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A DESCRIPTOR-VARIABLE APPROACH TO MODELING
AND OPTIMIZATION OF LARGE-SCALE SYSTEMS

ABSTRACT

A new approach to modeling and analysis of systems is presented that exploits
the underlying structure of the system. The development of the approach focuses
on a new modeling form, called descriptor variable systems, that was first intro-
duced in this research. Key concepts concerning the .classification and solution of
descriptor variable systems are identified, and ctheories are presented for the linear
case, the time~invariant linear case, and the nonlinear case. Several standard
systems notions are demonstrated to have interesting interpretations when analyzed
via descriptor variable theory. ' . .

The approach developed also focuses on the optimization of large-scale systems.
Descriptor variable models are convenient representations of subsystems in an inter-
connected network, and optimization of these models via dynamic programming is de-
scribed. A .general procedure for the optimization of large-scale systems, called
spatial dynamic programming, 1s presented where the optimization is spatially de-
composed in the way standard dynamic programming temporally decomposes the optimi-
zation of dynamical systems. Applications of this approach to large—scale economic
markets and power systems are discussed.
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I. INTRODUCTION AND OVERVIEW

1.1 PROJECT THEMES

This report contains the results of all re-
search conducted in the project A Deseriptor Var-
table Approach to Modeling and Optimization of
Large Scale Systems. The project is part of an
effort to investigate modeling forms that are
appropriate for the analysis of large-scale sys-
tems. The guiding philosophy of this research
was to develop mathematical system formulations
that exploit the special structure of the actual
system being modeled. It is believed that a model
is most likely to preserve the natural structure
if the system representation is given in terms
of actual physical or economic variables that
describe the system operation. Since the systems
studied in this report accommodate such repre-
sentations, the formulations have been called
descriptor vartable systems.

. The research effort of this project had two
major themes:

(1) Development of the foundation of descriptor
variable theory, including identification of
basic concepts and derivation of fundamental
analysis techniques.

(2) 1Investigation of large-scale system optimi-
zation, including the development of spatial
dynamic programming, a technique that ex-
ploits subsystem interconnection structure.

These themes were initially explored somewhat in~
dependently, however both themes shared the common
philosophy of preserving structure. Therefore, it
was not surprising that the themes interacted
during this research. This interaction is re-
flected in sections of this report, including a
synthesis of the themes in Chapter VIII. The re-
mainder of this chapter gives an overview of the
content of the report.

1.2 DESCRIPTOR VARIABLE THEORY

A discrete-time system ia descriptor form is
a set of (vector) relationships:

£,(x(0), x(1), u(0)) =0

£,(x(1), x(2), u@)) =0

£y (X(N=1),x(N) ,u(¥-1)) = 0

where x(k) is a vector of descriptor variables
and u(k) is a vector of inputs associated with
increment k. The descriptor representation
accommodates a wide range of system formulations,
including the special class of state-space repre-
sentations, where the relationships above take

the form
x(ktl) = hk(x(k). u(k))

Many issues examined in the context of state-space
systems, such as controllability, optimal control,
and system inversion are handled naturally ia the
descriptor variable framework. The relevance of
this framework to systems theory is considered at
the end of Chapter II.

A central concern in any descriptor system is
the nature of the solution space for the descriptor
variables corresponding to some specified trajec-
tory of inputs. Two dual concepts, solvability and 1
conditionability, characterize a well-defined so-
lution space. Solvability requires that all the
descriptor system equations are independent, such
that no relationships are redundant or potentially
contradictory. Conditiomability indicates that a
unique solution can be obtained by properly speci-
fying conditions on the initial descriptor vector
x(0) and the final descriptor vector x(N). Solvable
and conditionable descriptor systems can be solved
using a double-sweep method. Essentially the so-
lution is determined by propagating the specified
conditicns on x(0) forward through the time stages
and the conditions on x(N) backward through the
time stages. The forward and backward propagation
at any stage k uniquely characterizes x(k). This
double-sweep method is, in fact, a generalization
of the single-sweep solution for state-space sys-
tem with given initial conditions. However, a
special class of descriptor systems, called regular
systems can be solved using only the forward sweep.
These concepts are examined in the context of
linear descriptor systems in Chapter II.

Time-invariant linear descriptor systems have
several special properties, which are discussed in
Chapter 1II. First, any such system is solvable
for any number of stages N if and only 1f it is
conditionable for any N. Second, there is an
equivalence between a time-invariant linear system
and a matrix pencil of the form sE-A; the system
is solvable if and only if the determinant of the
matrix pencil is nonzero for some scalar s. Third,
any system in this class can be expressed in a
quasi-state-space form:

x(k+l) = Ax(k) + Bu(k) + Cu(k+l) +...+ Lu(k+n-1)

Finally, using the equivalence between time~'
invariant linear systems and their corresponding
matrix pencils, these systems can be decomposed
into a maximal number of independent subsystems,
with each subsystem being a state-space system
that propagates forward in time or a state-space
system that propagates backward in time. This
decomposition is useful for system analysis or
characterizing valid initial and final conditioms.



The concepts developed in the context of
linear descriptor systems extend to nonlipear sys-
tems. The nonlinear theory is constructed from the
viewpoint of differential topology, allowing both
geometric and algebraic interpretations. A mani-~
fold in the space of all possible realizationms of
descriptor vectors characterizes the set of so-
lutions. In a solvable and conditionable system,
this manifold can be projected in a one-to-one
mapner to a manifold in the space of x(0) and x(N)
vectors, thus creating the manifold of arbitrary
boundary conditions. The selection of a point
on this boundary manifold, accompanied by the
creation of equivalent boundary manifolds cor-
responding to shorter time intervals, form the
basis for a nonlinear double-sweep of calculating
the solution. This approach is described in Chap=-
ter 1IV.

1.3 LARGE-SCALE SYSTEM OPTIMIZATION

Large-scale system models can often be ex-
pressed in descriptor form, and therefore methods
for optimizing descriptor variable system are im-
portant tools for large-scale optimization. De-
scriptor variable systems with separable perfor-
mance criteria can be optimized using dynmamic pro-
gramming. However, the principle of optimality
must be reformulated from the principle developed
for state-space systems, sSince any optimal tra-
jectory must be consistent with the final as well
as the initial conditions. A more efficient dy-
namic programming procedure exists for regular
descriptor systems, where a lower order state
exists that is not constrained by conditions on
x(N). The optimal input trajectory for regular
descriptor systems can be always expressed as 2
feedback control law. These dynamic programming
algorithms for linear descriptor systems are con-
sidered in Chapter V.

One approach to optimizing large-scale systems
is a two—level approach where at one level the
interactions between subsystems are selected, and
at the other level the subsystems are optimized
for the given interactions. The combipation of a
subsystem model with relationships characterizing
the fixed interactions often creates a rectangular
descriptor system. Since rectangular systems have
more equations thaan unknowns, these systems are
generally solvable for only a restricted class of
input trajectories. The optimal control policy
corresponding to these subsystem models can be
expressed as a feedback control law when the sys-
tem is regular and satisfies a condition called
uniform complete maintainability. The description
of this condition and its application are con~-
tained in Chapter V.

The two~level approach indicated above pro-
vides the focus for a comprehensive procedure for
large-scale system optimization, called spatial
dynamic programming. The underlying motivation
is that by performing a sequence of smaller opti-
mization problems, the overall optimal solution
can be determined in a tractahle manner. The
theme of spatial dynamic programming is to opti-
mize across interconnected subsystems in the same

way that classical discrete dynamic programming
optimizes a dynamic systems across time sctages.
First, one subsystem is optimized for every com=
bination of interconnections, creating a family of
solutions that are each parameterized om the inter-
connections between that subsystem and the rest of
the system. WNext, another subsystem is added and
a family of optimal solutions for the combination
of the two subsystems is determined, with each so-
lution parameterized on the interconnections be-
tween this composite and the rest of the system.
This second iteration of optimizations is eased

by the results of the first iteration. The process
of adding an additional subsystem and optimizing
the new composite, while embedding the results of
the previous iterations, 1s continued until all
subsystems have been included in the composite.
This procedure leads to a global optimum in a
finite number of iterations and can be applied to
a wide range of systems and optimizatiom criteria.
A skillful sequencing of the subsystem optimiza=-
tions can efficiently exploit the interconnection
structure of system. Further description of spa-
tial dynamic programming and demonstration of its
global optimality appear in Chapter VI.

1.4 APPLICATIONS

The theoretical results of this study have
been applied to two classes of large-scale systems:
economic networks and power systems. Economic net-
works consist of a set of interconnected markets
linked by the sectors of economy that. participate
in those markets. By properly aggregating these
sectors into sets, a price-quantity equilibrium
model describing the sectors' behavior with re-
spect to these markets can be formulated as a
descriptor variable system. For certain classes
of networks, the double-sweep solution procedure
corresponds to the construction of supply and de-
mand functions at each market, thereby providing
substantial insights into the operation of the
network in addition to an efficient solutioan pro-
cedure. The formulation as a descriptor model
also permits the application of theoretical re-
sults derived for descriptor systems such as the
effect of particular policy inputs on the network
equilibrium and the optimizatiom of policy inputs.
This application area is discussed in Chapter VII.

Power networks can be modeled as a large—
scale system of intercomnected generation nodes
and load points. An ongoing concern to power sys-—
tem operators is the determination of a genera-
tion mix that minimizes the costs of generation,
operation and maintenance, etc. Spatial dyunamic
programming readily accommodates such systems and
cost criteria. This technique does not require
simplified linear models of the power flows and
easily handles dispersed generation of power;
yet it is capable of minimizing costs for large,
interconnected networks in a computationally
feasible manner. The formulation of the optimal
power flow problem and the application of spatial
dynamic programming to a power network example
appears in the final section of Chapter VI.




- II. CONCEPTS OF DESCRIPTOR VARIABLE SYSTEMS

2.1 INTRODUCTION

Dynamic phenomena represent a special ver-
sion of complexity - where the variables de-
scribing a system at one time are interrelated,
not only with other variables at that time,
but in a special way with variables at other
times. A general formulatiocan of a set of dy-
namic relations is provided by a set of equa-
tions of the form

8, (x(0),x(1),u(0))=0
g4 (x(1),x(2) ,u(1))=0

. (2.1)

81 (X(V=1) ,x(N) ,u(¥-1))=0Q
where

x(k) is an n~dimensional descriptor vector
for each k=0,1,2,...,N

u(k) is an m~dimensional input vector for
each k=0,1,...N-1

8y is a function taking values in
n-dimensional space.

Thrdughou: this report, a set of equations of
this form is referred to as a set of dynamic
equations in descriptor form.

A special case is represented by the set
of linear equations

Ek+lx(k+1)-Akx(k)fu(k), k=Q,1l,...,N=1
(2.2)
Each and is an nXn matrix. Again each

x(k) 1S an n-dimensional descriptor vector and

now each u(k) is an an~dimensional imput vector.
(In many situations the actual input enters the
equations with some coefficient matrix, say

B, , but from the present viewpoint this serves

only to redefine the input vector.)

The descriptor formulations (2.1) and (2.2)
above contain as special cages many standard
forms. Some of these, of course, are most con-
veniently treated directly with standard tech-
niques [ 1]-{ 3], without need for the more
general representation. There are, however,
several important classes of situations in
which the descriptor representation is either
a natural starting point or an essential char-
acteristic. Some ways in which such represen-
tations arise are outlined below. Other appli-

cations are considered in Sectiom 2.6.
The Descriptor Approach to Modeling

Typically, the process of modeling a complex
situation is initiated by the definition of a col-
lection of variables that, in some sense, is ade-
quate to describe the system. These are conveni-
ently referred to as deseriptor vartables. The
descriptor variables generally have inherent mean-
ing, or natural interpretations, within the con~-
text of the particular situation. They might
represent, for example, positions, velocities, or
accelerations in Newtonian systems, prices or
quantities in an economic system, etc. Initially,
no attempt is made to select a minimal set of
variables; the objective being simply to obtaina
an adequate set. Once the variables are defined,
relations among the descriptor variables are de-
veloped as dictated by the system laws. Some of
the resulting relacions will, in general, be dy-’
namic, in that they involve variables at different
time instants, and some of the relations will be
purely static, representing identity relations
that hold between variables. The result of this
process of modeling is a set of equations ex-
pressed in terms of variables that are natural
descriptors of the system. This approach to the
modeling of physical systems is emphasized in
several standard texts (e.g., (4 ]).

Large-Scale Interconnected Systems

Often a large-scale system is most effectively
regarded as a collection of interconnected sub-
systems [ 5]. Each subsystem i may have a repre-
sentation of the form

xi(k+l)'Aixi(k)+Bivi(k)
zi(k)-cixi(k)+oivi(k)
where x (k),v (k), and z, (k) are, respectively,
state, input, and output vectors. These can be
combined, in the obvious way, to produce the
overall subsystem equations
x(k+1)=Ax(k)+Bv(k)
z(k)=Cx(k)+Dv(k). *
The interconnections between subsystems and the
overall input u(k) and overall output y(k) might
be defined by linear relatinns of the general
form
v(k)=Kz (k) +Mu(k) Ny (k).
y(k)=Pz(k)+Qu(k)+Rv(k).

The resulting interconnected system cannot readily
be transformed to state vector form. ' Indeed, it



is known that a state vector representation may
not exist [ 6]. Nevertheless, the complete set
of equations is easily seen to be a special case
of (2.2), with descriptor vector equal to
(x(k),v(k),z(k),y(k)), and therefore they can
always be treated by the methods of this report.

Jondiagonal E Matrices

The equations of many large-scale systems
(e.g., electric power systems - see [7 ] or s
or systems of equations representing partial dif-
ferential equations often have natural represen-
tations of the form (2.2) where the correspond-
ing matrices are nonsingular but not diagonal.
Sometimes these matrices have simple structure,
such as a tridiagonal form, and it may be con~
venient to maintain the simplicity of this struc-
ture in the equations. In such cases one would
work with the form (2.2) rvather than, or in con-
junction with, the more standard form obtained by
multiplying by Eil.

Perturbation Equations

A very powerful method for dealing with large
systems is that of perturbation analysis where
small comnstants in a system are set to zero to
produce a simplified system which serves as basis
for an initial control design (9 ]. The singular
perturbation method works with systems of the
form

xl(k+l)-Allxl(k)+A12x2(k)+Blu(k)
ax2(k+l)-Azix1(k)+A22x2(k)+Bzu(k)

where the perturbation parameter ¢ is small. The
case e¢u0 corresponds to a singular perturbationo.
It changes the dymamic order and leads to a set
of equations of type (2.2).

Noncausal Systems

A system expressed (or expressible) in state~
space form 1s causal, in that its state vector is
not influenced by future inputs. For some pur-
poses, however, causality is a limitation. For
instance, some important linear data processing
schemes are noncausal but can be represented by
the general descriptor representation (2.2).

Identification Problems

An important branch of dynamics, encompassing
much of the disciplines of standard system theory,
econometrics, and various social sciences, is that
of identification - where parameters of a dymamic
representation are fitted to data. In difficult
situations, the structure postulated for identifi-
cation must be sufficiently general to allow for
an uncertainty in the underlying dynamic order,
or even for an uncertainty of the causality pat-
tern (i.e., which variables depend on previous
values of which others). The structure of general
descriptor equations (2.2) is sufficiently rich
for these purposes, while more conventional forms
often are not.

The exposition of this chapter is restricted
to the case of linear equations, although much of
the development will be extended (at least in
principle) to the nonlinear case in Chapter Iv.
In the development use is made of an old concept
in dynamic systems; that of imitial conditions.
An initial condition vector can be propagated
through the system, much like a state, even when
a state vector does not exist. Indeed the solu-
tion to most dymamic equations can be obtained
by propagating initial conditions forward to the
final time point and then solving backward. This
is referred to as the "double sweep' method of
solution and is one of the main results in Sec~
tion 2.3.

One aim of the chapter is to determine con-
ditions under which a set of dynamic equations
can be decomposed into dynamic and static com-
ponents. This amounts to determining conditions
under which there is a state space dynamic system
buried somewhere within the original dynamic equa-
tions. The existence of a state implies that the
solutions to the original equations can be deter-
mined recursively as the successive u(k)'s are
specified. Equations that fulfill these require-
ments are referred to as regular dynamic equatious,
and are considered in Sectiom 2.4.

In a completely initialized state-space sys-—
tem, a state variable will be sensitive to. previ-
ous inputs, but not pregseat or future inputs.
These sensitivities are readily determined from
the state-gspace formulation. In the more general
descriptor formulation descriptor variables can
be sensitive to previous and future inputs. How-
ever, descriptor systems decompose into a state-
space system plus an independent system that be-
haves as a state-space system moving backward
through time. This decomposition allows a con-
venient determination of variable semnsitivities,
as described in Sectiom 2.5.

The results in this chapter concerning de-
scriptor variable systems assume the existence of
well-defined solution sets. The notion of a well-
defined solution set is characterized by two dual
concepts, solvability and couditionability. These
two concepts and the dual nature are described in
the next sectiom.

2.2 SOLVABILITY, CONDITIONABILITY, AND DUALITY
In the general lipear case (to which the for-

mal development is restricted) dynamic equations
have the form

Ek+lx(k+l)-Akx(k)+u(k),~ k=0,1,...,N-1
(2.2)
where, as before, each and is an nXn matrix,

each x(k) 1s an n~dimensional descriptor vector,
and each u(k) is an n-dimensional input vector.
This set can be written out in block matrix form
as e




-Ao El x(0)
0 -Al Ez x(1)
LR, o x(N-1)
0 “Ay1 By LX(N)_J
— - =
u(0)
u(l)
= ) (2.3)
LEfN-l)

The block matrix form, with each block being aoXa,
explicicly displays the fact that the set of dy-
namic equations can be regarded as ome (large)
system of lipear equations.

Solvability

In (2.3) there are N+l unknown x(k) vectors
(each of which is n~dimensional), but there are
only N matrix equatious (each of which n~dimen-~
sional). There is, therefore, an excess of one
vector unknown over equatioms - or in terms of
scalar quantities, an excess of n unknowns to
equations. Under standard nondegeneracy con-
ditions, one expects accordingly that the system
(2.2) will possess not ome but a family of n
linearly independent solutions. This is forma-
lized by the notion of solvability introduced
below.

For convenience, denote the coefficient ma-
trix of the system (2.3) by F(O,N). It can be
regarded as an N X (N+1) block matrix, or in
ordinary terms as an nN X n(N+1l) matrix.

Definition: A set of dynamic equations (2.3) is
said to be solvable if its coefficient matrix
F(0,N) is of full rank.

In considering the set of dynamic equations
(2.2) it is often convenient to comnsider a subset
obtained by deleting some of the first (or some-
times the last) equations. (This deleting is
done, of course, by dropping whole groups of n
equations from the block form, not individual
equations from the detailed form.) This corre~
sponds to a restriction to a subinterval of the
full time interval over which the original set of
equations is defined. If a number of equatious
are deleted in this way so that the first unknown
descriptor vector is x(ko)'and the last is x(k,),
the associated coefficient matrix of the reducad
set of equations is F(ko’kl)' It is clear that
if the equations of the original set were linearly
independent the equations of this reduced ser will
be also. This shows that solvability 1s preserved
under the fundamental device of time restrictionm,

i.e., solvability of the whole implies solvability
of a subset.

Conditionability

As shown above, a set of dynamic equations
always has more unknowns than equations, and
therefore, if a solution exists, it will not be
unique. Additional relations, or conditioms,
must be specified to define a unique solution.
There is usually great flexibility available for
this specification. These additional relations
might, for example, specify fixed values for var-
lous descriptor variables at certain values of k,
or they might specify values for various linear
combinations of descriptor variables at various
values of k.

In thé study of dynamic equations, it is
most natural to define the required additional
conditions in terms of the descriptor variables
at the end points of the given time interval.
However, for some sets of dynamic equations a
unique solution can be specified only by im=-
posing additional requirements on descriptor
variables at intermediate time periods. Such
equations are in a certain sense dynamically de-
generate since they contain variables which are
not influenced by conditions at either eand. A
criteria for assuring that this does not occur
is made formal by the definition of conditiona-
bility given below.

Corresponding to the set of equations (2.3),
denote by G(O,N) the matrix (expressed in block
form)

g
—Al E2
-AZ
G(O,N) =
E-1
L Ay

The matrix G(0,N) is the submatrix of F(Q,N), ob-
tained by eliminating the first n and the last n

columns. It is referred to as the condition ma-

trix.

Definition: A set of dynamic equations (2.3) is
sald to be conditionable if the matrix G(O,N) is
of full rank.

It can be seen that conditiomability is
equivalent to the property that any two distinct
solutions to the set of equations (2.3) must dif-
fer in at least one end-point descriptor variable.
Suppose to the contrary that x(0),x(1),...,x(N)
and x(0),x(1),...x(N-1),x(N) are both solutions.
Then the difference of these solutions, which is
zero in the first and last descriptor vectors,
must satisfy the homogeneous equation corre~
sponding to (2.3). However, when the first and
last vectors are excluded, the coefficient matrix



of this homogeneous system is G(0,N). There will
be solutions to this restricted homogeneous equa-
tion 1f and only if that matrix is of less than
full rank.

Conditionability is also equivalent to the
property that conditions in terms of end-points
are sufficient to uniquely specify a solution.
This interpretation, which of course motivates
the terminology, is discussed in Section 2.3.

