k), x(k) can be found as the

constant rank in its E Cor equivalently Tk) ma-
trices.

unique solution of                               
             Theorem 2.8: The set of dynamic equations (2.12)

Tkx(k)-y(k)

is regular if and only if there is a T  and a Dy
such that all the matrices o                          Dkx(k)--u2(k)

 rk 1            (2.13)

as

 Dk  
x(k)-Sky(k)-Vku2(k). (2.14b)

Then, y<k+1) can be computed from

k=0,1,...,N, are square and nonsingular.

If this condition is fulfilled, one may set
yCktl)-Ckx(k)+ril(k)

or

y(k)-Tkx(k) y(.k+l)=CkSky(k)-CkVku2+111(k)' (2.14a)

and the equations can be represented in state- Together (2.14&)-(2.14c) give the explicit state-

space solution.                                  I
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In the case of regular sets of dynamic equa-
y(j).Rj-1Rj-2     Roy(o)+ E  Rj-lRj-2 , , 'R- +lpku(k)tions, it is possible to recombine the state repre-

sentation with the static relation for the deter- k-0
mination of the descriptor vector to produce a
single forward recursive solution formula. The

+
Pj-lu(j-1) (2.18)

formula somewhat hides the essentially reduced
dimensionality of the underlying state, but it

Similarly, the backward condition  sys cem  will  gen-
may sometimes be convenient for numerical compu-

erate a relationship expressing z(j) as a function
tation. of u(j),u(j+1) p.-,u(N-1),  z(N):

N-1
The recursion is found by substituting (2.14b) z(j)-S 1+1Sj+2, , 0SNZ(N)  -.E  Sj. 1Sj. 2, ,   SkQk+1' (k)into (2.14a) and using SkTk-I.  Thus,

k-j+1

x(k+1)-Sk+ly(k+1)-Vk+lu2(k+1) - Qj+lu(j)                              (2.19)

-Sle+lckskrkx(k)-Sk+lckvku2(k) Recall that the condition vectors y(j) and

+Sk+lul (k)-Vic+lu2(k+1)
z(j) uniquely determine x(j) by the relationship

or in the final form
x(j) = L y(j) + M z(j)

(2.20)

x(k+1)-Sk·+1Ckx(k)+Sk·flul(k)-Sk.1·lckVkul(k)  1
where L. and M  are defined by:

-Vk+1':2 (IC+1) r  ,  1     r r 1-1
(2.15) jl J   A

|L  / M.|   . -1
(2.21)

S                  
       j

This gives an explicit recursion for x(k). The
initial x(0) must, however, be determined from

Therefore  x( j)   can be expressed  as a function  o f
(2.14b). the inputs:

2.5  SENSITIVITY ANALYSIS AND BOUNDARY CONDITIONS
N-1

x(j) =D u+E
Dku(k)+6%(N) (2.22)

In analyzing the solution to a descriptor k-0

system, the response of the descriptor variables
to modifications of particular inputs or end- where

point conditions is occasionally of interest.                -
Straightforward sensitivity results exist for j j-1 j-2    0

D = L R.  R ...R (2.23)
state-space systems where the descriptor vector
x(k) is also a state. In decomposing a general
solvable and conditionable descriptor system into / Lj Rj-llij-2 ...Rk+lfk   if Oikil-2
forward  and backward condition systems, forward

 t t «d  i e o:   i li:Z Z e i ;m:  m ion
sensitivities. Dk -    Ljpj-1                 if k

.j-
(2.24)

Recall that the forward condition system for -Mj Qj +1 if k=j
linear descriptor systems is given by

y(k+1)-Rky(k)+Pku(k) (2.16) -MJSj+lsj+2, 'SkQk+1  if j+likiN-1

where y(0) is given, and y(k)=rkx(k).  The back-ward condition system is represented by D - MjSj+1Sj+2"'SN (2.25)

z(k)-Sk+lz(k+1)-Qk+lu(k) (2.17)
The effect of the initial condition vector

where z(N) is given, and z(k)-A x(k).  As noted in
7(0), the final condition vector z(N), or any in-

Section 2.3, the matrices
RIC'Plc'rk'Sk+1'Qi<+1

and
appears explicitly in (2.22)-(2.25).  The non-

put vector u(k) on a particular descriptor variable
Ak

are generated recursively from matrices in the
system equations (2.3). causality of a general descripcor system is clearly

evident in (2.22), in that a descriptor vector x(j)
Suppose one is interested in the effect of

can be influenced by the final conditions and future
input u(i) on descriptor vector x(j).  Using the

inputs.  The influence of future variables, however,
forward condition system, one can determine a re-

also depends on the manner in which the initial and
lationship expressing  y(j)   as a function  of  y(0),

final conditions are structured, namely the matrices
U(0), U(1)...,U(j-1): I   and A ' and there is generally some freedom in

s&lecting the structure and dimension of these ma-
trices. If the structure is modified, i.e. not
simply changing the condition vectors y(0) and z(N),

11



the matrix coefficients in (2.22) will also be Typically the capital coefficients matrix B

modified. has nonzero entries in only a few rows, corre-
sponding co the fact that capital is formed from

The range of valid and complete sets of only a few sectors. Thus, B is singular, and the

initial and final conditions can be determined dynamic Leontief system is described in the im-

from the matrix F(O,N) of coefficients in the sys- plicit form chat is characteristic of the descrip-

tem (2.3).  The row vectors of this matrix span tor representation.  Development of efficient
the subspace of solutions to the descriptor system, techniques for manipulation of such systems, and
in which a point is uniquely determined for a delineation of the conditions under which such sys-

particular traj ectory of inputs  by the matrix tems are causal, are important problems which fall

equation (2.3). Thus, the added conditions must in the domain of the theory presented in this re-

span a subspace such that the direct sum of this port.  Further disucssion of this important example

subspace with the subspace characterized by F(O,N) is contained in [ll].

is the intire solution space. Solvability and

conditionability guarantee this second subspace Reachabi Lity

can be defined purely in terms of x(0) and x(N),
and has dimension n.  Such a subspace is called Consider an n-dimensional system

the  boundary   manifo Zd. The conditions r x(0)-

7(0) and A1x(N)=z(N) are a valid and com8lete
set x(k+1) - Ax(k) + bu(k) (2.27)

of boundary conditions if the row vectors repre-

sented by the matrices Such a system is compteteLy reachab Ze if the state
vector can be driven from the origin to an arbi-

[ro
o...01 trar Point within n steps.  That is, given x(0)=0

and x arbitrary, there is the set of inputs u(0),

and u(1),. . .,u(n-1)  such  that the solution  to  (2.27)

has   x(n)-x.

[0...0 AN]
There is, of course, a standard test for com-

form a basis for the boundary manifold. Addi- plete reachability.  Let us briefly observe how
tional discussion about boundary manifolds appears the reachability problem can be converted tO a

in the analysis of nonlinear descriptor systems descriptor variable problem and how the standard

in Chapter IV. test  can be derived  f rom that viewpoint.

2.6     APPLICATIONS TO SYSTEMS THEORY Replace the system (2.27) by the 2n-dimen-

sional system

The descriptor framework accommodates a

broad spectrum of problems in the system theory x(k+1) - Ax(k) + be y(k) (2.28)

area. The theory unifies a collection   of   exis ting

techniques and provides a basis for development of y(k+1) - Dy(k)

new techniques. This section illustrates this

feature by showing how several standard results In this system  x(k)   and   y(k)   are  both   n-dimensional

can be viewed in terms of descriptor variable vectors. The vector e, is the first coordinate

theory. D  has  entries  a l  0,   exc pe   chat   those  on   the

vector.  Thus eTY(k) -*y (k).  The n x a matrix

Dynamic Leontief Systems super-diagonal   (the  diagonal  immediately  above   the

main diagonal) are all l's.  It is chen clear chat

A dynamic Leontief model describes the time (2.27) is equivalent  to  (2.28)  with the associa-

pattern of production in n interrelated economic tion that u(k) = y -1(0)·  In other words, the

production sectors. The model has the form vector y(0) define  the input sequence.

x(k)-Ax(k)+B[x(k+1)-x(k)]+d(k) (2.26) In terms of descriptor variable theory, the

question of the reachability of (2.27) is a

The components of the n-dimensional vector x(k) question concerning the boundary manifold of

are the levels of production in the sectors at (2.28). The intersection of this manifold with

time k. This production is divided into three x(0) - 0 must contain all values of x(n). The

parts, corresponding to the three terms on
the system (2.28) is solvable and conditionable, since

right-hand side of  (2.26) . The first  term, Ax(k), in fact it is in state-space form. The boundary

is the amount required as direct input for the manifold is easily determined in this case (as

current production.  The nXn matrix A is the input- discussed in Section  2.5,   and is exceedingly  well-

output  matrix  and  has nonnegative entries. The known) to be

second term is the amount required for capacity -1    7-        -n  r    -

expansion, in the form of capital, in order to be
1 =(n) 1.1       1

1 A   bek   I x(0)

ab le co 'produce   x(k+1)    in   the next period.       The

matrix B is called the capitaL coefficients matrix L,(·11    12
D

Ly(O)

and also has nonnegative entries.  The third term,          Ch

d(k), is the amount of production going to current The n power of the transition matrix is easily

demand. calculated to be

12
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An CT
optimal control vector, optimal input,  and ad-
joint variable sequences satisfy the two-point

boundary problem
n0D

-
x(k+1) - f(x(k), u(k)) (2.3la)

where C is the controllability matrix
1(k) = A(k+1)fx(x(k),u(k))+gx(x(k),u(k)

2        n-1                       ·                                                         (2.3lb)[b, Ab, k b,...,A b].

1(k+1)fu(x(k).u(k))+gu(x(k),u(k)) - 0 (2.3lc)For points of the form x(0) = 0, x(n) = x, with x
arbitrary, to be in the boundary manifold it is

The boundary conditions are x(0) - xQ, andnecessary and sufficient that C be nonsingular.

This is the usual criterion. A(N) - 0.

System Inversion The systen (2.31) is a nonlinear dynamic
system in descriptor form, with boundary con-

Consider the linear system ditions at each end. If the system is consistent,
these boundary conditions must lie on the boundary

x(k+1) - Ax(k) + Bu(k) (2.29 a)
manifold. Assuming this co be the case, it is
natural to attempt to solve the system (2.31) by

y(k) - Cx(k) + Du(k) (2.29b) the double-sweep method   (describid in Section  2.3).

This leads (essentially) co dynamic programming.
The details are briefly sketched below.This is a state-space system with state x, input u

and output y. As a descriptor variable system,
As is conventional for this problem, we shallthe descriptor variables are x and y; the input is

sweep backwards first. Specifically, the terminalu.  From either viewpoinc, the usual problem is to
specify an input sequence and determine the cor- boundary constraint X(N) = 0 is swept backward.

responding output sequence. This leads to an n-dimensional relation between
X and x at each time point k. In this particular

The problem of system inversion is to inter- problem, the relation can be taken to have the

change the roles of u and y. Given an output form 1(k) - X(x(k),k). That is, X is a function

sequence, one wishes to determine the correspond- of x.

ing input sequence. This problem is solved rou-

tinly by descriptor variable methods by simply
The sweep procedure is defined by the fol-

regarding x and u as descriptor variables and y lowing two equations:

as che input variable. With this identification

(2.29) is still a standard descriptor variable 1(x(k),k) - 1(f(x(k), u(k)), k+1)f (x(k), u(k))
X

system. The general methods discussed in this
report can be used to solve for the descriptor + gx(x(k),u(k)) (2.323)
variables given the sequence y. Or, more gen-

1(f(x(k), u(k)), k+1)f (x(k),u(k))erally, the admissible relations between y and u                             U
can be determined.

0 gu<X(k), u(k)) = 0
An explicit structure for the inverse system

(2.32b)can be derived in the linear case by application
of the shuffle algorithm (Section 3.4).  This is

Assume that the function A(x,k+1) is knawn. Givenequivalent to the inversion procedure developed

by Silverman [12].  Using the framework of Chapter an arbitrary x(k), one may then solve (2.32b) for

IV, the shuffle algorithm can be extended to some u(k). That is, (2.32b) determines a function

nonlinear systems, thus providing a methodology u(x(k),k). Substitution of this function into

for inversion in the nonlinear case. equation (2.32a) leads co an explicit equation
for the function 1(x(k),k). This procedure can be

Dynamic Programming
continued all the way to the initial point k=0.

At chat point x(0) and 1(0) are known and the

Consider the variational problem of finding system can be solved by a forward sweep. This is

a stationary value of the objective a special instance of the double-sweep method.
N

J                                                         In this particular case there is an important-  g(x(k),u(k)) (2.30a)
k=0

further observation. It is easily verified that

for each k, the Jacobian matrices Ax(x,k) are
symmetric. This means that they are gradients of

for che dynamic system
functionals. These functionals are easily found

x(k+1) - f(x(k), u(k)) (2.3Ob)
to be the optimal return functionals.  That is,
1(x,k) - J (x,k), where J(x,k) is the optimal re-
turn from Jtate x at time period k.  In practice,

subject to a given initial condition x(0) - xO.
of course, it is most convenient to use this factAs is well-known the necessary conditions for this
to reformulate the double-sweep method in terms

problem can be expressed by introducing the se-
quence of adjoint variables X(k). Together the

of the functionals rather than their gradients.
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Dynamic programming can also be applied to There is a known initial inventory vector x(0) =

optimizing the inputs to descriptor variable sys- xl, and the final inventory must be x(N) = 0.  The

tems,  where (2.3Ob) would  have  the form system (2.33) together  with the boundary condi-

tions determines the equilibrium prices and in-

0 - g(x(k+1), x(k), u(k)). ventories. This is a descriptor variable system
with boundary conditions  at  both  er :s   (and,   in

Dynamic programming for linear descriptor systems this case, the boundary conditions are all on x).

is discussed in Chapter V.
This system can be solved by the double-sweep

The Linear DoubLe-SWeep and Riccati Equations  

method.  In a manner similar to that used in the

example on dynamic programming, we define the func-

In the linear case, the bulk of the effort tions x(p,k).  Working backward we begin with

of the double-sweep can be carried out "off-line",
without knowledge of the particular input sequence x(p,N) = 0

u(k).  Once the input sequence u(k) becomes avail-

able, the sweep can then be executed quite simply. We then employ the recursion

A special but important instance of this x(p,k) - x(p -c, k + 1) - h(k) + f(p)

linear double-sweep algoritimt is the standard

method for solving the linear two-point boundary This recursion is continued backward until x(p,0)

value difference equation arising in optimal con-
is determined.  Then che equation x(p(0),0) = xl

trol. The "Riccati-type" difference equation can be solved for p(0).  The solution to (2.33)

that is fundamental to this method is the result can then be determined by a forward sweep from the

of the preparation phase of the linear double- known initial conditions.

sweep.  This is, of course, a special instance of

dynamic programming.
In general, this is as efficient as the

scheme can be made. With additional assumptions,

Price System however, simplification is possible - much like
the dynamic programming example above.

We present now a simple example which illus-

traces a class of important potential applications For example, suppose that the function f (p)
P

of this theory. This example illustrates how a is symmetric.  Then f is the gradient of some

descriptor variable framework serves to genera- function:  say,  f(p)  = F  (p). A scalar-valued  re-

lize the traditional techniques discussed above. cursion can ncw be defiRed as follows:  Let

J(p,N) - Oand

Consider an inventory system governed by
J(p,k) = J(p-c, k + 1) - h(k)p + F(p)

x(k+1) - x(k) + h(k) - d(k) (2.33a).
This scalar-valued recursion is continued   to  k  =  0.

Here  x (k)    is an n-dimensional vector of commodity As before, p<0) is then found by solving

inventories at period k, h(k) is a vector of
commodity production, and d(k) is the vector of

Jp(p(0).0) - xo.
demands. We assume that the production is a fixed

sequence h(k). Demand on the other hand is deter- As a further assumption, suppose that F(p)

mined by a demand function is concave. In  that case, the functions J(p,k),

which represent maximum social surplus from period

d (k)   -  f (p(k)) (2.33b) k, are all concave.  The issue of calculating p(0)

can be expressed as a maximization problem

where p(k) is the n-dimensional vector of com-

modity prices at period k.  We assume that the Maximize J(p,0) - xOp

inventory x(k) is held by a very large number of             
         t

independent agents. Each of them faces storage More complicated examples can be handled in

costs of c dollars per unit and per time period. a similar fashion. In general, if the problem is

Assuming that prices are determined rationally well-defined, the double-sweep method will provide

[13], the equilibrium condition for prices is a general method of attack. Additional structure

and symmetry can be used to simplify the general

p(k) - p(k+1) - c (2.33c) procedure.
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III. TIME-INVARLANT LINEAR DESCRIPTOR SYSTEMS

3.1 INTRODUCTION erally be decomposed into independent, time-

invarianc subsystems chat are individually very
It is often natural and convenient to express special types of descriptor systems. This decom-

the equations governing a dynamic process by a position eases the analysis of the dynamic system,
system of equations of the form such as controllability, stability, aggregation,

and parameter sensitivity. The canonical decom-
Ex(k+1) - Ax(k) + Bu(k), k-0,1,2....,N-1 position also provides a convenient framework for

(3.1) characterizing valid boundary conditions for the
system. These topics are considered in the final

Such a system is said to be a (discrete-time) cwo sections of the chapter.
linear time-invariant system in descriptor form.
Equation   (2.1) is referred   to  as a time-invariant 3.2 SOLVABILITY AND CONDITIONABILITY

system, since the matrices E, A, and B are fixed,

independent of k.  As one would expect, stronger Consider briefly the time-varying situation,

conclusions, especially concerning structure, can defined by a set of equations of the form
be deduced for the cime-invariant case than for
the more general case, and this chapter presents

Ek+lx(k+l) - Akx(k) + Bku(k),
these results. It should be pointed out however,
that in the time-invariant case there are several k - 0,...,N-1. (3.2)

alternative approaches (notably including poly-
nomial methods [I4], but see also [15] and [161. Following Chapter II, such a system is said to be
These of course yield results that overlap with soZvabZe if the matrix
some of those presented here. The important dis- - -

tinction of the present work is that the funda-
-AO   El

mental concepts and the basic approach are not
limited to the time-invariant case. Thus, al-

-Al   E2
though some of the results presented in this

chapter are not strictly new, one of the objec-
tives of the chapter is Simply to illustrate the

F(O,N) -
form of the general descripcor variable theory
when specialized to the time-invariant case. The
fact that in the time-invariant case the de-

scriptor variable results are consistent with
those obtainable by other procedures would appear -AN-1   .EN

- -

to indicate that the general framework is perhaps
a natural one. is of full rank. The system (3.2) is said to be

conditionable    if    the   matrix
The structural character and the behavioral - -

pattern of a system of the form (3.1) can be sur-                   E
1

prisingly complex. Thus: the system may not have
a solution; if it does have a solution, that so-

-Al   E2
lution may correspond to pure prediction of the

input; and the number of degrees of freedom in the
-A2 ..

initial condition cannot always be determined

by inspection. The first few sections of this

chapter examine the general structural properties
of time-invariant descriptor systems culminating G(O,N) .
in the presentation of a canonical form.

From a practical viewpoint one is concerned
E..primarily with those systems  of  form (3.1) which N-1

are well-behaved, and represent reasonable models
of reality. Interest then turns to the develop- -AN-1

-

ment of simple procedures to test that a system

has the desired structural characteristics, and is of full rank.
for converting the system to a form that can be

easily solved. Both of these objectives are met The corresponding definitions in the time-
by the development of the shuffZe a Zgoritkn de- invariant case with constant matrices E and A are
scribed in Section 3.4. exactly the same, with the additional requirement

that the full rank criteria be satisfied for all

Using the canonical form derived in Section N.  Thus, (3.1) is solvable (or conditionable) if
2.3, time-invariant descriptor systems  can gen- F(O,N) (or G(O,N)) is of full rank for every
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integer N > 0.  Theorem 2.3 demonstrated chat in Now it is apparenc chat the relation qP(s)=0 is

the time-invariant case, a system is solvable if equivalent  to the relation  q(s) [A-Es]=0. There-

and only if it is conditionable.  A simple cri- fore, the original matrix F(O,N) has linearly de-

terion for solvability (and therefore of condi- pendent rows if and only if the polynomial matrix

tionability) is contained in the statement of A-Es has linearly dependent rows, allowing for

Theorem 3.1 below. rows to be multiplied by powers of s up to N-1. I

Before proceeding to the theorem, however, it For the systen (3.2) to be oolvable, the full

is appropriate to recall a few facts about equiv- rank condition must hold for every N. Therefore,

alent matrices. A matrix P(s) whose elements are solvability is equivalent to the requirement that

polynomials in s is a poLynomial matrir. A the matrix A-Es be of full rank with respect to

square polynomial matrix whose determinant is a all polynomial combinations  of   its   rows;   that   is,

constant, independent of s, is said to be unimodu- the system is solvable if and only if A-Es is not

Lar Two polynomial matrices P(s) and R(s) are equivalent (in the sense of polynomial matrices)

said to be equivaLent if there are nonsingular to a matrix with a zero row. Alternatively, (and

unimodular matrices U(s) and V(s) such that finally) the system is solvable if and only if

U(s)P(s)V(s) = R(s). An alternate, but equiva- |A-Es| does not vanish identically.

lent, characterization is that P(s) and R(s) are

equivalent if P(s) can be transformed into R(s) 3.3  CANONICAL STRUCTURE OF A SOLVABLE SYSTEM

by a series of elementary row and column opera-

cions.  Elementary row (column) operations con- Equivalence is a natural concept in the study

sist of either (i) multiplication of a row (col- of systems in descriptor form. Consider  the  time-

umn) by a constant, (ii) interchange of tWO rOWS invariant system

(colunms),  or (iii) addition of a polynomial
multiple of one row (column) to another.  In terms Ex(k+1) - Ax(k)+u(k) (3.3)

of the relation U(s)P(s)V(s) = R(s) the matrix
U(s) defines the row operations and can itself where for simplicity the input coefficient matrix

be obtained by performing these same row opera- is taken co be the identity. Multiplication on            „

tions on the identity matrix.  Similarly, V(s) the left by a nonsingular matrix V and introduction

represents the column operations. of the nonsingular change of variable x(k)=Wy(k)           i

yields the system

Theorem 3.1: The system (3.1) is solvable (and
conditionable) if and only if the determinant VEWy(k+1) - VAWy(k)+v(k) (3.4)

A-sEI does not vanish identically.
where v(k) - Vu(k) is the new vector of arbitrary

proof: The matrix F(O,N) has more columns than inputs. The matrices E and A in the original sys-

rows. Therefore it is of less than full rank if tem have been replaced by equivalent matrices El

and only if there is a linear dependency among and A , each obtained by the same equivalence

its rows.  This in turn is true if and only if trans ormation.  It is therefore quite natural to

there is a row vector 4 0 0 such that qF(O,N) =0, investigate the range of possible equivalent (E,A)

in which case the vector q explicitly displays pairs.

the row dependency. Write such a vector in the

form q - [qlqo,-...qv] where each q. is of dimen- The study of simultaneous equivalence trans-

sion n.  By tne structure of the maErix F(O,N), formations of A and E is most conveniently in-

it is clear that it is of less than full rank if vestigated by consideration of the polynomial ma-

and only if the polynomial matrix trix A-Es referred    to   as a matrix   penc€ Z.        Two

- - pencils,  A -El s  and  A-Es, are equivalent if there

-A Es
are nonsingullr matrices V and W such that V[A-

2                                                                               Es]W  =  Al-Els.     In  this case, unlike the situation

-As Es for general polynomial matrices, one requires that
the matrices V and W be constant matrices. This

As2 Es3 is often emphasized by referring to this relation

P(S) -
as strict equivaZ«ce. Certainly within the con-

text of the system (3.3) and its alternative repre-

sentation (3.4) attention is restricted to strict

equivalence.

isN 1 EsN
A matrix pencil A-Es which is square and for

- which A-Es does not vanish identically is tradi-
tionally termed  reguLar  (see for example  [17 ]  or

is of less than full rank nonsingu Zar  (see for example  [18 1, and strong

characterization results exist for this case.