Conditionability, just as 1s solvability, is
preserved under the formation of subsets of dy-
namic equations. That is, conditionability of
the whole implies conditionability of a subset.

Duality

Solvability and conditionability are in a
very natural sense dual concepts. Corresponding
to a set of equations (2.2), we define the sub-
dual set of dynamic equatiouns by

k=1,2,...,N-1.

E (kL) =Ag A () +o (K)

This set of dynamic eqﬁations must be interpreted
as having time running backward, since each equa-
tion involves A(k),A(k=1), and v(k). It should
be noted that the subdual set is smaller than the
primal, since it has descriptor vectors A(k) only
for k=0,1,...,N~1. This is necessary because the
original set contains only N-1 pairs of , ma-
trices with the same time indices. It is for this
reason that the term subdual rather than dual is
emploved.

In terms of this definition one may easily
state the following two duality results.

Theorem 2.1: A set of dynamic equations 1is com-
ditionable if and only if its subdual is solvable.

Proof: The coefficient matrix of the subdual set
of equations 1is G(O,N)T. It will be of full rank
if and only if its transpose i1s of full rank. [ ]

Theorem 2.2: 1f a set of dynamic equations is
solvable then its subdual is conditionable.

Proof: Solvability of the original set is equiv-
alent to the statement the coefficient matrix

F(O,N) is of full ramk. It follows that the sub-
matrix F(1,N-1) is also of full rank. The trams-
pose of this submatrix, however, is the conditiom
matrix of the subdual set of equations. ™

Time=-Invariance

According to the basic definitiom, a set of
dynamic equations is defined with resgpect to a
specific time interval of finite length. Systems
of infinite duration are considered to be solvable
or conditionable only if the corresponding finite
sets of equations, terminating at a fixed N, are
solvable or conditionable, respectively, for every
value of N.

The notion of infinite duration dymamic equa-
tions is especially valuable in connection with

equations defined by a given pair of E and A ma-
trices, and corresponding te

Ex(k+1)=Ax(k)+u(k), k=0,1,2,... . (2.4)
Then, since this infinite duration process is sol-
vable or conditionable only if the corresponding
rank conditions hold for all N, it follows that
these properties depend oanly on the pair of mat-
rices E and A. The following result shows that in
this case the two properties are not oanly linked
by duality, but they are identical.

Theorem 2.3: A time invariant set of dynamic equa-
tions is solvable if and only if it is condition-
able.

Proof: The proof is by contradiction. Suppose
that there is an N such that the corresponding
finite set of dynamic equations is not condition~
able. This means, equivalently, that the matrix
G(0,N) is not of full rank. Its ramnk is, in fact,
1o greater -thaa n(N-1)-1, since the matrix con-
tains a(N-1) columns. Now let N=2a(N-1)+l. The
larger matrix G(O,N), corresponding to the set of
equations terminating at time N, will have the
structure

E

— =

It has a total of n(ﬁ;l)-an(N-l) columns and con-
sigts of 2n blocks of the same basic structure
that made up the original G(O,N). Accordingly,
the rank of this matrix can be no greater than
2n{a(N-1)-1].

The corresponding coefficient matrix F(O,N)
is identical with G(0,N) except that it has 2n
additional colummns. Thus, the maximum rank that
this cgefficien: matrix can have is 2n(n(N-1)-1]
+2n=2n“(N-1). However, to be of full rank this




matrix must be of rank nN-an(N-1)+ n, since this

is the number of rows it contains. Therefore, the
set of equations defined over the interval 0 to ¥
is not solvable. [ |

It follows from the above argument that if a
time~ invariant set od dynamic equations is solva-
ble it is also conditionmable. The reverse itmpli-
cation follows from the duality result of Theorem
2.1.

Time invariant systems of form (2.4) are in-
cluded within the scope of earlier work (see
e.g. [10]) employing techaiques of modern algebra
and related to classical transform methods. A
standard assumption in this framework is that
det|A-sE|#0. This condition will be shown to be
equivalent to solvability (Chapter III). There-
fore the two definitions of solvability and con-
ditionability together appear to be the natural
extension of the standard assumption, providing
the bridge between existing time-invariant theory
and a more gemeral theory for time-varying sys-
tems. The time-invariant case is investigated
further in Chapter III.

2.3 CONDITION VECTORS AND TIME DOUBLE SWEEP
Initial and Final Conditions

The set of additional conditions required
to completely specify a solution to a set of dy-
namic equations may take a variety of forms.

The equations will each, in general, involve
descriptor and input variables at several time
points. A special form of additional relation,
however, which is of great importance, 1s the
pure initial or pure final condition which in=-
volves, respectively, only x(0) or only x(N),
and no input values. The next theorem shows the
universality of this special form of relation.

Theorem 2.4: 1f a set of dynamic equations is

* conditionable, then a complete set of additional
conditions can be specified in terms of pure
initial and pure final conditions.

Proof: Comsider a set of equations defined on the
interval 0 to N. As before, let F(O,N) and G(O,N)
denote, respectively, the coefficient and con-
dition matrix of the set of equations. Under the
assumption that the set is conditionable, the ma-
trix G(0,N) has full rank, equal to n(N-1). It
follows that the matrix F(O,N) must have rank at
least this great, but of course it canm be no
greater than the number of its rows. Thus, the
rank of F(O,N) must lie between an(N-1) and nN.
Denote this ramk by r, and the difference nN-r by
d. (In the usual case where F(O,N) is of full
rank, d=0.)

The matrix G(0O,N) is defined as the subma-~
trix of F(O,N) obtained by deleting the first and
last n columns. Now imagine adding some of these
columns back to G(O,N) in order to get a total of
r columns, all of which are linearly independent.
A suitable selection is always possible since the
full matrix F(O,N) has rank r. There will be
n=d columns added in this way.

Now let I° be the set of indices I corre~
sponding to those columns not selected in the first
group of n columns. Similarly, lec I denote the
set of indices corresponding to those columns not
selected in the last group of n columns. (Both in-
dex sets I and I, consist of integers between 1
and n). ngecher I and I consists of ntd ele~
ments. N

The conditions x (0)- iEI and x_.(N)=b ?
jEI where the a, and é are real numbers, canjbe
specified arbicrarily and the total set of equa-
tions, consisting of these and the original set of
dynamic equations, will be of full rank. L
|
|

Suppose that a system is both solvable and
conditionable and that a complete set of n aux-
iliary conditions i{s specified in terms of m
initial conditions and n-m terminal conditiouns.
It 13 convenient to view the couditions as the
components of two separate condition vectors.
Thus, one defines the vector y(0)=I x(0) where
Fo is an oXn matrix of rank m, and sSpecifies the
a initial conditions in the form y(0)=a where a
is an arbitrary m-dimensional vector. Likewise
a final condition vector of dimension n-m is de-
fined by z(N)= A\x(N), and the final condition is
written z(N)=b." A solution to the solvable and
conditionable system is specified uniquely in
terms of the values of its initial and final con-
dition vectors y(0) and z(N).

Propagation of Condition Vectors

Suppose initial and final counditions are
specified for a set so that a unique solution is
defined. Consider the subset of equations, ob-
tained by deleting the first (n~dimensional) equa- -
tion, corresponding to a set of dynamic equations
starting at time 1 rather than time Q. A set of
initial conditions for this subset can be speci-
fied, along with the origlnal final conditions, so
that the unique solution of this subset of equa-
tions will agree in x(k), k=1,2,...,N with the
previously defined solution of the original full
set of equations. These initial conditions, now
specified at k=1, can be regarded as the propaga-
tion through one stage, of the original initial
conditions. The propagation process can be re=-
peated successively all the way to the final end-
point.

There are a number of ways to display the
explicit formula for condition vector propagation. ‘
Since the essential ingredient of the procedure is
the solution of a rectangular system of linear
equations, many methods convenient for computation
involve matrix partitioning, matrix augmentation,
or formation of pseudoinverses. The method em-
ployed below is chosen for its relatively stream-
lined notation.

Lemma: Let T be an mXn matrix of rank m, and let
A be an nXn matrix. Then there exists an mXn ma-
trix P of rank m and an mXm matrix R such that
RI'=PA.



Proof:

The (n+m)X n composite matrix

r

A
has rank no greater tham n. Thus, there are m
linearly independent row vectors of dimension ntm
that are orthogonal to the columns of this com-
posite matrix., Let these form the rows of an

mX(mte) macrix [R,-P], where R is mXm, and P is
mXn. By construction RI=PA.

It remains to be shown that P is of full rank.
Suppose to the contrary that there was a nonzero,
n~dimensional vector ) such that ATP=0. It would
then follow that O-AT(RF-PA)-XTRr. However, since
[ is of full rank this would imply ATR=0. Thus,
AT{R,-P]=0, contradicting the original construc-
tion. B

Theorem 2.5: Suppose the set of dynamic equa-
tions (2.3) is both solvable and conditiomable.
Let y(O)-Fox(O) be an initial condition vector
of dimensién m. Then the corresponding succes=-
sive condition vectors y(k)-rkx(k) are defined
by the recursive relations

y(k+l)-Rky(k)+Pku(k) (2.5a)
erk-PkAk (2.5b)
N1 "PiBrl (2.5¢)

where in each case Pk is chosen to have full
rank.

Proof: Assume that Ty has been defined and y(k) =
Fkx(k) computed. Starting with the original
equation

Ek+lx(k+l)-Akx(k)+u(k) (2.6)

multiply the matrix Pk to obtain
PkEk+lx(k+l)-PkAkx(k)+Pku(k).

Using the definition of Pk from (5b) this reduces
to

PkEk+lx(k+l)-Rky(k)+Pku(k). 2.7
Now, since 1) y(k) is independent of u(k), 2) u(k)
i{s arbitrary, and 3) P, has full rank, it follows
that the right-hand sike of (2.7) is arbitrary.
Since the system is solvable it must follow that
PkEk+% is of full rank. Thus, it is 1eg;:ima:e
to se rk+l’ngk+l leading to

y(k+l)-Rky(k)+Pku(k). a

An interesting and important corollary of the
formula rk

=P derived in the proof is that
the rank oflrkiiktgn be no greater than the rank
of e Thus, the of minimal rank establishes

an upp%t bound oan the number of initial conditioms.

In a similar manner, the final éonditions can
be propagated backward through the time stages.

The recursive propagation process is characterized
by the following theorem:

Theorem 2.6: Suppose the set.of dynamic equations
(2.3) is both solvable and conditionable. Let
z(N)= (N) be a final condition vector of dimen-
sion n“m. Then the corresponding successive pre-
vious condition vectors z(k)aAkx(k) are defined by
recursive relations

2(l-1) =8, 2(k) ;Qku(k-l)
S QP
A1 Uey-1

where in each case Qk i3 chosen to have full rank.
The proof is similar to the proof of Theorem 2.5.
The Double Sweep Method of Solution

Any solvable and conditionable set of dynamic
equations, augmented by any complete set of n
initial and final conditions, can be solved by a
double sweep method. One starts with the given
initial conditions and propagates them forward, as
described above, all the way to the termination
point N. At this point n independent relations
will be determined, and x(N) can be calculated.
Knowing this vector and all previous condition vec-
tors, omne can then progress backward solving one
at a time for all other descriptor vectors.

The backward phase of the solution progresses
as follows. Given x(k+l) one considers the equa-
tions

I e )=y (k)
Ey X (k) =4, x(k)+u(k) .

These are the only equations involving x(k) ia the
subset of equations on the time interval k to N.
1t must therefore be possible to solve for x(k) 1is
x(k+1),y(k) and w(k) are specified. 1In particular
the composite matrix

T

A

must be of full rank. Let [Lk’gki be a left in-
verse of this composite, Lk is N is nXn, and
Lkrk+HkAk= I. Then one may write the backward re-
cursion

x(k)-ka(k)+MkEk+lx(k+l)-Mku(k). (2.8)
This is the back sweep which determines the suc-
cessive descriptor vectors.

An alternative explanation of the double
sweep can be constructed, as a combination of a
forward propagation of the initial conditiomns and
a backward propagation of the final conditioms.
By determining the forward condition vector y(k)
and the backward condition vector z(k), the de-
scriptor vector x(k) can be recovered by the




equation
1

x(k)= [f'k Ak:, y(k)
z(k)

where[ Fk Ak] is always square and nonsingular

for solvable and conditionable systems. Thus,
instead of a forward propagation of y(k) followed
by a reverse propagation to recover x(k), y(k) and
z(k) can be independently propagated and then pro-
cessed to determine x(k).

There are many special versions of this gene-
ral double sweep method, depending on the nature
of the detailed structure of the original set of
equations and on the form of the additional con-
ditions. 1If, for example, the original set were
actually static (with l=0 for all k=0,1,2,...,
N~1), then all n conditlofis must be specified at
the final time. The forward sweep degenerates to
nothing, and each stage could be solved indi-
vidually. 1If, as another example, the set repre-
sented a standard dynamic system and n initial
conditions were specified, the whole solution
would be determined by the forward sweep.

2.4 STATE VECTORS AND REGULAR SYSTEMS
State Vectors

In conjunction with systems in descriptor
form, the following definition of a state is em~
ployed.

Definition: A condition vector y(k)=I x(k) is a
state for a set of dynmamic equatioms if knowledge
of its value and the value of u(k) are sufficient
to uniquely determine the descriptor vector x(k). -

In preparation for addressing the problem of
characterizing the situations in which a given
condition vector y(k)=l x(k) is a state, it is
useful to apply some slight manipulation to the
original set of equations (2.2). Suppose that
the matrix has rank m. Then by elementary
row operatiods” (that is, by forming linear com-
binations of the various equations) it is possible
to transform (2.2) to the form

T. [ u. (k)
KL )= | & | x(o+ | L (2.9)
Dk uz(k)
where T + 1s an mXn matrix of rank m, and and

D, are respectively, mXn and (n-m)Xn matrices.

Tﬁe u(k) vectors are partitioned, correspondingly,
into sections of height m and n-m. The new A, ma-
trix (partitiomed into C, and D,) is not the Same
as before, since it alsokhas hag its rows linearly
combined. Likewise, the new u(k) vector 1s not
quite the same as before. The definition of the
vector x(k) remains unchanged. Rather than intro-
duce new notation for the corresponding new un~
partitioned , , and u(k), however, it is
assumed that e System (2.2) as originally defined
is in the form (2.9).

Theorem 2.7: A coundition vector y(k)=I x(k) 1is a
state for the set of equations (2.9) if and omly
if the matrix

e

D

is square and nonsingular.

(2.10)

Proof: To solve for x(k) in terms of y(k) and
u(k) one must be able to recombine the given
linear equations in such a way as to produce a
nonsingular set of n equations from which x(k) can
be determined. However, none of the equations
from time periods other than k can appear in such
a combination because each of them involves a
separate arbitrary input. Of the equations cor-
responding to time k, only those without x(k+l)
may be used. Since Tk+ has full rank, it fol-
lows that the only equaéions that can be used are

I x (k) =y (k)
(2.11)
Dkx(k)--gz(k).

Then for these to uniquely determine x(k), the
matrix (2.10) must be of rank u. However, the
number of rows in the matrix [, is never greater
than the number of rows in T 1 (as explained in
the discussion following Theorem 2.5). Therefore,
the matrix (2.10) never has more tham n rows. It
follows that it must be both square and non-
singular.

The above argument establishes that the non-—
singularity condition is necessary for y(k)=l, x(k)
to be a state. The sufficiency follows directly,
since x(k) can be found from (2.11). a

The criterion for a condition vector to
serve as a state depends on the time period k. It
is entirely possible that, starting with a given
condition vector, its propagation through succes-
sive time periods may produce state vectors at
some time periods but not others. This is likely
if the ranks of the 's vary with k, for a con~
dition vector can only be a state vector for
periods k where it has dimension equal to the rank

of Epyy-

If a point is reached where the condition
vector is a state vector, then that point serves
as a kind of regenmeration point. The descriptor
vectors for all previous time periods can be de-
termined without further propagation of the con-
dition vector. Thus, state vectors greatly sim-
plify the solution of a set of dynamic equations,
even if they occur at only some time points.

Regular Systems

From a computational viewpoint, a most ideal
situation is where the set of dynamic equations
has a state vector at every time instant. Sets of
equations with this property are said to be regular.
Regularity is essentially equivalent to "real-
time representation" or causality, and is an ex-
tremely important special case of the gemeral



descriptor variable framework.

Definition: A set of dynamic equatioms is said to
be regular if there is an initial conditiom vector
which when propagated forward serves as a state
vector for every time period.

It can be noted, in order to relate this def-
inition to the previous sections, that if a state
exists at every time period, the set of equations
is both solvable and conditiomable. It is solv-
able because there is a unique x(k) for every
u(k). It is conditionable because there is a
complete set of initial (and final) conditdions.

There is a simple characterization of regu-
larity in terms of the structure of the matrices
involved. It is best described in terms of the
partitioned form of equations used in Sectiom IV.
Specifically, the equations are written as

T. [ u, (k)

KL (k)= x+| * 2.12)

0 Dk “2(k) .
where T has fullArank, C, has the same dimen-

sion askft+l, and u(k) is partitioned consistently
with the rest of the equation. Although there
are the same aumber of T, and D, matrices.in these

equations, their indexing is displaced by one unit.

They can be considered in corresponding pairs,
however, if a definition of T_and of D, is in-
troduced. This notational device is uséd in the
characterization of regularity.

Before stating the formal version of the re-
sult, it is worth pointing out one of its immed-
iate consequences. The characterizatiom of regu-
larity is that the matrices

T

Dy
all be square and nonsingular. Since the dimen-
sion of Dk is determined by the dimension of Tk+l
and not by that of T,, it follows immediately
that each of the T, matrices must have the same
dimension. Thus, Eo be regular a set must have
constant rank in its Ek (or equivalently Tk) ma-
trices.

Theorem 2.8: The set of dynamic equations (2.12)
is regular if and only if there is a T and a DV
such that all the matrices ° ’

T
k (2.13)

Dy

k=0,1,...,N, are square and nonsingular.
If this condition is fulfilled, one may set
¥ (&) =Ty x (k)

and the equations can be represented in state-

10

space form as

y(k+l)=Cksky(k)-ckvku2(k)+ul(k) (2.14a)
_x(k)'sky(k)~vku2(k) (2.14b)
where ,.-l
| Ik
S, V., | = (2.14c)
kl k D.
k
Proof: First consider the necessity of the con-
dition. Suppose that there is a state of dimen=~

sion m at every time period defined by y(k)ﬂrkx(k).
Then by Theorem 6 it follows that the matrices
(2.13) k=0,1,2,...,N-1 must all be square and non-
singular. In particular, this means that all D
matrices must have dimension (n-m)Xn. Also froa
the proof of Theorem 2.5 we know that [ ,k>0 can
be written in the form [, =Q, T, for some mXm matrix
Qk' In fact Q, must be donsingular since [, 1is of
f311 rank. It follows that (2.13) is nomnsingular
for k=1,2,...,N=1. Now let T°=F , and let D, be
any (n-m)Xn matrix which will mafe (2.13) nof-
singular for k=N. Then the required statements
are all fulfilled.

To prove sufficiency, suppose that the non-

singularity property holds and suppose T  and DV
are found so that the matrices ° °

T

Dy

kﬂO,l,Z,...}N are all square and nomsingular.
Suppose that the common dimension of the Tk's is

mXn. Let
~1
[s 'v} T (2.14¢)
] = .
k 1 k Dk

where S, is nXm and Vk is nX(n-m). Define the
state

y(k)=T, x (k).

Then given y(k) and u(k), x(k) can be found as the
unique solution of

T, % (k) =y (k)
Dkx(k)--uz(k)
as
x(k)-Sky(k)~Vku2(k). (2.14b)
Then, y(k+l) can be computed from
y (ktL)=C x(k)+u, (k)
or
y(k#l)acksky(k)-Ckau2+u1(k). (2.14a)

Together (2.14a)-(2.14c) give the explicit state-
space solution. [ ]




In the case of regular sets of dynamic equa-
tions, it is possible to recombine the state repre-
sentation with the static relationm for the deter-~

‘mination of the descriptor vector to produce a
single forward recursive solution formula. The
formula somewhat hides the esgsentially reduced
dimensionality of the underlying state, but it
may sometimes be convenient for numerical compu-
tation.

The recursion is found by substituting (2.14b)
into (2.14a) and using SkafI, Thus, -

x(k+l)=Sk+ly(k+l)—vk+lu2(k+l)

=Sk+leSkax(k)-5k+leVku2(k)

+Sk+lui(k)—vk+lu2(k+l)
or in the final form

x(k+1l)=S x(k)+S

o1 6K b1 (0811 G T, ()
(k+1)

(2.15)

V1%

This gives an explicit recursion for x(k). The
initial x(0) must, however, be determined from
(2.14b). -

2.5 SENSITIVITY ANALYSIS AND BOUNDARY CONDITIONS

In analyzing the solution to a descriptor
system, the response of the descriptor variables
to modifications of particular inputs or end-
point conditions is occasionally of interest.
Straightforward sensitivity results exist for
state-space systems where the descriptor vector
x(k) is also a state. 1In decomposing a general
solvable and conditionable descriptor system into
forward and backward condition systems, forward
and backward condition vector transition function
can be derived that conveniently display these
sensitivities.

Recall that the forward condition system for
linear descriptor systems is given by

Y(k+l)-Rky(k)+Pku(k) (2.16)
where y(0) is given, and y(k)=[ x(k). The back-
ward condition system is represented by

z(k)-Sk+lz(k+l)-Qk+lu(k) (2.17)
where z(N) is given, and z(k)-Akx(k). As noted in
Section 2.3, the matrices B, ,T. ,8 + ,Qk+ and

are generated recursively from makrices n the

system equations (2.3).

Suppose one is interested in the effect of
input u(i) on descriptor vector x(j). Using the
forward condition system, one can determine a re~
lationship expressing y(j) as a function of y(0),
u(0), u(l)...,u(j-1):

i1

i-2

IRy Ry e RY(OT R R, o R PLuCk)

+ Pj_lu(j-l) (2.18)

Similarly, the backward condition system will gen-
erate a relationship expressing z(j) as a function
of U(j) ,U(j+l) PRI 1“(N-l) ) Z(N) H
N-1
z(j)=5j+lsj+2...SNz(N) -3 Sj+lSj+2...Ska+lu(k)
. kmi+l

- Qquu() : (2.19)

Recall that the condition vectors y(j) and
z(3) uniquely determine x(j) by the relationship

x(j) = Ljy(J) + Mj'z(J) (2.20)
where Lj and Mj are defined by:
. ‘ Fi -1
, - -
Lj :Mj Aj (2.21)

Therefore x(j) can be expressed as a function of
the inputs:

N-1 ) .
x(j) =D U+ D, u(k)+Dz(N) (2.22)
k=0
where
D= LjRj_le_z...Ro (2.23)
LiRy_iRy g eR By 1E Osksj=2
L.P 1f kmi-1
b o 3 (2.26)
"
Q) 1f k=q
M8 1St S Qepy  LE IHLskeN-1
D= M8 1S g Sy (2.25)

The effect of the initial condition vector
y(0), the final condition vector 2(N), or any in~
put vector u(k) on a particular descriptor variable
appears explicitly im (2.22)-(2.25). The non~
causality of a general descriptor system is clearly
evident in (2.22), in that a descriptor vector x(j)
can be influenced by the final conditions and future
inputs. The influence of future variables, however,
also depends on the manner in which the initial and
final conditions are structured, namely the matrices
I' and » and there is generally some freedom in
sélecting the structure and dimension of these ma-
trices. If the structure is modified, i.e. not
simply changing the condition vectors y(0) and z(N),




the matrix coefficients in (2.22) will also be
modified.

The range of valid and complete sets of
initial and final conditions can be determined
from the matrix F(0,N) of coefficients in the sys-
tem (2.3). The row vectors of this matrix span
the subspace of solutions to the descriptor system,
in which a point is uniquely determined for a
particular trajectory of iaputs by the matrix
equation (2.3). Thus, the added conditions must
span a subspace such that the direct sum of this
subspace with the subspace characterized by F(0,N)
is the 2ctire solutiom space. Solvability and
conditionability guarantee this second subspace
can be defined purely in terms of x(0) and x(N),
and has dimension n. Such a subspace is called
the boundary manifold. The conditions T x(0)=
y(0) and ANx(N)-z(N) are a valid and comglece set
of boundary conditions if the row vectors repre-
sented by the matrices

[ro 0...0]

and

(0...0 AN]

form a basis for the boundary manifold. Addi-
tional discussion about boundary manifolds appears
in the analysis of nonlinear descriptor systems

in Chapter IV.

2.6 APPLICATIONS TO SYSTEMS THEORY

The descriptor framework accommodates a
broad spectrum of problems in the system theory
area. The theory unifies a collection of existing
techniques and provides a basis for development of
new techniques. This section illustrates this
feature by showing how several standard results
can be viewed in terms of descriptor variable
theory.

Dynamic Leontief Systems

A dynamic Leontief model describes the time
pattern of production in n interrelated economic
production sectors. The model has the form

x(k)=Ax(k)+B [x(k+1)-x(k) ]+d (k) (2.26)
The components of the n-dimensicnal vector x(k)
are the levels of production in the sectors at
time k. This production is divided into three
parts, corresponding to the three terms on the
right-hand side of (2.26). The first term, Ax(k),
is the amount required as direct input for the
current production. The nXn matrix A is the input-
output matriz and has nonnegative eatries. The
second term is the amount required for capacity
expansion, in the form of capital, im order to be
able to produce x(k+l) in the next period. The
matrix B is called the capital ccefficients matrix
and also has nomnegative entries. The third term,
d(k), is the amount of production going to current
demand.

Typically the capital coefficients matrix B
has nonzero entries in only a few rows, corre-
sponding to the fact that capital is formed from
only a few sectors. Thus, B is singular, and the
dynamic Leontief system is described in the im-
plicit form that is characteristic of the descrip-
tor representation. Development of efficient
techniques for manipulation of such systems, and
delinearion of the conditions under which such sys-
tems are causal, are important problems which fall
in the domain of the theory presented in this re-
port. Further disucssion of this important example
is contained in [11].

Reachability
Consider an n-dimensional system

x(k+l) = Ax(k) + bu(k) (2.27)
Such a system is completely reachable if the state
vector can be driven from the origin to am arbi-
trary point within n sceps. That is, given x(0)=0
and X arbitrary, there is the set of inmputs u(0),
u(l),...,u(a~l) such that the solution to (2.27)
has x(n)=X.

There is, of course, a standard test for com-
plete reachability. Let us briefly observe how
the reachability problem can be converted to a
descriptor variable problem and how the standard
test can be derived from that viewpoint.

Replace the system (2.27) by the 2n-dimen-
sional system g

x(k#1) = Ax(k) + beyy(K) (2.28)

y(ke+l) = Dy(k)

In this system x(k) and y(k) are both n-dimensional
vectors. The vector e, is the first coordinate
vector. Thus ely(k) ="y (k). The n x n matrix

D has entries all 0, excép: that those on the
super-diagonal (the diagonal immediately above the
main diagonal) are all 1's. It is then clear that
(2.27) i3 equivalent to (2.28) with the associa-
tion that u(k) = y (0). 1In other words, the
vector y(0) defines—khe input sequence.

In terms of descriptor variable theory, the
question of the reachability of (2.27) 1is a
question concerning the boundary manifold of
(2.28). The intersection of this manifold with
x(0) = 0 must contain all values of x(n). The
system (2.28) is solvable and conditionable, since
in fact it is i{n state-space form. The boundary
manifold is easily determined in this case (as
discussed in Sectiom 2.5, and is exceedingly well-
known) to be

e

x(n) A bel x(0)
y(n) 0 D y(0)
th

The n~ power of the transition matrix is easily
calculated to be




where C is the controllability matrix

(b, ab, a%b,...,a" % by, o

For points of the form x(0) = 0, x(n) = X, with x
arbitrary, to be in the boundary manifold it is
necessary and sufficient that C be nonsingular.
This is the usual criterion.

System Inversion
Consider the linear system

x(k+l) = Ax(k) + Bu(k) (2.29a)

y(k) = Cx(k) + Du(k) (2.29b)
This 1s a state-space system with state x, input u
and output v. As a descriptor variable system,
the descriptor variables are x and y; the input is
u. From either viewpoint, the usual problem is to
specify an input sequence and determine the cor-
responding output sequence.

The problem of system inversion is to inter-
change the roles of u and y. Given an output
sequence, one wishes to determine the correspond-
ing input sequence. This problem is solved rou-
tinly by descriptor variable methods by simply
regarding x and u as descriptor variables and y
as the input variable. With this identification
(2.29) is still a standard descriptor variable
system. The general methods discussed in this
report can be used to solve for the descriptor
variables given the sequence y. Or, more gen-
erally, the admissible relations between y and u
can be determined.

An explicit structure for the inverse system
can be derived in the linear case by application
of the shuffle algorithm (Sectiom 3.4). This is
equivalent to the inversion procedure developed
by Silverman [12]). Using the framework of Chapter
IV, the shuffle algorithm can be extended to some
nonlinear systems, thus providing a methodology
for inversion in the nonlinear case.

Dynamic Programming

Consider the variational problem of finding
a stationary value of the objective

N
3= g (x(k),ulk))

(2.30a)
k=0
for the dynamic system
x(k+l) = £(x(k), u(k)) (2.30b)

subject to a given initial condition x(0) = x_..
As 1s well-known the necessary conditions for this
problem can be expressed by introducing the se-
quence of adjoint variables A(k). Together the
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optimal control vector, optimal input, and ad-

. joint variable sequences satisfy the two-point

boundary problem

x(k+l) = £(x(k), u(k)) (2.31a)
A(k) = A(k+l)fx(x(k),u(k))+gx(x(k),u(k)
(2.31b)

AL E (x(k),ull))+g (x(k),u(k)) = 0 (2.31c)

The boundary conditions are x(0) = xo, and
A(N) = 0.

The system (2.31) is a nonlinear dynamic
system in descriptor form, with boundary con-
ditions at each end. If the system is consistent,
these boundary conditions must lie on the boundary
manifold. Assuming this to be the case, it is
natural to attempt to solve the system (2.31) by
the double-sweep method (described in Section 2.3).
This leads (essentially) to dynamic programming.
The details are briefly sketched below.

As is conventional for this problem, we shall
sweep backwards first. Specifically, the terminal
boundary constraint A(N) = 0 is swept backward.
This leads to an n~dimensional relation between
A and x at each time point k. In this particular
problem, the relation can be taken to have the
form A(k) = A(x(k),k). That is, A is a fumctiom
of x.

The sweep procedure is defined by the fol-
lowing two equations:

(), 8) = AEEER), ul), KHDE (x(0), ull)
+ g, (x(),u(k)) (2.32a)
MEG(R), u(K), WD E (x(),u (k)
+ Su(x(k), u(k)) = 0
(2.32b)

Assume that the function A(x,k+l) is known. Given
an arbitrary x(k), one may then solve (2.32b) for
u(k). That is, (2.32b) determines a function
u(x(k),k). Substitution of this function into
equation (2.32a) leads to an explicit equation

for the function A(x(k),k). This procedure can be
continued all the way to the initial point k=Q.

At that point x(0) and A(0) are known and the
system can be solved by a forward sweep. This is
a special instance of the double-sweep method.

In this particular case there is an important
further observation. It is easily verified that
for each k, the Jacobian matrices X (x,k) are
symmetric. This means that they areé gradients of
functionals. These functionals are easily found
to be the optimal return functiomals. That is,
A(x,k) = J (x,k), where J(x,k) is the optimal re~
turn from State x at time period k. In practice,
of course, it is most convenient to use this fact
to reformulate the double-sweep method in terms
of the functionals rather than their gradients.



Dynamic programming can also be applied to
optimizing the inputs to descriptor variable sys-~
tems, where (2.30b) would have the form

0 = g(x(k+l), x(k), u(k)).

Dynamic programming for linear descriptor systems
is discussed in Chapter V.

The Linear Double-Sweep and Riccati Equations

In the linear case, the bulk of the effort
of the double-sweep can be carried out "off-line”,
without knowledge of the particular input sequence
u(k). Once the input sequence u(k) becomes avail-
able, the sweep can then be executed quite simply.

A special but important inatance of this
linear double-sweep algoritim Is the standard
method for solving the limear two-point boundary
value difference equation arising ‘in optimal con-—
trol. The "Riccati-type'" difference equation
that is fundamental to this method is the result
of the preparation phase of the linear double-
sweep. This is, of course, a special instance of
dynamic programming.

Price System

We present now. a simple example which 11lus-
trates a class of important potential applicatious
of this theory. This example illustrates how a
descriptor variable framework serves to genera-=
1ize the traditional techniques discussed abave.

Consider an inventory system governed by

x(k+1l) = x(k) + h(k) - d(k) (2.33a).
Here x(k) is an n-dimensional vector of commodity
inventories at period k, h(k) is a vector of
commodity production, and d(k) is the vector of
demands. We assume that the production is a fixed
sequence h(k). Demand on the other hand is deter-
mined by a demand function
d(k) = £{p(k)) (2.33b)
where p(k) is the n-dimensional vector of com-
modity prices at period k. We assume that the
inventory x(k) is held by a very large number of
independent agents. Each of them faces storage
costs of c dollars per unit and per time period.
Assuming that prices are determined rationally
(13], the equilibrium condition for prices is

p(k) = p(k+l) - ¢ (2.33c)

There 1s a known initial inventory vector x(0) =
X, and the final inventory must be x(N) = 0. The
system (2.33) together with the boundary condi-
tions determines the equilibrium prices and ia-
ventories. This is a descriptor variable system
with boundary counditions at both eris (and, in
this case, the boundary conditions are all on X).

This system can be solved by the double-sweep
method. In a manner similar to that used in the
example on dynamic programming, we define the func-
tions x(p,k). Working backward we begin with

x(p,N) = 0
We then employ the recursion
x(p,k) = x(p - ¢, k + 1) - h(k) + £(p)

This recursion is continued backward until x(p,0)
is determined. Then the equation x(p(0),0) = Xq
can be solved for p(0). The solution to (2.33)
can then be determined by a forward sweep from the
known initial conditions.

In general, this is as efficient as the
scheme can be made. With additional assumptions,
however, simplification is possible - much like
the dynamic programming example above.

For example, suppose that the function £_(p)
is symmetric. Then f is the gradient of some
function: say, £(p) = F_(p). A scalar-valued re=-
cursion can now be defiBed as follows: Let
J(p,N) = 0 and

J(p,k) = J(p=c, k + 1) - h(k)p + F(p)

This scalar-valued recursion is continued to k = 0.
As before, p(0) 1s then found by solving

JP(P(O),O) = x5

As a further assumption, suppose that F(p)
i3 concave. In that case, the functioms J(p,k),
which represent maximum social surplus from period
k, are all concave. The issue of calculating p(0)
can be expressed as a maximization problem

Maximize J(p,0) = %4P
1
More complicated examples can be handled inm

a similar fashion. In general, if the problem is
well-defined, the double-sweep method will provide

~a general method of attack. Additiomal structure
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and symmetry can be used to simplify the gemeral
procedure.




III.

3.1 INTRODUCTION

It is often natural and convenient to express
the equations governing a dynamic process by a
system of equations of the form

Ex(k+1l) = Ax(k) + Bu(k), k*O,i,Z,...,N-l
(3.1)

Such a system is said to be a (discrete-time)
linear time-invariant system in descriptor form.
Equation (2.1) is referred to as a time-invariant
system, since the matrices E, A, and B are fixed,
independent of k. As one would expect, stronger
conclusions, especially concerning structure, can
be deduced for the time-invariant case than for
the more general case, and this chapter presents
these results. It should be pointed out however,
that in the time-invariant case there are several
alternative approaches (notably including poly-
nomial methods [I4], but see also {15] and ([16].
These of course yield results that overlap with
some of those presented here. The important dis-
tinction of the present work is that the funda-
mental concepts and the basic approach are not
limited to the time-invariant case. Thus, al-~
though some of the results preseated in this
chapter are not strictly new, one of the objec—
tives of the chapter is simply to illustrate the
form of the general descriptor variable theory
when specialized to the time-invariant case.
fact that in the time~invariant case the de-
scriptor variable results are consistent with
those obtainable by other procedures would appear
to indicate that the general framework is perhaps
a natural one.

The

The structural character and the behavioral
pattern of a system of the form (3.1) can be sur-
prisingly complex. Thus: the system may not have
a solution; if it does have a solution, that so-
lution may correspond to pure prediction of the
input; and the number of degrees of freedom in the
initial condition cannot always be determined
by inspection. The first few sections of this
chapter examine the general structural properties
of time—invariant descriptor systems culminating
in the presentation of a canonical form.

From a practical viewpoint omne is concerned
primarily with those systems of form (3.1) which
are well-behaved, and represent reasonable models
of reality. Interest thenm turns to the develop-
ment of simple procedures to test that a system
has the desired structural characteristics, and
for converting the system to a form that can be
easily solved. Both of these objectives are met
by the development of the shuffle algorithm de-
scribed in Section 3.4.

Using the canonical form derived in Section

2.3, time-invariant descriptor systems can gen-

15
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erally be decomposed into independent, time=-
invariant subsystems that are individually very
special types of descriptor systems. This decom-
position eases the analysis of the dynamic system,
such as controllability, stability, aggregation,
and parameter sensitivity. The canonical decom-
position also provides a convenient framework for
characterizing valid boundary conditious for the
system. These topics are considered in the final
two sections of the chapter.

3.2 SOLVABILITY AND CONDITIONABILITY

Consider briefly the time-varying situationm,
defined by a set of equations of the form

Ek+1x(k+l) - Akx(k) + Bku(k),
k = 0,...,N=1. (3.2)

Following Chapter II, such a system is said to be
solvable if the matrix

— —
A B
Ay By
F(O,N) =
el T

i3 of full rank. The system (3.2) is said to be
conditionable if the matrix

r;ﬁ
A B

—

G(O,N) =

. |

e

is of full rank.

The corresponding definitions in the time-
invariant case with constant matrices E and A are
exactly the same, with the additional requirement
that the full rank criteria be satisfied for all
N. Thus, (3.1) is solvable (or conditionable) if
F(O,N) (or G(O,N)) is of full rank for every



Theorem 2.3 demonstrated that in

integer N > 0.
the time~invariant case, a system is solvable if

and only if it is conditionable. A simple cri-
terion for solvability (and therefore of condi-
tionability) is coutained in the stacement of
Theorem 3.1 below.

Before proceeding to the theorem, however, it
is appropriate to recall a few facts about equiv-
alent matrices. A matrix P(s) whose elements are
polynomials in s 1s a polynomial matriz. A
square polynomial matrix whose determinant is a
constant, independent of s, is said to be unimodu-
lar. Two polynomial matrices P(s) and R(s) are
said to be equivalent if there are nonsingular
unimodular matrices U(s) and V(s) such that
U(s)P(s)V(s) = R(s). An alternate, but equiva=-
lent, characterization is that P(s) and R(s) are
equivalent if P(s) can be tramnsformed into R(8)
by a series of elementary row and column opera-=
tions. Elementary row (column) operations con-—
sist of either (i) multiplication of a row (col-
umn) by a comnstant, (ii) interchange of two rows
(columns), or (iii) additiom of a polynomial
multiple of one row (column) to another. In terms
of the relation U(s)P(s)V(s) = R(s) the matrix
U(s) defines the row operations and can itself
be obtained by performing these same row opera-
tions on the identity matrix. Similarly, V(s)
represents the column operations.

Theorem 3.1: The system (3.1) is solvable (and
conditionable) if and ouly if the determinant
la~sE| does not vanish identically.

Proof: The matrix F(O,N) has more columns than
rows. Therefore it is of less than full rank if
and only 1f there is a linear dependency amoug

its rows. This in turn is true if and only if
there is a row vector q # O such that qF(0,N) = 0O,
in which case the vector q explicitly displays

the row dependency. Write such a vector 1m the
form q = [qlq y--+34y] where each q, is of dimen-
sion n. By tge strutture of the matrix F(O,N),

it is clear that it is of less than full rank if
and only if the polynomial matrix

—
-A Es
=-As Es2
—As2 E53
P(s) =
N L e |

is of less than full rank

Moreover, a q vector which explicitly dis-
plays the dependence of rows for either F(O,N) or
for P(s) also displays it for the other. For a
given q, define the n-dimensional row vector q(s).

2 N-
q(s) = ql+q2+q35 +o.tqys L
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Now it is apparent that the relation qP(s)=0 is
equivalent to the relation q(s)[A~Es]=0. There-
fore, the original matrix F(0,N) ‘has linearly de-
pendent rows if and only if the polynomial matrix
A-Es has linearly dependent rows, allowing for
rows to be multiplied by powers of s up to N-l. -

For the system (3.2) to be solvable, the full
rank condition must hold for every N. Therefore,
solvability is equivalent to the requirement that
the matrix A-Es be of full rank with respect to
all polynomial combinations of its rows; that is,
the system is solvable if and only if A-Es is not
equivalent (in the sense of polynomial matrices)
to a matrix with a zero row. Altermatively, (and
finally) the system is solvable if and only if
|A-Es| does not vanish identically. :

3.3 CANONICAL STRUCTURE OF A SOLVABiE SYSTEM

Equivalénce is a natural concept in the study
of systems in descriptor form. Consider the time-
invariant system

Ex(k+l) = Ax(k)+u(k) (3.3)
where for simplicity the input coefficient matrix
is taken to be the identity. Multiplication om
the left by a nonsingular matrix V and introductionm
of the nonsingular change of variable x(k)=Wy(k)
yields the system

VEWy (k+1) = VAWy(k)+v(k) (3.4)
where v(k) = Vu(k) is the new vector of arbitrary
inputs. The matrices E and A in the original sys-
tem have been replaced by equivalent matrices E
and A,, each obtained by the same equivalence
transformation. It is therefore quite natural to
investigate the range of possible equivalent (E,A)
pairs.

The study of simultaneous equivalence trans-
formations of A and E is most couveniently in-
vestigated by consideration of the polynomial ma-
trix A~Es referred to as a matrixz pencil. Two
pencils, Al—E s and A~-Es, are equivalent if there
are nonsingul%t matrices V and W such that V[A-
Es]W = A,<E,s. In this case, unlike the situation
for general polynomial matrices, one requires' that
the matrices V and W be constant matrices. This
is often emphasized by referring to this relation
as strict equivaleAce. Certainly within the con-
text of the system (3.3) and its alternative repre-
sentation (3.4) attention is restricted to strict
equivalence.