Moreover, a q vector which explicitly dis- With either terminology, this condition precisely
plays the dependence of rows for either F(O,N) or coincides with the concept of solvability, and
for P(s) also displays it for the other.  For a hence the associated characterization results for
given q, define the n-dimensional row vector q(s). these pencils can be directly applied.

2        N-1
q(s) - '11+q2+'lls +' . -+ NS

.

In what follows it is convenient to refer to

the degree d of the solvable system (3.3) or of
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the pencil A-Es as the degree of the (nonzero) 0 - x(k)+u(k)
polynomial I A-Es |.  Also, before stating the

structure theorem itself, we consider che struc- which is a static equation without accual predic-
ture  o f   the pure predictor, which occurs  in the tion. It is conventional to regard such a system
canonical form of a system in descriptor form. as causal, while for any n>1 the system (3.5) is

noncausal.
Z'he Pkre Predictor

Structura L   Theorem
Consider the system (3) with
- - A structure theorem for solvable systems fol-
0  1  0 ... 0 lows directly from the classic result due to

0  0  1 ... 0 Weierstrass, see [17], On the canonical decompo-

sition of a nonsingular matrix pencil. In the fol-
loving, I(r) denotes the r x r identity matrix,

E-                                                      H(r) denotes the r x r matrix whose elements are
all zero except that those along the diagonal di-

1 rectly above the main diagonal are equal to 1.

The matrix N(r, is defined as N(r) - I(r) - H(r) s.
-0 0 OIl' 0

Theorem 3.2: (Weierstrass). A nonsingular matrix
1  0  0 ... 0 pencil of degree d, A-Es, is strictly equivalent

0  1  0 ... 0
to the pencil having the diagonal block form

A-

IN(rl),N(r2) ....,N(rm); C-Isl

where the final block is dxd. The integers
0                     4 'r2'...rm are unique, and correspond to che in-

finite elementary divisors of the pencil.
0  0  0 ... 11- -

Of course the matrix C in the final block canand k=0,1,2,...,N. This system is easily verified be transformed by a similarity transformation co

to be solvable, for indeed 1A-Esl = 1. any of the standard canonical forms for square
matrices. For the present purposes, however, it

The corresponding individual equations are is not necessary to further specify C.

x2(k+1) = xl(k) + ul(k) The system version of the theorem is the fol-
lowing  (for a previous systems-theoretic appli-

x3(k+1) = x2(k) + u2(k) cation of the canonical form theory of pencils to

(3.5)
this  problem  see  [ 16] ) :

Theorem 3.2. A solvable system (3.3) of degree d
is strictly equivalent to the direct sum of a num-

ber of pure predictors, purely static relations,
0 = xn(k) + un(k). and a system in state variable form.  The dimen-

sion of the state is d.These equations can be solved explicitly, starting

with the last one, yielding
An important special case is when each of the

r.'s in the canonical representation is I.  In
xn(k) - -un(k) tAis case the system is purely causal consisting

of a dynamic part and a static part. Such systems
*n-1(k) = -un(k+1)-un-1(k) were defined as regular (Section 2.4).

3.4  THE SHUFFLE ALGORITHM

xl(k) = -un(k+n-1) Although the canonical form derived from the

classical theory of matrix pencils provides deep

-un-1(k+n-2)-...-ul(k) insight into the underlying structure of time-
invariant descriptor systems, it does not always

where the equation for xi(k) is valid for provide a convenient framework for actual com-
k=0,1,2,...,N-n+i. The system represents a pure putation. The main drawback is that the canonical
predictor, with the variable x1(k) depending on form entails a change of variable. In most prac-

Un(k+n-1). No initial conditions  can be arbi- tical situations,   one. is usually reluctant   to

trarily specified in this system.  The n arbi- execute a variable change, since the original de-
trary constants in the solution are the finaz scriptor variables have contextual as well as
values of the variables. structural significance, and since there may be

additional implicit constraints, such as non-
An important special case of the general pre- negativity constraints, on the variables.  In

dictor system (3.5) is the case n-1.  This yields addition, of course, the canonical form can be
the scalar system difficult to compute. Thus, interest turns toward
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the development of techniques which are computa- Row operations yield
tionally efficient and do not require a change of

variable. 1 0 0 0 0 1

This section describes the basic shuffle
0 1 0 1 0 0

algorithm as used to check solvability of a sys- 000 -1  1  0

tem. The extended version of the algorithm is

deferred to momentarily. A shuffle yields

.Solvability is a property of only the ma- 1 0 0 0 0 1

trices  E  and A. Accordingly, the matrix B plays

no role in the simplified version of the algo-
0 1 0 1 0 0

rithm.  The algorithm works by modifying an -1  1 0 0 0 0
n x (2n) array.

More row operations yield
Begin with the array

1 0 0 0 0 1

E A.
0 1 0 1 0 0

If E is nonsingular, the procedure terminates - 0 0 0 -1  0  1

the system is solvable.
Another shuffle yields

Otherwise, perform row operations on the

whole array, bringing it to the form 1 0 0 0 0 1

0 1 0 1 0 0

T A 
-1  0 1 0 0 0

0   A2
The algorithm terminates because the left side is

where T is of full rank. (T has n columns, but nonsingular.  Thus, the system is solvable.

less than n rows.) The matrices A and A are a12
partition of the second side of the array after Justification
the row operations.  A  is the same size as T.

An easy way to see that the shuffle algo-
Next 'shuffle' the array to form rithm checks for solvability is to consider the

determinant of A-sE. According to Theorem 3.1,

T  Al             -           solvability is equivalent to the condition that

this determinant not vanish identically.

A2  0
Row operations on A-s E at most influence the

If che n x n matrix on the left side of the array determinant by a nonzero multiplicative constant.
is nonsingular, the procedure terminates - the Thus, one may as well check the determinant when

system is solvable. E has the special form obtained by the first step

of the algorithm. The shuffle of A2 over co the
The algorithm continues in this fashion, other side of the array is equivalent to multi-

performing row operations in order to create null plication of the lower rows by -s, and each such
rows on the left side, and then shuffling the cor- multiplication multiplies the determinant by -s.

responding rows from the right side to the left. Thus, it is clear that the shuffle algorithm is

The algorithm terminates in one of cwo ways: (1) equivalent to a transformation of the original

a point is reached where the left half becomes matrix pencil co a new pencil whose determinant
nonsingular, in which case the system is solvable, is the original determinant multiplied by a non-

or (2) a point is reached where there is a zero zero constant and sb where b is the total number
row all the way across the array, in which case of rows shuffled. If a point is reached where

the system is not solvable.  The algorithm always an entire row is zero, the determinant is zero.

terminates, one way or the other, in at most n If a point is reached where the (new) E is non-

steps. singular, the determinant is then seen to be non-
zero. One of these two situations must arise

Example 1: Starting with the E A array below, within  n  steps,   for  every  row  shuffled  increases
the shuffle progresses as indicated. the degree of the determinant of the (modified)

matrix pencil by one, and the maximum possible
E         A                                  degree is n.

1 0 0  0 0 1 The   Genera Z   ShuffZe   A Zgor€ thm

0 1 0 1 0 0

0 1 0 0 1 0
The general shuffle algorithm accounts for

the input structure of a system and produces a

recursive system, equivalent to the original sys-

tem.  In developing che more general version, it

seems best to regard the algorithm as operating
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directly on the original descriptor system equa- and it is slightly misleading.  The vector x(0)
tions (3.1). The general shuffle algorithm con- cannot be selected arbitrarily, for there are ad-
sists of the repetition of cwo basic operations ditional equations at k = 0, relating x(0) and
on these equacions. The first operation is that u(0), which were lost in che shuffle procedure.
of row combination, corresponding to linearly The procedure below employs a 'back shuffle' which
combining individual equations.  One performs recovers these lost equations.

such operations with the objective of obtaining
an E matrix with one or more zero rows. The Reduced Form
second operation, the shuffle, is a reindexing
operation. Each (row) equation in (3.1) is valid The  reduced  form  is ob cained by restricting
for all k 10, and hence k +1 can be substi- the class of row operations employed during the
tuted for Z in any row if desired. Such a sub- shuffle algorithm in order to preserve the zero
stitution is used in an equation corresponding rows created in A. Thus after reaching the stage
to a zero in E. This chen transfers the cor-
responding row in A to one in E and shifts the T Al 31 0input terms from k to k+1. Any sequence of such (3.7)
row operations and time reindexing is permissible- A2 0 0 -82
the shuffle algorithm is a systematic procedure
for ob taining a desired final form. rows from the upper portion are never added to the

lower portion. Arbitrary row operations are per-
In the general algorithm it is often useful mitted within each portion, and multiples of lower

to restrict the kind of row operations performed, rows may be added co upper rows. This rule does
so that the final form will have a structure that not actually restrict the functioning of the al-
is easily converted to recursive form. There are gorichm.
numerous variations possible, depending on the
particular objectives of the situation. Two me- Assuming the system is solvable, a final
thods are ouclined here. stage is reached having the form

Non-reduced Form
T   Al   81   Cl   Dl'"

The general shuffle algorithm begins with the
A   0    0   -82  -(2 "array                                                             2

The left-hand n x n matrix can, by che allowed
E A 3 row operations, be brought to the special form

By row operations this is brought to the form
1,1. F   '7 (3.8)
|  A    |     |A           I|

T  Al Bl L Li  L21  J
*

0  AZ B2 which is nonsingular. Once this final stage is
reached, the array is 'back shuffled,' yielding

A shuffle is performed yielding the array

T  Al  31
0

T   Al   Bl   Cl'"
(3.9)A  0   0   -B

2           2                                  0   A2   82   C2 ,
This corresponds co writing 0 = A2x(k)+B u(k) from
the previous array, as A2x(k+1) - -B2u(k l). In Using the assumed special structure for A2 and

general, any shuffle to Ehe left of rows of A is T, combinations of lower rows can be subtracted

accompanied by a shuffle co the right, and a from upper rows to yield an array of the form

change in sign, of all input structure elements                  1       1          1    1    1
in   the  same  row. The array, therefore, grows I I    0 I All   O 'B l'C l l
toward the right as the algorithm progresses.                     |       1          | 1

i...    (3.10)

t o     O  'A21      I  1  82  1   (21
1 1                              IiiWhen the algorithm is complete, the array will

have the form The matrices Bl' Cl'..· will generally have dif-
ferent entries than in (3.9).

- - - -

E  A  B  C...
Let x be partitioned, consistent with (3.10),

-                                                                                       asIf the system is solvable E will be nonsingular.

Thus one may wrice                                              =    '

x(IC+1)-Pl{Xx(k)+Bu(k)+Eu(k+1)+...} (3.6)

which is a recursive structure for x(k). This is
termed a non-reduc ed form, since the recursion is *Actually in some cases it may be necessary to

in terms of the full descriptor vector x(k). This permute the variables xi' i=1,2,...n to obtain
is usually not the most convenient form, however, this form.  We do not account for this possible

permutation in our notation.
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Then (10) yields The array is now back shuffled, and then brought

to form (3.10).

x1(k+1)  - Allxl(k)+Blu(k)+Clu(k+11+· · .                                         1                    1              |  0     0
(3.1la) 1 0 0 0 0 1 1 01110  0   0   -1  1   0    0  -1    0   0

-X2(k)-A21xl.(k)+82u(k)+C2u(k+1)+... (3.llb)
0 0 0| -1 0 1|1-1|0 1

which is the reduced recursive form. The vector - 'll. -  A  -  - 1.-Il-  I....1 -  -i-

X1(k) is the dynamic part, and x,(k) is the
static 1 0 0  1 0 0

part of the descriptor vector.  The dimension of
<0   1   0-1

0  0   0 1-1 1   0   0-1    0   0
X1(k) is d, the degree of the system (see Sec-  

                                         1

tion 3.3).  Equation (3.lla) can be solved
for- 0  0    0 -1  0    1   1  -110    1

ward once x (0) is specified, although values of

future inpu s  may be required. Equation (3.1lb) Thus the new representation is

can be solved once x1(k) is
known.

x1(1c+1)-xl(k)+u2(k)-u2(k+1)

If the system is actually causal, then

C = D =...=0 and (3.11) is a state vector repre- x2(k).xl(k)+u 2(k)

sentation of the system.
x3(k)-xl(k)-ul(k)+u2(k)-u2(k+1).

Examp Ze 2. Consider the E, A combination of

Example 1, with input matirx
- -

3.5  CANONICAL DECOMPOSITION 
OF TIME-INVARLANT

DESCRIPTOR SYSTEMS

1   0

8-0 1
One method of solving a properly conditioned

O 0

and solvable linear descriptor system is to swee
p

---
the initial conditions forward and the final con-

ditions backward through the time stages. This

The row operations employed in Example 1 violate

the rules that are used to obtain the reduced
sweeping process creates a forward condition system

form, so the steps below follow a different path.
and backward condition system. These condition

The sequence of arrays is given without expla-
systems have a (forward or baclcward) state-space

representation and are useful analytical tools in

nation. addition to solving for the unknown descriptor

E            A           B          C        D
vectors. Unfortunately, the structure of these

condition systems varies with different initial

1 0 0 10 0 1 1 1

and final conditions, and may be time-varying

even for time-invariant descriptor systems. How-

0 1  O l 1 0  0  0
1 ever, any time-invariant descriptor system has

|

some set of initial and final conditions for whic
h

0 1 0 1 0 1 0 0 0 the corresponding condition systems are time-

100 10 0--1 rl- 0- invariant. This motivates the examination of de-

0  1   0|  1 0 01 0 1
scriptor system decomposition that is not generated

by particular initial and final conditions.

O 0 0'-1 1  010 -1
-- --r -= -T--7

Consider the canonical structure of a solvable

1 0 0 0 0 1 1 0 0 0 time-invariant system discussed in Section  3.3.

' ' ' 0 0 010 0 1 0

Using an appropriate change of variables, such a

1 0 0 0 1  0 0 system can be decomposed into subspaces Lx(k),

Mlx(k),...,M x(k)  with  a state-space subsystem

1 -0-0  F 0
71-1-0-too Lx(le+1)  - CLx(k)  + Pu(k), (3.12)

0  0   0 10  -1 1-1   1    0  -1

-2  1    Zi_00       °'  1     °'0       1
and a set of pure predictors of the form

(r )
i

1   0    0 i  0   0   711  3 1-0- 2!  O 0
M x(k) -H     M x(k+1) - Qiu(k), (3.13)
i                 i

1 0 -1   0 0 0| 0 0 | 1 -1  0 1       (ri)
where H      is the r  x ri matrix with ones on the

1 1 0  ·0  0  0   0 0|0 1   0 0 upper diagonal and ze roes  on  the  main  diagonal.

-1  7  -7 1  0   0-iri -0 T  o  7-0 By using elementary row and column operations to

convert the matrix C to Jordan canonical form, th
e

11 0|00 0|0 0|0 1 0 0 subsystem (3.12) can be decomposed into a sec of

1 0   1 1 0 0  0|0  0 1       I                independent subsystems of the form
 

           -1   1  0  -1                         
           (qi)

Lix(k+1) - (aiI +
H ) Lix(k) + piu<k)

This   is the final stage, which   in  the  last step
(3.14)

has been brought to the special form (3.8). (qi)
where H has the same form as above.
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Since no subsystem of the form (3.13) or In the case of zero-input stability, a neces-(3. 14)   can be further decomposed, this operation sary and sufficient condition is that the state-
characterizes a maximal decomposition of a solvable space subsystem (3.12) be stable.  In other words,
linear descriptor system. Note that subsystems of

the eigenvalues a  corresponding co each subsystem
che form (3.14) with ai = 0 have the same form

as of the type (3.14  must fall inside the unit circle.the pure predictor subsystems, except these sub- The pure predictor subsystems do not affect zero-
systems propagate forward in time. These sub- input stability since the variables in these sub-
systems are important in choosing ini·tial and

systems are determined entirely by inputs over anfinal conditions and are called pure deZay sub- infinite time horizon.
systems.  Also, the parameter ai in (3.14) is the
only eigenvalue of the subsystem, with geometric If a time-invariant descriptor system is to be
multiplicity qi.  These (forward) eigenvalues com- aggregated in a way that preserves the dominant dy-prise the set of scalar solutions to the matrix namic modes, the aggregation can be efficiently
equation accomplished using the canonical decompos ition.      A

smaller model can be created by simply extractingdet [A -sE] - 0, the forward state-space subsystems having the domi-
nant eigenvalues.  This procedure does not generallyand are sometimes called the generalized eigen- eliminate a subset of original descriptor variables

values. from the system but rather projects the system onto
a lower dimensional linear manifold of the originalAs an illustration of this decomposition, vector space.  However, if the intent is to removeconsider the example placed in shuffle form in the some  of che original variables   from the model,   the

previous section. This system can be decomposed decomposition will reveal all static identities
into a first-order subsystem of the form (3.14) embedded in the pure delay and pure predictor sub-

sys tems.

x2(151) - x2(k)
3.6  BOUNDARY CONDITIONS FOR TIME-INVARLANT LINEAR

and a second-order pure predictor subsystem DESCRIPTOR SYSTEMS

x3(k) - x2(k) = x1(k+1) - x2(k+1) - ul(k) The actual solution of a solvable time-invar-
iant system requires the specification of n con-

xl(k) - x2(k) . u2(k) ditions, which are often given as initial and final
conditions. As noted earlier, these conditions

or equivalently, cannot be specified arbitrarily.  One method of
checking whether a set of conditions is valid and

x3(k) = x2(k) + u2(k+1) - ul(k) sufficient is to actually try to solve the system

by a double sweep. However, such a procedure is

xl(k) = x2(k) + u2(k)
extremely inefficient. The canonical decomposition
accommodates a more elegant characterization of

From this representation, it is clear that one way proper boundary conditions.

of conditioning the solution is to specify x (N), If the aim is to find any set of boundary con-x3(N), and either x2(0) or x7(N).  The components
x (k) and x (k) are controllSble (except at stage

ditions that is valid and sufficient, the canonical
form comprised of subsystems of types (3.13) andNi, while c e x7(k) component is obviously un-

controllable. The eigenvalue of the only forward (3.14) suggests a natural choice.  That is, for
the  forward  state-space  subsystems (3.14), specifysubsystem is one and therefore the system is only

marginally stable.
the initial location of the corresponding sub-
spaces,   and   for   the pure predictor subsystems,   se-
lect the final location in the corresponding sub-The above example suggests that the canonical
spaces.  Since each subsystem is a forward or back-decomposition of linear time-invariant descriptor ward state-space system, the conditions for eachsys tems  can  aid to valid conditioning  of   the  so-
subsystem propagate directly in the invariant sub-lution and to system analysis. Suppose the issue
spaces, and the original descriptor variable valuesof concern is the controllability of the system
are uniquely determined.over a sufficiently long time horizon. If one of

the  subsystems  of  form  (3. 14)   is not controllable,
In some cases, a candidate set of boundarythe invarianc subspace independently governed by

conditions may already be given, and the concernthe subsystem will not be controllable by the
is whether those conditions constitute a properoverall system. Likewise, the pure predictor
set.     A  necessary and sufficient   test  can  be  de-subsystems must be reverse-time controllable if
rived using the decomposition of a time-invariantthe overall system is co be controllable. This

provides a necessary condition for controllability descriptor system into a forward state-space sub-
system and a badkward state-space subsystem.  Forthat can be checked a subsystem level following a
example, (3.12) can be the forward system and thecanonical decomposition. (Note that controlling
combination of all pure predictor subsystems,a descriptor vector at a particular time stage

may involve manipulating inputs at future time represented by

increments if any pure predictor system is greater
Mx(k) - SMx(k+1) - Qu(k) (3.15)than first order).
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can be the backward system. The cest is derived

as follows:    min  [rj,Nl
j E3

Theorem 3.3: A set of boundary conditions
final conditions, where qi is the order of the re-

rox(W - vo
spective pure delay subsystem  and  r.  is the order
of the respective pure predictor suisystem.

ANX(n) . ZN proof: Assume that the system matrices R and S

used in Theorem 3.3 have been transformed to block

is a valid set of boundary conditions to a system diagonal form using appropriate row and column

decomposed into (3.12) and (3.15) if and only if operations. Each block of R corresponding co a

(qi)-

r                                             pure delay subsystem will equal H and hence the

N                                                                   the same block of R will equal CH 'i) 

k

. It is
-R L L (3.16) (q )

det t o                                                              i

9 -SNM
easily verified that the matrix H has the prop-

erty that

AN                                                                                      r (qi)1 k
-

rank    W          J        =   qi   -   min    [q i,k l     ,       kip

where N is the number of time stages. k
Therefore, the rank of R cannot exceed

Proof:  Since each subsystem is a state-space

system, it is easily established that rank L -E min [qi,k]

N        1 3-1-1
iEI

Lx(N) - R .Lx(0) - L  R Pu(i) (3.17)

i=0 Now for the matrix in (3.16) of Theorem 3.3, the

full rank property will hold only if the submatrix

N-1

Mx(0) - SN Mx(N) - -I Si Qu(i)
- -

(3.18)                 r0

i=0

These relacionships indicate the subspace of x(0) -RNL

and x(N) that is controlled by the system inputs.

The n remaining dimensions of the space of x(0) M
and x(N) can and must be determined by the --

boundary conditions. In order co accomplish this, has rank n. From the above observation, the matrix
the conditions must be linearly independent of --

each other and of the subspace determined by (3.17)                 N-R L
and (3.18). A necessary and sufficient charac-

terization of this independence property is given M
by (3.16).                                      I                -  -

cannot have a rank exceeding
The number of boundary conditions that can

be on x(0) and the number that can be on x(N) are

governed by the orders of the pure delay sub- n -   min  [qi,Nl.
systems and pure predictor subsystems that result

from the canonical decomposition. By observing
iEI

the special property of the system matrices Hence, the lower bound on the rank of I  , or the

Cqi)      (r )j                                         
 number of initial conditions, will hold:  A similar

H     and H of the pure delay and pure pre- argument establishes the lower bound on the number
diccor subsys rems, bounds. on the number of initial

of final conditions.                             I
and final conditions can be established:

When the number of time stages exceeds the

Theorem 3.4: Let I be the set of indices cor-
order of any pure delay or pure predictor sub-

responding to pure delay subsystems and J be the
system, the boundary conditions must be specified

set of indices corresponding to pure predictor
in a way that determines the location of x(0) in

subsystems for a canonical decomposition of a the subspaces corresponding to pure delay sub-
time-invariant descriptor system. If N is the

systems and the location of x(N) in subspaces cor-
number of time stages, then there must be at least

responding to pure predictor subsystems.  However,

it is not necessary that the conditions be formu-

lated purely in terms of those subspaces.
  min [qi, Nl
iEI The   subsys tems   that   are   not pure delays   or

pure predictors have the property of being able to
initial conditions and
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operate like a state-space system either forward subsystems   of type (3.1 4)i s necessary   and    suf-

or backward through   the time stages.     For this ficient. The conditions on subspaces corre-
reason, the choice of the number of initial and sponding to the pure predictor subsystems can be
final conditions pertaining to these subsystems is neglected. The reason for this is that the final
arbitrary for any number of time stages, although conditions on any pure predictor subsystEim Will

the actual structuring of those conditions is not affect, at most, the
final r 

time stages, due co
arbitrary. Therefore, the general lower bounds (r )

indicaced by Theorem 3.4 are as large as possible. the nilpotent subsystem matrix H Since there
j

is no explicit final stage with an infinite time
If the system has an infinite time horizon, horizon the system can be solved without these

the specification of initial conditions for all conditions via the shuffle algorithm.

23



IV. NONLINEAR DESCRIPTOR SYSTEMS

4.1 INTRODUCTION The modt significant contribution in this area is

canonical form of a matrix pencil, discussed in

The general structural form for models of sys- Section 3.3. This result still underlies much

tems in descriptor form is given by a set of equa- modern work.

tionS
Most general theories, including those based

gl(x(0),x(1),u(0)) -
0 on the theory of matrix pencils, have three se-

vere limitations.  First, as in the case of can-

gl(x(1),x(2).u(1)) -
0 onical forms, the results often require a change

o f variables, which is undesirable in terms  of

(4.1) relating specific results to the original problem
context.  Second, although many of these theories

&-1(x(N-1),x(N),u(N-1)) - 0 illuminate internal structural relations, they

give little attention to the formation of recur-

where sive  solutions . Third, these  theories  are

strongly wedded to the assumptions of linearicy

x(k) is an n-dimensional descriptor vector and time-imariance, precluding their extension

for each k = 0,1,2,...,N to more general situations.  Although the theory

of descriptor variables presented here overlaps

u(k) is an m-dimensional input vector for previous theories in the linear time-invariant

each k = 0,1,2,...,N-1 case, it is unique in that it does generalize

quite naturally to nonlinear time-varying systems.

gk   is a function taking values in
n-dimensional space.

A theory involving nonlinear equations, such

as the one proposed here, can be presented within

A fairly complete theory for these systems has been various analytical formats. It is, of course,

outlined in the linear case. The intent of this clear at the outset that the required computa-

chapter is to show that there is a satisfactory cional procedures are likely to be cumbersome;

theory for nonlinear descriptor systems. but it does not necessarily follow thac the theory

must be equally cumbersome.      It is quite possible

For comparison, one can consider che analogous to develop an elegant theoretical structure.  On

state-vector system the other hand, co be useful, a theory must be

closely related to computational procedures.     Such

x(k+1) = h (x(k),u(k))
(4.2) considerations have motivated the choice of format

selected here.  The results are presented withi6

for k = 0,1,2,...,1-1.  Assuming only chat h
is the framework of manifold theory and differential

sell-defined, there is a unique solution x(k to topology.   It must be emphasized that  this  se-

(4.2) corresponding to each set of initial
con- lection is primarily a choice of viewpoint, rather

dicions and input sequence. Furthermore, this than of technique. The viewpoint of differential

solution can be found recursively, progressing topology allows one co translate essentially local

sequentially from k-0 t o k=N. For the more analytical results (such as those stemming from

general descriptor variable framework (4.1) the the implicit function theorem) to global geometric

situation is known co be far more complex:
there relationships. Presented  in this framework,   each

may not be a solution; if there is it may  not be piece of the theory of nonlinear descriptor sys-

uniquely specified in terms of boundary con- tems has both global geometric interpretations

ditions; and the formation of recursive solutions and algebraic (or computational) implications.

is a difficult problem.  Nevertheless, these issues Thus the chapter simultaneously unfolds two dis-

all can be resolved quite satisfactorily. This tinct but interrelaced developments:   the  geo-

chapter shows that it is possible to extend several metric (which is in some sense conceptually

standard concepts and procedures, including: (1) the cleanest) and the algebraic (which is perhaps

state-transition function, (2) forward propagation most relevant for practice).

of initial conditions, and (3) forward recursion

when a complete 6et of initial conditions is speci- 4.2  SOLVABILITY AND CONDITIONABILITY

fiedt These generalized results provide a broad

framework for addressing descriptor variable sys- The objective of this section and the next

tems. two is to characterize the structure of the so-

lution set of a descriptor system, and initiate

The importance of the general descriptor frame- how specific solutions might be computed.  For

work has been long recognized in connection with this purpose the role of the input sequence u(k),

differential equations. General theories concerned k - 0,1,...,N-1, is somewhat incidental.  It is

with these structures, however, have almost exclu- sufficient to consider the system without input

sively focused on the linear time-invariant case.
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f (x(0),x(1)) = 0
[19] for this standard result).0

f (x(1),x(2)) = 0 Theorem 4.1: If the system (4.3) is solvable,1

(4.3)
chen M is an n-dimensional manifold.

Much of the ensuing work is directed ac fur-cher characterizing the manifold M. and imposing                  fN-1(x(N-1),x(N)) = 0 additional assumptions so that this manifold has
certain desirable properties.A particular input sequence in (4.1) merely de-fines a particular set of the form (4.3).
Conditionab€Zity

Throughout the investigation the functions
If the system of equations (4.3) is solvable,fk,k = 0,1,2,...,N-1 are assumed to be contin-

its solution is not unique. To define a unique
uously differentiable with respect co all varia-
bles, at least in some open D to which attention solution, n additional equations, or conditions,

must be imposed.  In general, suitable additional
is confined. Structural assumptions are often

equacions may take a variety of forms, involving
expressed as assumptions on the derivatives.

variables at various time points. From our under-
So Zvab€Zity

is natural to think in terms of end-point con-

lying perspective of dynamic systems, however,   ic

ditions   (that is, conditions specified  only  in
Define M as a set of solutions to (4.3) in

terms of x(0) and x(N)). Special cases are pure
the domain D.  M is a subset (possible empty) of
Rn(N+1) In general, M may be a quite compli-

init€aL conditions, involving only x(0),  and pure
finezz conditions involving only x(N).  For an

cated set. We formulate below a simple require-
arbitrary system of the form (4.3), however, duchment (one that is standard in the studies of non-
end-point  conditioning  is not always possible.

linear equations) that guarantees that M is
It may be thac the degrees of freedom in the so-actually a manifold.
lucion are restricted to descriptor variables atcertain intermediate points, with the end-pointsFor any solution x(0),x(1),x(2) ,...,x(N)  to
having less than full flexibility.  Such systems

equation (4.3) define the derivatives matrix
are in some sense dynamically degenerace, and are-

of little real interest for our purpose. This is3 f     3f0      0                                    the algebraic motivation for the concept of candi-ax(0) 3x(1)
tionabi Li ty.

Dfl afl Definition:  A system of the form (4.3) is said
SRI) -#CD to   be  condi tionab Ze   if

F(0,N,x) =

(1) the matrix
-

afN-1 3fN-1 8 fo

ax<N-1) ax<N) X(1)
......

The matrix F is essentially the coefficient matrix afl    aflof a linearized version of (4.3). This matrix is G(O,N,x) - ax(1) ax(2)defined in terms of a x n blocks. Indeed the ma-
trix F has N (block) rows and N+1 (block) columns.
The maximum possible rank is equal co the number
of rows, nN.                                                                       3fN-1

Zx(N-1)Definition:  The system (4.3) is said to be soZva- - -bLe if M is not empty, and if for every point in
M the matrix F(O,N,x) has full rank. is of full rank for all x E M.

In algebraic terms, the assumption of solva- (2) No two solutions have identical end-pointsbility implies that there are n degrees of free- x(0), x(N).dom in the solution of (4.3), since there are n
more variables than equations. The geometric (3) Any unbounded sequence in M entails an un-significance of the assumption 2f solvability is bounded sequence  o f end-points.stated by the following theorem  (see for example

*The set M is an n-dimensional manifold if it is locally diffeomorphic to Rn.  That is, each point mEMpossesses a neighborhood V in M which is diffeomorphic to an open set U in Rn.  A diffeomorphism$:U=V is a parameter€zation of V. The inverse diffeomorphism $:V.U is a coordinate system on v.  Thus,more loosely, M is an n-dimensional manifold if at ever'y point an n-dimensional coordinate system canbe constructed in a neighborhood.
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The first requirement is the basic local re- last n columns of F(O,N,x) co form a total of nN

quirement for conditionability.  The other two
re- independent columns.  The n variables corresponding

quirements insure suitable global properties
as to columns not selected can serve as a (local)

explained later in this section. basis for M.  This follows from the implicit func-

tion theorem, since these variables can be varied

Let us focus on the first requirement. Note arbitrarily (locally) co determine an overall so-

that the matrix G(O,N,x)   is a submatrix  of  the ma- lution to (4.3). These basis variables are a sub-

crix F(O,N,x). It is a rectangular matrix having set of the end-point descripcor variables. Such a

n more rows than columns.  One interpretation
of basis exists at every point x. This shows that

the requirement on rank is obtained by recalling the projection operation from M onto B is a local

that F(O,N,x) represents the coefficient matrix immersion.

of a linearized version of (4.3). If x(0) and

x(N) are fixed, the matrix G(O,N,x) represents The second requirement (2) guarantees that

the coefficient matrix of the equations that must the projection is one-to-one. Finally, the third

be satisfied by variations in the other descriptor requirement   ( 3) guarantees   that the immersion   is

variables. If this matrix is of full rank, these proper ( that  is, the preimage of compact  sets  are

intermediate variables are uniquely determided. compact) .   Thus the projection is an embed-

Thus,   the rank requirement   is a linear condition ding [191·

implying that (at least locally) no two solu-

tions have identical end-points.  Thus, this re- In view of this result, the set f is called

quirement is consistent with the algebraic
moci- the  boundary  manifold  of   the  system  (4.3) .     O

ne

vation that all degrees of freedom should be re- interpretation of it is that M can be projected

flected in the end-peints.
down to B without loss in information. As a side

comment, one might compare this result with Whit-

Now let us consider the geometric motivation ney' s Theorem, which   states   that   any  n-dimensional

for conditionability. Assuming that the system manifold  can be embedded  in  R2n, Thus Theorem  4.2

(4.3) is solvable, M is an n-dimensional manifold represents the best that might be hoped for in

in the space Rn(N+1) of descriptor variables. terms of the most economical representation of M.

This is not, however, a very economical descrip- Finally, it should be pointed  out   that   che  pro-

tion for the solution set, since it is defined jection of M onto the 2n-dimensional subspace gen-

in the (relatively large dimensional) space erated by descriptor variables at two other time

Rn(N+1) It seems appropriate to seek a repre- points need not yield an n-dimensional manifold
.

sentation of this n-dimensional manifold M within Only the end-point. projection will work.

some space of dimension much lower than n(N+1).

One obvious approach at simplification is to
con- Subsystems

sider the projection of M into various subspaces

of Rn(N+1
) In general, however, such projections The solution procedures developed in the next

are not n-dimensional, and indeed not even mani- two sections exploit the dynamic structure inherent

folds. (For example, the surface of a sphere
is in well-behaved descriptor systems. This struc-

a 2-dimensional manifold in R3; but its
projection ture is expressed in terms of a nested family of

on a plane is a closed disk, which is not a mani:- subsystems of che original descriptor system.  In

fold.) In particular, the projection of M onto order to develop this line of reasoning, the no-

the n-dimensional subspace corresponding Co a tions of solvability and conditionability must be

descriptor variable x(k) for a fixed k will rarely suitably extended to subsystems.

be an n-dimensional manifold (for chen it would

equal the entire subspace). There is, however, The original system (4.3) is defined on the

a clean solution to the representation problem time points k - 0,1,2,...,N.  A subsystem is ob-

if the assumption of conditionability is
intro- cained by deleting some of the original equations,

duced.
leaving a subset of equations corresponding to a

contiguous subset of time points.  We let Si'  be

Consider the 2n-dimensional subspace of the subsystem defined over the integers

Rn(N+1) corresponding to the first n and last
n k = i, i + 1,...,j. Thus in this notation the

coordinates;   that  is   to the coordinates associated original  sys,=:4:s':1, i   'Llkeiise,and  det«:;  '1-
with x(0) and x(N). Let B denote the projection M   and B

of M on this subspace. The set B is the set of p 1Ats  cor &sponding   to the system  Si,j
' Again,

possible boundary points of solutions to (4.3). we have M = M- and B-B
u,N 0,N

Theorem 4.2.  If the set of equations (4.3)
is We shall primarily focus attention on the

solvable and conditionable, then B, the projection
st :ctiat es :i:irs:tt ; :li ' A;521,0NivOW ,say

of M into the 2n-dimensional space of end-points,

is an n-dimensional manifold. In fact B repre- and forward conditionab Ze  if   each of these  sub-

sents an embedding of M. systems are solvable and conditionable, respec-

tively. (Clearly there is an analogous definition

proof:     Let  x  be a point   in  M. By solvability, of backward solvability and backward conditiona-

the matrix F(O,N,x) has rank nN. By conditiona- bility.)

bility, the n(N-1) middle columns of this matrix

are linearly independent.  Therefore, n
additional In some sense the requirements of forward             

     1

columns can be selected from among the first n
and solvability and forward conditionability are not
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really additional requirements. Rather they sim- with respect to xk.  Then these equations can be
ply extend che original Eequirements to larger linearly combined to yield a relation of the form
sets. To see this, let M be the projection of
M onto the subspace contai ng the variables x(i), VAf-1 + WDXN = 0
x(i+1),...,x(N). Since any solution of the origi-

2nn al system induces a solution  on the subsystem, which is of rank n on R
it  follows  that  R C M Solvability  of the                                    [81
original system i *iesit*at F(O,N, x) is of full Proof: The

matrix  c  has at mose rank n, hencerank for xEM.  Any subset of the rows of F is also

of full rank, so F(O,N,x) is of full rank for all there are n x n matrices V and W such that [V,W]
is of full rank and VB + WC = 0. Combining    the

x A. N. Likewise conditionability of the original
original equations this way gives the result.   Isysth implies that the conditionability rank con-

dition holds on M The assumptions of forward
solvability and f&t/ard conditionability extend

We now turn co the details of the general
construction process. We assume that the systemthe rank requirements from A to M (In the

case of linear systems, the hAve dis d ssion shows is forward solvable and conditionable.  The pro-
cedure is:that solvability or conditionability of the orig-

inal system implies forward solvability, or for-
Let

ward conditionability, respectively, of any sub-
system.)

AN-1(xN-1'XN) - fN-1(XN-1'XN)
4.3  CONSTRUCTION OF BOUNDARY MANIFOLDS

Clearly *N-1(x---1'xy) - 0 is an implicit repre-
sentation for 7 In general, suppose that

We   have   seen   that   the so lution manifold   of a N-1.N

solvable and conditionable descriptor system can 0Ic(xklxN) - 0 is a-suitable representation for

be embedded on the boundary manifold B. If the Bk,N    Ok is
of dimension 'n and has full rank.

system is forward solvable and forward condi-
Now consider the equationstionable, the solution manifolds of each of the

forward subsystems can be similarly embedded on a
corresponding boundary manifold. The successive Ak(xk'XN) - 0

(4.5)boundary manifolds are, of course, related.  By
exploiting this relationship, ic is possible to fk-1(xk-1'xk) = 0
cons truct the boundary manifolds recursively,
starting with the simplest. Thus, we begin by As verified below, this system is of full rank at

any   solution   to   Sic- 1, \T.        I t    is   also    of   rank   n
:, '2crt,   yo liVe;twt sh,Xe,Ze,„. : sm..i- with  respect  to  x .     thus,  xk  can be eliminated

construct BN-2,N, etc., working all the way to yielding the n-dimensional relation

BO,N
4k-1(xk-1'XN) - 0·

The specific construction is, by necessity,
This $ Will have rank n.local in character. With this caveat in mind, we k-1

shall nevertheless  represent boundary manifolds
in simple implicit form. Specifically, we repre-

To verify the statements concerning rank,

imagine that all operations are carried out onsent the boundary manifold B by the system of
43 the linearized system. In this case each $ is a

equations linear combination of the fi's i-k,k+1,..., , as
indicated by the lemma. The fact that (4.5) is

Ak(xk'xN) - 0 (4.4)
of full rank follows from forward solvability,

where $ is an n-dimensional function of full rank since  this  sys tem is essentially a representation

on Bk x The functions 91. are generalizations of for the n-dimensional solution
manifold  Mk-1,N'

the state transition functions in ordinary state- Then   s ince the derivatives   of the nonlinear
$  at the nominal solution is equal to that of

space theory. Equation   (4.4) is completely equiv-
t e linear version, the rank result holds.  Like-alent (locally) to the last N-k equations in (4.3),
wise, the fact that (4.5) is of full rank withor equivalently, to S Solutions to (4.4) arek N' respect to

xk
follows from forward conditiona-

in direct correspondente to end-points of Sk p.
,*,         bility.  If x  1 and x.. are given it must be

To justify the construction it is necessary
possible to soive (4.59 (and its linearized ver-

to consider a lemma which applies in the linear sion) uniquely for xk

case.

As mentioned earlier, the functions Ak'
Le=a: Consider the system

k=0,1,2,...,N-1 representing the boundary mani-
folds are generalizations of the state transition

Axk-1 + Bxk = 0' functions in ordinary state space theory. Indeed,
for a system described by x(k+1) = Ax(k) one can

Cxk +Dxy- 0 easily calculate that *Q(x(0),x(N))Ex(N)-ANx(0).

where A, B, C, D are n x n matrices. Suppose this A  Method  of SO Lution

system is of full rank on R3n and of full rank
Once the

(Dk's
are known, it is possible to
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calculate solutions to the original system recur-
00(x(0);x(N)) = 0, where *n is a n-dimensional

sively.  The equation
*O(x(0),x(N))

- 0 defines function of rank n.
If rotx(0),x(N)) is an n-

the boundary manifold for the entire system S dimensional function of rank n that is independent
ON'

In order to specify a single solution to the sfs- of  $0  (locally),  then the system
tem, a single point on this n-dimensional boundary

manifold must be specified. Generally this speci- ro(x(0), x(N)) - ao
fication takes the form of n additional relations, (4.7)

independent of those in the 0 . These additional 0 (x(0),x(N)) = 0
0

relations specify a unique po nt on the boundary

manifold and hence a unique x(0),x(N). determines a unique x(0),x(N).  An equivaleht

statement, not requiring the knowledge of $ , is
Next consider the equations that (4.6) appended to che system (4.3) uniquely

specifies a solution.  The function r  are termed

fl(x(0),x(1)) =
0 conditions and parameterization vector aQ is

termed condition vector. In terms of manifold

01(x(1),x(N)) =
0 theory, r  defines a coordinate system for BO N.

This system of equations has full rank with re- Propagation   of   Conditions

spect to x(1), and x(0) and x(N) are known from
the initial stage  of the solution process. Thus, We consider now a solution procedure, termed

this system can be solved for x(1) . the doub Ze-sweep method, that is in some sense
the dual to the procedure discussed in the previous

This value of x(1) and the value of x(N) are section. This procedure more closely resembles
then used in the system the standard recursive procedure used for solving

ordinary dynamic systems.  (Indeed, in the case of

fl(x(1), x(2)) =
0 a state space system this procedurt is equivalent

to normal forward recursion of the state vector.)

02(x(2),x(N)) - 0 It  must be pointed out, however, that although  the

procedure  is   in many senses  a more natural  one,   it

to determine x(2), etc.  In this way the entire has potential hazards (as is discussed below under
sequence of descriptor vectors is determined re- the heading of catastrophes).

cursively.
The propagation of condition vectors is again

The procedure for the (backward) recursive based on consideration of the nested family of

determination of the *k's followed by the (for- descriptor systems SO N' S
1,N''' 'SN-1,N'

In this

ward) recursive determination of a specific solu- case, however, the initial propagation moves for-
tion has several potential implementations.     In ward, working   from  the full system to progressively
some situations the (global) operations can be smaller subsystems.
carried ouc directly. (This is often true if the

sys tem itself is linear   or   if a dynamic program- One  starts  with  the  system  SO  N  and a suitable

ming procedure is employed.) In other cases, how- set of

conditions  I'2(x(0),x(N) )  -  d .

This speci-

ever, only linear approximations to the *k's are fies a unique solut on to the full system S

calculated, leading to a solution procedure which By deleting the first  term,  x(0), the resul i g

involves successively sweeping back and forth sequence of descriptor vectors is a solution to

through   the system until convergence is achieved. the subsystem Sl s.  Thus, there must be a set of
consistent conditions for the subsystem S that

4.4  CONDITION VECTORS yield that reduced solution.  This new se ' f con-
ditions represents a propagation of the original

A unique solution of a solvable and condi- conditions on the full system to the subsystem.

tionable descriptor system is determined by the This procedure is continued over successively
specification of a point on the boundary manifold smaller subsystems. The procedure thus generates

B.  As pointed out earlier, this point is usually a sequence of condition functions rk' k-0,1,2,...,
specified in the form of n additional relations N-1, and an associated sequence condition vectors

or conditions. These might have the form
a0, al' a2""' 'N-1'

ro(x(0), x(N)) = GO (4.6) The procedure begins with a suitable n-dimen-

sional constraint of the form rl(x(0),x(N)) - al,
where the function r and the vector a are n- having rank n.  This is swept forward one step by

dimensional. If
the functions   r   are  ndependent consideration  of   the  sys tem of equations

of other system relations, the relation  (4.6)  de-
termines various points on the boundary manifold

ro(x(0),x(N)) - ao
as al varies.  Thus GO serves to parameterize the
boundary manifold and, corresponding, the solution

fl(x(0),x(1)) - 0
manifold as well.