A matrix pencil A-Es which is square and for
which A-Es does not vanish idemtically is tradi-
tionally termed regular (see for example [17] or
nonsingular (see for example [18], and strong
characterization results exist for this case.
With either terminology, this condition precisely
coincides with the concept of solvability, and
hence the associated characterization results for
these pencils can be directly applied.

In what follows it is comvenient to refer to
the degree d of the solvable system (3.3) or of




the pencil A-Es as the degree of the (nonzero)

polynomial IA—Es| Also, before stating the
structure theorem itself, we consider the struc-
ture of the pure predictor, which occurs in the
canonical form of a system in descriptor form.

The Pure Predictor

Consider the system (3) with

01 0..0)
001 0
E =
1
[0 0 0...0]
1 00...0
01 0...0
A=
0
0 0 0 ... 1]

and k=0,1,2,...,N. This system is easily verified
to be solvable, for indeed |A-Es| = L.

The corresponding individual equations are
xz(k+l) = xl(k) + ul(k)

x3(k+l) = xz(k) + uz(k)
(3.5)

0= xn(k) + un(k).

These equations can be solved explicitly, starting
with the last one, yielding

x (k) = —u (k)

xn_l(k) = -un(k+l)-un_l(k)

xl(k) n —un(k+ﬂ-l)
-u _l(k+n-2)-...-ul(k)

where the equation for xi(k) is valid for
k=0,1,2,...,N-n+i, The System represents a pure
predictor, with the variable x, (k) depending on
u_(k+n-1). No initial conditidns can be arbis=
‘trarily specified in this system. The n arbi-
trary constants in the solution are the final
values of the variables.

An important special case of the general pre-
dictor system (3.5) is the case n=l. This yields
the scalar system
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0 = x(k)+u(k) -

which is a static equation without actual predic-
tion. It is conventional to regard such a system
as causal, while for any n > 1 the system (3.5) is
noncausal.

Structural Theorem

A structure theorem for solvable systems fol-
lows directly from the classic result due to
Weierstrass, see [17], on the canonical decompo-
sition of a nonsingular matrix pencil. In the fol-
lowing, I{f) denotes the r x r identity matrix,

H{T) denotes the r x r matrix whose elements are
all zero except that those along the diagonal di-
rectly above t?e main diagonal ?re equal to 1.

The matrix N{¥) is defined as N(F) = [(T) - g(¥)g.

Theorem 3.2: (Welerstrass). A nonsingular matrix
pencil of degree d, A-Es, 1is strictly equivalent
to the pencil having the diagonal block form

w0 D w2 ces)

where the final block is dxd. The integers
are unique, and correspond to the in-
f%nl e elemen:ary divisors of the pencil.

Of course the matrix C in the final block can
be transformed by a similarity transformation to
any of the standard canoanical forms for square
matrices. For the present purposes, however, it
is not necessary to further specify C.

The system version of the theorem is the fol-
lowing (for a previous systems~theoretic appli-
cation of the canonical form theory of pencils to
this problem see [16]) :

Theorem 3.2: A solvable system (3.3) of degree d
is gtrictly equivalent to the direct sum of a num-
ber of pure predictors, purely static relations,
and a system in state variable form. The dimen-
sion of the state is d.

An important special case is when each of the
r.'s in the canonical representation is I. 1In
this case the system is purely causal consisting
of a dynamic part and a static part. Such systems
were defined as regular (Section 2.4).

3.4 THE SHUFFLE ALGORITHM

Although the canonical form derived from the
classical theory of matrix pencils provides deep
insight into the underlying structure of time-
invariant descriptor systems, it does not always
provide a convenient framework for actual com-
putation. The main drawback is that the canomical
form entails a change of variable. In most prac-
tical situations, one is usually reluctant to
execute a variable change, since the original de-
scriptor variables have contextual as well as
structural significance, and since there may be
additional implicit constraints, such as non-
negativity comnstraints, on the variables. In
addition, of course, the canonical form can be
difficult to compute. Thus, interest turns toward



the development of techniques which are computa-
tionally efficient and do not require a change of
variable. -

This section describes the basic shuffle
algorithm as used to check solvability of a sys=-
tem. The extended version of the algorithm is
deferred to- momentarily.

Solvability is a property of only the ma-
trices E and A. Accordingly, the matrix B plays
no role in the simplified version of the algo-
rithm. The algorithm works by modifying an
n x (2n) array.

Begin with the array
E A,

1f E is noasingular, the procedure terminates -
the system is solvable.

Otherwise, perform row operations on the
whole array, bringing it to the form

T A
o] Az
where T is of full rank. (T has n columns, but

less than n rows.) The matrices A, and A, are a
partition of the second side of the& array after

the row operations. Al is the same size as T.

Next 'shuffle' the array to form

If the n x n matrix on the left side of the array
is nonsingular, the procedure terminates - the
gystem is solvable.

The algorithm continues in this fashion,
performing row operations in order to create null
rows on the left side, and then shuffling the cor-
responding rows from the right side to the left.
The algorithm terminates in one of two ways: (1)

a point is reached where the left half becomes
nonsingular, in which case the system is solvable,
or (2) a point is reached where there is a zero
row all the way across the array, in which case
the system is not solvable. The algorithm always
terminates, one way or the other, in at most n
steps.

Exagmple 1: Starting with the E A array below,
the shuffle progresses as indicated.
E A
1 00 0 a1
01 0 0 a
01 a0 01
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Row operations yield

1 0
0 1
0 0

o o ©o
-

-1

A shuffle yields

1 0 0 g 0
0 1 0
-1 1 0 0

More row operations yield

1 00 0 0 1
0 1 0 1 0 O
0 0 O -1 0 1

Another shuffle yields

1 00 0 0
01 0 1 0
-1 0 1 0 0

The algorithm terminates because the left side is
nonsingular. Thus, the system is solvable.

Justification

An easy way to see that the shuffle algo-
rithm checks for solvability is to consider the
determinant of A-sE. According to Theorem 3.1,
solvability is equivalent to the condition that
this determinant not vanish identically.

Row operations on A-sE at most influence the
determinant by a nonzero multiplicative constant.
Thus, one may as well check the determinant when
E has the special form obtained by the first step
of the algorithm. The shuffle of A, over to the
other side of the array is equivalent to multi-
plication of the lower rows by =-s, and each such
multiplication multiplies the determinant by -s.
Thus, it i3 clear that the shuffle algorithm is
equivalent to a transformation of the original
matrix pencil to a new pencil whose determinant
is the original determinant multiplied by a noun-
zero constant and sP where b 'is the total number
of rows shuffled. If a point is reached where
an entire row is zero, the determinant is zero.
If a point is reached where the (new) E is non-
singular, the determinant is then seem to be non~-
zero. One of these two situations must arise
within n steps, for every row shuffled increases
the degree of the determinant of the (modified)
matrix pencil by one, and the maximum possible
degree is n.

The Gemeral Shuffle Algorithm

The general shuffle algorithm accounts for
the input structure of a system and produces a
recursive system, equivalent to the original sys-
tem. In developing the more general versiom, it
seems hest to regard the algorithm as operating




directly on the original descriptor system equa-

tions (3.1). The general shuffle algorithm con-
sists of the repetition of two basic operations
on these equations. The first operation is that
of row combination, corresponding to linearly
combining individual equations. One performs
such operations with the objective of obtaining
an E matrix with one or more zero rows. The
second operation, the shuffle, is a reindexing
operation. Each (row) equation in (3.1) is valid
for all k > 0, and hence k + 1 can be substi-
tuted for K in any row if desired. Such a sub-
stitution is used in an equation corresponding

to a zero in E. This then transfers the cor-
responding row in A to one in E and shifts the
input terms from k to k+l. Any sequence of such
row operations and time reindexing is permissible-
the shuffle algorithm is a systematic procedure
for obtaining a desired final form.

In the general algorithm it is often useful
to restrict the kind of row operations performed,
so that the final form will have a structure that
is easily converted to recursive form. There are
numerous variations possible, depending on the
particular objectives of the situation. Two me-
thods are outlined here.

Non-reduced Form

The general shuffle algorithm begins with the
array

E A B
By row operations this is brought to the form

4 B

4 By

A shuffle is performed yielding

This corresponds to writing 0 = A x(k)+B
the previous array, as A, x(k+l) = —B u(k%
general, any shuffle to %he left of rows of A is
accompanied by a shuffle to the right, and a
change in sign, of all input structure elements
in the same row. The array, therefore, grows
toward the right as the algorithm progresses.

u(k) Erom

When the algorithm is complete, the array will
have the form

[}

E A B

If the system is solvable E will be nonsingular.
Thus one may write

(k1) =B L{Ax (k) +Bu(k)+Cu(k+l)+...}  (3.6)
which is a recursive structure for x(k). This is

termed a non-reduced form, since the recursion is
in terms of the full descriptor vector x(k). This
is usually not the most convenient form, however,

and it is slightly misleading. The vector x(0)
cannot be selected arbitrarily, for there are ad-
ditional equations at k = 0, relating x(0) and
u(0), which were lost in the shuiffle procedure.
The procedure below employs a 'back shuffle which
recovers these lost equations.

Reduced Form

The reduced form is obtained by restricting
the class of row operations employed during the
shuffle algorithm in order to preserve the zero
rows created in A. Thus after reaching the stage

(3.7)

rows from the upper portion are never added to the
lower portion. Arbitrary row operations are per-
mitted within each portion, and multiples of lower
rows may be added to upper rows. This rule does
not actually restrict the functioning of the al-
gorithm.

Assuming the system is solvable, a final
stage 1s reached having the form

The left-hand n x n matrix can, by the allowed
row operations, be brought to the special form

LI

which is nonsingular. Once this final stage is

(3.8)

reached, the array is 'back shuffled,' yielding
the array
T A B Cy.o
1 1 1 (3.9)
0 A2 82 Cz...

Using the assumed special structure for A, and
T, combinations of lower rows can be subtTacted
from upper rows to yield an array of the form

I ! |

$ By Cpy
'B lc :.--
1 t
I

The matrices B 1,... will generally have dif-
ferent entries than in (3.9).

I 0,4 0

11

A21 I

(3.10)
0 0

Let x be partitioned, consistent with (3.10),
as

*Actually in some cases it may be necessary to
permute the variables x,, i=1,2,...n to obtain
this form. We do not account for this possible
permutation in our notacion.



Then (10) yields

x, (k+l) = %, (k)+B, u(k)+C ulk+l)+. ..
t EEEANE 1 (3.11a)

-xz(k)-A21x1(k)+BZu(k)+C2u(k+l)+... (3.11b)

which is the reduced recursive form. The vector
%, (k) is the dynamic part, and x (k) is the static
p&rt of the descriptor vector. %he dimension of

x. (k) is d, the degree of the system (see Sec—
tfon 3.3). Equation (3.11a) can be solved for-
ward once x.(0) is specified, although values of
future inpu%s may be required. Equaction (3.11b)
can be solved once xl(k) is known.

If the system is actually causal, then
C=D=...=0 and (3.11) is a state vector repre=
gentation of the system.

Example 2. Consider the E, A combination of
Example 1, with input matirx

1 0
3={0 1
0 0

The row operations employed in Example 1 violate
the rules that are used to obtain the reduced
form, so the steps below follow a different path.
The sequence of arrays is givem without expla-
nation.

£ A B c D
10 o:o'o 1:10

01 ay10 0/ 0 1

0L 0Jo0 1 O ! 0 0

=% ol 0 1T17 0"

01 oft1o olo 1

00 ol-11 olo =1

10 oToo e 0.1‘00

01 0,10 olo 110 o
10,00 olo olo 1

10 0,00 1 7T 7013 o

00 0,10 -1 -1 110 2
arog0o ole ol

10 0|00110|o c;-:oo
1o -1 00 ol o o|1-1101
11 0o 00 olo ol o 1,0 o
s R N L O
41 oloo olo olo 1l o
-1 0 1 : 00 o0 1 ) ; 11 : 0 -1

This is the final stage, which in the last step
has been brought to the special form (3.8).
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The array is now back shuffled,‘and then brought
to form (3.10).

10 0 l o0 1 ; 1 0 l 0 a
o0 O ' -1 1 o0 0 -1 I 0o a
o0 O l -1 0 1 l 1 -1 l 0 1
_———p —— = — = =
1L 0 0O [ 1 0 o0 | o 1 0 -1
00 o I -1 1 0 0 -1 : 0o o0
0 0 0 -1 0 1 |1 -1 o 1

Thus the new representation is
xl(k+l)-xl(k)+u2(k)-u2(k+l)
xz(k)sxl(k)+u2(k)

x3(k)=xl(k)—u1(k)+u2(k)-uz(k+l).

3.5 CANONICAL DECOMPOSITION OF TIME-INVARIANT

DESCRIPTOR SYSTEMS .

One method of solving a properly conditioned
and solvable linear descriptor system is to sweep
the initial conditions forward and the final con-
ditions backward through the time stages. This
sweeping process creates a forward condition system
and backward condition system. These condition
systems have a (forward or backward) state-space
representation and are useful analytical tools in
addition to solving for the unknown descripror
vectors. Unfortunately, the structure of these
condition systems varies with different initial
and final conditions, and may be time-varying
even for time-invariant descriptor systems. How-
ever, any time-invariant descriptor system has
some set of initial and final conditions for which
the corresponding condition systems are time-
i{nvariant. This motivates the examination of de-
seriptor system decomposition that is not generated
by particular initial and final conditions.

Consider the cancnical structure of a solvable
time-invariant system discussed in Section 3.3.
Using an appropriate change of variables, such a
system can be decomposed into subspaces Lx(k),
Mlx(k),...,me(k) with a state-space subsystem

Lx(k+l) = CLx(k) + Pu(k), (3.12)
and a set of pure predictors of the form
(r,)
MG = B Mpx(erl) - Quk), (3.13)
()
where H is the r, x r, matrix with ones on the

upper diagonal and zéroes om the main diagonal.

By using elementary row and column operations to
convert the matrix C to Jordan canonical form, the
subsystem (3.12) can be decomposed into a set of
independent subsystems of the form

(qi)
Lx(kbl) = (a1 +H ) Lyx(k) + P u(k)

(3.14)
“(ay)

where H has the same form as above.




Since no subsystem of the form (3.13) or
(3.14) can be further decomposed, this operationm
characterizes a maximal decomposition of a solvable

linear descriptor system. Note that subsystems of
the form (3.14) with a, = 0 have the same form as
the pure predictor subSystems, except these sub-
systems propagate forward in time. These sub~-
systems are important in choosing initial and
final conditions and are called pure delay sub-
Systems. Also, the parameter «, in (3.1l4) is the
only eigenvalue of the subsystem, with geometric
multiplicity q,. These (forward) eigenvalues com-
prise the set Gf scalar solutions to the matrix
equation

det [A -sE] = 0,

and are sometimes called the generalized eigen-
values.

As an illustration of this decomposition,
consider the example placed in shuffle form ia the
previous section. This system can be decomposed
into a first-order subsystem of the form (3.14)

xz(k+l) - xz(k)
and a second-order pure predictor subsystem
x3(k) - xz(k) = xl(k+l) - xz(k+l) - ul(k)
xl(k) ~ xz(k) = uz(k)
or equivalently,

x30k) = %, (k) + u,(k#1) = uy (k)

xl(k) = xz(k) + uz(k)

From this representation, it is clear that one way
of conditioning the solution is to specify xl(N),
x,(N), and either xz(O) or x,(N). The components
x7(k) and x.(k) are“controllible (except at stage
N7, while the x,(k) component is obviously un-
controllable. %he eigenvalue of the only forward
subsystem is one and therefore the system is only
marginally stable.

The above example suggests that the canonical
decomposition of linear time-invariant descriptor
systems can aid to valid conditioning of the so-~
lution and to system analysis. Suppose the issue
of concern is the controllability of the system
over a sufficiently long time horizom. 1If one of
the subsystems of form (3.14) is not comtrollable,
the invariant subspace independently governed by
the subsystem will not be controllable by the
overall system. Likewise, the pure predictor
subsystems must be reverse-time controllable if
the overall system s to be controllable. This
provides a necessary condition for cdontrollability
that can be checked a subsystem level following a
canonical decomposition. (Note that controlling
a descriptor vector at a particular time stage
may involve manipulating inputs at future time
increments if any pure predictor system is greater
than first order).

In the case of zero-input stability, a neces-
sary and sufficient condition is that the state-
space subsystem (3.12) be stable. 1In other words,
the eigenvalues a, corresponding to each subsystem
of the type (3.1&} must fall inside the unit circle..
The pure predictor subsystems do not affect zero~
input stability since the variables in these sub-
systems are determined entirely by inputs over an
infinite time horizon. '

If a time-invariant descriptor system is to be
aggregated in a way that preserves the dominant dy=-
namic modes, the aggregation can be efficiently
accomplished using the canonical decomposition. A
smaller model can be created by simply extracting
the forward state~space subsystems having the domi-
nant eigenvalues. This procedure does not generally
elimipate a subset of original descriptor variables
from the system but rather projects the system onto
a lower dimensional linear manifold of the original
vector space. However, if the intent is to remove
some of the original variables from the model, the
decomposition will reveal all static identities
embedded in the pure delay and pure predictor sub-
systems.

3.6 BOUNDARY CONDITIONS FOR TIME~INVARIANT LINEAR
DESCRIPTOR SYSTEMS

The actual solution of a solvable time-invar-
iant system requires the specification of n con-
ditions, which are often given as initial and final
conditions. As noted earlier, these conditions
cannot be specified arbitrarily. One method of
checking whether a set of conditions is valid and
sufficient is to actually try to solve the system
by a double sweep. However, such a procedure is
extremely inefficient. The canonical decomposition
accommodates a more elegant characterization of
proper boundary conditions.

If the aim is to find any set of boundary con-
ditions that is valid and sufficient, the canonical
form comprised of subsystems of types (3.13) and
(3.14) suggests a natural choice. That 1s, for
the forward state-space subsystems (3.14), specify
the initial location of the corresponding sub-
spaces, and for the pure predictor subsystems, se-
lect the final location in the corresponding sub-
spaces. Since each subsystem is a forward or hack- .
ward state-space system, the conditions for each
subsystem propagate directly in the ianvariant sub-
spaces, and the original descriptor variable values
are uniquely determined. |

In some cases, a candidate set of boundary |
conditions may already be given, and the concern |
is whether those couditions constitute a proper
set. A necessary and sufficient test can be de~-
rived using the decomposition of a time~invariant
descriptor system into a forward state-space sub-
system and a backward state~space subsystem. For
example, (3.12) can be the forward system and the
combination of all pure predictor subsystems,
represented by

Mx(k) = SMx(k+l) =~ Qu(k) (3.15)




can be the backward system. The test is deriﬁed
as follows:

Theorem 3.3: A set of boundary conditions

rx(0) =y,

Axx(n) = zy

is a valid set of boundary conditions to a system
decomposed into (3.12) and (3.15) if and only if

— —_
T
M L (3.16)
det N # 0
M -5"'M
|

where N is the number of time stages.

Proof: Since each subsystem 1s a state-space

system, it is easily established that
N-1

L - &Y Lx(0) =Y 'RV pun) (3.17)
i=0

N vl

Mx(0) - S Mx(N) = =) ST Qu(i) (3.18)

i=0

These relationships indicate the subspace of x(0)
and x(N) that is controlled by the system inputs.
The o remaining dimensions of the space of x(0)
and x(N) can and must be determined by the
boundary conditions. In order to accomplish this,
the conditions must be linearly independent of
each other and of the subspace determined by (3.17)
and (3.18). A necessary and sufficient charac-
terization of this independence property is given
by (3.16). =

The number of boundary conditioms that can
be on x(0) and the number that cam be on x(N) are
governed by the orders of the pure delay sub-
systems and pure predictor subsystems that result
from the canonical decomposition. By observing
the special property of the system matrices

(qy) (rj)
H and H of the pure delay and pure pre—
dictor subsystems, bounds.on the number of initial
and final conditions can be established:

Theorem 3.4: Let I be the set of indices cor-
responding to pure delay subsystems and J be the
set of indices corresponding to pure predictor
subsystems for a canonical decomposition of a
time-invariant descriptor system. If N is the
number of time stages, then there must be at least

Z ain [qi, N}

iel
initial conditions and

Z atn [r,.N]
jed
final conditions, where q, is the order of the re-

spective pure delay subsystem and v, is the order
of the respective pure predictor sustscem. :

Proof: Assume that the system matrices R and §
used in Theorem 3.3 have been transformed to block
diagonal form using appropriate row and column
operations. Each block of R corresponding to a
) (q))
pure delay subsystem will equal H and heance the
k (qy)
the same block of R will equal [H . It is
Aay)
easily verified that the matrix H
erty that

has the prop-~

k
[(qi)]
rank (H =qy - min [qi,k] , k>0

Therefore, the rank of Rk cannot exceed

rank L —2: oin [qi,k]
iel

Now for the matrix in (3.16) of Theorem 3.3, the
full rank property will hold only if the submatrix

has rank n.

—

From the above observation, the matrix

R

M

—d

cannot have a rank exceeding

n -) min lq,,N].
iel

Hence, the lower bound om the rank of T , or the
number of initial conditions, will hold® A similar
argument establishes the lower bound on the number
of final conditioms. ]

When the number of time stages exceeds the
order of any pure delay or pure predictor sub-
system, the boundary conditions must be specified
in a way that determines the location of x(0) in
the subspaces corresponding to pure delay sub-
systems and the location of x(N) in subspaces cor-
responding to pure predictor subsystems. However,
it is not necessary that the conditions be formu-
lated purely in terms of those subspaces.