This system must be of rank n with respect to x(0),

More explicitly, we know from the previous for if x(1) and x(N) are known x(0) must be deter-
section that (at least locally) the boundary mani- mined from these equations.  Hence, with respect

fold B can be represented in implicit form to x(0) there are at least n functional depen-
0,N

dencies among the functions rl, fl.  That is,
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there is an n-dimensional function 41 of rank
n lently, that the functions i  are independent of

such that 41(r (x(0),x(N)), f (x(0), x(1))) is the system equations) .  For an arbitrary function
independent of x(0). This function is equal to

r , the procedure outlined above may progress
some function rl(x(1), x(N))- We thus have successfully for several steps until a point is

reached where the equations
rl(x(1),x(N))

-

41(rO(x(0),x(n),fl(x(0),x(1)))
rk(x(k), x(N)) - ak

= 41104

fk(x(k), x(k+1)) - 0In other words,

are inconsistent. At that point, no further pro-
rl(x(1),x(N)) - al (4.8) - gress is possible.

where Such a break-down results from improper  se-
lection  o f the original  r ,  but unfortunately

al = 41(00,0) .

there is no way to insure that a given r  is
suitable by inspection of the properties of the

This is the equivalent set of conditions for the system  near che initial point k=0. Whether   the
subsystem Sl N.  As in the preceeding section a given rl is a suitable condition coordinate sys-
check of the'linear case verifies that all neces- tem is dependent on the entire structure of the
sary rand conditions are satisfied by this updated system over the entire time interval. In general,procedure. a procedure equivalent to that in Section 4.3 to

calculate $ , must be employed to insure that aThe procedure is continued co determine, in
given r 

is appropriate.
general, uk'.rk' and ak for k=0,1,2,...,N-1.  At
the final point the 2n equations

A similar phenomenon occurs in continuous-
time systems and essentially forms the basis for

rN-1(x(N-1), x(N)) - aN-1 the subject of catastrophe theory.  In the con-
tinuous-time case, however, it is possible to

fy-1(x(N-1), x(N)) - 0 rationalize the sudden inconsistency by hypothe-

sizing an instantaneous jump in the value of some
can be solved for x(N-1) and x<N). At this point descriptor variables. In the discrete-time case
one may work backward through the system to solve there seems to be no equivalent way out of the
for the successive descriptor vectors. Specifi- diff iculty.
cally, given x(k+1) (and x(N)) one solves the
system

As an example consider the linear system

rk(x(k),x(N)) = ak Ek+lx(k+1) - x(k)

fk(x(k),x(k+1)) = 0
Assume that E  is of full_rank for k=0,1,2,3, but
that E4 is singular.  The choice r  = x(0) seems

for x(k).
reasonable at first, for indeed ri - x(1), r  =
x(2),  and r3 - x(3) will follow naturally.    ow-

Examp Le: Consider the linear state-space system ever, there is a catastrophe at k=4 since
x(k+1) - Ax(k).  We may take r  - x(0).

Thus E,x(4) = x(3) is not independent of x(3) ™a.
x(0) = a  is the initial condition.  The vector T#e situation can be rectified only by the s -x(0) can be eliminated from the equations

lection of a different r , having less than full
rank with respect to x(09.

x(0) = ao
These comments concerning catastrophes are

x(1) = Ax(0) not meant co imply chat the double sweep method
is seriously flawed. On the contrary, in prac-to produce tice suitable choices for r 's are often clear
from the context  of the pro lem.     One  must,   how-

x(1) = a
ever, be aware  of the potential difficulties.1

al = AaO Inputs

which is (4.8) for this special case.  This im- At this point, let us briefly consider the
plies rl = x(1).  Thus this procedure reduces to original system in descriptor form with inputsnormal state recursion. (4.1) .  During the forward sweep of the pro-

cedure outlined in the first part of this section,
Catastrophes

it is necessary only to use the functions hk (and
consequently the inputs u(k)) sequentially.  Thus

The procedure outlined above works well, pro- the forward sweep is a causal operation.  There-
vided that the initial n-dimensional function

rQ fore propagation of the condition vector can be
does in fact represent a legitimate coordinate thought of in terms of a normal causal dynamic
system on the boundary manifold B (or equiva- operation. In this sense the condition vector0,N
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acts much like the state vector of a (normal)
dy- expects that suitable condition functions may in-

namic system. The backward sweep uses the func- volve both end-point vectors x(0) and x(N) simul-

tions 4-  and the corresponding u(k)'s in the re- taneously. However, the following result shows

verse oPder. Thus the overall procedure is non- that it is always possible to specify a complete

causal, although the two portions forward and set of conditions in terms of pure initial and

backward are each causal in their respective di- pure final conditions.  This justifies special

rection. consideration of pure end-point conditions.

4.5  FORWARD RECURSION Theoren  4.3.'     If a descriptor system  (4.1)   is  sol-

vable and conditionable, then a complete set of

It is sometimes possible to solve a descrip- additional conditions can be specified (locally)

tor variable system by a single forward sweep. in terms of pure initial and pure final conditions.

In order that this be possible, two general prop-

erties must be present. First,    the   system must proof: In Section  2.3   this   theorem  was   proved   for

possess appropriate structure. Second, the speci- the linear case. That   resul t shows    chat    the   Ja-

fied end-point conditions must be such that a maxi- cobian matrix, with respect to x, of the system

mum number of initial conditions are specified. (4.1)  can be augmented  by  n  rows, each having

An example, of course, is a state-space system. entries corresponding either to initial or final

Such a system has a structure that allows for
so- conditions, to give full rank.  Specifically, the

lucion by forward recursion, but such a recursion system   (4.1) when augmented by conditions  of   the

is possible only if, in addition, the n boundary form xi(0) -·ai' i E IO and xj(N) - Bj, j E IN

conditions are all initial conditions. Similar
(where the ai and 81 are real numbers, and the

requirements hold for general descriptor variable
index secs I  and I; together contain n elements)

systems.
is of full rank witH respect to x. Thus, by the

inverse function theorem there is a unique so-

This section outlines the technique for for-
lution for all values of 01 and ai (at least 10-

ward recursion in the simple case of regu
Zar cally).  These solutions are on the solution mani-

systems.  The technique is actually a slight modi- fold «#.

fication of the double sweep method developed in

Section 4.4. In order to develop the method, we
Regular    Systems

first explain the generalization of solvability

and conditionability to systems with inputs, next We now consider an important special case,

we explore the role of initial conditions in de- where a descriptor variable system can be solved

scriptor systems, and finally we define regular forward recursively in one sweep. Consider the

systems. system (4.1) which can be written as

GeneraZ Frenework gk(x(k), x(k+1), u(k)) = 0 (4.9)

It is appropriate at this point to show how for k = 0,1,2,...,N-1.  Suppose that for every k

the general descriptor system  (.4.1)  can be embedded and  throughout  the  rank of  gk(x(k) .x(k+1) .u(k))
in the framework of Section  4.2   for  sys tems with- is r with respect co x(k+1). Then by suitable

out input (4.3). This extension is important in manipulation the system (4.9) can be reexpressed

forward recursion techniques, since the order in (perhaps locally) as

which   the  u(k) 's are processed   is  important.

ck(x(k), x(k+1), u(k)) -
0 (4.1Oa)

Define wk  as  the  set of solutions  to  (4.1)   in

some appropriate domain. .,# is a subset (possibly d (x(k), u(k)) = 0 (4.1Ob)

empty) of Rn(N+
1) x RmN The   system    (.4.1)     in                                                

  k

soLvabLe if .41 is not empty, and if for every
The function c (x(k), x(k+1), u(k)) is of rank r

point  inwN the Jacobian matrix  of the system with with respect to x(k+1).  Many systems are readily

respect to the descriptor variables has full rank ·     expressed in this form. Note in particular that

This assumption implies that ,/C is an (n + mN)- i f r-n then ck = gk, and the system can be

dimensional manifold.  Fixing a specific set
of solved forward recursively from a given initial

inputs corresponds to slicing through the .K mani- x(0) - in fact, this is a state-space system. In

fold and producing a manifold M as in Section
4.2. general, of course, one has r < n.  The state-

The notion of conditionability is generalized
in space case, however, motivates the definition of

a similar fashion. a regular system.

In this generalization it is clear chat the We assume that the system (4.10) is solvable

role  of the inputs is secondary. However,  when it and conditionable. We further assume that a full

is important to keep track of the role of inputs, set of pure initial and final conditions exist

this general framework is available. for (4.10), and that the number of initial con-

ditions is equal to the dimension of the upper

InitiaL Conditions AZways Er€st part of the system.  Specifically, the conditions

have the form c-1(x(0)) - al and dy(x(N)) - BN'

The concept of conditions was discussed in where c is r-dimensional of rank'r with respect

Section 4.4. Conditions provide a (local) param-
to x(0),land d  is (n-r)-dimensional of rank n-r

eterization of the boundary manifold, and hence with respect to x(N).  Thus, a full set of pure

o f the solution manifold   as well. In general, one initial and final conditions are assumed to exist
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for (4.10), and the number of initial conditions By assumption this system is of full rank and
hence can be solved for x(0). Second, consideris equal to the dimension of the upper part of the

system. the system

Definition: The system (9) is regutar if for each cl(x(1), x(0), u(0)) = 0
k = 0,1,2,...,N-1 the Jacobian with respect to
x(k) of the functions dl(x(1), x(0), d(1)) - 0

ck-1(x(k-1), x(k), u(k-1)) This system is of rank n with respect to x(1) and
hence given x(0) from above and u(0), u(1), this

dk(x(k), u(k)) system can be solved for x(1). One continues in
this fashion all the way to x(N).

is  o f  rank n throughout u# .
The above is an outline of the procedure.  It

A system which satisfies this definition of is possible to trace the condition vector a 
through successive stages.  As demonstrated inregularity can be solved forward recursively with

a modification of the double sweep algorithm. We Section 2.4, the condition vector at any stage
serves as a state vector. Regular systems leadsketch the details below.
to a simple forward recursion solution.  More

First, consider the system general systems can also be solved forward, in a
similar manner, by employment of a generalization

0-1(x(0)) - a 
of the shuffle algorithm introduced in Section
3.4 when the system is time-invariant.

dl(x(0), u(0)) = 0

:.
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V.  CONTROL OF LINEAR DESCRIPTOR SYSTEMS

5.1  INTRODUCTION solvable representation. This chapter will first

consider rectangular systems that are regular 
-

In the earlier chapters of'this report, the the approach will be to separate one set of re
-

emphasis was on the uniqueness and condition- lationships that form a square, regular system and

ability of the solution to a descriptor syste
m

designate the other relationships as a set of

and che determination of chat solution. The in- static constraints. The critical issue is whether

puts to the system were treated as additional these constraints can be maintained as the uncon-

parameters that affect the location of the so-

lution. In this chapter, the focus will shift
strained system progresses in time.  This con

cepc

of maintainability is carefully described in

to the determination of inputs that create de
-

Section 5.4.

sirable solutions to a descriptor system.

Given that a regular rectangular model for a

If there is a criterion function that assigns sys tem satisfies maintaiaability,   it  can be demon-

a numerical value characterizing the desirability,
strated how optimal feedback policies can be 

com-

an optimization problem can be defined to de
ter-

mine   the   "best"   set of inputs. Dynamic program-
puted when one has quadratic performance crite

ria.

Section 5.5 first considers the special case 
of a

ming is an effective procedure for opcimizing

the subclass of descriptor systems that have
system represented by a state-space model plu

s

static relationships on the state
variables. The

state-space form.  This procedure employs the result derived for this special case is then ex-

property that the descriptor vector ac each s
tage

tended to the more general case where the state-

is a state. However, the procedure  can be adapted space model is replaced by a square, regular 
sys-

to systems where there is no state vector ac
tem and where the static constraints can includ

e

various stages. This revised method is presented

in Section 5.2.
the inputs.

Often there is not a criterion for evaluating

Many important dynamic models, however, are

(forward-time) causal and have a state at eac
h

the optimal policy, yet it is desirable to appl
y

inputs in a manner that keeps descriptor varia
bles

time   ins tant. By having a state, the system can inside acceptable ranges.    As in rectangular  de-

be solved via a forward sweep through the tim
e scriptor systems, a useful analysis is to trans

-

instants, without requiring the knowledge  o f  fu- late the constraints on descriptor variables t
o

ture inputs. Ln Chapter II, we identified regular constraints on inputs that will maintain the de-

systems as systems chat can be characterized by sired ranges. If the constraints are applied on

a forward condition system plus static relat
ion- individual descriptor vectors, the constraints

 can

ships at each time instant.  This structure ca
n be translated to necessary conditions on individual

be exploited in designing a more efficient dynamic
input vectors. These necessary conditions apply

programming   than  the one described in Section  5.2.
co both regular and nonregular systems and are

This second procedure is outlined in Section  5.3.
demonstrated in the final section of the chapter.

The   performance   criteria   for   dynamic   economic                5.2      DYNAMIC   PROGRAMMING   FOR   LINEAR   DESCRIPTOR

systems can often be approximated by criterion SYSTEMS

functions that are quadratic in terms of des
criptor

variables and inputs and that are additively s
epa- Often the major motivation in modeling a

rable by time increment. Linear state-space sys- system is to provide a framework for determinin
g

tems with such performance criteria have been a set of inputs that optimize the solution of
 che

thoroughly studied, and it is well-known how t
o

system model, and hence will serve as a nearl
y

compute an optimal feedback control
law. Section

optimal policy for the actual system. In the con-

5.3 demonstrates that this result extends to
 any

text of the system being considered, it is reason-

linear, regular system using the special causa
l

able to assume a separable objective function
 of                 

structure of such systems. Therefore, a procedure the form:

exists for computing an optimal feedback polic
y

without requiring a state-space representation. minimize (  hk(x(k),u(k)·)+1 1(N)}

Frequently in models, it is useful to specify u(0),...,u(N-1) k-0 (5.1)               1

desired behavior in the form of additional st
atic

relationships. One chen has a rectangular system, Dynamic programming   is    a
t echnique commonly

as opposed to a square system, because there will used to optimize dynamic systems with a separ
able

be more relationships than unknowns. In some objective function.  Dynamic programming allow
s

cases, this representation may be
inconsistent such optimization problems to be solved as a

 series

and the model is not realizable. However, usually of smaller optimization problems in the same wa
y

these relationships will have a feasible
solution that condition systems can be used to decompose

set   for. a restricted  set of inputs. The deter- the  solution of descriptor systems. In fact, as

mination of optimal control in these models is Will be seen in this section, the condition systems

somewhat more complex than the simple unconstrained have an important role in efficient optimizat
ion.
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However, dynamic programming has been developed feasible x(k), there is a subset of possible in-
for state-space systems, which are special cases puts u(k)  that can be used with x(k) .   One input
of descriptor systems. The purpose here is to u(k) is selected from this subset. This Lmmed-
demonstrate   how this technique   can   b e extended iately determines y(k+1), the forward condition
to all solvable, linear descriptor systems. vector corresponding to set k+1. However, there

is possibly an entire range of backward condition
The theoretical basis for determining the vectors z(k+1) for set k+1 that are consistent

globally optimal policy using dynamic programming with x(k) and u(k) (or z(k) and u(k)). For each
is the principle of optimality. In the context of z(k+1) in this range, the minimal cost-Co-go from
state-space systems, this Erinciple states that x(k) to any x(N) (including the cost of x(N)) is
given any state x(k), if u (k), u (k+1),...,u*(N-1) computed by sum=ling  the costs of x(k),  u(k), and
is the optimal trajectory of inputs corresponding the optimal cost-co-go from x(k+1) (determined
co x(k), then u*(k+1),...u*(N-1) is the optimal

uniquely by the condition vectors y(k+1) and
trajectory of inputs corresponding to the state

:(k+1)).  This determines an optimal cost-co-go
x(k+1) resulting from x(k) and u*(k).  Since a from x(k) for given u(k) and z(k+1). These compu-
descriptor vector x(k) and input u(k) cio not tations are repeated (if necessary) for other
always uniquely determine che following vector values of z(k+1) in the consistent range, so that
x(k+1) in a descriptor system, this principle an optimal cost from x(k) using u(k) can be iden-
must be reexpressed to be valid for all well- tified.  One can then consider other feasible
defined descriptor systems. values of u(k) and repeat the process of deter-

mining the optimal z(k+1),  such that an optimal
Suppose we consider the optimal cost-go-go input u(k) and cost-co-go can be determined for

from some descriptor vector x(i) at instant i to x(k).    When the overall procedure is repeated  for
a descriptor vector x(j) at instant j.  By the all feasible x(k), the iteration for set k is
system equations and the objective function, it complete, and one can progress to the iteration
is clear that this cost depends only on the choice for set k-1. This algorithm is repeated in a
of u(i), u(i+1),...,u(j-1): step-by-step manner below:

Cost-to-go  from x(i)  to  x(j)  -  hk(x(k),u(k)) Define the following sets:   Let Z  be  the
set of backward condition vectors z(k) that arek=i (5.2)
reachable from the backward condition vector z(N)
These sets can be generated recursively using theExpression  (5.2)  can be interpreted  as  the  ob-

j ective function  for  the  cost-to-go  from  instant backward condition system where

i to instant j for specified x(i) and x(j).  The
z(k) - S z(k+1) - Q u(k)value of this reduced objective function will k:+1 k+1

obviously depend only on x(i), x(j), and the in-
Thereforeputs u(i),u(i+1),...u(j-1).  Note, however, that

a set of inputs may not exist to link every pair
x(i) and x(j) ; therefore, we must assume the pair Zk = {Sk+lz(k+l) - QIC+lu(k) | z(k+l) EZk+1'all u(k) }
is feasible.

and

Using (5.2) and minimizing with respect co
u(i),u(i+1),...,u(j-1), an optimal trajectory of

ZN = z(N)
inputs can be determined. There may be multiple
trajectories. Any one optimal trajectory will

Let U z(k)) be the set of u(k) such that z(k) isuniquely determine the descriptor vector x(i+1), reacha le from some z(k+1)EZ
using the system equations. From (5.2) it is le+1:

clear that u*(i) must minimize the cost-to-go

from x(i) to this value of x(i+1), where u*(i) is Uk(z(k)) = {u(k)12(k)+Qk+lu(k)<Sk+1Zk+1 
part of the optimal input trajectory for (5.2).

Let Zk 1 (z(k),u(k))  be the
subset of Z   L suchLikewise, the other inputs of that trajectory,

that ztl) is reached from z(k+1) usingk fk) :
u*(i+1),...,u*(j-1) must minimize the cost-to-go

from the determined x(i+1) to x(j).  Therefore
minimizing cost-to-go from x(i) to x(j) is equiva-

Zk+1(z(k),u(k))={z(k+1)  Sk+lz(k+1)-Qk+lu(k)-z(k)}lent to finding a consistent x(i+1) that minimizes
the sum of the cost-to-go from x(i) to x(i+1) plus

Determining these sets requires solving equationsthe cost-to-go from x(i+1) to x(j).  This consti-
of the form Hx-d for all solutions, where H may

tutes a principle of optimality for descriptor
not have full row rank. If the solution set issystems.
not empty, one solution can be obtained using a
pseudoinverse of H. The remaining solutions willThis principle can be exploited in the design
be the linear manifold of vectors that are theof a dynamic programming algorithm for determining
sum of the determined solution plus an element inthe optimal policy for a descriptor system with
the null space of the row vectors in H. It isrespect to (5.1).  The algorithm recursively de-
clear that for any

z(k)€Zk'U&(z(k)) cannot betermines the optimal input u(k) and cost-to-go
empty by definition of Z . Similarly Z (z(k),from a particular x(k) to any feasible x(N) plus k+1

the cost of x(N), for all feasible x(k), first
u(k))  corresponding  to

u k),Uk(z(k)) cannot  be

empty.where k=N-1, then where k-N-2, etc..  Now for any
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The algorithm proceeds as follows: are given. it is only necessary to consider that

subspace of x(0). Once the iteration for all

For any feasible x(N), determine the value of feasible x(0) is complete, we determine the

hN(x(N)).     For
the iteration  at  set  k. likiN-1, value(s) of x(0) chat minimizes J (x(0)).  The

scarting with k=N-1- globally optimal policy and optimal solution
 can

be recovered:  The optimal x(0) determines an opci-

1.  Consider any x(k) such that z(k) = Akx(k),
the mal u(0).  The vectors x*(0) and u*(0) determine

backward condition vector, is in Zk.  The goal
is 7(1) and z(1) - arg*L*(x(0),u(0)), which equiva-

to determine the optimal cost from x(k), lently determines x (1).  Continuin  in this fash-
ion one recovers u*(1), x (2),...,u (N-1), x*(N).

N-1

E hi(x(i),u(i)) + h (x(N)
The preceding algorithm indicates how the con-

cept of dynamic progrnmming can be employed in

i=k optimizing these descriptor systems without in-

sisting that the system be causal, as in state-

and the corresponding value(s) of u(k): space systems. For particular types  o f  ob j ective

2.  Determine Uk(z(k)).

functions, it may be possible to perform the above

iterations analytically, chac is determine a cost-

to-go from x(k) that is a simple function of x(k),

3.    Choose a particular u(k)EU(z(k)). rather than repeating the process for various

specific values of x(k) .   For more complex objec-

4.  Calculate tive functions, some approximations are generally

y(k+1) - Rky(k) + Pku(k)
necessary since there are an uncountable number of

possible x(k). However, the advanced computational

procedures developed for standard dynamic program-

where y(k) - rkx(k) is the forward condition vec-

cor for x(k).
ming problems can also be applied in these opti-

mization problems to determine an approximately

5.  Determine Z (z(k),u(k)).
optimal policy (see [211).

k+1
When the dynamic progrnmming algorithm de-

6.  Compute scribed above is applied to a state-space system,

it automatically simplifies to the standard. dy-
*

Lk(x(k),u(k))  -
min Jlc+1(x(k+1)) namic programming algorithm if the maximal number

x(k+1) of initial conditions   are used. Since there is no

backward condition system in this case, che set

where A x(k+1)EZ (z(k),u(k)) of inputs u(k) is not systematically constrained
k+1 k+1

by x(k). Furthermore, the descriptor vector is a

rk+lx(k+1) = 7(Ic*1) state vector, so x(k) and u(k> determine a unique

*

x(k+1). This eliminates the need
for repetition

Store Lk(x(k),u(k))
and of steps 5-7.  Thus, the recursiv

e procedure auto-

matically assumes the conventional embedding prop-

*                           erty of stat
e-space dynamic programming.

x +1(x(k),u(k)) -
arg Lk(x(k),u(k))

5.3  DYNAMIC PROGRAMMING FOR REGULAR DESCRIPTOR

SYSTEMS

7.  Repeat steps 4-6 for all remaining

u(k)€Uk (z(k)). Recall that a square descriptor system of

8. Compute
the form

Jk(x(k))=
min

Chk(x(k),u(k))
Ek+lx(k+1) - Ak x(k) + Bk u(k)   k-0,""N-1(5.3)

u(k)EUk(z(k))
+Lk(x(k),u(k))} is regular if and only if it can be transformed

*                                                via elementary row operations into the form
Store J (x(k)) and

·                   I rk.71u (x(k)) - arg
(Jk(x(k))) 1

---Ix(k+1) I  -  x(k) + -   

u(k) (5.4)

9.  Repeat steps 1-8 for other descripsor
vectors Lo J L kJ

x(k)  satisfying  A x(k) EZk, for which  Jk(x(k))
has

Frk 1
not been computed.

where!33
is square and nonsingular for all

10. If k>1, set k=k-1 and repeat steps 1-9. k-0,...,N, assuming a proper choice of TO and DN
'

Otherwise proceed with the iteration for the set
Now for regular systems, y(k)=rkx(k) serves as a

of x(0). state in the sense that a propagation of y(k) for-

ward in time is sufficient to recover the value of
For the iteration at x(0), the steps 1-9 ar

e

repeated with one minor change. Since the initial x(k) for all k, since there exist matrices

conditions Rk'Pk'Lk' and Mk such that

rox(o) = y(o)
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y(k) - R Y(k) +
Pku(k) (5.5) Assume J (y(k+1)) has been determined for all

y(k+1) ah*lconsider Jk(7(k)).

x(k) - Lky(k) - Mku(k) k=0,...,N-1
(5.6)

'

From separability of the objective function
and the propagation o f the forward conditionFr,Il-lry(,21 (state) vector given by

x(N) =1-1--1  1-w-- 1  LNY(N) + WNzy (5.7)
L  1   LY  J

=

7(k,+1) - Rk 7(k) + pku(k)

where ANx(N)=zN are the final conditions.  We will one has
assume  6hat   zN'

is exogenously given.

Jk(y(k))  = min < hk(x(k),u(k)
Consider the problem

u(k)(

N-1

+ J   Cy(k+1))   minimize E h (x(j).u(j)) + 1(x(N))                        k+1
j.0

subject to rl x(O) = 7(0)
- min  hk(x(k),u(k))

u(k)(

AN x(N) - ZN

For regular systems, the terminal conditions
+ llc+1(Rky(k) + pk u(k)) 

ANx(N) - zN serve only to specify x(N) and do
not constrain the inputs or affect previous de- where rk x(k) = y(k)
scriptor variables. Recall that in any solvable
system, the descriptor variable vector x(k) can

Since the system is regular, y(k) and u(k)be determined from the forward condition vector
uniquely determines x(k) through the relationy(k) and the backward condition vector z(k).

Therefore, if z(N) - 4, is known, y(N) repre-

x(k) - Lk Y(k) - Mk u(k)sents a unique x(N). Nence for regular. systems
the terminal conditions can be removed by re-

Substituting for x(k), one hasplacing T(y(N))  = 7(I'Nx(N))=1(x(N)). The problem
for regular systems becomes

Jk(y(k)) = min  hk(Lky(k)-Mku(k),u(k))Al
u(k)(minimizeL hj(x(j),u(j)   +  2(y(N))

1.0                                                                               + Jk.+1(Rky(k)+Pku(k))  .
subject to TO x(01 - 7(0)

Jk(y(k)) is determined for all y(k), and theIn a regular system, the forward condition
corresponding optimal u(k) is scored. This pro-vector y(k) - rkx(k) is a state and thus sum-
cedure is repeated for time increments k-1,marizes all past inputs and descriptor variables
k-2,...,0.  At k=0 it is only necessary Co calcu-as they affect the present and future descriptor
late J (y(0)) for the given initial conditionsvariables. In other words, if one is trying co

I'0(x(09)  - 7(0).
A forward sweep will  then re-determine x(m),  mik,  it is unnecessary to specify cover the entire traj ectory of opcimal inputsu(j), j<k, if y(k) is known. Therefore, one can

u*(k) that minimizes J (y(0)).  This proceduredetermine a "cost-co-go" from k to N for a given
corresponds almost identically to the procedurey(k) without knowing the inputs previous to k.
for state-space systems, which are simply regularOne can then calculate the optimal set of inputs
systems where all descriptor variables serve asfrom k to N-1 given y(k), without determining the
state variables. However, in state-space systemsprevious inputs. In addition, the objective
y(k) is identical to x(k), while in the generalfunction is separable in time, leading to a
regular system y(k) only restricts x(k) to a

natural application of the principle of opti- linear variety of the descriptor space.  Completemality which is presented below:
specification of x(k) in a general regular system
requires knowing the static relationships of theLet
system at time k, which are independent of the

JN<7(N)) -
2(y(N))

system characterizing y(k). Note that the dimen-

lower-order dynamic forward condition (state)

sion of y(k) plus the number of static relation-and for 0<k<N-1- -
ships equals the dimension of x(k)  in a regular4 N-1
system.

Jk(Y(k))
-

,(k) „ . . ..(N-1) 1 E
hi

(x(j),u(j))
This procedure is clearly more efficientj-k

than the procedure described in Section 5.2,
+ '1(y (N))

1
since by using the cost-to-go from the forward
condition vector at time increment k, any input

such that rkx(k) = y(k) u(k) is feasible.  Recall chat in determining the
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cost-to-go from a specific descriptor vector x(k), Now using the assumption in (5.9) and substituting

there is generally a linear variety of
feasible the quadratic expression for J . (5.10) becomesk+1

inputs that must be determined prior to computing F 0(31
the optimal control. Therefore, the steps for de-

Jk<y(k)) - min f.1[y-(k) u-(k)]   i   u(k . 
termining the feasible inputs and reachable de-

scripcor vectors are avoided in this procedure. u (k)1  L

However, both procedures are equivalent for state- (5.11)

space systems since in this case they are each

equivalent to classical state-space dynamic pro- Gy(k71 +  h    1

gramming.
,  +1 [Rk Pkl  (k)-1 k+1J

Linear-Quadratic   Frob Zem   for   Square, Regutar where

Descriptor Systems
4k - LQ Qk Lk + Ri Kk+1 Rk

(5.12)

We now apply this procedure for a regular

system with a quadratic cost criterion:
Nk - -M  Qk Lk+ P  Kk+1 Rk

(5.13)

lr 
minimize     T L x(k) Qkx(k) Sk = Sk + Mi Qk Mk + PC Kk+1 Pk

(5.14)

u(0),...,u(N-1)   k-0
By our assumptions, S  is positive definite and

1 44  k is positive semi-definite.

+2 L  u.(k) Sk u(k) (5.8)                                 *
The optimal input u (k) corresponding to y(k)

k=0
is given by:

where it is assumed that Sk is positive definite          
    *

and Qk is positive semideflnite.  Let Jk(9(k)) u (k) --FkY(k) - vk
(5.15)

represent the cost-to-go from y(k) given optimal

inputs u*(k),...,u*(N-1):
where

- -1 -
(5.16)

Fk - Sk   Nk
Jk(y(k)) -   x(j) Qj x(j)

(5.17)
j=k vk - 3k rk Zk+1

1   *       *                   Hence the optimal u(k) is
a linear function of

+,Lu          (j  )      s j u (1) y(k). Substituting (5.15) back into (5.11), we

j=k get the general form (5.9) where Kk'gk' and hk

are given by:
where for k=N, -_ -Ir -1

Q k   1 1   I   1
JNCY(N)) =   x*(N) QN*(N) Kk -  [I -Fr]   -  -1,

1 (5.18)

Since x(N) = L17(N) + Wyzy for a specified zN' it .'  -Nk  1 'kl
follows  chat  JV(y(N)) ih quadratic  in  y(N) . Using Q 1-11 e I
this observatibn, we will assume (and later

prove) k kl 
 (5.19)

that Jk(Y(k)) is a quadratic function of y(k)
for

4.  t,  -,kl -Nk i L-vILI
all k, i.e.

Jk(y(k)) - 4 y.(k) Kky(k) + go'(k) + hk
+   [I  -Fi] L- l41(5.9)

where K c is
a positive semi-definite matrix and gk hk - hlc+1 + 12 vi Sk vk - v  P  gk+1    (5.20)

is a constant column vector.

Now the objective of the dynamic programming Since Kkl  gk' and hk are independent of y(k),

approach is to determine the optimal u(k) for any it is noted that these can be generated recur-

given state at time k by embedding the cost-to-go sively backward using (5.12)-(5.14) and (5.16)-

from state y(k+1) at time k+1.  As was demonstrated (5.20) starting from the coefficients of JNCY(N)):

earlier, we have
KN - L  QN Ty (5.21)

Jk(y(k)) .
ZN = L  QN WN ZN

(5.22)

min <1.(L;7(k) - Mku(k))'Qk(Lky(k) - Mku(k))                   1

u(k) l th' = 2 Zli WI  QN WN ZN
. (5.23)

(5.10)

We now show that K c
is positive semi-definite

+ .f u.(k) Sku(k)
+

Jk+1(RkY(k)
+

Pku(k)) 
for all k, OfkiN.  It is clear from (5.12)-(5.16),

(5.18), and (5.21) that K c is generated indepen-

dent of the value of zN and therefore will have
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-            the same value for any zN.  For convenience assume comp Ze te Zy maintainab Ze.  A very useful characteri-z  -0,  where  8  is  the zero vector. From (5.22) and zation of uniform complete maintainability is( .23) this implies gy=e and h.,I=0 and, one notes given by che following theorem:from (5.17)-(5.20), that g, =e and h -0 for all
k,OikiN. So in this case (5.9) becomes Theorem 5.2. A system described by (5.25) and

Jk(y(k)) . * y.(k) Kky(k) (5.24) only if at all k, OikiN-1, the space spanned by

(5.26) is uniformly completely maintainable if and

ck+L and the column vectors of
Fk+1Ak

is spannedNow the objective function is always positive semi- by the column vectors of Fk+1 Bk'definite by assumptions  on  Q,   and  Sl, A Therefore,
it  follows  from  (5.24)   that  < must-be positive Proof: From the definition of uniform completesemi-definite.

maintainability, it follows chat for x(j) at incre-
We demons trated   that  J   (y(k)) had quadratic the system equation  (5.25) ,  this is equivalent  to

ment j, (5.26) must be satisfied for k=j.  Using

form  (5.9) by assuming  J,  11 y(k+1)) had a similar stating that there must exist, for every x(j),form. In order co estabI sh the validity of the some u(j) such that
assumption, we note that JN(Y(N)) has this form
for all y(N), and therefore the assumption for any

Fj+1 Aj x(j) + Fj+lliju(j) I c (5.27)k, O.ikiN, follows by induction. j+1

Hence the matrix condition given in the theorem isWe now summarize the result in the form of a necessary for uniform complete maintainability.theorem:

Theorem 5.1: Given a square, regular system x(j), j=0,...,N-1, the choice of·u(k) at increment

Similarly, if (5.27) can be satisfied for any

described by (5.3)-(5.7) and objective (5.8) with k never precludes the existence of some u(j), j>k,arbitrary initial conditions on r x(0) and speci- that will satisfy (5.26) for x(j+1).  Therefore,fied final conditions  z =ANx(N),   he optimal input the matrix condition is also sufficient for uni-u*(k) at time k is a liNear function of y(k) de- form complete maintainability.                   Iscribed by (5.12)-(5.23) and the optimal cost is
given by

Complete maintainability does not imply uni-

10(y(0)) = 1 y-(0)Koy(0) + gJy(0) +
h imply thac (5.26) is sacisfied for all k.  Equiva-

form complete maintainability, however, it does
0

lently it implies that (5.27) must be true for
some x(j) and some u(j), which gives the followingTherefore, given one knows the final condi- theorem:

tions z -AN (N),   there  exists a linear feedback
solution fbr this problem.  IC is important to Theorem 5.3: A system described by (5.25) andnote that the feedback control depends on the (5.26) is completely maintainable only if for allscate y(k) and not the entire descriptor vector k, 0<k<N-1, ck+1 falls in che space spanned by chex(k). --

column vectors
of Fk+1 Ak and Fk+1 Bk'

5.4  MAINTAINABILITY OF CONSTRAINTS IN A STATE- According to Theorem 5.2, a sufficient (butSPACE SYSTEM not necessary) condition for uniform complete
maintainability is that

F'k+1 Bk has full row rankConsider a stace-space system for all k. Suppose this condition does not hold,then it is useful to cite the following leoma:
x(k+1) = Akx(k) + Bku(k)   k-0,...,N-1 (5.25)

Lemma  5.4:    The  set of constraints   (5.26)   for  anywith equality constraints uniformly completely maintainable system can be
replaced by a set of constraints

Fk+lx(k+1) - c k=0,...,N-1 (5.26)k+1

FIC+1 x<k+1)  = Ck+1 k-0,...,N-1 (5.28)Assume Fk+1 always has full row rank to avoid pos-
sible redundancies and inconsistencies in the con- which are equivalent  to  (5.26) with respect  to  thestraints. system equation  (5.25),  and for

which Yk+1  BIc hasfull row rank.
Clearly one would like co be able to choose

inputs u(0),...,u(N-1) such that the state vari- Proof:  Suppose
Fk+1 Bk does not have full rowables generated by (5.25) will satisfy (5.26) for rank for k=j.  By performing elementary row opera-any initial state x(0). Such a system is defined tions on Fj+1 8 , one can create a matrixto be

compZetely   maintainab Ze.                                                                                                                                                                                                                   '

A class of completely maintainable systems 13' 71       1that is important  for   the exis tence of optimal 1 1+1 jl
(5.29)

feedback control laws are systems described by L o J(5.25) and (5.26) such that for any j, Olj91-1,
the system equations and constraints defined for ;::f:%'t,3tcjet: ,2:yrir::s„Sunppo::  wek=j,...,3-1 are completely maintainable for any
x(j) .     We  define such systems   to be uniformzy Fj+1 A  and c +1.  By Theorem 5.2, the new rows
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of Fi+1 Ai and the new elements of c  1
correspond- STEP 4. If  k-0,   proceed  to  STEP 5. Otherwise,

ing to the zero rows of (5.29) must   so be zero.

;:iat:k;l.,=define„'t:l,T:  tr,  approTherefore, the all-zero rows can be eliminated,
' leaving a new set (5.28) for which F B  has

j+1 j I STEP 5.   If STEP 3 produced constraints on x(0),
full row rank. by definition, complete maintainability

does noc hold for the system. Otherwise,
Uniformly completely maintainable systems ex- the system has been equivalently re-

pressed by (5.25) and (5.28) are in a convenient expressed as a uniformly completely main-
form for deriving feedback optimal control laws

tainable system.                      
   I

for regular descriptor systems, as we will demon-

strace in Section 5.5. Before proceeding to those Lemma 5.4 and Theorem 5.5 indicate that any

investigations, we should investigate further the completely maintainable system can be expressed in

relationship between complete maintainability and
the form of (5.25) and (5.26), where Fk+1 Bk has

uniform complete maintainability, so that the re- full row rank at all k. Therefore, in our dis-
sults derived in future sections can be applied cussion of optimal control for completely main-
co as wide a class of systems as possible.  An tainable systems,  we will assume  this  full  row

important relationship is given by the following rank property without further justification.
theorem:

5.5  LINEAR-QUADRATIC PROBLEM FOR COMPLETELY MAIN-
Theorem 5.5: A system described by (5.25) and TAINABLE RECTANGULAR SYSTEMS

(5.26) is completely maintainable if and only if

it can be transformed to a uniformly completely We now apply the concept of complete main-

maintainable  sys tem by shifting  some  of   the  con-
tainability in addressing optimal control for sys-

straints to become new constraints on state vari- tems that are rectangular, or have more relation-

ables at earlier time increments. ships than descriptor variables. A quadratic ob-               1

jective function will be assumed. As indicated in               :

proof: Consider the set of constraints on x(j+1) Section 5.1, an important special case of this

for any j, j-Op.-,9-1, expressed in the for·m of
class are state-space systems with state con-

Equation (5.27).  Suppose F. does not have full
+1 straints.  Because of the special structure of this

row rank, and we perform thJ elementary row opera- case, it is helpful to initially address the con-

tions to create (5.29), chen (5.27) becomes: strained state-space problem.  The derivation of
- ---

-                  feedback optimal control for completely maintain-

 1-+1__21   x(j) + - ii__ i u(j) .  i.121 (5.30)
able state-space systems suggests an approach for
deriving a similar result for the more general

Fj +1      Aj                                            0 j+1 class  o f rectangular, regular  sys temi Both re-

- - - - -- sults demonstrate that the optimal control approach

can be applied to individual subsystem models for

Equation (5.30) represents two sets of constraints: the purpose of large-scale optimization.

one set constraining x(j) and u(j) and a second

set constraining just x(j) .   If we "transfer"  the
Consider a state-space system

second set from being constraints on x(j+1) to

being constraints on x(j), the remaining first set
x(k+1) - A x(k) + B u(k)   k-0,...,N-1 (5.31)

will satisfy the uniform complete maintainability

property at j. However, we now have more con- with completely maintainable constraints

straints on x(j).  Nonetheless, we have not added

any new constraints to the overall system, and (5.32)

therefore the complete maintainability of the sys- Ek+lx(k+1) - ck+1   k-0.....N-1

tem must still hold. Therefore, by Theorem  5.3
We assume Fk+1 Bic has full row rank at all k by

the composite set of constraints on x(j) must have complete maintainability.
a feasible solution.

Suppose we have the usual quadratic criterion
The above procedure of transferring con- of the form

straints forms the basis for an algorithm that re-

formulates any completely maintainable system into min

an equivalent uniformly completely
maintainable u(0),...,u(N-i)

system: N-1

STEP 0.  Set k=N-1.
 I: x.(k)Qkx(k)  +t Z  u'(k)Rk»(k)        (5.33)

STEP 1. Consider F x(k+1) = ck+1
If F Bk

k=0 k=0

k+1 th*iele-does not have full rank, perform

mentary row operations necessary to create where Q6 is positive seni-definite and R.  is posi-

(5.30). If F . 86 does have full row tive de£inite for all k. Since the criterion is

rank,  proceedk   STEP 4. separable by time increments, we can use the dy-

-             - namic programming approach where, by successive

STEP 2. Retain F x(k+1) - c as the con-

straintsktA x(k+1) .
k·+1 embedding, we compute the optimal input u(k) and

optimal cost-to-go from any x(k) to the fina
l

STEP 3. Add constraints Fk+1 Ak x(k) -
c to the state at time N for k=N l,N-2,...,0. We assume
k+1

existing constraints on x(k). this  optimal  cost- to-go  has the quadratic   form:
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Jk(x(k)) = x-(k) Kkx(k) + g Ix(k) + hk (5.34) The first-order necessary conditions are:
-

where K c is positive semi-definite.  By construc-
ii'     \     -t            r

(k)
Bk k+ltion of the objective function, it is clear that

this is true for k=N.  In the process of deriving
Nk Pk 0 u(k) + -c - 0   (5.43)

.the optimal control law, we will show chae this k+1

is indeed the case for all k by induction, since                          A
we will show that if che assumption is valid for

- -
k+1

k=j+1, it is also valid for k=j.
Now

„-1 -

Now  consider  Jk(x(k))  for some k,Oik91-1.                            -     -
Using the system equation (5.31), the cost-co-go -k k = 11 12

R  P'    G   G
becomes (5.44)

Pk O   G21 822
Jk(x(k))

- min - - -

u(k),...,u(N-1)
(5.35)

where the existence of submatrices

N-1

I *  i x (1)Qi"(1) + *     u.(1)Rl.(1)1
Gll . 'i,-1 - Tk-1 �F (pk -i-1 FC)-1 Fk  -1

(5.45)

G12  -  Et'-1  F.i   (Fk  i -1  pk)
-1

(5.46)
- min

   x'(k)Qkx(k) +   u-(k)Rku(k)
u(k) ( -  - -1 -. -1 -  --1

G21 - (Pk Rk  Pk)   Plc Rk (5.47)

+ Jk+1(Akx(k) + Bku(k)) -1
subject to constraints (5.32) on x(k+1): 622 = -(pk T·k-1

FC) (5.48)

Fk+1Akx(k) + Fk+1Bku(k) - c (5.36)
can be establish   Hence

(5.43) becomes
k+1

We will assume J (x(k+1) has the form 9(k)   i    1 Fk ak   *2 )(5.34).  Furthermore,kiA order to satisfy (5.36)
.-

- _  x(k) + 3(5.49)
in the optimization, we adjoin the constraints

Ak+1     Pk   0- j-Nk               _ck+1   _ (5.36) to (5.35) using Lagrange multipliers. The --

new objective function is:

i(x(k))
= min function of state x(k), as is the corresponding

Therefore the optimal input u(k) is a linear

(u (k),A k+1 Lagrange multiplier A Substituting (5.49)k+1
into (5.37) yields a quadratic expression for

Ek f wi xck) Jk(x(k)) of the form (5.34).  Since the coeffi-
1                                                    cients of this quadratic expression can be deter-

Iy[x. (k),u(k),A'k+11 iic Rk Fl u(k) mined from (5.37)-(5.49), we can essentially
generate the coefficients of J (x(k) ) from the

Nk Pk O
X coefficients of

llc+1(x(k+1)),   he
systen equation

k+1
for x(k+1), the constraints on x(k+1), and the-

(5.37) performance criteria for x(k) and u(k).  This is- similar to the matrix Riccati equation that re-

Akgk+1 sults in unconstrained problems.

+ [x(k),u'(k),  Ak+1]   Bl gk+1 .+ hk+1  In order to complete our inductive proof
validating the assumption of the structure of

-ck+1 Jk+1(x(k+1)),  we  need
only

establish  that  K c  is-- -- positive semi-definite. It is easily shown thac
where Kk  is  independent  of  gN'hr  and  {c  },  1 191.   If

we reset the values of gs'aN' and  {c.} all to
Qk - Qk + Ali IC'c+1Ak ' Positive semi-definite zero, the values of K  will be unchan ed, but

(5.38) J (x(k)) will have the formk

i  - B Kk+1Ak (5.39) Jk(x(k)) = x(k) Kk x(k) (5.50)

Nk - Fk+1Ak (5.40)
definiteness of all Q  and R.,K  must also be

Since Jk(x(k))20 by (5.35) and the positive semi-

positive semi-defirlit .     1

% = Rk + B k+1Bk , positive definite
(5.41)

We now summarize the general result we have
_                                                                                              established for constrained state-space systems.
Pk = Fk+1Bk , full row rank  (5.42)
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Theorem 6.6: Given a completely maintainable sys- N-1

tem characterized by (5.31) and (5.32) and a

*E X(k)Qkx(k) + *E  u(k) Sku(k)  (5.58)quadratic performance function (5.33), the optimal

input is a linear function of the state, given by k=0 k=0

the feedback control law (5.49), and the optimal where Q  is positive semi-definite and S  is posi-

cost is given by (5.34) at k=0 for arbitrary tive  de inite  for  all k. Substituting  ( . 55)  and
initial conditions. (5.56)  into  (5.58) , yields a new objective function

It is interesting to note that the feedback min

control law will, in general, have a constant vec- U(0),•.•,u(N-1)
cor term. This is similar   to the resul t   one   de-

rives in unconstrained systems where one tries to

"track" a non-zero trajectory.
   (Lky(k)  - Mku(k))Qk(Lky(k)  - Mku(k))

We will now extend this result to a more gen- k=0

eral case where (5.31) is replaced by any square,

regular descriptor system. In Section 5.3 we de-

rived the optimal control law for square, regular +   (LNY(N) + WNzy) .QV(LNY(N)  + WNZN)

linear descriptor systems with quadratic perfor-

mance criteria. In this section we will examine
1  1

rectangular, regular systems and show how Theorem (5.59)

5.6 can be used co determine an optimal control law
+2L u'(k) sku(k) k-0

for these systems.  A rectangular linear descriptor

system Consider the problem described in (5.54),

(5.57), and (5.59). It is clearly equivalent to

 k+1  x(k+1)  = Xk  x(k)  + Bku(k) k-0,...,1-1 the original minimization problem described in

(5.51) (5.52), (5.53), and (5.58). It is also very sim-

ilar  to che problem encountered in Theorem  5.6

is regular, if by elementary row operations, the since (5.54) is a state-space representation,

system can be transformed into a square, regular (5.57) represents static constraints, and (5.59)

descriptor system plus a set of static relation-        is a quadratic 
function in y(k). This suggests

ships on x(k) and u(k) for k=0,...,N-1. the following theorem:

Clea ly, rectangular systems must be such chat Theorem 5.7: For any properly conditioned, rec-

5k+l and Ak have
at least as many rows as columns tangular, regular descriptor system (5.51) that

in order to De regular. Otherwise, solvability can be represented as a completely maintainable

will be violated. constrained state-space system (5.54) and (5.57),

the optimal input u(k) corresponding to a quadratic

Suppose we have decomposed (5.51), as sug- objective function  (5.58)  is a linear function  of                ..

gested by the definition of regularity, into a
the forward condition veccor y(k).

square, regular system
proof:

First of all, we note there are only two

Ek+1 x(k+1) = Ak x(k) + Bku(k)
k-0,...,1-1 differences between the problem addressed in

(5.52) Theorem  5.6  and the problem characterized  by

(5.54), (5.57) and (5.59) for y(k): (1) the con-

and a set of static relationships straints (5.57) are expressed in terms of y(k) and

u(k) rather than y(k+1), and (2) the objective

9 - Ak x(k) + 3k u(k)   k-0....,N-1   (5.53) function is not separable in y(k) and u(k) and it

has linear terms in y(N).  Therefore, if we argue

where zy-A x(N) is given.    We  know from Section  5.3 that these differences will not contradict Theorem

that  (5:527  can be reformulated using the forward 5.6, this theorem will be established.

condition vector:

.