The subsystems that are not pure delays or
pure predictors have the property of being able to




operate like a state-space system either forward
or backward through the time stages. For this
reason, the choice of the number of initial and
final conditions pertaining to these subsystems is
arbitrary for any number of time stages, although
the actual structuring of those conditions is not
arbitrary. Therefore, the general lower bounds
indicated by Theorem 3.4 are as large as possible.

If the system has an infinite time horizom,
the specification of initial comditions for all
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subsystems of type (3.14) is necessary and suf-

ficient. The conditions om subspaces corre-
sponding to the pure predictor subsystems can be
neglected. The reason for this is that the fimal
conditions on any pure predictor subsysteém will
affect, at most, the final rj time stages, due to

(r))
the nilpotent subsystem matrix H 3 Since there
is no explicit final stage with an infinite time
horizon the system can be solved without these
conditions via the shuffle algorithm.



IV. NONLINEAR DESCRIPTOR SYSTEMS

4.1 INTRODUCTION

The general structural form for models of sys-
tems in descriptor form is given by a set of equa-
tions

so(x(O),x(l) ,u(0)) = 0
gl(x(l),x(z),u(l)) =0

(4.1)

gN_l(x(N-l),x(N),u(N-l)) =0
where '

x(k) is an n-dimensional descriptor vector
for each k = 0,1,2,...,N

u(k) is an m~dimensional input vector for
each k = 0,1,2,...,N-1

8y is a function taking values in
n-dimensional space.

A fairly complete theory for these systems has been
outlined in the linear case. The intent of this
chapter is to show that there is a satisfactory
.theory for nonlinear descriptor systems.

For comparison, one can cousider the analogous
state=-vector system

x(k+l) = hk(x(k),u(k)) (4.2)

for k = 0,1,2,...,8-1. Assuming only that h, is
sell-defined, there is a unique solution x(k) to
(4.2) corresponding to each set of initial con-
ditions and input sequence. Furthermore, this
solution can be found recursively, progressing
sequentially from k = 0 to k = N. For the more
general descriptor variable framework (4.1) the
situation is known to be far more complex: there
may not be a solution; if there is it may not be
uniquely specified in terms of boundary con-
ditions; and the formation of recursive solutions
is a difficult problem. Nevertheless, these issues
all can be resolved quite satisfactorily. This
chapter shows that it is possible to extend several
standard concepts and procedures, including: (1) the
state—transition function, (2) forward propagation
of initial conditions, and (3) forward recursion
when a complete set of initial conditions is speci-
fied. These generalized results provide a broad
framework for addressing descriptor variable sys-

- tems.

The importance of the general descriptor frame=
work has been long recognized in comnection with
differential equations. General theories concerned
with these structures, however, have almost exclu-
sively focused on the linear time~invariant case.
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The most significant contribution in this area is
canonical form of a matrix pencil, discussed in
Section 3.3. This result still underlies much
modern work. '

Most general theories, including those based
on the theory of matrix pencils, have three se-
vere limitations. First, as in the case of can-
onical forms, the results often require a change
of variables, which is undesirable in terms of
relating specific results to the original problem
context. Second, although many of these theories
illuminate internmal structural relations, they
give little attention to the formation of recur-
sive solutiops. Third, these theories are
strongly wedded to the assumptions of linearity
and time-invariance, precluding their extension
to more general situacions. Although the theory
of descriptor variables presented here overlaps
previous theories in the linear time-invariant
case, it is unique in that it does generalize
quite naturally to nonlinear time-varying systems.

A theory involving noanlinear equations, such
as the one proposed here, can be presented within
various analytical formats. It is, of course,
clear at the outset that the required computa-
tional procedures are likely to be cumbersome;
but it does not necessarily follow that the theory
must be equally cumbersoma. It is quite possible
to develop an elegant theoretical structure. On
the other hand, to be useful, a theory must be
closely related to computational procedures. Such
considerations have motivated the choice of format
selected here. The results are preseanted withih
the framework of manifold theory and differential
topology. It must be emphasized that this se-
lection is primarily a choice of viewpoilnt, rather
than of technique. The viewpoint of differencial
topology allows one to tramslate essentially local
analytical results (such as those stemming from
the implicit function theorem) to global geometric
relationships. Presented in this framework, each
piece of the theory of nonlinear descriptor sys-
tems has both global geometric interpretations
and algebraic (or computational) implications.
Thus the chapter simultaneously unfolds two dis=-
tinct but interrelated developments: the geo-
metric (which.is in some sense conceptually
cleanest) and the algebraic (which is perhaps
most relevant for practice).

4.2 SOLVABILITY AND CONDITIONABILITY

The objective of this sectiomn and the next
two is to characterize the structure of the so-
lution set of a descriptor system, and initjate
how specific solutions might be computed. For
this purpose the role of the input sequence u(k),
k= 0,1,...,N=1, is somewhat {incidental. It is
sufficient to consider the system without imput




£5(x(0),x(1)) = 0

fl(x(l).x(Z)) =0
(4.3)

£yoq (KN-1),x(M)) = 0

A particular input sequence in (4.1) merely de~
fines a particular set of the form (4.3).

Throughout the investigation the functions
£ ,k =0,1,2,...,N-1 are assumed to be contin-
ucusly differentiable with respect to all varia-
bles, at least in some open D to which attention
is confined. Structural assumptions are often
expressed as assumptions on the derivatives.

Solvability

Define M as a set of solutions to (4.3) im
the domain D. M is a subset (possible empty) of
RA(N+L) | 1 general, M may be a quite compli~
cated set. We formulate below a simple require=-
ment (one that is standard in the studies of non-
linear equations) that guarantees that M is
actually a manifold.

For any solution x(0),x(1),x(2),...,x(N) to
equation (4.3) define the derivatives matrix

— ——
Bfo 3f0
ax(Q) ax(l)

afl afl

F(O,N,x) ={

afN_l afN_l

Ix(F-1) Ix(N)

The matrix F is esgsentially the coefficient matrix
of a linearized version of (4.3). This matrix is
defined in terms of n x a blocks. Indeed the ma-
trix F has N (block) rows and N + 1 (block) columns.
The maximum possible rank is equal to the number

of rows, nN.

Definition: The system (4.3) 1s said to be solva-
ble 1f M is not empty, and if for every point in
M the matrix F(O,N,x) has full rank.

In algebraic terms, the assumption of solva-
bility implies that there are n degrees of free-
dom.in the solution of (4.3), since there are n
more variables than equations. The geomecric
significance of the assumption gf solvability is
stated by the following theorem” (see for example

*The set M is an n-dimensional manifold 1if it is locall

[19] for this standard result).

Theorem 4.1: 1f the system (4.3) is solvable,
then M is an n-dimensional manifold.

Much of the ensuing work is directed ac fur-
ther characterizing the manifold M, and imposing
additional assumptions so that this manifold has
certain desirable properties.

Condi tionability

If the system of equationms (4.3) is solvable,
its solution 1is not unique. To define a unique
solution, n additional equations, or conditions,
wust be imposed. In general, suitable additional
equacions may take a variety of forms, involving
variables at various time points. From our under-
lying perspective of dymamic systems, however, it
is natural to think in terms of end-point con-
ditions (that is, conditions specified ouly in
terms of x(0) and x(N)). Special cases are pure
inttial conditions, involving oaly x(0), and pure
final couditions favolving oaly x(N). For an
arbitrary system of the form (4.3), however, sguch
end-point conditioning is not always possgible.

It may be that the degrees of freedom in the so-
lution are restricted to descriptor variables at
certain intermediate points, with the end-points
having less than full flexibility. Such systems
are in some sense dynamically degenerate, and are
of little real interest for our purpose. This is
the algebraic motivation for the concept of condi-
tionability.

Definition: A system of the form (4.3) is said
to be conditionable if

(1) the matrix

G(0,N,x) = ax (1) 3x(2)

afN_l

_ -1

is of full rank for all x ¢ M.

(2) No two solutions have identical emd-points
x(0), x(N).

(3) Any unbounded sequence in M entails an un-
bounded sequence of .end-points.

y diffeomorphic to R". That is, each point meM

possesses a neighborhood V in M which is diffeomorphic to an open set U in RR. A diffeomorphism
$:U»V is a parameterization of V. The inverse diffeomorphism ¢:V+U is a coordinate system on V. Thus,
more loosely, M is an n-dimensional manifold if at every point an n~dimensional coordinate system can

be constructed in a neighborhood. :

25




The first requirement 1s the basic local re-

quirement for conditionability. The other two re—
quirements insure suitable global properties as
explained later in this section.

Let us focus on the first requirement. Note
that the matrix G(0,N,x) is a submatrix of the ma-
trix F(O,N,x). It is a rectangular matrix having
n more rows than columns. One interpretation of
the requirement on rank is obtained by recalling
that F(O,N,x) represents the coefficient matrix
of a linearized versionm of (4.3). If x(0) and
x(N) are fixed, the matrix G(0,N,x) represents
the coefficient matrix of the equations that must
be satisfied by variations in the other descriptor
variables. If this matrix is of full rank, these
intermediate variables are uniquely determirded.
Thus, the ramk requirement is a linear condition
implying that (at least locally) no two solu-
tions have identical emnd-points. Thus, this re-
quirement is consistent with the algebraic moci-
vation that all degrees of freedom should be re-
flected in the end-points.

Now let us consider the geometric motivation
for conditiomability. Assuming that the system
(4.3) is solvable, M is an n~dimensional manifold
in the space RM{N+L) of descriptor variables.

This is not, however, a very economical descrip-
tion for the solution set, since it is defined

in the (relatively large dimensional) space
Ru(N+1l) . It seems appropriate to seek a repre-
sentation of this n~dimensional manifold M within
some space of dimension much lower than a(N+1).
One obvious approach at simplification is to com-
sider the projection of M into various subspaces
of RA(NF In general, however, such projectiouns
are not n-dimensional, and indeed not even mani-
folds. (For example, the surface of a sphere is

a 2-dimensional manifold in R3; but its projection
on a plane is a closed disk, which is not a mani-
fold.) In particular, the projection of M onto
the n~dimensional subspace correspounding to a
descriptor variable x(k) for a fixed k will rarely
be an n-dimensional manifold (for then it would
equal the entire subspace). There 1is, however,

a clean solution to the representation problem

if the assumption of conditionability is intro-
duced.

Consider the 2n-dimensional subspace of
Rn{N+1l) corresponding to the first n and last n
coordinates; that is to the coordinates associated
with x(0) and x(N). Let B denote the projection
of M on this subspace. The set B is the set of
possible boundary points of solutions to 4.3).

Theorem 4.2: If the set of equations (4.3) is
solvable and conditionable, them B, the projection
of M into the 2n~dimensional space of end-points,
i{s an n~dimensional manifold. In fact B repre-
sents an embedding of M.

Proof: Let x be a point in M. By solvability,
the matrix F(O,N,x) has rank nN. By conditiona-
bility, the n(N-1l) middle columns of this matrix
are linearly independent. Therefore, n additional
columns can be selected from among the first n and

last o columns of F(O,N,x) to form a total of aN
independent columns. The n variables correspoading
to columns not selected can serve as a (local)
basis for M. This follows from the implicit func-
tion theorem, since these variables can be varied
arbitrarily (locally) to determine an overall so-
lution to (4.3). These basis variables are a sub-
set of the end-point descriptor variables. Such a
basis exists at every point x. This shows that
the projection operation from M onto B is a local
immersion.

The second requirement (2) guarantees that
the projection is one-to—one. Finally, the third
requirement (3) guarantees that the immersion is
proper (that is, the preimage of compact sets are
compact). Thus the projection is an emb ed~

ding [19]. .

In view of this result, the set B is called
the boundary manifold of the system (4.3). One
{nterpretation of it is that M can be projected
down to B without loss in information. As a side
comment, one might compare this result with Whit-
ney's Theorem, which states that any n~-dimensional
manifold can be embedded in R20, Thus Theorem 4.2
represents the best that might be hoped for in
terms of the most economical representatiom of M.
Finally, it should be pointed out that the pro-
jection of M onto the 2n~dimensional subspace gen-
erated by descriptor variables at two other time
points need not yield an n-dimensional manifold.
Only the end-point. projection will work.

Subsys tems

The solution procedures developed in the next
two sections exploit the dynamic structure inherent
in well-behaved descriptor systems. This struc-
ture is expressed in terms of a nested family of
subsystems of the original descriptor system. In
order to develop this line of reasoning, the no-
tions of solvability and conditionability must be
suitably extended to subsystems.

The original system (4.3) is defined on the
time points k = 0,1,2,...,N. A subsystem is ob-
tained by deleting some of the original equations,
leaving a subset of equatilons corresponding to a
contiguous subset of time points. We let Si’j be
the subsystem defined over the integers '
k=1, i +1,...,j. Thus in this notation the
original system is S . Likewise, we denote by
Mi and Bi the set’of solutions and set of end-
poi&ts corrégponding to the system Si e Again,
we have M = MO,N and B = BO,N'

We shall primarily focus attentiom on the
speclal subsystems S N’ Sl N,...,SN 1.8 We say
that the original system S”is forward 3clvable
and forward conditionable if each of these sub-
systems are solvable and conditionable, respec-
tively. (Clearly there is an analogous definition
of backward solvability and backward conditiona-

bility.)

In some sense the requirements of forward
solvability and forward conditionability are not



really additional requirements. Rather they sim~
ply extend the original requirements to larger
sets. To see this, let M, be the projection of
M onto the subspace concaiﬁxng the variables x(1),
x(i+1),...,x(N). Since any solution of the origi-
nal system induces a solution on the subsystem,

it follows that ¥ <M, .. Solvability of the
original system imp¥iesiedac F(0,N,x) is of full
rank for xeM. Any subset of the rows of F is also
of full ramk, so F(0,N,x) is of full rank for all
XeM, N Likewise conditionability of the original
sys%ém implies that the conditionability rank con-
dition holds on M, N The assumptions of forward
solvability and gdtward conditionability extend
the rank requirements from M, . to M, ,. (In the
case of linear systems, the %Bgve di%éassion shows
that solvability or conditionability of the orig-~
inal system implies forward solvability, or for-
ward conditionability, respectively, of any sub-
system. )

4.3 CONSTRUCTION OF BOUNDARY MANIFOLDS

We have seen that the solution manifold of a
solvable and conditionable descriptor system can
be embedded on the boundary manifold B. If the
system is forward solvable and forward condi-
tionable, the solution manifolds of each of the
forward subsystems can be similarly embedded on a
correspoading boundary manifold. The successive
boundary manifolds are, of course, related. By
exploiting this relationship, it is possible to
construct the boundary manifolds recursively,
starting with the simplest. Thus, we begin by
constructing BN—l N’ which is the boundary mani-
fold for the simplest subsystem. From this we
construct By.z,ys etc., working all the way to

BO,N'

The specific comnstruction is, by necessity,
local in character. With this caveat in mind, we
shall nevertheless represent boundary manifolds
in simple implicit form. Specifically, we repre-
sent the boundary manifold BF;V by the system of
equations °

ok(xk,xN) =0

where ok is an n-dimensional function of full rank
on B, .U The functions ¢, are generalizatious of
the state transition func%ions in ordinary state-
space theory. Equation (4.4) is completely equiv-

(4.4)

alent (locally) to the last N-k equations im (4.3),

or equivalently, to S . Solutioms to (4.4) are
in direct correspondente to end-points of Sk N
.

To justify the coastruction it 1is necessary
to congsider a lemma which applies in the linear

case.

Lerma:

Axk-l + Bxk 2 0
ka + DxN =0

~where A, B, C, D are n x n matrices. Suppose this
system is of full rank on R°? and of full ranmk

Consider the system

27

with respect to x,. Then these equations can be
linearly combined to yield a relatiom of the form

VAxk-l + WDxN =0

which is of rank n on RZn-

Proof: The matrix [g] has at most rank n, hence

there are n x n matrices V and W such that (V,W]
is of full rank and VB + WC = 0. Combining the
original equations this way gives the result. ®

We now turn to the details of the general
construction process. We assume that the system
is forward solvable and conditfonable. The pro-
cedure is:

Let’

a1 o) = By Oy

Clearly oN—l( -l'xN) = 0 is an implicit repre-
sentation for -1.N In general, suppose that
°k(xk,xN) = 0 is 3’suitable representation for
B g+ 9 1is of dimension o and has full rank.

Now consider the equations
Y (g = 0

Fra1(eorom) = 0

As verified below, this system is of full ramnk at
any solution to Sk—l . It is also of rank n
with respect to x,. ’%hus, can be eliminated
yielding the n-dimensional relation

(4.5)

b1 (ReapoXy) = 0

This ¢ will have rank n.

k-1

To verify the statements concerning rank,
imagine that all operations are carried out on
the linearized system. In this case each %, is a
linear combination of the f,'s i-k,k+l,...,§, as
indicated by the lemma. The& fact that (4.5) is
of full rank follows from forward solvability,
since this system is essentially a representation
for the n-dimensional solution manifold Mk—l N
Then since the derivatives of the nonlinear *’
4, at the nominal solution is equal to that of
tKe linear version, the rank result holds. Like-’
wise, the fact that (4.5) is of full rank with
respect to follows from forward conditiona-
bility. If and are given it must be
possible to s0lve (4.5) (and its linearized ver-
sion) uniquely for X -

As mentioned earlier, the functions ¢ ,
k=0,1,2,...,N-1 representing the boundary mani-
folds are generalizations of the state transition
functions in ordinary state space theory. Indeed,
for a system described by x(k+l) = Ax(k) oge can
easily calculate that oo(x(O),x(N))Ex(N)—A x(0).

A Method of Solution

Once the ¢k's are known, it is possible to




calculate solutions to the original system recur-
sively. The equation ¢o(x(0),x(N)) = 0 defines
the boundary manifold for the entire system S .
In order to specify a single solution to the sys-
tem, a single point oan this n-~-dimensional boundary
manifold must be specified. Generally this speci-
fication takes the form of n additional relations,
independent of those in the ¢.. These additional
relations specify a unique pognt on the boundary
manifold and hence a unique x(0),x(N).

Next consider the equations
£,(x(0),x(1)) =0
¢ (x(1),x(N)) = 0

This system of equations has full rank with re-
spect to x(1), and x(0) and x(N) are known from
the initial stage of the solution process. Thus,
this system can be solved for x(1).

This value of x(1) and the value of x(N) are
then used in the system

fl(x(l), x(2)) = 0
2, (x(2),x(N)) = 0

to determine x(2), etc. In this way the entire
sequence of descriptor vectors is determined re-
cursively. '

The procedure for the (backward) recursive
determination of the ¢, 's followed by the (for-
ward) recursive determination of a specific solu-
tion has several potential implementations. In
some situations the (global) operations can be
carried out directly. (This is often true if the
system itself is lipnear or if a dynamic program—
ming procedure is employed.) In other cases, how-
ever, only linear approximations to the ¢ 's are
calculated, leading to a solution procedure which
involves successively sweeping back and forth
through the system until convergence 1is achieved.

4.4 CONDITION VECTORS

A unique solution of a solvable and condi-
tionable descriptor system is determined by the
specification of a point on the boundary manifold
B. As pointed out earlier, this point is usually
specified in the form of n additiounal relations
or conditions. These might have the form

[o(x(@), x()) = a (4.6)

0
where the function [, and the vector a, are n-
dimensional. If the functioms [, are Qndependent
of other system relations, the relation (4.6) de-
termines various points on the boundary manifold
as a, varies. Thus a, serves to parameterize the
boungary manifold and, corresponding, the solution
manifold as well.

More explicitly, we know from the previous
section that (at least locally) the boundary maai-
fold Bo y can be represented in implicit form

)
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Qo(x(O),x(N)) = 0, where ¢, 1s a n-dimensional
function of rank n. If Fo?x(O),x(N)) is an n-
dimensional function of rank n that is independent
of @0 (locally), then the system

r (x(0), x(N)5 3 a
0 0 (4.7)

®p(x(0),x(M)) = 0

determines a unique x(0),x(N). An equivalent
statement, not requiring the knowledge of ¢,, is
that (4.6) appended to the system (4.3) uniquely
specifies a solution. The function T, are termed
conditions and parameterization vectof a, is
termed condition vector. In terms of magifold
theory, Fo defines a coordinate system for BO,N'

Propagation of Conditions

We consider now a solution procedure, termed
the double-sweep method, that is in some sense
the dual to the procedure discussed in the previous
section. This procedure more closely resembles
the standard recursive procedure used for solving
ordinary dynamic systems. ' (Indeed, in the case of
a state space system this procedure is equivalent
to normal forward recursion of the state vector.)
It must be pointed out, however, that although the
procedure is in many senses a more aatural one, it
has potential hazards (as is discussed below under
the heading of catastrophes).

The propagation of comndition vectors is again
based on consideration of the nested family of
descriptor systems S, ., S g Syop.y- 1o this
case, however, the inltial propagation’moves for-
ward, working from the full system to progressively

smaller subsystems.