While the constraints in Theoren 5.6 were

y(k+1) = Rky(k) + Pku(k)   k-0,".,N-1(5.54)
originally stated in terms of x(k+1), the con-

straints were subsequently restated in terms

of x(k) and u(k) when adjoined to the cost-to-go

x(k) - Lky(k) - Mku(k)   k-0,...,3-1 (5.55) function.  Therefore, there is no inherent problem

in stating the constraints in terms of y(k) and

x(N) = I. 7(N) + WNZN zN given (5.56) u(k) ;  in fact it is perhaps  in a more convenient

form for optimization.  The definitions of com-

Substituting (5.55) into (5.53) yields plete maintainability and uniform complete main-

tainability apply and have the same significance

0   =  AkLky (k)    +   (iik-   AkMk) u (k) k-0,...,N-1 in this problem  as in Theorem 5.6. However,

Theorem 5.2 does not apply, but we can find a

(5.57) similar condition:

Suppose we wish to choose u(0),...,u(N-1) to
mini- Lenona  5.8. The constraint set described  by   (5.57)

mize, as we did in Section 5.3, is uniformly completely maintainable if and only
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if the space spanned by the
columns of Ak k is also of feedback solutions to subsystem optimization

spanned by the columns of
(Bk-AkMk). problems fits nicely into the technique of spatial

dynamic programming, discussed in Chapter VI.
Proof: This lemma follows from the definition of

uniform complete maintainability since (5.59) at 5.6  MAINTAINABILITY OF CONSTRAINTS IN GENERAL
any k must  have a solution  for  any y(k). There- SYSTEMS

fore using Lemma 5.8, one may characterize uniform
complete maintainability for constraints given in A procedure for accommodating equality con-
terms of y(k) and u(k). While (5.59) may not straints on descriptor variables in regular systems
immediately satisfy uniform complete maintaina- was outlined in Sections 5.4 and 5.5. In this case
bility, Theorem 5.5 assures us of an equivalent it was possible to determine constraints, specified
constraint system that does.                     •      locally in terms of x(k) and u(k), that were neces-

sary and sufficient for satisfying the original
Returning   to the proof of Theorem  5.7,   it   is

 
constraints. This approach  will not extend   co

fairly straightforward, by repeating the pro- nonregular systems, however, since the solution
cedure (5.33) - (5.49), co show that the result cannot be generally recovered using a forward con-
of  Theorem  5.6  is not altered  by the existence in dition system and static constraints. Some re-
the objective function of cross-terms in y(k) and marks on the general case appear in this section.
u(k), such as in (5.59). The existence of the
term If the constraints are imposed directly on

linear combinations of descriptor variables (as1

2(LNY(N)  + WNZN) -QN(LNY(N)  + WNZN) (5.60) was assumed previously), the constraints can be

reformulated as constraints on the inputs using
in (5.59) also poses no major difficulty since the the sensitivity results of Section 2.5. Recall
positive semidefiniteness of QN assures the exis- that the solution of any particular descriptor can
tence of a lower bound. be expressed as a linear function of the inputs

and the initial and final condition vectors:
Therefore, Theorem 5.6 applies to this class N-1

of rectangular systems, as stated in Theorem 5.7. I x(k) . Dky(0) +r Dkju(j) + 61 z(N)    (5.61)

The derivation of the results in this section j=0

was facilitated by the introduction of the con- Therefore any constraint on x(k) is equivalencly a
cepts of comp Lete maintainab€Zity and uniform com- constraint on the right-hand side of (5.61), and

ptete maintainab€Zity.  It is important to note since y(0) and z(N) are known, the constraint is
that these properties are determined by the struc- reformulated in terms of u(0),...,u(N-1). The
ture of the underlying state-space system and the equivalence of these constraints means that se-

constraint equations, not merely the latter. This lection of inputs that satisfy the reformulated
underscores a conceptual advantage of using the de- constraints is necessary and sufficient to satisfy
scriptor approach in that it analyzes the composite the constraints on descriptor variables. This
of all equations characterizing the system to get result applies directly to inequality constraints
the full benefit of system structure. on descriptor vectors as well.

Theorem 5.7 considers "unconstrained" rec- While the above procedure creates an equiva-
tangular descriptor systems, although the procedure lent set of constraints in terms of the inputs,
used co compute the optimal control treats some of the fact that a single constraint in this set may
the static relationships as constraints. It is a involve every input vector can be inconvenient.
straightforward observation that the addition of Certainly it would be preferable to characterize
static, linear constraints to a rectangular, reg- the set of consistent inputs in terms of conr
ular system imposes no difficulties in computing straincs on individual input vectors. Unfor-
a feedback control law as long as the added con- tunately, in general such a characterization will
straints do not destroy complete maintainability not be simultaneously necessary and sufficient to
by the descriptor system. These constraints can satisfy the original constraints on the descriptor

be added to the separated static relationships to variables.

form a composite constraint set. Theorem 5.7
applies immediately and the procedure in Section Consider the descriptor variable relation-
5.4 can be used to create uniformly completely ships  on x(k),  x<k+1),  and u(k) :
maintainable constraints.

Ek+l   x Ck:fl)    -   Akx (k)    =   Bku (k) (5.62)
The above observation establishes an impor-

tant link between constrained state-space systems Suppose there are constraints on x(k) and x(k+1)
and rectangular, regular descriptor systems with of the form
or without constraints. Such an observation was

anticipated from the common approach used for
Fkxck) - ck (5.63)

both classes of systems. This result suggests
that descriptor variable theory will be useful

Fk+1 x(k+1) =
c (5.64)k+1

for the optimization of large-scale systems,
specifically when the interacting subsystems are Obviously  if  x(k)  and  x(k+1)   are to satisfy  (5.63)

characterized by state-space models. The existence and  (5.64),  u(k)  must be selected  such  that  (5.62)
can also be satisfied. The observation motivates
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the following lemma: 'inequality constraints on descriptor vectors.

Lenna 5.9: Suppose there exist vectors a. 81' and The concepc of maintainability has interesting

SO such
that associations with other theoretical research in dy-

namic systems. The notion of system invertibility

a .   El:+1  =   81 Fk+1
(5.65) [22] for an input-output system implies that the

system is structured such chat the roles of the in-

puts and outputs can be reversed. A weakened form

ct*  Ak  -  86  Fk
(5.66) of invercibility holds if for any trajectory of out-

puts chere will exist some trajectory of inputs
then constraints (5.63) and (5.64) can be satis- that achieves chose outputs. Conceptualizing the
fied only if chere exists u(k) such that given outputs as constraints, this latter property

a Bku(k) - 81 ck+1 - B6 ck'
corresponds to complete maintainability.

Bryson  and  Ho  [23 ] discuss the optimization  of

proof: Suppose no such u(k) exists.  By taking a continuous-time systems with state equality con-
linear combination of the equations in (5.62),

weighted by 1, che left-hand side of (5.62), be- cate one method for computing the optimal control
straints. Assuming differentiability, they indi-

comes that involves alternately differentiating the con-

2.             .-
straints with respect to time and substituting the

1 ck+1 -  0 ck system equation, repeating this until all of the

by (5.63) and (5.64). By assumption, there will
constraints have an explicit dependence on the in-
puts.  This procedure is analogous to the discrete-

be no u(k) satisfying the new right-hand side,

and therefore (5.63) and (5.64) are inconsistent
time algorithm for transforming a completely main-

tainable system to a uniformly completely main-
with the descriptor system.                     I cainable system in Section 5.3, where constraints

are shifted backward in time until they explicitly

For any linear descriptor system, the set of

vectors Ca, 81' So) satisfying (5.65) and (5.66)
depend on the inputs. From this study of linear,

discrete-time systems it was also desirable chat
form a subspace, namely the row vectors orthogonal the combination of inputs on which the constraints
to che column vectors of the matrix depend constitute a linearly independent set. The

-

same condition is desirable in the continuous-time

Ek+1 Ak case.

-F In a state-space system, a stace from which ak+1 (5.67)

system is capable of satisfying feasibility con-
-F

h_                                          straints over a finite i
nterval of time has been

def ined   as   a  mobi Ze   state   [24 ]· If any feasible

Any element in this space can be expressed as a state at any time instant is a mobile state, the

linear combination of elements that form a basis system will be uniformly completely maintainable.

for the subset. Therefore, to insure chat the If a sequence of mobile states can be achieved

lemma is satisfied, it is only necessary to check from any initial state, the system is completely

the elements in the basis. This generates the maintainable. Thus, state mobility is in some

following theorem: sense a dual property of complete maintainability.

Theorem 5.10: Given the descriptor equations Schlueter and Levis [25 ] assumed a full row

(5.62), the equality constraints on x(k) and rank property similar to the sufficient condition

x(k+1) given by (5.63) and (5.64) can be satisfied given for uniform ccmplete maintainability, in the

only if context of sampled-data processes.  The goal here

was to derive an optimal adaptive regulator where

TkBku(k) = Vk ck+1 - Wk ck
one or more of the outputs was specified by the

sampling criterion. Their full row rank property,

where the rows of called the scrong sampling constraint criterion,

was sufficient to guarantee the existence of a

[T  i v   W. ] feasible control.
ki k, k

form a basis for all null row vectors to (5.67).
The study of maintainability in Sections 6.4

and  6.5,  like the related notions above, applies

Thus, Theorem 5.10 gives necessary but not primarily to the regular case. The nonregular case

sufficient conditions on u(k) to meet the con- is also of importance, however, as evidenced in the

straints on x(k) and x(k+1). More importantly, growing literatur e on noncausal economic models.

these conditions are on specific input vectors, as If the combination   of a macro economic mbdel   and   a

opposed to the procedure yielding necessary and set of long-range policy objectives does not con-

sufficient conditions at the beginning of the stitute a maintainable system, the need for more

section. The theorem serves as a test of the realistic objectives is indicated. Furthermore,

feasibility of the constraints as well as a guide- a systemmatic reformulation of systems that are

line for the.selection of u(k). This result also maintainable can identify an equivalent, but more

applies, in a slightly more complex form, to hehaviorally consistent, set of objectives.
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VI. SPATIAL DYNAMIC PROGRAMMING

6.1 INTRODUCTION to again create a new composite subsystem. The
performance criterion corresponding to this new

Spatial dynamic programming (SDP) is a prom- composite subsystem is optimized subject to (1)
ising new method that is a hybrid of two well- given nec inputs to each subsystem inside the
established optimization techniques: dynamic composite from those outside the composite system,
programming and coordination of decomposed sub- and (2) given net outputs from the composite sys-
systems. The underlying idea of decomposition is tem that affect each remaining subsystem.  Again,
that the problem is more tractable if one performs this optimization is eased by embedding the pa-
a set of smaller optimization problems, and then rameterized optimization performed ac the (k-1)th
uses a coordination scheme to account for inter- step.  Once this procedure has been completed for
actions between subsystems.  A difficulty with all subsystems, a global optimum will be achieved,
many decomposition approaches is that they entail      and the optimal control inputs can be recovered
an iterative scheme for revising the coordination via a backward sweep through the sequence of sub-
variables that may converge slowly.  The theme of systems.
SDP is to optimize across subsystems in the same

manner as one optimizes across time increments The next section establishes the global opti-
in classical dynamic programming. Thus, one can mality of SDP for a general class of optimization
derive the optimal solution through a double sweep problems.  The following section describes the
of the subsystems, while retaining the feature of more structured case of optimizing interconnected
solving a set of smaller optimization problems. dynamic systems where the inputs to a subsystem

from other subsystems are additive and the per-
In order to motivate a clear understanding formance criteria are additive. The chapter con-

of SDP, consider briefly the classical state- cludes with a discussion of SDP characteristics
space dynamic programming procedure. Initially and the application of SDP to the problem of op-

one performs a backward sweep through time, decer- timal power   f low.

mining the optimal input corresponding to a given
state at a given time by minimizing the cost of 6.2  OPTIMALITY OF SPATLAL DYNAMIC PROGRAMMING
the input (and state) at· that instant plus the

optimal cost-to-go from the state resulting from If an optimization problem can be formulaced
that input at the next time instant. Thus, one as a mathematical programming problem chat is
solves a series of optimization problems, each weakly decomposable, a spatial dynamic programming
successive set corresponding to an incrementally algorithm can be applied if implemented in a man-
longer time span, until the inputs for the entire ner consistent with the decomposition. A proof
time horizon have been optimized. This sequential that spatial dynamic programming will yield the
process allows the embedding of previously solved optimal solution in such cases is demonstrated
and slightly smaller problems, vastly simplifying below by showing that the spatial dynamic pro-
each individual problem.  Once one has propagated gramming formulation is equivalent to the original
the procedure back to the initial time instant, mathematical programming problem. (For relaced
a forward sweep is used to recover the optimal disucssions, see [26]-[30].)
input trajectory.

Suppose the problem is to minimize the func-
SDP proceeds in an analogous fashion for a

tion  F(111 "" 'liN 
' where  ul p   -,23  are each input

group of interconnected subsystems.  First, all vectors, subject  to the
constraint  Chat  (lil,··· ,141 

of the subsystems are arranged in a sequence. fall in some constraint set V. Assume this problem
The criterion for the first subsystem is opti- is weakZy decomposable, meaning that for any in-
mized subject to a given set of total inputs from teger k,l i k i N-1, the problem
and individual outputs to the other subsystems
that are specified as parameters in the optimi- Jk(11*+1""'MN) - min F(ul,···,ily)
zation.  Next, the second subsystem is joined
with the first subsystem co create a new "com-

(11"" JEN) EV (6.1)
posite" subsystem. The performance criterion for
this composite subsystem is optimized subject to
a given set of total inputs to each of the first Subject to

(Ek+1 ' 0 ' ' '14:) - (Hk+1'' 0 ' ' ON)
two subsystems from outside the composite system,

is  well-defined  for  each  (1 +1,···,u  )   in  the  pro-and a given set of the combined outputs from the

composite systen  to  each  of the other subsystems.
jection of V on Uk-+lx...xu  For kRY, define
J (0) to be the original optimization problem.

This set is specified as parameters. This opti- T e decomposibility assumption implies that opti-mization can be simplified by embedding the pa-
mization of the original objective function whilerameterized optimization for the first subsystem.
holding Yk+1"" 'H" fixed is meaningful  for  all  k.The procedure is repeated in a similar fashion so

that at the kth step, the kth subsystem in the This feature proviMes the separability necessary
to perform spatial dynamic programming.

sequence is added to the previous k-1 subsystems
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Due to the weak decomposibilicy for all k, max
Ulu2U3

it is clear that problem (6.1) is equivalen
t to ul,U2'uj

the problem

min
F (21 ' ' -'141 

(6.2)
Subject to  .2+.2+ul i 1

(111, ···,YN)
di 2

0 all i

Subject   to (4+1 '... .MN) - (gkt·l''ll. N,

This problem is weakly decomposable in ul'u
2' and

and (lil, ···,3 -1)=arg min Jk-1 ul.  The solution via SDP is described by t
he fol-

lowing sequence of three subproblems:

(4'4+1'  '  '  '  'AN)
Subprob Ze,71   1 :

This equivalence follows from the observation that --

the  solution   to   (6.1)   must have components Jl(ul'uj) - px ulu2ul

 1"" '1 -1  thac  form
a solution to Jk-1(Ac'                                                 1

, 1:).    Thus, by first solving J, over Subject to  ui i 1 -a2 -al

'=Hlfe sibfe  ( ic' 611 ····,i N) '  the opti ilation
in (6.1) is reducel Eo an optimization ove

r the ul 1 0

set of ELEU corresponding to the projection on

Uk  of ali Jements  in  V for which (4*1 ' '0" '141)
- 2    2

1/2

- (1-a   -dj)      112  13

c4+1 ''-' '14,)

2

1/2

The subproblems defined by Formulation (6.2) ul - (1 - 4 -ai)

form the basis for constructing a sequence o
f

recursive optimizations co solve the origina
l Subprobtem    2:

problem by spatial dynamic programming. First

Jl (112""'jN) is decermined for each ( 2,- -' iN)
12 (dj)  =   ax  (1  -u   -6 )  u2a3

in the projection of V on U2x...xUN.  Next
,

2

Problem (6.2) is solved for k=2 for each
feasible Subject to ui il-d2

(13.... '6), embedding the optimization results

for  Jl an3 optimizing  over  82. This procedure is 42 1 O

repeated for k-3,...,N, recursively, embedding

the solutions for Jk-1 and optimizing over -4 - 1/2(1-G ) u 3

 

Since JN(1) corresponds to the original opt
imi-

zation problem, the solution co J (0) prod
uces

: the optimal
solution  14 . . . . ,   an3

the optimal .2 -*/2(1- i)
objective function value F (lil, · · · �14) ·

In addition co determining the optimal so-
.1  - 41/2 (1-«i)

lution, the embedding principle of SDP wil
l gen-

erally allow a very large optimization to b
e

handled as a sequence of tractable optimizations. Subproblem 3:

However, che SDP algorithm will vary in ea
se and

efficiency, depending on the grouping and
se- 13(0) - max 1/2 (1-u2)83

quencing  of the inpuc variables. The subproblems                                            u

defined by (6.2) will rarely need to be det
ermined

3

for each feasible  (.Q:k 1' ' " ' N ; usually an entire
Subject to  ul L 1

class  of   (8ic+1 "" '*i will have the same solution.

In such cases the class of these configurat
ions          -

can be usually represented by a vector 31<
which ul 1 O

has far fewer components  than  (Mk-1.1 '...,1!N) 0   This

reduces substantially the complexity of eac
h stage = 1/9 /5-

of SDP. Furthermore, these z  vectors can be ob-

served quite naturally in moS large-scale sys- 03 = 1/3 4-5-

tems: if each 4 vector corresponds to inputs

associated with a particular subsystem, then the
u2    -   1/3    ,/F

.Ek vector
will correspond to the "interactions"

between the subsystems  1, . . . ,k  with  subsystems                                                                         
                                                            

k+1,...,N.  A particularly convenient repre- ul - 1/3 2-

sentation  of   the
16<

vectors  can  be ob tained  when                                                                                    
                                                                            i

the interactions are additive, as is discu
ssed in This simple example could have been solved

detail in the next section. readily  in a centralized manner, using  the  Kuhn-

Tucker Theorem. However, note that the Kuhn-

As a brief illustration, consider the thre
e Tucker conditions for the overall problem w

ould

variable optimization problem: form seven equations with seven unknowns, w
hile

the Kuhn-Tucker conditions for each of the
 above

subproblems consist of only three equations and
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three unknowns. This difference suggests how SDP the same subsystem. The buses appearing above

can perform a large-scale optimization in a com- the  subsys tem boxes  run   to   the  left and repre-
putationally tractable manner by optimizing a se- sent inputs to a subsystem resulting from oucpucs
quence of smaller subproblems. of subsystems that follow that particular sub-

system in the sequence. The buses below the sub-
6.3  DESCRIPTION OF THE TECHNIQUE FOR DYNAMIC system boxes run to che right and represent inputs

LARGE-SCALE SYSTEMS WITH At)DITIVE INTER- to a particular subsystem from other subsystems
CONNECTIONS preceding in the sequence.

Interconnected dynamic subsystems possess a Note that if an imaginary vertical line is
natural spatial structure that can often be ex- drawn between any two subsystems you will cross
ploited effectively with SDP. The purpose here is exactly m buses. In particular, if the line is
to illustrate how these special structural features drawn between subsystem k and subsystem k+1 (see
affect the SDP procedure by considering the fol- Figure 6.2) the line will cross k buses in the
lowing minimization problem for a large system upper sec and m-k buses in the lower set. In SDP
composed of m subsystems to be optimized over N the value of the outputs in each bus at the pout
time periods:

where    the    Line    intersects    the.buK   is   used   as    aparameter (z  or -zt) for the ke  step optimiza-C m

7 -   min _  
79 Li(xi·"i) 

the physical interpretation of those parameters:
tion in the 8DP procedure. This figure illustrates

ul,    " u m l C If subsystems 1 to k are treated as a composite,
then the upper buses running between subsystems

where k and k+1 will carry the value of the net inputs
to each subsysten in the composite from subsystems

xi = (Xi(o ' Xi(1)'...,Xi(N)) not in the composite; the lower buses will carry

the value of net output from the composite sub-

ui = (ui(Q , uk(1)'...,ui(N-1))
system to each subsystem not included in the com-
posite.  As was observed, a k increases, the num-

and ber of "input buses" increases and the number of

Xi(k+l) = fi(xi(k),ui(k))+E g..(xj (k)), "output buses" decreases,   yet   the  sum  of   the   two
11 is always m.

j#i
Now we proceed with the algebraic'description

k = 0,...,N-1 of SDP for this problem. Define

-i  -i     -iThe use of a discrete time-invariant system· in this Ji(zl" z2'"''zm)
problem is employed merely for convenience and is
not a requirement for SDP. Define to  be equal coche optimal  cos t oft ontrolling   the

composite system created at the i. step of che
Yji = (&11(xj (0)),gji(xj(1)), 2 (x.(N-1)))jti procedure subject to parameters

T , where...,=ji  1

Co be the trajectory of inputs to subsystem i re- - i iki jii
sulting from outputs from subsystem j, and define k-i+1

-i- --

yii  -  -L   yj i Zj -

jti                                                   i

to be the negative of the trajectory of total in- E ykj j>i
puts to subsystem i from other subsystems. k=1
Clearly,

reKresents the negative of the net input to thejt  subsystem in the composite from all subsystems

2Yti., outside the composite for j i i, and represents

j=1 the net output   of the composite subsys tem  to   the

jth subsystem for j > i.  As will be seen below,
for all i.  Note that in practice g  (xi(k)) is

inputs are assigned a negative value merely forof ten equal    to    zero    for   many comb in  iods    of i,j, algebraic corrvenience.
and k. This not only simplifies the intercon-
nection structure, but also increases the effi- We now consider the m-step process which
ciency of SDP, since SDP is best suited for sys-

successively adds subsystems to a composite system
tems with sparse (but not necessarily weak) inter- optimization until all subsystems have been in-
actions. cluded.

A diagram of the sequence of subsystems and

the general interconnection structure appears in
Figure 6.1. Note that the outputs from each sub-

system (i. e., {y i I i 0 j } for subsystem j) leave
verically (eithe upward or downward) and are
summed into a "bus" with other outputs headed for
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Step 1 -k   -k-

Given the solution for all zi'·-·zm' we proceed
to Step k+1.

In the first step, the first composite sub-
system is equivalent co subsystem 1 (see Figure Step m
6.3). The optimization problem is to determine

)1(71, 71·..., 71) - ,1,n Ll(*1'"1) into a composite. Determine
All m systems are now concepcually combined

U
1

subject to y. . = z , all j
.

J=(-2 , T;....,  - _ min _ <r L:(2:.1,) 
1]

ul,' ',Um  -1-1 -<iven the determination of a solution for any
Zl,  12' ...'Tl,  we proceed to Scep 2.                                                                 m

Step 2 subject to  Etyzj = 'i;, all j

We  note two chings. First, sinceWe add subsystem 2 to subsystem 1 to create
a new composite (see Figure 6.4) and determine                m

J2(21,22.....72)  . st"_ {Ll(21'51)+1,2(Ii:.52) 1 it l  lj -0                                            

ul,u2
we must have   . 0 for all

j. Second,  by defi-

subject to Ylj + 72j - T2, all j nition,

-2 JM(0.0 p -.0, -7Using the definition of z  and the results of
Step 1, this can be expre sed

So this is the global system optimization cri-

'2(Ti.4....,z ) - min

-11 L:(5..2)
terion:

- -1 -1

u2,zl'z2'"''zm m

1- _ min  _ <  E  Lt(xt,ug) 

+  .1'1 (4.71.....21) j Ul' ..'Um  2=1

subject to 721 =  22 -
7;

subject to £  
ygj = 0, all j

-2 -2 By definition of z and Step m-1 (see Figure
-m-1

Given the solution for any specified 22,z2'..·'zm'                     1we proceed to Step 3. 6.5), we can reformulace the problem:

For all k, 3<k' < m-1, we have                                 -            min     --m-1 Lm(xm'um)
J=

Step k .

Um, zl  'z2  '···'z
- -m-1 -m-1

m

We add subsystem k co the previous k-1 sub- + J   (-12-1 --m-lp...7-1)2systems to create the kth composite (see Figure m-1 zl '22 m<6.2) and determine

..Ik(.it'.2:' . . . ' 25   =  ul':*"i."..ill L,(2'.2''I

subject to Enj = - -1, all j

k The solution of Step m provides the optimal-m-1 -m-1

subject t° 2  7£  -  , all j I;in'  zl   '...,zm   ,-:hich by Rtep m-1 identifies

the optintal 5m-1 ' zl 2,...,z --2, etc.  Be re-
-k peating this procedure backw rd through the suc-Using the definition of z. and the results of cessive steps the entire set of optimal inputStep k-1, this optimizatiAn problem can be ex- trajectories

Irm' irm.1,···,ul are obtained.pressed

'k(-It�  -it� · · · �-2 )
. procedure exploits the fact that inputs to each

min An important observation is that the above

- -k-1 -k-1 -k-1
Uk'zl  'z2  •'- 'zm

subsystem from the other subsystems are additive.
This permits the above definition of 1% parameters

1                              j
that effic'iently summarize the net effJct of a

Lk( dik'Ii')  + Jk-1(" :-1......2:-t potentially large number of interactions between
subsys tems inside and outside the defined   com-

- -k -k-1 posite system. The embedding of :omposite sub-
subject to Ykj - z  - z   , all

j systems into slightly larger composite subsystems
serves to simplify the optimization relative to
the complex network of interactions inside the
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composite. The procedure is most efficient when reduced to solving a sequence of sub-problems,
the interactions are sparse, but it does not re- each of which has dimensionality on the order
quire that the nonzero interactions be weak. of the dimensionality of the subsystems. Be-

cause of the well-known exponential growth of
6.4  CHARACTERISTICS OF SPATIAL DYNAMIC PRO- computational requirements with respect to system

GRAMMING dimensionality, this reduction is extremely sig-
nificant. For example, consider a system con-

Spatial dynamic programming provides an ex- sisting  of 10 interconnected subsystems,   each  of
tremely powerful approach to the optimization of which has 10 state variables and 3 interaction
a set of interconnected subsystems. Basically, variables. If the problem were solved in a
the  to tal optimization problem is decomposed into straightforward manner, chere would be 100 state
two types of problems - optimization of the sub- variables,  a very formidable problem. On the
system itself and optimization of the interactions other hand, using spacial dynamic programming,of the subsystem with the remainder of the over- the solution can be obtained by solving 10 sub-
all system. In the subsystem optimization prob- system problems, each with an effective dimen-
lem, it is necessary to find a solution for every sionality of 13, and 10 interaction optimizationpossible sequence of interaction variables; thus, problems, each with an effective dimensionality
the effective dimensionality of the subsystem of 3; clearly, these problems are much more
problem is the dimensionality of the subsystem manageable. Note chat this great reduction in
itself plus the total number of interaction vari- dimensionality is obtained with no requirement
ables associated with the subsystem.  If the per- for iteration and that a global optimum is guar-
formance criterion meets the weak decomposibility anteed with no assumption on system equations,
of Section 6.2, a global optimum is found by constraints, or performance criterion, other than
first solving each subsystem problem and then the decomposability of the problem.
sequentially optimizing the interactions of each
subsystem with the rest of the system. In addition to the great reduction in di-

mensionality with no loss of opcimality, che
The computational implications of this technique is ideally structured for decentralized

approach are quite impressive. Basically, if the control and distributed data processing. Note
number of interaction variables is small compared that there is no requirement for accumulating in-
to the dimensionality of the subsystems, the so- formation about the total state of the system at
lution of the total problem, which has a number a central point.  Thus, the optimal control of
of state variables equal to the sum of the dimen- the total system can be implemented by a series

sionalities of the individual subsystems, is of local controllers, one for each subsystem,
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each of which communicates only with the other sequences of interaction variables. For any par-

subsystems with which it interacts.  Each local ticular  set of sequences of these variables,  the

controller solves the subsys tem problem parame- problem has constraints  on both inputs and outputs.

terized on its interaction variables. The inter- These constraints introduce static relationships

action variables are chen optimized by proceeding of the type that require descriptor variable repre-

through the subsystems in a fixed sequence; this sentacion. Thus, even if the subsystem itself is

sequence can be pre-determined, SO thac, in real- a state-space representation, the subsystem

time, the local controllers can solve the inter- problem can be expressed via descriptor variables.

action problem in the proper order. The only Of course, even more generality can be allowed in

communication requirements are for sending the spatial dynamic programming by permitting the sub-

minimum cost function as a function of the inter- systems themselves to be in descriptor variable

action variables to interconnected subsystems. form.

Because of these relatively modest computational

and communication requirements, the technique is The results in Chapter V on the analysis of

potentially suitable for implementation in a
net- linear-quadratic descriptor variable systems are

work of minicomputers or microprocessors con- particularly relevant to.spatial dynamic program-

nected by communication links. ming. If the individual subsystems are linear
state-variable systems and if the performance

The technique also provides an extremely criterion is quadratic, then the results developed

attractive approach for responding to subsystem there can be applied to show that the solutions co

failures. If a subsystem becomes disabled for the sub-problems consist of a linear function of

some reason, then it is only necessary to inform the state variables plus a linear function of the

the interconnected subsystems, specify a new se- interaction variables.  This greatly facilitates

quence of subsystems for computing the inter- the  computations for these  systems,   both   for  the

action variables (this could be pre-determined subsysten problem and for the interaction variable

for all possible failure modes), and then proceed problem.

as before. In this manner the new system struc-

ture is automatically optimized, without any Spatial dynamic programming is also an effec-

additional computations. This opens up a whole tive procedure. for large-scale systems without

new approach to optimizing systems that are
sub- explicitly defined subsystems.  In this sense, SDP

ject co subsystem failure. provides a technique for decomposing large mathe-

matical programming problems. To use SDP, each

The basic spatial dynamic programming pro- variable must be assigned to one of a sequence of

cedure also has a number of important theoretical vectors to create weak decomposibility. In many

implications. Because it always obtains a global cases, this decomposition can be effectively cre-

optimum, it provides a very useful tool for eval- ated by first decomposing the constraints into

uating other decomposition techniques and
for constraint subsets. After arranging  the  con-

proving cheorems about their properties. In straint sets into a sequence, a corresponding se-

particular, the dynamic programming successive quence of variable vectors is determined in the

approximation technique developed by Larson and following manner:- variable vector k will contain

Korsak [31] has a number of similarities to all variables that affect only constraint sets

spatial dynamic programming; essentially,
this 1,...,k and that are not in vectors k-l,k-2, ...,1.

technique fixes all the interaction variables This decomposition leads to a natural definition

according to an initial policy and iteractively of the constraint sets for each subproblem in the

optimizes one subsysten at a time. The success-ive SDP algorithm.

approximation technique thus has lower computa-

tional requirements than spatial dynamic program- The efficiency of SDP relies heavily on the

ming, but it is only globally optimal under
cer- decomposition of the variables into input vectors

tain conditions. By exploiting the similarity of and on their sequencing.      The exis tence  of   an

the two techniques, it should be possible to de- efficient decomposition and sequencing obviously

velop algorithms that retain the computational depends on the structure of the system. However,

simplicity of the former and the global optimality the efficiency will vary significantly for dif-

of the latter. ferent decompositions of the same system.  Some

principles of effective decomposition and se-

It should be noted that tile theoretical value quencing have been recognized.  As stated earlier,

of spatial dynamic programming is not limited
to the decomposition is most effective when the inter-

techniques that use dynamic programming to solve connections can be summarized by a relatively

the sub-problems.  Basically, the ideas of dynamic sparse set of variables. Also, if one subsystem

programming are necessary only in the decomposi- affects a second subsystem but not vice-versa,

tion into subsystem problems and interaction
vari- the latter subsystem should precede the former in

able problems.  Any technique can be used to SolVe the   sequence. The recognition of additional   pr in-

the subsystem problem and/or the interaction vari- ciples is an important research area for spatial

able problem. This observation greatly increases dynamic programming.

the class of decomposition techniques that can b
e

analyzed in terms of spatial dynamic programming.

Descriptor variable representation plays a

critical role in spatial dynamic programming.  The

subsystem problems must be solved for all possible
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6.5 OPTIMAL POWER FLOW USING SPATIAL DYNAMIC PRO- where the function
Ci

depends only on variablesGRAteiING associated with node i or branches incident to
node i.

An important problem in power system opera-
tion is the determination of control parameters The system equations   (6.3)   and the additivechac minimize the costs of generation, main- cost criterion possess the weak decomposability totenance, load curtailment, etc.. The controls guarantee that spatial dynamic programming will de-typically include torque angles and voltage mar termine the optimal controls. SDP is efficientnitudes at network nodes, transformer tap set- for this problem because most power system networksrings, and the network topology. Since power net- are sparse in che sense that the number of branchesworks are usually sparse and the fundamental laws is small compared to the total number of branchesgoverning power flow have che weak decomposability possible. Since che network is sparse, che numberproperty, spatial dynamic programming is naturally of variables processed at each stage of the solu-suited for the optimal power flow problem. This tion will be small relative co che total number ofsection will formulate the optimal flow problem variables.
and describe an example network for which this
problem was solved using SDP. Some promising ex- The SDP algorithm for solution of the optimaltensions of this application of SDP to power sys- power flow problem has been translated into a com-tem analysis are also discussed. puter program for power syscem models that:

The problem formulation presented here assumes (1) incorporates branch flow constraintsa network of N nodes, which can be load nodes and/
or generation nodes.  The system equations cor- (2)  allows arbitrary generation costs at each noderespond to a balance of real and reactive power
flows at each node. These equations are standard (3) solves the real power flow equations (within power systems literature (see for example losses)Elgerd [321):

(4) assumes arbitrary, but fixed, node voltagepi - 1Qi -  yik vi vk    i-1....,N (6.3) magnitudes

k-1

where
(5)  permits an arbitrary order for processing

the nodes

j . ,/-1
(6)  accepts upper and lower bounds on all torque

angles and generations.* denotes complex conjugation
The cost criterion is the sum of all generationPi = the net real power flow ac node i costs at the nodes where generation can occur.
The SDP algorithm proceeds by adding a new node

Qi - the net reactive power flow at node i in each iteration to the subset of nodes serving
as the composite in the previous iteration. The

Yik - the admittance of the branch
connecting interaction variables for a subproblem are thenodes i and k torque angles corresponding to (1) nodes chat arein the composite and directly linked to a node thatVi * (complex) voltage at node i is not in the composite or (2) nodes that are not

j 61                                      in the composite and are directly linked to nodes-
| ile in the composite.  Due to the nonlinearity of the

system equations, the interactions are not addi-6i - torque angle at node i tive.

Upper and lower bounds are specified for each Pi' This SDP algorithm was successfully applied
Qi,    vi I,   and    64.      Constraints  are

also imposed to the seven node example illustrated in Figureon the power flows over individual branches or on 6.6, which haa four load nodes, two generationthe differences between the angles at the con- nodes,  and  one  node  with both generation  and  load.nected nodes.
The generation costs were assumed to be quadraticfunctions of the real power generation:

A given sec of real and reactive power loads
may be satisfied  by  zero,  one, or multiple con-

CGi) - 10 Gl + 5 Gl + 2figurations of the node angles and voltage magni-
tudes. When there are several possible configu-

C(;5) - 13.32 G2 + 7 Gs + 5rations, a cost criterion will generally allow the
determination of a best set of controls.

For               ((67) - 8 G  + 4 67 +' 3most applications it is reasonable to assume a
cost criterion of the form

  Ci                                                                            I
i-1
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L             4            L6           6  - 0.01
3

2
2

Gl                                  4                6                      3
6  - 0.02406

64. 0.0

6  - 0.02831

1

5

6  - 0.03437
6

3            5             7                 6  = 0.1145
G 7

3 ,     LS
L S The corresponding real generations were:

Figure 6.6.  Seven Node Example for             
       1G  = 132.1

Optimal Power Flow Problem
G  - 100.4
5

The given real power loads ac nodes 2 through 6

were                                             
              7

G  = 166.1

L2 =
70

Note that there is a small difference hetween the

sum of the real loads and the sum of the real gen
-

L3 =
30

eracions. Of course, theoretically the difference

does not exist; the numerical disparity ia the re
-

L  = 100
sult of the granularity of the grid used to dis-

4                                                  cretize the continuous variables.

L  = 160
5 In addition to solving the optimal power flow

L6 =
40 problem, the SDP algorithm has other potential

applicacions to power systems. For example, in the

All node voltage magnitudes were set equal to one. case of expansion planning, the dynamic programmin
g

The admittances were procedure   can  be  used   to   find the optimal   comb ina-

tion of new generators lines chat meets require-

1000  if i#k and nodes i and k are ments and minimizes the overall costs. Also, since

directly linked the SDP algorithm must account for feasibility con
-

straincs, the procedure is capable of determinin
g

Yik =    50  if
i-k all sets of loads that can be satisfied without

violating some dapacity constraint. Finally,   by

0 otherwise accommodating variation in the nerwork topology du
e

to potential outages,    SDP   can be applied   in   the

Following the implementation of the SDP
al- evaluation of system reliability.

gorichm, che optimal torque angles were determine
d

co be (in radians):

6  - 0.08463
1
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VII. APPLICATION: NETWORKS OF ECONOMIC MARKETS

7.1 INTRODUCTION Therefore, this intuitive notion of market
supply and demand functions lacks analytical just-

Large economic systems are often analyzed as ification in complex networks of economically-
a  coordinated   set of supplier, producer,   and con- based sectors.  This chapter examines this justi-
sumer sectors. The classical approach has been fication for economic networks consisting of a
to treat large economic networks as one large chain of sectors, with good flows as illustrated
production system and determine the production in Figure 7.1.
flows that satisfy a given consumer demand at min-
imum cost The drawback of this approach is that In a network consisting merely of a single
the demand behavior in responding to market con- supply commodity undergoing a chain of transfor-
ditions is ignored, so that these models do not mation processes, under certain conditions it is
determine a true market equilibrium. straightforward to demonstrate that a supply func-

tion and demand function exist at each market be-
The extensive use of the classical approach rween adjacent sectors. Since each supply func-

is certainly not due to the absence of a theo- tion reflects cost of inputs plus cost of produc-
retical understanding of equilibrium. Neoclassical tion, the supply function can essentially be de-
economics accommodates price-elastic demands and termined from the supply function for the previous
has produced significant achievements in charac- market in the chain. In this way, the supply func-
terizing the equilibrium of general closed economic tion can be "propagated" from the supplier market
systems (Debreu [33], Quirk and Saposnik [34], to the consumer market. Similarly,   one can "propa-
Arrow and Hahn  [35]) . However, the modeling and gate" the demand function of consumers through the
computation of general equilibrium is overwhelming, chain to the supply market. Thus, a supply and
and usually the analysis concerns only a small demand function exist at each market in the network.
piece of the general economy. Thus, practical con-
siderations often suggest using partiaL equilibrium This notion of propagating supply and demand
analysis as opposed to general equilibrium analysis. functions has been employed in explaining more
The distinguishing feature between partial and complex chain networks where sectors may use mul-
general analyses is that in a partial equilibrium tiple inputs and have multiple outputs. In par-
analysis, a major portion of the flows in the econ- ticular, a methodology called generalized equilib-
omy are suppressed so chat an "equilibrium" in the rium modeling (Cazalet   [44 ])  has been described
sectors of interest is more easily determined. as conducting this propagation in a pointwise

fashion. However, while chis description is help-
The recent focus, then, has been to develop ful in motivating an understanding of this algo-

approaches to partial equilibrium analysis, as rithm, this argument has problems in explaining
evidenced by recent accomplishments in large-scale difficult cases where multiple types of inputs are
economic modeling (Brock and Nesbitt [36], Hoffman used in a single output or an output can be used
and Jorgenson [37], Hogan [38,39], Levis ec. al. for multiple production and consumption purposes.
[40], Manne [41], Naill [421, Takayama and Judge Still, this intuitive idea of propagation is very
[43]) .   Many of these efforts have represented the appealing in its unification of the conceptual
respective system as one large supplier-consumer framework of supply and demand with a system de-
market. While it can be argued chat such a market scription that is consistent with behavior at the
exists conceptually, such representations generally sector level. This appeal encouraged the investi-

&           are not convenient for describing the economic be- gation of chain-structure networks, where by formu-
4          havior of sectors within the systen. Viewed at lating the network model as a descriptor variable

the   level of sectors, an economic system is really system, an analytical justification is established
a network of sectors, linked by markets between for certain classes of system models.
sectors where there are commodity flows.

7.2  COMPOSITION AND STRUCTURE OF ECONOMIC NETWORKS
It is common to conceptualize these markets

as each having a supply function and a demand func- Economic systems are composed of a number of
tion, which together determine the equilibrium in economic agents who either possess goods or are
that market. However, the existence of these con- capable of performing services chat either trans-
structs does not i=ediately follow from models of form or transport these goods. These goods and
sector behavior.  While supplier sectors may be services are exchanged, thereby creating a general
characterized by supply functions and demand sec- market.  The general market can be decomposed into
tors may be characterized by demand functions, markets for particular types of goods and services,
sectors producing intermediate goods in the system for particular locations, or for particular times.
cannot be modeled by such constructs.  Producers

are simultaneously suppliers and consumers, with In making decisions or designing policies,
the quantities purchased being dependent on the one may be interested in assessing all the good
amount of out4uts chat are sold. flows and prices (or exchange rates) operating in

the general market. Since these flows and prices
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Figure 7.1.  Economic Network Consisting of a Chain of Sectors

generally correspond to some balance of individual In general equilibrium models, the consumer

preferences,   such an assessment is called a general sectors are also suppliers of some nature (e.g.

equilibrium analysis. Often, however,   one   is in- providers of labor). In partial equilibrium

terested in assessing flows and prices associated models, there  is no reason to assume consumers

with only a set of particilar markets; this is a must supply some good that is endogenous to the

partial equilibrium analysis. model. Since we will be interested in the partial
case, we will continue the discussion assuming

There is an important difference between gene- suppliers and consumers to be separate.
ral analysis and partial analysis bodels in the

role of prices. In a well-defined.general equi- If the model is sufficiently aggregated, one

librium model, prices reflect the substitution rate can  examine the structure  of the model,   i. e.,  the

and are homogeneous of degree zero.  This means pattern  of the commodity flows becween the sectors.

that all prices could be multiplied by a uniform It is useful to visually represent this structure

constant and the same flow of goods and services as a network, and the convention is to use arrows

will result.  Prices are generally not homogeneous to show the flow of goods along a Link.  It is                u

of degree zero in partial equilibrium models be- implicitly understood that either money (or goods)

cause the prices must reflect the substitution be- must flow in the opposite direction since the link

tween any goods or services endogenous to che represents an exchange in this context.

model and goods and services outside the model.

Since the exogenous flows and prices are assumed For the purpose of this chapter, we distin-

fixed in some sense, the homogeneity property is guish simple networks from Zooped networks.  A net-

lost. However, che prices will still continue to work is a looped network if it is possible to find

reflect the exchange rate between goods endogenous a path following the directions of arrows from

to the model. sector to sector, such that the path leaves and
returns to the same sectqr.  Otherwise, it is a

Any model intended to reflect actual markets simple network. Figure 7.2 shows a simple network,

assumes a considerable amount of aggregation, re- while Figure 7.3 displays a looped network.

gardless of its size. This  is an important point,

because profit-maximization or utility-maximization Simple networks are an important case because

by individual firms or consumers may not translate the absence of loops accommodates a natural chain-

when the firms or consumers are aggregated. There- structure corresponding to the goods markets, as

fore, the models may also reflect behavioral aspects illustrated in Figure 7.1. In some cases che

that correspond to the inner dynamics of the aggre- chain-structure may not be innediate, but can be

gated   set. This suggests   the feasibility of models created readily by the following simple procedure:

that make sense for aggregated sets without making
sense at the level of the individual decision- 1.  Determine the longest chain of sectors,

maker. i. e.,   the path connecting  the most sectors.    Call

the number of sectors N+2.

Aggregation in these models is often done on
the basis of activities rather than by individual 2.  Assign each sector to an index i, Oiif-N+1,

persons. Therefore, one individual' s behavior as such that each sector providing it with goods is

a producer may be aggregated in one producer group, assigned to a lower index and each sector co which

while his different types of consumption are re- it provides goods is assigned to a higher index.

flected by separate aggregate consumption groups. Therefore, all supplier sectors will have index 0,

We will refer to such groups as sectors. We dis- all consumer sectors will have index N+1, and all

tinguish three types of sectors: producer sectors index j, where  lill-N·

Supp Liers - Suppliers exchange goods for money. 3.  In general, the system grouped by index

Supplier models relate supply flow to the price. sets will still not have the chain-structure in-
dicated on Figure 7.1, since a sector in sector

Producers - Producers purchase goods and sell set j could directly provide to a sector in set
goods.  Producer models relate the inflow of goods, j+k,   k22. To create the chain-structure  one

the price of inflowing goods, the outflow of goods, creates "dummy" sectors in the intervening sector

and the price of outflowing goods. sets: for any good that can flow between the
sectors, the dummy sectors merely set the flow in

Consumers - Consumers exchange money for goods. equal to the flow out, and the unit price in equal

Consumer models relate consumption flows to the to the unit price out.

price.
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Figure  7.3. A Looped Network.