One starts with the system S0 N and a suitable
set of conditions T, (x(0),x(N)) = &.. This speci-
fies a unique solutgon to the full System S N
By deleting the first term, x(0), the resulging
sequence of descriptor vectors is a solutiom to
the subsystem S ¥ Thus, there must be a set of
consistent conditlons for the subsystem S that
yield that reduced solution. This new set’6f con-
ditions represents a propagation of the original
conditions on the full system to the subsystem.
This procedure is continued over successively
smaller subsystems. The procedure thus generates
a sequence of condition functioms I, , k=0,1,2,...,
N-1, and an associated sequence condition vectors

®ps G1s Ggseees Gy ge

The procedure begins with a suitable n-dimen-
sional comstraint of the form I (x(0),x(N)) = a.,
having rank n. This is swept forward omne step gy
consideration of the system of equations

Fo(x(O),x(N)) = aq
fo(X(O),X(l)) =0

This system must be of rank n with respect to x(0),
for if x(l) and x(N) are known x(0) must be deter-
mined from these equations. Hence, with respect
to x(0) there are at least n functional depen-
dencies among the functions Ty, fg. That is,




there is an n-dimensional function ¢, of rank a
such that y (To(x(O),x(N)), £.(x(0), x(1))) is
independent of "x(0). This function is equal to
some function Fl(x(l), x(N)). We thus have

Ty (x(1),x(N)) = wl(ro(x(o),x(n),fo(x(O),X(l)))
= ¥, (3,0)

In other words,

I (x(1),x(M) = oy (4.8)
where

3 = wl(ao,O) .
This is the equivalent set of conditions for the
subsystem S1 - As in the preceeding section a
check of the’§inear case verifies that all neces-

sary rand conditioans are satisfied by this updated
procedure.

The procedure is continued to determine, in
general, ¢, , I, and for k=0,1,2,...,N-1. At
the final point the 2a equations

Tyap (x(¥=1), () = oy,
fyop (x(¥=1), x(N)) = 0

can be solved for x(N-1) and x(N). At this point
one may work backward through the system to solve
for the successive descriptor vectors. Specifi-
cally, given x(k+l) (and x(N)) one solves the
system

[ (x(k) ,x(N)) = a

fk(x(k),x(k+l)) =0

for x(k).

Example: Consider the linear state-space system
x(k+l) = Ax(k). We may take I, = x(0). Thus
x(0) = o is the initial condition. The vector

x(0) can'be eliminated from the equations
x(0) = ay A
x(1) = Aax(0)

to produce

x(1) = a

1
% T Aay
which is (4.8) for this special case. This im-
plies Fl = x(1). Thus this procedure reduces to

normal State recursion.
Catastrophes

The procedure outlined above works well, pro-
vided that the initial n-dimemsional function [‘0
does in fact represent a legitimate coordinate
system on the boundary manifold BO N(or equiva-

»
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lently, that the functions [, are independent of
the system equations). For an arbitrary function
Fy» the procedure outlined above may progress
successfully for several steps until a point is
reached where the equations

M (xR, x(M) = a
£,(x(k), x(k+1)) = 0

are inconsistent.
gress is possible.

At that point, no further pro-

Such a break-down results from improper se-
lection of the original I., but unfortunately
there is no way to insure that a given I, is
suitable by inspection of the properties of the
system near the initial point k = 0, Whether the
given T, is a suitable condition coordinate sys-
tem is gependenc on the entire structure of the
system over the entire time interval. In general,
a procedure equivalent to that in Section 4.3 to
calculate ¢,, must be employed to insure that a
given Fo is appropriate. :

A similar pbenomenon occurs in continuouys-~
time systems and essentially forms the basis for
the subject of catastrophe theory. In the con-
tinuous-time case, however, it is possible to
rationalize the sudden inconsistency by hypothe-
sizing an instantaneous jump in the value of some
descriptor variables. In the discrete-time case
there seems to be no equivalent way out of the
difficulty.

As an example consider the linear system
Ek+lx(k+l) = x(k)

Assume that is of full ramk for k=0,1,2,3, but
that E4 is singular. The choice [, = x(0) seems
reasonable at first, for indeed Fl = x(1), ', =
x(2), and I', = x(3) will follow ndturally. &ow—
ever, there”is a catastrophe at k = 4 since -
E,x(4) = x(3) is not independent of x(3) = a..
T8e situation can be rectified only by the sg-
lection of a different [,, having less than full
rank with respect to x(O?.

These comments concerning catastrophes are
not meant to imply that the double sweep method
is seriously flawed. On the contrary, in prac-
tice suitable choices for [.'s are often clear
from the context of the proglem. One must, how-
ever, be aware of the potential difficulcties.

Inputs

) At this point, let us briefly comsider the
original system in descriptor form with inputs
(4.1). During the forward sweep of the pro-
cedure outlined in the first part of this section,

it is necessary only to use the functionms h, (and
consequently the inputs u(k)) sequentially. Thus
the forward sweep is a causal operation. There~

fore propagation of the condition vector canm be
thought of in terms of a normal causal dynamic
operation. In this sense the condition vector




acts much like the state vector of a (normal) dy-
namic system. The backward sweep uses the func-
tions and the corresponding u(k)'s in the re-
verse otder. Thus the overall procedure is non-
causal, although the two portions forward and
baclkward are each causal in their respective di-
rection.

4.5 FORWARD RECURSION

It is sometimes possible to solve a descrip--
tor variable system by a single forward sweep.
In order that this be possible, two general prop-
erties must be present. First, the system wmust
possess appropriate structure. Second, the speci-
fied end-point conditions must be such thact a maxi=
mum number of initial conditions are specified.
An example, of course, is a state-space system.
Such a system has a structure that allows for so-
‘lution by forward recursion, but such a recursion
is possible only if, in addition, the n boundary
conditions are all initial conditioms. Similar
requirements hold for general descriptor variable
systems. ) ‘

This section outlines the technique for for-
ward recursion in the simple case of regular
systems. The technique is actually a slight modi-
fication of the double sweep method developed in
Section 4.4. In order to develop the method, we
first explain the generalization of solvabilicy
and conditionability to systems with inputs, next
we explore the role of initial conditions in de-
scriptor systems, and finally we define regular
systems.

General Framework

It is appropriate at this point to show how
the general descriptor system (4.1) can be embedded
in the framework of Section 4.2 for systems with-
out imput (4.3). This extension is important in
forward recursion techniques, since the order in
which the u(k)'s are processed i3 important.

Define A as the set of solutions to (4.1) in
some appropriate domain. .# 1s a subsget (possibly
empty) of Ra(N+1) x R, The aystem (4.1) is
solvable if J# 13 not empty, and 1f for every
point in .# the Jacobian matrix of the system with
respect to the descriptor variables has full rank.
This assumption implies that.# 1is an (n + mN) -
dimensional manifold. Fixing a specific set of
inputs corresponds to slicing through the 4 mani-
fold and producing a manifold M as in Sectlon 4.2,
The notion of conditionability is generalized in
a similar fashion.

In this gemeralizatioan it is clear that the
role of the inputs 1s secondary. However, when it
is important to keep track of the role of inputs,
this general framework is available.

Initial Conditions Always Exist

The concept of conditions was discussed in
Section 4.4. Conditions provide a (local) param—
eterization of the boundary manifold, and hence
of the solution manifold as well. In general, one
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expects that suitable conditiom functions may in-
volve both end-point vectors x(0) and x(N) simul-
taneously. However, the following result shows
that it is always possible to specify a complete
set of conditions in terms of pure initial and
pure final conditious. This justifies special
consideration of pure end-point conditioms.

Theorem 4.3: 1If a descriptor system (4.1) is sol-
vable and conditionable, then a complete set of
additional conditions can be specified (locally)
in terms of pure initial and pure final conditions.

Proof: 1In Section 2.3 this theorem was proved for
the linear case. That result shows that the Ja-
cobian matrix, with respect to x, of the system
(4.1) can be augmented by n rows, each having
entries corresponding either to initial or final
conditions, to give full rank. Specifically, the
system (4.1) when augmented by conditioms of the
form x,(0) =.a,, ie IO and x;(N) = 8,, je IN
(where the a; and Bj are real numbers, and the
index sets IO and I, together contain n elements)
is of full ramnk witﬁ respect to x. Thus, by the
inverse function theorem there is a unique so-
lution for all values of a, and a, (at least lo-
These solutions are on tﬂe solution mani-

cally).
fold 4. |
Regular Systems

We now consider an important special case,
where a descriptor variable system can be solved
forward recursively in one sweep. Consider the
system (4.1) which can be written as

gk(x(k), x(k+l), u(k)) = 0 (4.9)°
for k = 0,1,2,...,N=1. Suppose that for every k
and throughout the rank of gk(x(k),x(k+1).u(k))
is r with respect to x(k+l). Then by suitable
manipulation the system (4.9) can be reexpressed
(perhaps locally) as

ck(x(k), x(k+l), u(k)) = 0 (4.10a)

d, (x(k), u(k)) =0 (4.10b)

The function (x(k), x(k+l), u(k)) is of rank r
with respect to x(k+l). Many systems are readily
expressed in this form. WNote in particular that
if r = n then = g , and the system can be
solved forward recursSively from a given initial
x(Q) -~ in fact, this is a state-space systen.
general, of course, ome has r < n. The state-
space case, however, motivates the definition of

In

a regular system.

We assume that the system (4.10) 1s solvable
and conditionable. We further assume that a full
set of pure initial and final conditions exist
for (4.10), and that the number of initial con-
ditions 1s equal to the dimension of the upper
part of the system. Specifically, the conditions
have the form c_,(x(0)) = 4 and dv(x(N)) = BN,
vhere c¢_, 1s r—d}mensional of rank r with respect
to x(0), and is (n-r)-dimensional of rank n-r
with respect to x(N). Thus, a full set of pure
initial and final conditions are assumed to exist




for (4.10), and the number of initial conditions
is equal to the dimension of the upper part of the
system.
Definition: The system (9) is regular if for each
k = 0,1,2,...,N-1 the Jacobian with respect to
x(k) of the functions

¢pg (x(k=1), x(K), u(k~1))

dy (x(k), u(k)) -
is of rank n throughout. /.

A 'system which satisfies this definition of
regularity can be solved forward recursively with
a modification of the double sweep algorithm. We
sketch the details below. :

First, consider the system

c_i(x(O)) = a,
do(x(O), u(0)) = 0
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By assumption this system is of full rank and
hence can be solved for x(0). Second, consider
the system

co(x(1), x(0), u(0)) = 0
d; (x(1), x(0), &(1) = 0

This system is of rank n with respect to x(l) and
hence given x(0) from above and u(0), u(l), this
system can be solved for x(l). One continues in
this fashion all the way to x(N).

The above is an outline of the procedure. It
is possible to trace the condition vector a
through successive stages. As demonstrated in
Section 2.4, the condition vector at any stage
serves as a state vector. Regular systems lead
to a simple forward recursion solution. More
general systems can also be solved forward, in a
similar manner, by employment of a generalization
of the shuffle algorithm introduced in Section
3.4 when the system is time~{invariant.




V. CONTROL OF LINEAR

5.1 INTRODUCTION

In the earlier chapters of”this report, the
emphasis was on the uniqueness and coudition-
ability of the solution to a descriptor system
and the determination of that solutionm. The in-
puts to the system were treated as additional
parameters that affect the location of the so-
jution. In this chapter, the focus will shift
to the determination of inputs that create de-
girable solutions to a descriptor system.

1f there is a criterion function that assigns
a numerical value characterizing the desirability,
an optimization problem can be defined to deter-
mine the "best" set of inputs. Dynamic program-
ming is an effective procedure for optimizing
the subclass of descriptor systems that have
state-space form. This procedure employs the
property that the descriptor vector at each stage
ig a state. However, the procedure can be adapted
to systems where there is no state vector at
various stages. This revised method is presented
in Section 5.2.

Many important dynamic models, however, are
(forward-time) causal and have a state at each
time inpstant. By having a state, the system can
be solved via a forward sweep through the time
instants, without requiring the knowledge of fu-
ture inputs. Ia Chapter II, we identified regular
systems as systems that cam be characterized by
a forward condition system plus scatic relation-
ships at each time instant. This structure can
be exploited in designing a more efficient dynamic
programming than the one described in Section 5.2.
This second procedure is outlined in Section 5.3.

The performance criteria for dynamic economic
systems can often be approximated by criterion
functions that are quadratic in terms of descriptor
variables and inputs and that are additively sepa-
rable by time increment. Linear state-space sys-
tems with such performance criteria have been
thoroughly studied, and it is well-known how to
compute an optimal feedback control law. Section
5.3 demonstrates that this result extends to any
linear, regular system using the special causal
structure of such systems. Therefore, a procedure
exists for computing an optimal feedback policy
without requiring a state-space representatioun.

Frequently in models, it is useful to specify
desired behavior in the form of additional static
relationships. One then has a rectangular system,
as opposed to a square system, because there will
be more relationships than unknowns. In some
cases, this representation may be inconsistent
and the model is not realizable. However, usually
these relationships will have a feasible solution
set for a restricted set of inputs. The deter-
mination of optimal control inm these models is
somewhat more complex than the simple unconstrained
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solvable representation. This chapter will first
consider rectangular systems that are regular -
the approach will be to separate omne set of re—
lationships that form a square, regular system and
designate the other relationships as a set of
static constraints. The critical issue is whether
these constraints can be maintained as the uncon-
strained system progresses in time. This concept
of maincainability is carefully described ino
Section 5.4.

Given that a regular rectangular model for a
system satisfies maintainability, it can be demon-
strated how optimal feedback policies can be com=~
puted when one has quadratic performance criteria.
Section 5.5 first comsiders the special case of a
system represented by a state-space model plus
static relatiouships on the state variables. The
rasult derived for this special case is then ex-
tended to the more general case where the state-
space model is replaced by a square, regular sys-
tem and where the static constraints can include
the inputs.

Often there is not a criterion for evaluating
the optimal policy, yet it is desirable to apply
inputs in a manner that keeps descriptor variables
inside acceptable ranges. As in rectangular de-
scriptor systems, a useful analysis is to trans-
late the constraints on descriptor variables to
constraints on inputs that will maintain the de=-
sired ranges. If the comstraints are applied on
individual descriptor vectors, the constraints can
be translated to necessary conditions on individual
input vectors. These necessary counditions apply
to both regular and nonregular systems and are
demonstrated in the final section of the chapter.

5.2 DYNAMIC PROGRAMMING FOR LINEAR DESCRIPTOR
SYSTEMS

Often the major motivation in modeling a
system is to provide a framework for determining
a set of inputs that optimize the solution of the
system model, and hence will serve as a nearly
optimal policy for the actual system. In the con~-
text of the system being considered, it is reason-
able to assume a separable objective function of
the form:

minimize
u(0),...,u(N=1)

(\2 b Ce(i) () )+hy (W) )

k=0 (5.1

Dynamic programming is a technique commonly
used to optimize dynamic systems with a separable
objective function. Dynamic programming allows
such optimization problems to be solved as a series
of smaller optimization problems in the same way
that condition systems can be used to decompose
the solution of descriptor systems. In fact, as
will be seen in this section, the condition systems
have an important role in efficient optimization.



However, dynamic programming has been developed
for state-space systems, which are special cases
of descriptor systems. The purpose here is to
demonstrate how this technique can be extended
to all solvable, linear descriptor systems.

The theoretical basis for determining the
globally optimal policy using dynamic programming
is the principle of optimality. In the context of
state-space systems, thisg rincipie states that
given any state x(k), if u  (k), u (k+l),...,u*(N-1)
is the optimal trajectory of inputs corresponding
to x(k), then u®(k+l),...u*(N¥-1) is the optimal
trajectory of inputs corresponding to the state
x(k+l) resulting from x(k) and u*(k). Since a
descriptor vector x(k) and input u(k) do not
always uniquely determine the following vector
x(k+l) in a descriptor system, this principle
must be reexpressed to be valid for all well-
defined descriptor systems.

Suppose we consider the optimal cost-go-go
from some descriptor vector x(i) at instant i to
a descriptor vector x(j) at inmstant j. By the
system equations and the objective function, it
is clear that this cost depends only on the choice
of u(i), u(i+l),...,u(j=-1):

j=1
Cost-to~go from x(i) to x(j) =j£: hk(x(k),u(k))
k=1 (5.2)

Expression (5.2) can be interpreted as the ob-~
jective function for the cost-to-go from instant
i to instant j for specified x(i) and x(j). The
value of this reduced objective function will
obviously depend only on x(i), x(3j), and the in-
puts u(i),u(i+l),...u(j-1). Note, however, that
a set of inputs may not exist to link every pair
x(1) and x(j); therefore, we must assume the pair
is feasible.

Using (5.2) and minimizing with respect to
u(i),u(i+l),...,u(j~1), an optimal trajectory of
inputs can be determined. There may be multiple
trajectories. Any ome optimal trajectory will
uniquely determine the descriptor vector x(i+l),
using the syscem equations. From (5.2) it is
clear that u®(i) must minimize the cost~to-go
from x(i) to this value of x(i+l), where u*(i) is
part of the optimal input trajectory for (5.2).
Likewise, the other inputs of that trajectory,
u*(i+1),...,u*(j-l) must minimize the cost-to~go
from the determined x(i+l) to x(j). Therefore
minimizing cost-to-go from x(i) to x(j) is equiva-
lent to finding a consistent x(i+l) that minimizes
the sum of the cost-to-go from x(1) to x(i+l) plus
the cost-to-go from x(i+l) to x(j). This consti-
tutes a principle of optimality for descriptor
systems.

This principle can be exploited in the design
of a dynamic programming algorithm for determining
the optimal policy for a descriptor system with
respect to (5.1). The algorithm recursively de-
termines the optimal input u(k) and cost-to-go
from a particular x(k) to any feasible x(N) plus
the cost of x(N), for all feasible x(k), first
where k=N-1, then where k=N-2, etc.. Now for any
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feasible x(k), there is a subset of possible in-
puts u(k) that can be used with x(k). One input
u(k) is selected from this subset. This immed-~
iately determines y(k+l), the forward condition
vector corresponding to set k+l. However, there
is possibly an entire range of backward condition
vectors z(k+l) for set k+l that are consistent
with x(k) and u(k) (or z(k) and u(k)). For each
z(k+1) in this range, the minimal cost-to-go from
x(k) to amy x(N) (including the cost of x(N)) is
computed by summing the costs of x(k), u(k), and
the optimal cost-to~-go from x(k+l) (determined
uniquely by the condition vectors y(k+l) and
z(k+l)). This determines an optimal cost-to=-go
from x(k) for given u(k) and z(k+l). These compu-
tations are repeated (if necessary) for other
values of z(k+l) in the consistent range, so that
an optimal cost from x(k) using u(k) can be iden-
tified.. One can then consider other feasible
values of u(k) and repeat the process of deter-
nining the optimal z(k+l), such that an optimal
input u(k) and cost-to~go can be determined for
x(k). When the overall procedure is repeated for
all feasible x(k), the iteration for set k is
complete, and one can progress to the iteration
for set k-1. This algorithm is repeated in a
step-by-step manner below:

Define the following sets: Lec be the
set of backward condition vectors z(k) that are
reachable from the backward condition vector z(N)
These sets can be generated recursively using the
backward condition system where

z(k) = sk+lz(k+l) u(k)

T Qg

Therefore

Zk = (Sk+lz(k+l) - Qk+1u(k)]z(k+l)szk+l,all u(k)}

and

ZN = z(N)
Let U, (z2(k)) be the set of u(k) such that z(k) is
reachgble from some z(k+l)ezk+l:

U, (2(k)) = fu(k)|z(k)+Qk+lu(k)eSk+le+l}

Let (z(k),u(k)) be the subset of Z such
thaczgté) is reached from z(k+l) usingkt%k):

2y (2(R) u(R)) =z (kL) S, 2(leb])=Qy , u(k)=2(k) }

Determining these sets requires solving equations
of the form Hx=d for all solutions, where H may
not have full row rank. If the solution set is
not empty, one solution can be obtained using a
pseudoinverse of H. The remaining solutions will
be the linear manifold of vectors that are the
sum of the determined solution plus an element in
the null space of the row vectors in H. It is
clear that for any i(k)ezk,U (z(k)) cannot be
empty by definition of z,° Similarly z ., (z(k),
u(k)) corresponding to u%k)suk(z(k)) caonot be
empty.




The algorithm proceeds as follows:

For any feasible x(N), determine the value of
(x(N)). For the iteration at set k, l<k<N-1,
starting with k=N-1:
1. Consider any x(k) such that z(k) = Akx(k)’ the
backward condition vector, is ia Z, . The goal is
to determine the optimal cost from x(k),

N-1

D b (x(0),u(d) + by

1=k
and the corresponding value(s) of u(k):
2. Determine Uk(z(k)).
3. Choose a particular u(k)el(z(k)).
4. Calculate

y(ktl) = Ry(k) + P u(k)

where y(k) = Fkx(k) is the forward condition vec-
tor for x(k).