As a simple example, consider the simple provide some fundamental insights into theseenergy network in Figure 7.4.  Clearly the longest equilibrium models. For example, the conditionpath connects three sectors, so we assign index systems corresponding to this network often have
values of 0, 1, and 2 to the fossil fuels, elec- an intuitive significance, since they can corre-tricity, and consumer sectors, respectively. There spond to supply and demand functions, as will beare three markets in this network: a fossil fuels- demonstrated in Section 7.4.
electricity market, an electricity-consumer market,
and a fossil fuels-consumer market. The third mar- 7.3 THE DECENTRALIZED CONTROL MODEL FOR CHAIN-ket includes sectors   chat   are  not  in adj oining STRUCTURE ECONOMIC NETWORKS
sector sets. Therefore we create a "dummy fuel"
sector with index 1 and split the fossil fuels- In neoclassical microeconomic theory, all
consumer market into fossil fuels-dummy fuel and participants in che exchanges are assumed to bedummy fuel-consumer markets. The network of mar- price-takers, i.e. they decide the quantities tokets  now  has a chain-structure. be bought  and sold based on given prices.    The

prices are "given"  by a fictitious "auctioneer, "
whose task is to announce a set of prices for which

a-C:XICITY all excess demands for quantities are zero.  How-
ever alternative models can be formulated where a
sector of participants may decide prices as well
as commodities.  One such modeling approach is
discussed here, called the decentralized controlI
approach.

FOSSIL CONSUMERS
FUZLS

The decentralized control approach is de-
\ scribed by the following behavior for the three
0                                /              fector types: Suppliers are given the good flow\                         /                 rate demanded of them; they respond by announcing

.

0 2-'.""  -  7 -f the price at which such flows will be provided.
'/                     Producers are given the flow rate of output theyL _T_- 1 are to produce and the unit prices of their in-

puts; they choose the composition of inputs they
will use to produce the outputs and the price

Figure  7.4. A Simple Energy Network. they will charge for each unit of output.  Con-
sumer sectors behave in the same manner as in the

The construction of this chain-structure ic- neoclassical approach - they are given prices andself    is    no t immediately meaningful. However, as they choose their consumption of goods.
noted in descriptor variable systems, such struc-
Cures are useful decomposition tools.  The con- Under the decentralized approach, each pricecepts developed for descriptor variable systems or quantity flow is determined by exactly one
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sector model.  The problem of determining equilib- network chain.  Let Pi be the vector of cbrre-
rium in these networks is to determine a set of sponding prices   per  unit. The model   for all supply

quantities and prices such that each sector model sectors in sector set 0 is given by

will "choose" responses that are identical to the

equilibrium signals.  This notion of equilibrium Po - 5 + so  0
(7.1)

corresponds to the game theoretic concept of Nash

equilibrium, where no player (sector) has an in- The model for all producer sectors in sector set

centive to change his response. j,   lijiN, is given  by

The sector models for suppliers and producers qj-1 - gj-1 + Aj-1 pj-1 + Bjqj (7.2a)

clearly assume that the sectors are not individual
free enterprise firms, since an individual firm
would clearly choose an infinite price for its pj - fj + Cj-1 pj-1 + Djqj

. (7.2b)

Outputs under this formulation. Therefore, these

sector models embed some internal competition Finally, the model for all consumer sectors, sec-
that results in the response of a finite price. tor set N+1, is given by
However, these sectors may reflect oligopoly-
type situations, such that while there is limited

competition, the price can still exceed marginal
fy=  N + RNPN (7.3)

Cost. Note that all flows and prices are expressed

This chapter will consider simple economic
as func tions   of   o ther flows   and   pric es. The sys-

tem can be re-expressed:
networks using the decentralized approach.     The
sector models will be assumed to be linear. The                                      -

primary motivation for this assumption is that such
I    -So                                 po               f

networks are very tractable from the standpoint of
0

descriptor analysis.  However, the use of linear -A.    1         1                        0               80
-B

models requires some additional justification.            -C       I  -01                   4
0

Other than perhaps being simplistic as a                                             ·

representation of reality, linear models admit
infeasible possibilities such as negative prices

or negative goods. While  this  may be conceptually

disturbing. this is of practical consequence only
if the equilibrium is infeasible, and this should -AN-1   1 -BN qN-1 4-1

happen only with grossly unrealistic sector models. St* I   -03      PN               ty

When one expects a feasible solution, the addition

of proper feasibility constraints is likely to pro- -RN    I         91'                   all               .      .

duce only inoperative constraints at the expense

of additional complexity.
(7.4)

Linear models are often justified by the argu-
ment that they are a good approximation in the This system has a unique solution if and only if

region close to an operating point.  This is valid the matrix in (7.4Y is nonsingular.  We would like

in assessing the properties of an equilibrium to establish properties for the submatrices that

point, such as stability.  However, the purpose insure the existence of a condition system.

here is to study the underlying structure of the

networks,   and not merely the equilibrium point it- Clearly (7.1) serves a set of initial con-

self. Therefore, the use of linear models is not ditions  f or  the  N+1 set chain, while (7.3) serves

intended to only approximate local behavior, buc as end-conditions.  Equations (7.1) correspond to

also to reflect a topological structure of the an inverse supply function for the goods provided

sector models in the region of interest. The by the supply sectors.
.

Intuitively, one expects

linearity of sector models assumes the following the forward condition at any location to also

properties  of the economic sector models: represent an inverse supply function.  Specifi-
cally, we hypothesize that. the forward condition

-  The models are continuous and well-defined that summarizes the models for sector sets 0

in the region of interest.  The models ex- through k is given by a matrix equation of the

press responses as functions of the signals. form

-  Partial derivatives of the models are pk -hk + Sk qk (7.5)

finite and remain either nonpositive or

nonnegative in the region of interest, i. e. Likevise, since the consumer sectors conditions

mono tonici ty. correspond to a demand function, we hypothesize
that the backward condition summarizing the models

We now proceed to study networks of these of sector sets k+1 through N+1 is given by a vec-

linear sector models using descriptor analysis. tor demand function:
Let q  be a vector representing the flow of out-

puts  rom supply or producer sectors in sector set qk - tk + Rk 4 (7.6)

i, OliiN, where there are N+2 sector sets in the
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Since (7.1) corresponds co an inverse supply If the sectors in sector set j are all fairly
function, it is reasonable to assume some property competitive, one would expect the price of an out-
of the matrix S .  Occasionally in the economic put   to be determined  by   the  marginal  cost  of   the
literacure, one finds that this matrix is assigned inputs.  In this case, there would be duality be-the property of positive definiteness. The eco- tween the input composition for a unit of output
nomic justification for this assumption has been and the marginal cost of the output.  For example,somewhat unclear. This does reflect that in- if the production of good z requires 2 units of
creasing the output of a supply good will increase good x and 3 units of good y, the marginal cost of
the price of thac good.  Similariy, the matrix

81
z would be cwice the marginal cost of x plus three

in the consumer demand function is assumed to be times the marginal cost of y. In terms of  (7.2b),
negative definite. This reflects that increasing the matrix C would represent the transpose of
the price of a consumer good will decrease the the technololilmatrix.  So we will assume (A4)amount of that good consumed. (In this analysis Cj-1 = Bi for all j, 1dliN.the assumption of positive definite or negative
definite will not imply symmetry of the matrix.)

Now  consider  A.   1  in  (7.2a).
This matrix  can

In addition, if we simply had a single market of be interpreced as elogenous effects, like other
suppliers and consumers, a unique equilibrium consumers for the output that are outside the net-
(solvability) would be assured: work. Therefore, to the extent chae A. is of

consequence, we may expect that it hasJE havior
'Theorem 7.1: Given a market specified by inverse similar to a demand function. Therefore, we will
supply function

assume (A5) A 1 is negative semi-definite.  The
remaining mat ix in (7.2b), D , may reflect the

p=f+S q (7.7) effects of other inputs outsi e- the network.   In

this sense, Di is similar to SQ in (7.1), however,and demand function since there may be no external effects, we will
assume (A6) a weaker condition of positive semi-

q=g+R P (7.8) definiteness for D .  (As in the case of SQ andR '  these matrices may be asymmetric) .
where q and p are vectors and where S is positive

definite and R is negative definite, a unique 7.4    EQUILIBRIUM  IN THE DECENTRALIZED CONTROL MODEL
equilibrium exists.

This section presents the major result for
boof: Substituting (7.7) into (7.8) yields networks modeled via the decentralized control

approach. The following theorem simultaneously
q,g+R f+R S q demonstrates che existence of a unique equilibrium

and establishes the hypothesized condition systemsExistence of a unique solution depends on the of (inverse) supply functions and demand functions.
existence of (I-RS)-1.  Suppose it does not. Then The significance of this result is that it is con-
I-RS

 s singular. By negative definiteness of sistent with the intuitive notions for these net-
R, R-  exists and is negative definite. Clearly works discussed in Section  7.1.

R-1(I-RS) - R-1 - S Theorem 7.2: Given an economic network described
by (7.1), (7.2), and (7.3), with the accompanying                is also singular. However, since S is positive assumptions (Al) - (A6), sufficient conditions for              I

definite, R-1 - S must be negative definite and the completeness of the network model are that
nonsingular.  This contradicts (I-RS) being sing-
ular.  Hence (I-RS)-1 exists and the equilibrium

N+18 +D (7.9)k+1 k+1is given by

-1 is positive definite for all k and
q.- (I-RS) [Rf + g]

-1 -BIC+1 Bk+1 + Ak (7.10)
p=f+ S(I-RS) [Rf + g]                I

is negative definite for all k. Furthermore,
Therefore, based on the desirable first there is a condition system described by (7.5)

derivative and solvability properties, we will and (7.6).

assume (Al) S  is positive definite and (A2) R.  is
negative definite. We would like to assume prop- Proof:  We will demonstrate the existence of the
erties on the producer sectors (7.2) such that S condition system, and then using the forward and
in the forward condition (7.5) is positive defin te backward conditions at any market, observe that

and  R,  in the backward condition  (7.6) is negative each  market  can be solved by Theorem 7.1. There-
definite for all k. fore, the entire network of markets has a unique

equilibrium.
Consider the matrix B in (7.2a). This can

be interpreted as the "tecAnalogy matrix" of in- The demonstration of the existence of the
dex set j since the kth element

int] he ith row
of forward condition system can be established by

matrix indicates how much of the i element in induction. Suppose we have established the for-
44-1 is required for each output unit of the kth ward  condition  (7.5)   for  k with positive definite
element q  .   With this interpretation, it follows

Sk (this holds by assumption for k-0).  Now con-
naturally that (AJ) B  is assumed to be nonnegative. sider (7.2) for j=ic+1. This gives a system of
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equations function for
 k-1

summarizing (7.3) and (7.2) for

'
jik is equivalent to the backward condition that

pk -hk + SIc qk (7.11) summarizes

(7.17)

4k = %1< + AkPIc + Bk+l 'Ic-+1 (7.12) fk = Ek + RkPIc

Pk+1 - fk+1 + Bk+1Pk + Dk+1  k+1 pk = fk + B  Pk-1 + Dk 4k (7.18)

Substituting (7.12) into (7.11) gives

 k-1 = Zk-1 + Ak-1.Pk-1 + Bk4k
(I-SkAk) Pk = hk + SkZk + Sk3k+14k+1

Subscituting (7.18) into (7.17) gives

Now   (I-St,Ak)
is nonsingular   by   the same argument

used in Theorem 7.1, since Si  -Ak is
positive (I-RkDk) qk = fk + Rk fk + Rk B Pk-1

by assumption of negative semi-del:inite A .  So

we get Now (I-R  k)-1 exists by previous argument, so

pk  "   (I-SkAk)-1 [hk  +  Skgk  +  SkBk+l k+1 1

qk  =   (I-Rknk)-1[lk  +  Rkfk  +  Rk3Cpk-11

Pk+1 = fk+1 + Bk+1(I-SkAk)-1[hk + Sk gkJ

 k-1 = 4.1 + Bk(I-RkDk)-1[tk + Rkfkl
1                                                                                 (7.19)

+    [Bli+1.(I-SkAk)       SkBIc.fl   +   Dk+11    qk·+1 (7.13)
+ [Bk(I-RkDk)-1 Rka  + Ak-11 pk.1

Equation (7.13) gives the desired forward

condition at k+1 where Letting

hk+1 = fk+1 + Bk+1(I-SkAK)-1[hk + Skgkl hc-1 - gk-1 + Bk(I-RkDk)-1 [Ek + Rkfk]

Sk+1=Bk+1(I-SkAk)-1 Sl k+1 + Dk+1 Rk-1 = Bk(I-RkDk)-1 Rk3i + Ak-1

Now the matrix S is the sum of two positive
semi-definite ma ]:ces, and therefore is positive Equation (7.19) gives the desired backward con-

definite unless there exists some vector dtO such dition in the form of a demand function for qk-1.

chat both Matrix R c   is negative definite by theorem
condition- 7.10), using  the  same  type  of  argu-

d'Bk+1- (I-SkAk)-1 Sk3k+ld-0
(7.14) menc as in demonstrating the positive definiteness

of Sk'
and

Therefore, at each market j with good flows

d-Dk+1
d-0 (7.15) q  and prices p4, we have an inverse supply func-

t on  and demand-' function that determine a unique

Now  (I-SkAk)-1Sk
is positive definite since its equilibrium.                                    I

inverse
A physical interpretation can be given to the

Skl-   Ak   -  Sk1
( I-Sk k) matrix B does not have full column rank.  In

conditions in Theorem 7.2. Suppose the technology

this casr here is no unique vector of outputs
is positive definite.  Hence (7.14) holds if and

only if
that the corresponds to a vector of inputs to in-

dex sector set k+1. Furthermore, there exists a

d'Bk+l'Bk+1
d=0 (7.16) che same inputs tecttnologij3£jy  J for

which                   I

vector of outputs
x +1

+ ax.    00  -  which requires

By theorem condition (7.9), both (7.15) and (7.16) Bk+1Axk+1=8 Therefore,

cannot hold for any d. Therefore Sk
is positive

definite for all k and we have a forward condition (AX-

system of inverse supply functions with positive
-IC+l)Bk+1 -  Bk+18xk+1  -  0

definite
Sk'

Hence (7.9) is positive definite only if

The establishment of the backward condition
(Axil)  Dk+1  Axk+1 ,  0

system of demand functions for each market follows
the same inductive argument, except the induction In other words, in such cases where B does not

goes in the opposite direction in the network. have full column rank, there need to  lexternal

The demand function for qN exists by assumption. effects, like consumption outside the network, in

Given the demand function for qk' the demand order that (7.9) be positive definite.
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A similar conclusion can be made about con- maximize the surplus realized by sector secs
dition (7.10). If B does not have full row k+1,...,N+1,  given the output quantity and outputk+1
rank, che marginal cost of outputs determined on price of sector set k.  Each iteration is, of
the basis of marginal cost of inputs in the model course, eased by the previous iteration.  Thus, the
does not correspond co a unique vector of input policy for actaining the optimal social surplus can
prices. Therefore, there must exist externalities, be determined by optimizing the surplus of suc-
such as unspecified inputs, reflected in the 4-1 cessively longer subchains of the necwork.
matrix to insure that (7.10) is negative definite.

In some cases the purpose of creating a nec-
The iterative process used to create the in- work model is simply to ascertain the effects of a

verse supply function and demand function for each particular policy instrument. For example, the
market and their significance as forward and back- concern may be the effect of increasing che tax on
ward conditions indicate that the initial inverse a commodity in market i on the quantity of a com-
supply function "sweeps" forward through the net- modity exchanged in market j .  For a linear model,
work sector sets, while the consumer demand func- these effects can be determined using the sensi-
tion "sweeps" backward through the network sector tivity analysis procedure described in Section 2.5.
sets. This notion intuitively underlies much

discussion of such networks and the design of Sometimes a policy instrument behaves like a
large-scale equilibrium models.  The preceding constraint on the system rather chan as an input.
analysis justifies this intuition for the linear Examples of this are price ceilings or output
case. quotas. If constraints are imposed on individual

markets, these constraints   can be "propagated"
Condition   sys tems of supply and demand func- forward and backward through a chain-structure

tions are likely to exist for other modeling network in a way similar to forward and backward
approaches characterizing sector behavior. For condition functions. The result of such a con-
example, the existence of the condition system can straint propagation is that the new constraints
be established for simple networks where each sec- will reflect both the direct and indirect impacts
tor is modeled as a price-caker, using assumptions created  by   the  set of imposed levels. (For further
similar to those in the decentralized control discussion of policy analysis for networks in de-
approach. The identification of these underlying scriptor  form,  see  [ 45]) .
condition systems follows directly from the funda-
mentals of descriptor variable systems. Since As described in Chapter IV, the propagation
many economic network models can be expressed as of forward and backward condition functions applies
chain-structure networks, descriptor variable sys- in the nonlinear case as well as in the linear
tems appear to be a natural framework for network case.  However, actually performing numerical prop-
equilibrium analysis. agations of the entire nonlinear supply or demand

function may be too complex. In such cases, iter-
7.5  ANALYSIS OF ECONOMIC NETWORKS IN DESCRIPTOR ative methods can be an effective means of deter-

FORM mining the equilibrium.  Most iterative techniques
involve using the model to update "guesses" on

The expression of a simple network model in some or all of the unkncwn quantities, iteratively
descriptor form has benefits beyond the existence repeating the updating procedure until the updaced
of supply and demand functions at each market in guesses are the same as the former guesses, indi-
the chain-structure network. Often the purpose of cating convergence.  Although usually applied to
creating these models is to aid policy analysis. nonlinear systems, iterative techniques are best
Some  of the results  in this report, particularly examined on linear systems.
in Chapter V, were developed to support such
analyses. Two important results have been demonstrated

involving iterative methods for chain-structure
For example, the objective of determining the economic networks that are modeled via the decen-

best policy is often the problem of solving for tralized control approach (Section 7.3).  The first
the optimal controls. From Section 5.2, it is result concerns the comparison of the methods of

known that any system in descriptor form can be simultaneous displacements and alternating dis-
optimized using dynamic programming. If the policy placements. In simultaneous displacements, each
variables are each directed at specific markets, sector set simultaneously updates its responses
(e. g., taxes or subsidies), dynamic programming based on the responses of the previous iteration.
will apply, despite the fact that system is non- In alternating displacements, the sectors that up-
regular and has varying numbers of quantities and date responses alternate between the odd-numbered
prices associated with each market.  One perfor- sector sets and the even-numbered sector sets.
mance criterion that is often cited for evaluating One method will converge to an equilibrium if and
policy is the social surplus.  The social surplus

only   if    the   o ther method converges, however   al ter-
consists of the sum of all profits to supplier and nating displacements is twice as efficient as
producer sectors plus the consumers' surplus, which simultaneous displacements when there is conver-
is roughly the difference between the amount con- gence.
sumers are willing to pay and the amount they

actually pay.  At each iteration of a dynamic pro- A second result concerns the method of suc-
gramming algorithm, the objective would be to cessive displacements, where in each cycle price
choose policy inputs to markets k,...,N that vectors are successively updated for market 0,
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market   1,   etc.,   co  market   N,   and   then quantity Looped networks of econamic systems can be

vectors are successively updated for market N, expressed in descriptor form, however the con-

market N-1, etc., to market 0. The issue of in- dition systems will not correspond to Supply

terese is whether the convergence of this tech- functions and demand functions. Looped networks

nique for the network depends on the convergence can be expressed as the interconnection of two
of this technique when applied co one of the chain simple networks oriented in opposite directions.
of markets, i. e. holding fixed the prices and Thus,   if the prices and quantities corresponding

quantities of the other markets.  With additional to   flows   in  one   of the networks   are held fixed,

assumptions on the A,-1 and Di matrices of the - the remaining flows in the other network will have

decentralized control model, the general con- partiaL condition systems of conditional supply

vergence of successive displacements for any in- and demand functions. This observation suggests

dividual market is necessary for general con- an effective procedure for determining the equi-

vergence in a chain of markets.  The proofs of librium of a network where the reverse-oriented

these results appear in [451. flows are sparse with respect to the forward-

oriented flows [45].
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VIII.  SYNTHESIS AND FUTURE RESEARCH

8.1  SYNTHESIS OF PROJECT THEMES responding interaction parameters, which evokes a
chain-structure to accommodate the dynamic pro-

The discussion in Chapter VII describes how gramming procedures. Therefore, together de-
an economic network of markecs can be converted to scripcor variable theory and spatial dynamic pro-
an equivalent network suitable for a model in de- gramming form a general approach to the wide class
scriptor form. This equivalent restructuring can of large--scale systems that can be efficiently
be applied to many other types of large-scale net- expressed as a chain of subsystems.
wor ks. More importantly, however, the equivalence
of many network models with a model in descriptor 8.2 FUTURE RESEARCH
form provides a unifying link becween the two
themes of this project:  descriptor variable Descriptor variable theory provides a con-
theory and large-scale optimization. venient framework for understanding many of the

standard notions for analyzing dynamic systems,   asIn a wide sense, many models of large sys- illustrated in Section 2.6.  The applications intems or dynamic systems can be expressed as a Chapter II suggest chat a descriptor representationchain of interconnected subsystem models. For often constitutes a more appropriate formulationmodels of economic networks, the subsystems cor- for the study of dynamic systems,   even  when  the  sys-respond to the sector sets. In the context of tem is originally in state-space form.  Further re-discrete dynamic system models, the subsystem search in this direction is likely to develop amodel is the relationships governing the change comprehensive theory of dynamic systems and identifyof the system over a particular time interval. new  concepts   for the study of these  sys tems.
Suppose the variables describing the interaction
between two adjacent subsystems are defined as a The application of descriptor variable theorydescriptor vector. With this interpretation, a and spatial dynamic programming to different classes
chain of interconnected subsystem models is a of large-scale systems will not only test the use-
model in descriptor form. fulness of this approach, but will encourage other

theoretical developments and extension of the ap-
Consider the procedure of spatial dynamic proach.  The applications to economic networks andprogramming, which applies to systems where a power systems have been very promising and arechain-structure is not innediace. In applying dy- worthy of further development.  Additional work on

namic programming to a sequence of subsystems, in- dynamic economic systems and defense systems hasteraction variables can be identified to make the also indicated significant benefits from this ap-optimization more efficient. The interaction proach. Other application areas, such as com-
variables at each iteration may be interpreted as munication systems and transportation necworks,  are
forming the descriptor vectors characterizing the being explored.behavior of the system at particular links.  When
expressed in this manner, spatial dynamic pro- The exploitation of natural structure in thegramming is equivalenc to dynamic programming for analysis of a system model provided the major focus
descriptor variable systems. for the research in this project.  The results

underscore the importance of recognizing and under-Thus, both descriptor variable theory and standing structure.  The approach that was developedspatial dynamic programming operate on the same here used the paradigm of a chain of interconnectedprinciple: exploitation of the chain-structure of subsystems.  Of course, this approach will bestthe model.  A system in descriptor form assumes suit   sys tems    that   have or nearly   have   this s tructure.
this chain-structure, and therefore descriptor Other paradigms can and should be explored. For
variable theory is the appropriate theoretical

example, systems could be viewed from the standpoint
framework for any model in this form. Spatial of   a  grid of subsys tems. By developing approaches
dynamic programming relies on an efficient se- for other important structure paradigms,   our  abil-
quencing of subsystems and identification of cor- ity to analyze large-scale systems will be enhanced.
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