5. Determine Zk+l(z(k),u(k))~

6. Compute

(x(k+1))

L;(x(k) ,u(k)) =xu(1in Ten

k+1)
where Ak+lx(k+l)ezk+l(z(k),u(k))

Pk+lx(k+l) 2 y(kt+l)

store Ly (x(k),u(k)) and
X (200 ,5(0) = arg L (x(),u(©)

7. Repeat steps 4-6 for all remaining
u(k)eUk (z(k)).

8. Compute

*

Th(x(k))=  min (b, (x(K) ,u (k)
k a(k) el (2(k)) hl:
- AL () (k) }

Store J* (x(k)) and

WF(x(0) = arg (T (x(0))

9. Repeat steps 1-8 for other descripgor vectors

x(k) satisfying Akx(k)sz , for which J, (x(k)) has
k k

not been computed. )

10. If k>1, set k=k-l1 and repeat steps 1-9.
Otherwise proceed with the iteration for the set
of x(Q).

For the iteration at x(0), the steps 1-9 are
repeated with one minor change. Since the initial

conditions _
Iyx(0) = y(0)
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are given. it is only necessary to consider that
subspace of x(0). Once the iteration for all
feasible x(0) is complete, we determine the
value(s) of x(0) that minimizes J,(x(0)). The
globally optimal policy and optimal solution can
be recovered: The optimal x(0) determines an op:ii-
mal u(0). The vectors x*(0) and u"(0) determine
y(1) and z(1) = arg L"(x(0),u(0)), which equiva-
lently determines x (1). Continuing in chis*fash-
ion one recovers u(1l), x(2),...,u (N=1), x (N).

The preceding algorithm indicates how the coua-
cept of dynamic programming can be emploved in
optimizing these descriptor systems without in-
sisting that the system be causal, as in state-
space systems. For particular types of objective
functions, it may be possible to perform the above
iterations analytically, that is determine a cost-
to-go from x(k) that is a simple function of x(k),
rather than repeating the process for various
specific values of x(k). For more complex objec~-
tive functions, some approximations are generally
necessary since there are an uncountable number of
possible x(k). However, the advanced computational
procedures developed for standard dynamic program=-
ming problems can also be applied in these opti-
mization problems to determine an approximately
optimal policy (see (21]).

When the dynamic programming algorithm de=~
seribed above is applied to a state-space system,
it automatically simplifies to the standard. dy-
namic programming algorithm if the maximal number
of initial conditions are used. Since there is no
backward condition system in this case, the set
of inputs u(k) is not systematically constrained
by x(k). Furthermore, the descriptor vector is a
state vector, so x(k) and u(k) determine a unique
x(k+1). This eliminates the need for repecition
of steps 5-7. Thus, the recursive procedure auto-
matically assumes the conventional embedding prop-
erty of state-space dynamic programming.

5.3 DYNAMIC PROGRAMMING FOR REGULAR DESCRIPTOR
SYSTEMS

Recall that a square descriptor system of
the form

Ek+lx(k+l) = A x(k) + Bk u(g) kwQ,...,N=1

(5.3)
is regular if and only if it cam be transformed
via elementary row operations into the form

‘ r l ‘ Ck ‘ G
k+l k
B (k1) = -==-]| x(k) *+| =z=—] u(k) (5.4)

r
where{zégz] is square and nonsingular for all
k

k=Q,...,N, assuming a proper choice of T, and D,.
Now for regular systems, y(k)=T x(k) serves as a
state in the sense that a propagation of y(k) for-
ward in time is sufficient to recover the value of
x(k) for all k, simce there exist matrices

Rk’Pk’Lk’ and Mk such that

pea




(5.5)

y() = Ry(l) + 2 u(k)

k=0,...,N~1
(5.6)

x(N) ’-‘E--—] [-Z ﬂﬂ LNy(N) + Wyzy (5.7)

where A, (N)=z are the final conditions. We will
assume Ehat ZV is exogenously given.

x(k) = Ly(k) = M u(k)

Consider the problem

N-1
minimize Z By (x(9),u(1)) + 26e(®)
j=0

subject to FO x(0) = y(0)

AN x(N) = zy

For regular systems, the terminal conditiouns

(N) = zy serve only to specify x(N) and do
not constrain the inputs or affect previous de-
scriptor variables. Recall that in any solvable
system, the descriptor variable vector x(k) can
be determined from the forward condition vector
y(k) and the backward condition vector z(k).
Therefore, if z(N) = is known, y(N) repre-
sents a unique x(N). zHence for regular. systems
the terminal conditions can be removed by re-
placing T(y(N)) = T(va(N))=l(x(N)). The problem
for regular systems becomes

N~-1

minimize
3=0
subject to Iy x(0) = y(0)

By (x(1),u(d) + Uy )

In a regular system, the forward condition
vector y(k) = [ x(k) is a state. and thus sum-
marizes all past inputs and descriptor variables
as they affect the present and future descriptor
variables. In other words, if one is trying to
determine x(m), m>k, it is unnecessary to specify
u(j), j<k, if y(k) is known. Therefore, one can
determine a "cost-to-go" from k to N for a given
y(k) without knowing the inputs previous to k.
One can then calculate the optimal set of inputs
from k to N-1 given y(k), without determining the
previous inputs. In additiom, the objective
function is separable in time, leading to a
natural application of the principle of opti~

" mality which is presented below:

Let
INTaN) = Lym)

and for O<k<N-1

N-1
I, (@) =  min 2 by (x(3),u())
k), u-1 ( yo

+ L(y(N))

such that [y x(k) = y(k).

35

Assume J

(y(k+1)) has been determined for all
y(k+1) anﬁ

consider Jk(y(k))-

From separability of the objective function
and the propagation of the forward condition
(state) vector given by

y(k#l) = B y(k) + P u(k)
one has

Jk(Y(k)) = min %hk(x(k),u(k)
u(k)

Tpqe (kD)) ;

= min hk(x(k),u(k))
u(k)

Tet1 Ry () + By u(k))
where T\ x(k) = y(k)

Since the system is regular, y(k) and u(k)
uniquely determines x(k) through the ralation

x(k) = L y(k) = M u(k)

Substituting for x(k), one has -
I (y(k)) = z%;){hk(LkY(k)-“ku(k),u(k))

Jk+l(RRY(k)+Pku(k))} :

Jk(y(k)) is determined for all y(k), and the
corresponding optimal u(k) 1s stored. This pro-
cedure is repeated for time increments k-1,

k-2, »0. At k=0 it is only necessary to calcu-
late J (y(O)) for the given initial counditions

r (x(O?) = y(0). A forward sweep will then re—
cgver the entire trajectory of optimal inputs

u (k) that minimizes J.(y(0)). This procedure
corresponds almost ideatically to the procedure
for state-space systems, which are simply regular
systems where all descriptor variables serve as
state variables. However, in state-space systems
y(k) is identical to x(k), while in the general
regular system y(k) only rescricts x(k) to a
linear variety of the descriptor space. Coamplete
specification of x(k) in a general regular system
requires knowing the static relationships of the
system at time k, which are independent of the
lower-order dynamic forward condition (state)
system characterizing y(k). Note that the dimen-
sion of y(k) plus the aumber of static relation-
ships equals the dimension of x(k) in a regular
system.

This procedure is clearly more efficient
than the procedure described in Section 5.2,
since by using the cost-to-go from the forward
condition vector at time increment k, any input
u(k) is feasible. Recall that in determining the




cost-to-go from a specific descriptor vector x(k),
there is generally a linear variety of feasible
inputs that must be determined prior to computing
the optimal control. Therefore, the steps for de-
termining the feasible inputs and reachable de-
scriptor vectors are avoided in this procedure.
However, both procedures are equivaleat for state-
space systems since in this case they are each
equivalent to classical state-space dynamic pro-
gramming.

Linear-Quadratic Problem for Square, Regular
Descriptor Systems

We now apply this procedure for a regular
system with a quadratic cost criterion:

. N
1
ninimize = 2 x (k) Q, x(k)
u(0) .- ,u(N-1) * fmg K

, +%E W) 5, ulk) (5.8)
=0

where it is assumed that S, 1is positive definite
and Q, 1is positive semidefInite. Let Jk(y(k))
represent the cost-to-go from y(k) given optimal
inputs u (k),...,u*(N—l):

Iy ) = %jikx'm Q, x(D

1% £, *,
*3 u “(3) Sju (i)
i=k

where for k=N,
(D) = F X7 QE(N)

Since x{(N) = Ly(N) + W,z for a specified zys ic
follows that J:\‘(y(N)) 1§ quadratic in y(N). Using
this observation, we will assume (and later prove)
that J, (y(k)) is a quadratic function of y(k) for
all k, i.e.

I (r00) = 7700 Kyl + gy + by
(5.9)

where is a positive semi-definite matrix and 8y
is a cotistant column vector.

Now the objective of the dymamic programming
approach is to determine the optimal u(k) for any
given state at time k by embedding the cost-to-go
from state y(k+l) at time k+l. As was demonstrated
earlier, we have

3 () =

1 -
mta ) 3l () - 100) Q (L y(R) = Mu()
(5.10)

1 .
+ Fu (F) Sku(k) + Jk+l(Rky(k) + Pku(k))
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Now using the assumption in (5.9) and substituting
the quadratic expressionm for Jk+l’ (5.10) becomes

f1 Q. i B B Z40)
Jk(y(k)) = zin {y* (k) u ()] ﬁk 3

tol? u(k)
(5.11)
. y (k)
* g Ry Byl u(kﬂ * P
where

Q = Lp QL F R K By (5.12)
N, = QL+ P K Ry (5.13)
T e s h M QM P K Py (5.14)

By our assumptions, E_ is positive definite and
Uk is positive semi-definite. ’

*
The optimal input u (k) correspouding to y(k)
is given by:

»* .
u (k) "Fky(k) - vk (5.15)
where
F, =5 LW (5.16)
k k k ’
-1

Vie * S Py B (5.17)
Hence the optimal u(k) is.a linear function of
y(k). Substituting (5.15) back into (5.11), we
get the general form (5.9) where »8,» and

are given by: Kk k hk

Ek 8l 1
- {1 -F0l = s1l. (5.18)
& S F S| -
q, N )
e N
g, =~ L-F Il 31 - (5.19)
k k Nk Sk vk .
&
+ {1 -Fedl 5o {8y
x
1. .o
B " P Y7 V% Se Yk T Vi B B 0030

Since K¥ﬁ gy and hk are independent of y(k),
it i{s noted at these can be generated recur-
sively backward using (5.12)=(5.14) and (5.16)-
(5.20) starting from the coefficients of JN(y(N)):

Ry " L & . (s.20)

gy * Lﬁ QN WN 2y (5.22)
1 . . c

he =7 2y We Qy Wy 2y . (5.23)

We now show that is positive semi-definite

for all k, O<k<N. It is clear from (5.12)-(5.16),
(5.18), and (5.21) that Kk is generated indepen-~
dent of the value of zy and therefore will have




]

o

the same value for anmy z_.
2,20, where 6 is the zero vector.
(3.23) this implies g_=6 4nd
from (5.17)-(5.20), chat g =8 and
k,0<k<N. So in this case (5.9) becoges

For convenience assume
From (5.22) and
=0 and, one notes
=0 for all

. 1 .

T (7)) = 3y (k) Ky (5.24)
Now the objective functiom is always positive semi-~
definite by assumptions on Q, and S,. Therefore,
it follows from (5.24) that ék mustkbe positive
semi-definite.

We demonstrated that J, (y(k)) had quadratic
form (5.9) by assuming J l%y(kﬂ.))had a similar
form. 1In order to escab&tsh the validity of the
assumption, we note that J (y(N)) has this form
for all y(N), and therefora the assumption for any
k, O<k<N, follows by induction. .

We now summarize the result in the form of a
theorem:

Theorem 5.1: Given a square, regular system
described by (5.3)~(5.7) and objective (5.8) with
arbitrary initial conditionms on [ x(0) and speci-
fied final conditions z -Avx(N), ghe optimal input
u (k) at time k is a lineat functionm of y(k) de-
seribed by (5.12)~(5.23) and the optimal cost is
given by

T,O) = 5 7 (MK 7(0) + gZy(0) +

- Therefore, given one knows the final condi-
tions z = (N), there exists a linear feedback
solution fo6r this problem. It is important to
note that the feedback control depends on the
state y(k) and not the entire descriptor vector
x(k).

5.4 MAINTAINABILITY OF CONSTRAINTS IN A STATE-
SPACE SYSTEM

Consider a state-space system

x(k+l) = Akx(k) + Bku(k) k=0,...,N~1 (5.25)

with equality constraints

x(k+l) = ¢ k=0,...,N-1 (5.26)

Frel Tl

Assume F +1 always has full row rank to avoid pos=-
sible re&undancies and inconsistencies in the con-
straints.

Clearly one would like to be able to choose
inputs u(0),...,u(N-1) such that the state vari-
ables generated by (5.25) will satisfy (5.26) for
any initial state x(0). Such a system is defined
to be completely maintainable.

A class of completely maintainable systems
that is important for the existence of optimal
feedback control laws are systems described by
(5.25) and (5.26) such that for any j, 0<j<N~-1,
the system equations and constraints defined for
k=3,...,N-1 are completely maintainable for any
x(j). We define such systems to be untformly

37

completely maintainable. A very useful characteri-
zation of uniform complete maintainability is
given by the following theorem:

Theorem 5.2: A system described by (5.25) and
(5.26) 1is uniformly completely maintainable if and
only if at all k, O<ks<N-1, the space spaaned by

c and the column vectors of F is spanned
b§+%he column vectors of Fk+l Bk?+lAk

Proof: From the definition of uniform complete
maintainability, it follows that for x(j) at incre-
ment j, (5.26) must be satisfied for k=j, Using
the system equation (5.25), this is equivalent to
stating that there must exist, for every x(j),
some u(j) such that

Fj+l Aj x(j) + Fj+18ju(j) - cj+1 (5.27)
Hence the matrix condition given in the theorem is
necessary for uniform complete maintainabilicy.

Similarly, 1f (5.27) can be satisfied for any
x(j), j=0,...,N~1, the choice of .u(k) at increment
k never precludes the existence of some u(j), j>k,
that will satisfy (5.26) for x(j+1). Therefore,
the matrix condition is also sufficient for uni=-
form complete maintainability. »

Complete maintainability does not imply uni--
form complete maintaioability, however, it does
imply that (5.26) is satisfied for all k. Equiva~
lently it implies that (5.27) must be true for
some x(j) and some u(j), which gives the following
theorem:

Theorem §.3: A system described by (5.25) and
(5.26) 1is completely maintainable only if for all
k, O<k<N-1, c falls in the space spannmed by the
column vectors of Fk+1 Ak and Fk+l Bk'

According to Theorem 5.2, a sufficient (but
not necessary) condition for uniform complete
maintainability is that Fk+l B, has full row rank
for all k. Suppose this éqndi%ion does not hold,
then it is useful to cite the following lemma:

Lemma 5.4: The set of constraints (5.26) for any
uniformly completely maintainable system can be
replaced by a set of constraints
k=0,...,N-1

Fk+l x(k+l) = (5.28)

Cr+l

which are equivalent to (5.26) with respect to the

system equation (5.25), and for which F B, has
k+1 "k

full row rank.

Proof: Suppose Fk+ B, does not have full row
rank for k=j. By performing elementary row opera-
tions on Fj+l Bj’ one can create a matrix

[:5:4__".1
0

for which §3+ Bj has full row rank. Suppose we
perform the”same”elementary row operations on
Fj+l Aj and cj+l' By Theorem 5.2, the new rows

(5.29)




of F
ing %glthl zero rows of (5.29) must ;I%O be zero.
Therefore, the all-zero rows can be eliminated,
leaving a new set (5.28) for which ?.+1 B, has
full row rank. ] J

A, and the new elements of c correspond~

Uniformly completely maintainable systems ex-
pressed by (5.25) and (5.28) are in a convenient
form for deriving feedback optimal control laws
for regular descriptor systems, as we will demon-
strate in Section 5.5. Before proceeding to those
investigations, we should investigate further the
relationship between complete maintainability and
uniform complete maintainability, so that the re-
sults derived in future sectiomns can be applied
to as wide a class of systems as possible. An
important relationship is given by the following
theorem: '

Theorem §.5: A system described by (5.25) and
(5.26) is completely maintainable if and only if
it can be transformed to a uniformly completely
maintainable system by shifting some of the con-
straints to become new constraints on state vari-
ables at earlier time incremeats.

Proof: Counsider the set of constralats on x(3j+1)

for any j, j=0,...,N=1, expressed in the form of

Equation (5.27). Suppose F__ does not have full
1

row rank, and we perform thd glementary row opera-

tions to create (5.29), then (5.27) becomes:

F A T B
:ii’l_._i x() + Ay -
Fiol A 0

Equation (5.30) represents two sets of constraints:
one set constraining x(j) and u(j) and a second
set constraining just x(j). If we "transfer' the
second set from being comstraints om x(j+l) to
being constraints ou x(j), the remaining first set
will satisfy the uniform complete maintainability
property at j. However, we now have more con-
straints on x(j). Nometheless, we have not added
any new comstraints to the overall system, and
therefore the complete maintainability of the sys-
tem must still hold. Therefore, by Theorem 5.3
the composite set of constraints on x(j) must have
a feasible solution.

The above procedure of transferring coun-
straints forms the basis for an algorithm that re-
formulates any completely maintainable system Into
an equivalent uniformly completely maintainable
system:

STEP 0. Set k=N-1.

STEP 1. Consider F x(k+l) = Crel If F 1 Bk
does not have full rank, perform the ele-
mentary row operations necessary to create
(5.30). IfF B, does have full row
rank, ptoceedkt% SEEP 4.

STEP 2. Retain T - x(k+l) = Z£+l as the con~
straints oni x(k+l).

STEP 3. Add comstraints F %x(k) = Ek+l to the

existing comstraints om x(k).
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STEP 4. If k=0, proceed to STEP 5. Otherwise,
set k=k-1l, redefine F and ¢ appro=-
priately, and return %ngTEP l¥+l

STEP S.. 1f STEP 3 produced comstraints om x(0),

by definition, complete maintainability

does not hold for the system. Otherwise,

the system has been equivalently re-

expressed as a uniformly completely main-

tainable system. , "

Lemma 5.4 and Theorem 5.5 indicate that any

completely maintainable system can be expressed in
the form of (5.25) and (5.26), where Fk+l B, has
full row rank at all k. Therefore, in our %is-
cussion of optimal control for completely main-
tainable systems, we will assume this full row
rank property without further justificatioun.

5.5 LINEAR~QUADRATIC PROBLEM FOR COMPLETELY MAIN-
TAINABLE RECTANGULAR SYSTEMS

We now apply the concept of complete main-
tainability in addressing optimal control for sys-
tems that are rectangular, or have more relation-
ships than descriptor variables. A quadratic ob-
jective function will be assumed. As indicated in
Section 5.1, an important special case of this
class are state-space systems with state con-
straints. Because of the special structure of this
case, it is helpful to initially address the coa-
strained state-space problem. The derivation of
feedback optimal control for completely maintain-
able state~space systems suggests an approach for
deriving a similar result for the more general
class of rectangular, regular systems. Both re-
sults demonstrate that the optimal control approach
can be applied to individual subsystem models for
the purpose of large-scale optimization.

Coasider a state-space system

x(k+l) = Akx(k) + Bku(k) k=0,...,N-1 (5.31)

with completely maintainable constraints
Frap®(HL) = oy

We assume Fk+ Bk has full row ramk at all k by

complete maxn%ainability.

k=0,...,N-1 (5.32)

Suppose we have the usual quadratic criterion
of the form

min
u(0), 4.0, u(N-1)
15 L &
%72 % (0)Qx(k) + 7 2 wORu@ (| (5.3
k=0 k=0
where Q,_ is positive semi-definite and Rk is posi-

tive de%inite for all k. Since the criterion is
separable by time increments, we can use the dy-
namic programming approach where, by successive
emhedding, we compute the optimal input u(k) and
optimal cost-to-go from any x(k) to the final
state at time N for k=N 1,N-2,...,0. We assume
this optimal cost-to-go has the quadratic form:




3 (x(0) = x7(k) Kx(k) + grx(k) + by (5.34)

where is positive semi-definite.
tion of the objective function, it is clear that
this is true for k=N.
the optimal control law, we will show that this

is indeed the case for all k by induction, since
we will show that if the assumption is valid for
k=j+1, it is also valid for k=j.

Now consider J, (x(k)) for some k, O0<k<N-1.
Using the system equatiom (5.31), the cos:—co-go
becomes
min

Jk(x(k)) =
u(k),...,u(N=-1)

(5.35)

N-1
f1 . ol
lz Z X (DD + 3 jZ.:ku <J>§ju<1>$

= min

( {% *(DQx() + 5 u” (DR (k)
u(k)

Tipq (A x () + Bku(k))}

subject to constraints (5.32) om x(k+l):

Fk+lAkx(k) + Fk+lBku(k) * el (5.36)
We will assume J (x(k+1l) has the form
(5.34). Furthermore, i order to satisfy (5.36)

in the optimization, we adjoin the constraints

(5.36) to (5.35) using Lagrange multipliers. The
new objective function is:
Ek(x(k)) = nin
(u”(k),A k+l)
MW x(k)
1. . ] = .
ﬁ[x (k)yule) , A% 0] R P u(k)
P O et
(5.37)
Al
T D,utd, A T Bt | * hk+1}

"kt

where

Q = QT A KAy

(5.38)
R - b, .
Me = Frnfy (5-40)

, positive definite
‘ (5.41)

(5.42)

Re = R * BRRBy

k= FrrrBy

-]

, full row rank

By construc-

In the process of deriving

, positive semi-definite
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The first-order necessary conditions are:

% Rk P B 8isl

ﬁk F u(k) =0 (5.43)
%R

k

Now

(5.44)
P, 0
where the existence of submatrices
=1l —--1= - -1 ls =-1
R YR S P &
(5.45)
==lz. 35 =-1=.-1
Gip = Ry * (Pk Ry k) (5.46)
> w-lg. ~1%5 = -1
G21 = (Pk Rk Pk) Pk Rk (5.47)
G,, = -7, Rt (5.48)
2 k R ‘

can be escablishfd Hence (5.43) becomes

u(k) P "
j“ x(k) + (5.49)
N -c

Therefore the optimal input u(k) is a linear
function of state x(k), as is the corresponding
Lagrange multiplier A Substituting (5.49)
into -(5.37) yields a quiadratic expression for
Jk(x(k)) of the form (5.34). Since the coeffi-
clents of this quadratic expression can be deter-
mined from (5.37)-(5.49), we can essentially
generate the coefficients of J, (x(k)) from the
coefficients of J (x(k+1)), %he system equation
for x(k+l), the constraints on x(k+l), and the
performance criteria for x(k) and u(k). This is
similar to the matrix Riccatil equation that re-
sults in unconstrained problems.

In order to complete our inductive proof
validating the assumption of the structure of

(x(k+1)), we need only establish that is
posicive semi-definite. It is easily shown that

is independent of , and (cj 1<j<N. If

wé reset the values of gN ,» and “{c,} all to
zero, the values of 11 be unchanged but
Jk(x(k)) will have the form

Jk(x(k)) = x” (k) Kk x(k) (5.50)
Since Jk(x(k))>0 by (5.35) and the positive semi~
definiteness of all Q, and R.,Kk must also be
positive semi—definité J

We now summarize the general result wé have
established for constrained state-space systems.




Theorem 6.6:
tem characterized by (5.31) and (5.32) and a
quadratic performance function (5.33), the optimal
input is a linear function of the state, given by
the feedback control law (5.49), and the optimal
cost is given by (5.34) at k=0 for arbitrary
initial conditions.

Given a completely maintainable sys-

It is interesting to note that the feedback
control law will, in general, have a comstant vec-
tor term. This is similar to the result ome de-
rives in unconstrained systems where one tries to
"track" a non-zero trajectory.

We will now extend this result to a more gen-
eral case where (5.31) is replaced by any square,
regular descriptor system. 1In Section 5.3 we de-
rived the optimal control law for square, regular
linear descriptor systems with quadratic perfor-
mance criteria. In this section we will examine
rectangular, regular systems and show how Theorem
5.6 can be used to determine an optimal control law
for these systems. A rectangular linear descriptor
system :

B,y x(Hl) = & x() + Bu(k) k=0,...,8-1
(5.51)

is regular, if by elementary row operations, the
system can be transformed into a square, regular
descriptor system plus a set of static relation-
ships on x(k) and u(k) for k=0,...,N-1. :

_ Clearly, rectangular systems must be such that
E . and X& have at least as many rows as columns
18 Grder t5 be regular. Otherwise, solvability
will be violated.

Suppose we have decomposed (5.51), as sug-~
gested by the definition of regularity, into a
square, regular system

x(k+l) = x(k) + B, u(k) k=0,...,N-1
Bl A k sy
and a set of static relationships

8 = A x(k) + B, u(l)  k=0,...,N-1  (5.53)

where ZV“Ayx(N) is given. We know from Sectiom 5.3
that (5952) can be reformulated using the forward
condition vector:

y(k+l) = R y(k) + P, u(k) k=0,...,N-1

K k (5.54)
x(k) = ka(k) - Mku(k) k=0,...,N~1 (5.55)
x(N) = LNy(N) + WNZN zZy given (5.56)

Substituting (5.55) into (5.33) yilelds

8 = Aknky(k) + (ék - Akuk)u(m k=0,...,N=1
(5.57)

Suppose we wish to choose u(0),...,u(N~1) to mini-
mize, as we did in Section 5.3,
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N N-1
1 . 1 .
2 2 (0Qx( + 5w Sul) (5.58)
k=0 k=0 ,
where Q,_ 1is positive semi-definite and S, is posi-

tive de%inite for all k. Substituting (5.53) and
(5.56) into (5.58), yields a new objective function

oin
o uf0),. .4 ,u(N=1)

&
{%L (L (0 = M u(k)Q (Ly() - Kaud)

k=0

+ 1 @+ HE) Ly ) + ez

1%1
+ 230 S0

k=0

Consider the problem described ia (5.54),
(5.57), and (5.59). It is clearly equivalent to
the original minimization problem described in
(5.52), (5.53), and (5.58). It is also very sim-
ilar to the problem encountered in Theorem 5.6
since (5.54) is a state-space represeatation,
(5.57) represents static constraints, and (5.59)
is a quadratic function in y(k). This suggests
the following theorem:

(5.59)

Theorem 5.7: For any properly conditiomed, rec-
tangular, regular descriptor system (5.51) that

can be represented as a completely maintainable
constrained state-space system (5.54) and (5.57),
the optimal input u(k) corresponding to a quadratic
objective function (5.58) 1is a linear function of
the forward condition vector y(k).

Proof: First of all, we note there are only two
differences between the problem addressed in
Theorem 5.6 and the problem characterized by
(5.54), (5.57) and (5.59) for y(k): (1) the com-
straints (5.57) are expressed in terms of y(k) and
u(k) rather than y(k+l), and (2) the objective
function is not separable in y(k) and u(k) and it
has linear terms in y(N). Therefore, if we argue
that these differences will not contradict Theorem
5.6, this thecrem will be established.

While the constraints in Theorem 5.6 were
originally stated in terms of x(k+t), the con-
straints were subsequently restated in terms
of x(k) and u(k) when adjoined to the cost-to-go
function. Therefore, there is no inherent problem
in stating the constraints in terms of y(k) and
u(k); in fact it is perhaps in a more convenient
form for optimization. The definitions of com-
plete maintainability and uniform complete main-
tainability apply and have the same significance
in this problem as in Theorem 5.6. However,
Theorem 5.2 does not apply, but we can find a
similar condition:

Lemma 5.8: The constraint set described by (5.57)
is uniformly completely maintainable if and only




if the space spanned by the columns of A Lk is also
spanned by the columns of (Bk—Akﬂk)

Proof: This lemma follows from the definition of
uniform complete maintainability since (5.59) at
any k must have a solution for any y(k). There=
fore using Lemma 5.8, omne may characterize uniform
complete maintainability for constraints given in
terms of y(k) and u(k). While (5.59) may oot
immediately satisfy uniform complete maintaina-
bility, Theorem 5.5 assures us of an equivalent
constraint system that does. . a

Returning to the proof of Theorem 5.7, it is
fairly straightforward, by repeating the pro-
cedure (5.33) - (5.49), to show that the result
of Theorem 5.6 is not altered by the existence in
the objective function of cross-terms in y(k) and
u(k), such as in (5.59). The existence of the
term

FHLg W) + Wz Q Ly +Hgzg  (5.60)
in (5.59) also poses no major difficulty since the
positive semidefiniteness of QV assures the exis-
tence of a lower bound.

Therefore, Theorem 5.6 applies to this class
of rectangular systems, as stated in Theorem 5.7. 8

The derivation of the results in this section
was facilitated by the introduction of the con-
cepts of complete maintainability and untiform com-
plete maintatnability. It is important to note
that these properties are determined by the struc-
ture of the underlying state-~space system gnd the
constraint equations, not merely the latter. This
underscores a conceptual advantage of using the de-
scriptor approach in that it analyzes the composite
of all equations characterizing the system to get
the full benefit of system structure.

Theorem 5.7 considers "unconstrained' rec-
tangular descriptor systems, although the procedure
used to compute the optimal control treats some of
the static relationships as constraints. It is a
straightforward observation that the additiom of
static, linear constraints to a rectangular, reg-
ular system imposes no difficulties in computing
a feedback control law as long as the added con—
straints do not destroy complete maintainability
by the descriptor system. These constraints can
be added to the separated static relationships to
form a composite coanstraint set. Theorem 5.7
applies immediately and the procedure in Section
5.4 can be used to create uniformly completely
maintainable constraints.

The above observation establishes an impor-
tant link between constrained state-space systems
and rectangular, regular descriptor systems with
or without constraints. Such an observation was
anticipated from the coumon approach used for
both classes of systems. This result suggests
that descriptor variable theory will be useful
for the optimization of large-scale systems,
specifically when the interacting subsystems are
characterized by state-space models. The existence
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of feedback solutions to subsystem optimization
problems fits nicely into the technique of spatial
dynamic programming, discussed in Chapter VI.

5.6 MAINTAINABILITY OF CONSTRAINTS IN GENERAL
SYSTEMS

A procedure for accommodating equality con-
straints oun descriptor variables in regular systems
was outlined in Sections 5.4 and 5.5. In this case
it was possible to determine constraints, specified
locally in terms of x(k) and u(k), that were neces-

. sary and sufficient for satisfying the original

constraints. This approach will not extend to
nonregular systems, however, since the solution
cannot be generally recovered using a forward con-
dition system and static constraints. Some re-
marks on the general case appear in this section.

If the constraints are imposed directly on
linear combinations of descriptor variables (as
was assumed previously), the constraints can be
reformulated as constraints on the inputs using
the sensitivity results of Section 2.5. Recall
that the solution of any particular descriptor can
be expressed as a linear function of the inputs
and the initial and final condition vectors:

- N-l -
x(k) = D, y(0) +Z D 4(3) + Bz (5.61)

3=0

Therefore any constraint on x(k) is equivalently a
constraint on the right-hand side of (5.61), and
since y(0) and z(N) are known, the constraint is
reformulated in terms of u(0),...,u(N-1). The
equivalence of these constraints means that se-
lection of inputs that satisfy the reformulated
constraints is necessary and sufficient to satisfy
the constraints on descriptor variables. This
result applies directly to inequality constraints
on descriptor vectors as well.

While the above procedure creates an equiva-
lent set of comstraints in terms of the inputs,
the fact that a single constraint in this set may
involve every input vector can be incounvenient.
Certainly it would be preferable to characterize
the set of consistent inputs in terms of con~
straints on individual input vectors. Unfor-
tunately, in general such a characterization will
not be simultaneously necessary and sufficient to
satisfy the original constraints on the descriptor
variables.

Consider the descriptor variable relation-
ships on x(k), x(k+l), and u(k):
Ek+l x(k+l) - Akx(k) = Bku(k) (5.62)

Suppose there are constraints om x(k) and x(k+1l)
of the form

Fkx(k) =cy (5.63)

x(k+l) = ¢ (5.84)

k+l k+1
Obviously if x(k) and x(k+l) are to satisfy (5.63)
and (5.64), u(k) must be selected such that (5.62)
can also be satisfied. The observation motivates



the following lemma:

Lemma 5.9: Suppose there exist vectors a, Sl, and
8 such that
O .
¢" Bypr T 8L Frrr (5.65)
a” A = 86 Fk (5.66)

then constraints (5.63) and (5.64) can be satis-~
fied only if there exists u(k) such that

a Bku(k) -_Bl Crer T 80 Sy
Proof: Suppose no such u(k) exists. By taking a

linear combination of the equations in (5.62),

weighted by @, the left-hand side of (5.62), be-
comes
81 cx+1 ~ B0 %k

by (5.63) and (5.64). By assumption, there will
be no u(k) satisfying the new right-hand side,

. and therefore (5.63) and (5.64) are incounsistent
with the descriptor system. n

For any linear descriptor system, the set of
vectors (a, 8,, 80) satisfying (5.65) and (5.66)
form a subspale, namely the row vectors orthogonal
to the column vectors of the matrix

Berl A

k+l (5.67)

-Fk

Any element in this space can be expressed as a
linear combination of elements that form a basis
for the subset. Therefore, to insure that the
lemma is satisfied, it is only necessary to check
the elements in the basis. This generates the
following theorem:

Theorem 5.10: Given the descriptor equations
(5.62), the equality coustraints on x(k) and
x(k+l) given by (5.63) and (5.64) can be satisfied
only if

W

k'C

T Bulk) = Vi Sy - "

where the rows of

(T

[}
iV

1)
kb il
form a basis for all oull row vectors to (5.67).

Thus, Theorem 5.10 gives necessary but not
sufficient conditions om u(k) to meet the con-
straints on x(k) and x(k+l). More importantly,
these conditions are on specific input vectors, as
opposed to the procedure yielding necessary and
sufficient conditions at the beginning of the
section. The theorem serves as a test of the
feasibility of the constraints as well as a guide~
line for the .selection of u(k). This result also
applies, in a slightly more complex form, to
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\

‘inequality constraints on descriptor vectors.

) The concept of maintainability has interesting
associations with other theoretical research in dy-
namic systems. The notion of system invertibility
[22] for an input-output system implies that the
system is structured such chat the roles of the in-
puts and outputs can be reversed. A weakened form
of invercibility holds if for amy trajectory of out-
puts there will exist some trajectory of inputs )
that achieves those outputs. Conceptualizing the
given outputs as coastraints, this latter property
corresponds to complete maintainability.

Bryson and Ho [23] discuss the optimization of
continuous-time systems with state equality con-
straints. Assuming differenciability, they indi-
cate one method for computing the opcimal coatrol
that involves alternately differentiating the con=-
straints with respect to time and substituting the
system equation, repeating this until all of the
constraints have an explicit dependence on the in-
puts. This procedure is analogous to the discrete-.
time algorithm for tramsforming a completely main-
tainable system to a uniformly completely main-
tainable system in Sectiom 5.3, where comnstraints
are shifted backward in time until they explicitly
deperd on the inputs. From this study of linear,
discrete-time systems it was also desirable that
the combination of inputs om which the constraints
depend constitute a linearly independent set. The
same condition is desirable in the continuous-time
case.

In a state~space system, 3 state from which a
system is capable of satisfying feasibility con-
straints over a finite interval of time has been
defined as a mobile state [24]. 1f any feasible
state at any time instant is a mobile state, the
system will be uniformly completely maintainable.
If a sequence of mobile states can be achieved
from any initial state, the system is completely
maintainable. Thus, state mobility is in some
sense a dual property of complete maintainability.

Schlueter and Levis [25] assumed a full row
rank property similar to the sufficient condition
given for uniform complete maintainability, in the
context of sampled—data processes. The goal here
was to derive an optimal adaptive regulator where

"one or more of the outputs was specified by the

sampling criterion. Their full row rank property,
called the strong sampling constraint criteriom,
was sufficient to guarantee the existence of a
feasible control. ‘

The study of maintainability in Sections 6.4
and 6.5, like the related notions above, applies
primarily to the regular case. The nomregular case
is also of importance, however, as evidenced in the
growing literature on noncausal economic models.

If the combination of a macroeconomic model and a
set of long-range policy objectives does not con-
stitute a maintainable system, the need for more
realistic objectives is indicated. Furthermore,
a systemmatic reformulation of systems that are
maintainable can identify an equivalent, but more
hehaviorally consistent, set of objectives.




VI.

6.1 INTRODUCTION

Spatial dynamic programming (SDP) is a prom=
ising new method that is a hybrid of two well-
established optimization techmiques: dynamic
programming and coordination of decomposed sub-
systems. The underlying idea of decompositiom is
that the problem is more tractable if one performs
a set of smaller optimization problems, and then
uses a coordination scheme to account for inter-
actions between subsystems. A difficulty witch
many decomposition approaches is that they entail
an iterative scheme for revising the coordination
variables that may converge slowly. The theme of
SDP is to optimize across subsystems in the same
manner as one optimizes across time increments
in classical dynamic programming. Thus, one can
derive the optimal solution through a double sweep
of the subsystems, while retaining the feature of
solving a set of smaller optimization problems.

In order to motivate a clear understanding
of SDP, consider briefly the classical state-
space dynamic programming procedure. Initially
one performs a backward sweep through time, deter-
mining the optimal input corresponding to a given
state at a given time by minimizing the cost of
the input (and state) at that instant plus the
optimal cost-to-go from the state resulting from
that input at the next time instant. Thus, one
solves a series of optimization problems, each
successive set corresponding to an incrementally
longer time span, until the inputs for the entire
time horizon have been optimized. This sequential
process allows the embedding of previously solved
and slightly smaller problems, vastly simplifying
each individual problem. Once one has propagated
the procedure back to the initial time instant,
a forward sweep is used to recover the optimal
input trajectory.

SDP proceeds in an analogous fashion for a
group of intercomnected subsystems. First, all
of the subsystems are arranged in a sequence.

The criterion for the first subsystem is opti-
mized subject to a given set of total inputs from
and individual outputs to the other subsystems
that are specified as parameters in the optimi-
zation. Next, the second subsystem is joined
with the first subsystem to create a new "com=-
posite'" subsystem. The performance criterioa for
this composite subsystem is optimized subject to
a given set of total inputs to each of the first
two subsystems from outside the composite system,
and a given set of the combined outputs from the
composite system to each of the other subsystems.
This set is specified as parameters. This opti-
mization can be simplified by embedding the pa-
rameterized optimization for the first subsystem.
The procedure is repeated in a similar fashion so
that at the k'] step, the kD subsystem in the
sequence is added to the previous k-1 subsystems
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‘to again create a new composite subsystem.

SPATIAL DYNAMIC PROGRAMMING

The
performance criterion corresponding to this new
composite subsystem is optimized subject to (1)
given net inputs to each subsystem inside the
composite from those outside the composite system,
and (2) given net outputs from the composite sys-
tem that affect each remaining subsystem. Again,
this optimization is eased by embedding the pa-
rameterized optimization performed at the (k-1)th
step. Once this procedure has been completed for
all subsystems, a global optimum will be achieved,

‘and the optimal control inputs can be recovered

via a backward sweep through the sequence of sub-
systems.

The next section establishes the global opti-
mality of SDP for a general class of optimization
problems. The following section describes the
more structured case of optimizing interconnected
dynamic systems where the inputs to a subsystem
from other subsystems are additive and the per-~
formance criteria are additive. The chapter con-
cludes with a discussion of SDP characteristics
and the application of SDP to the problem of op-
timal power flow.

6.2 OPTIMALITY OF SPATIAL DYNAMIC PROGRAMMING

If an optimization problem can be formulacted
as a mathematical programming problem that is
weakly decomposable, a spatial dynamic programming
algorithm can be applied if implemented in a man-
ner consistent with the decomposition. A proof
that spatial dynamic programming will yield the
optimal solution in such cases is demonstrated
below by showing that the spatial dynamic pro-
gramming formulation is equivalent to the original
mathematical programming problem. (For related
disucssions, see [26]-{30].)

Suppose the problem is to minimize the func-
tion F(u,,...,u,), where u.,..., are each input
vectors, subject to the cofistrain that (u. ,...,u )
fall in some constraint set V. Assume this problem
is weakly decompogsable, meaning that for any in-
teger k, 1 < k < N~1, the problem

) = min‘F(gl,..

(51,...,5N)5V

Subject to (Ek+l”"

Ty oy oy

(6.1)

) = (g e ey

is well-defined for each (Ek+l""’£ ) in the pro-~
Jeccion of V on U x...xU For k=, define

(0) to be the ortgiual opcimlzation problem.
T§e decomposibility assumption implies that opti-
mization of the original objective function while
holding a, fixed is meaningful for all k.
This feature provgges the separability necessary
to perform spatial dynamic programming.




Due to the weak decomposibility for all k,
it is clear that problem (6.1) is equivalent to
the problem

min F(El""’EN) (6.2)
(E_lr LR 'B'N)
Subject to (5k+l""’5N) = (ék+1""’gN)
and (51,...,2k_1)-arg'min Jk—l

(ool

This equivalence follows from the observation that
the solutiom to (6.1) must have components
gi,...,gk’l thac form a solution to J, (ik’

1? ). Thus, by first solving Jk- over
g&i feasible (gk, - ""’EN)’ the optimiZation
in (6.1) is reduc%% %o an optimization over the
set of ¢, corresponding to the projection on
Uy of a%& e%emen:s in V for which (Ek+l""’EN)"

@-k+l" <ol

The subproblems defined by Formulatiom (6.2)
form the basis for constructing a sequence of
recursive optimizations to solve the original
problem by spatial dynamic programming. Firsc
Jl(gz,...,gN) is decermined for each (gz,...,gﬂ)
in the projection of V on U,x...xUg. Next,
Problem (6.2) is solved for k=2 fot each feasible
(g3,...,§§), embedding the optimization results
fof J, and optimizing over u,. This procedure is
repea%ed for k=3,...,N, recursively, embedding
the solutions for J, , and optimizing over u,
Since J,_(0) corresponds to the original optimi-
zation problem, the solution to J,.(0) produces
the optimal solutiom uj,..., * and the optimal
objective function valie F(giﬁ...,g%).

In addition to determining the optimal so-
lution, the embedding principle of SDP will gen-—
erally allow a very large optimization to be
handled as a sequence of tractable optimizations.
However, the SDP algorithm will vary in ease and
efficiency, depending on the grouping and se-
quencing of the input variables. The subproblems
defined by (6.2) will rarely need to be determined
for each feasible (gk l,.L.,“ }; usually an entire
class of (& 4 T will have the same solution.
In such cases the class of these configurations
can be usually represented by a vector z, which
has far fewer components than (Ek yees,dy). This
reduces substantially the complexiky of each stage
of SDP. Furthermore, these z, vectors can be ob-
served quite naturally in mo;% large-scale sys-
tems: if each e vector corresponds to inputs
associated with a particular subsystem, then the
2 vector will correspond to the "i{nteractions"
bStween the subsystems 1,...,k with gubsys tems
k+l,...,N. A particularly convenient repre-
sentation of the 2z, vectors can be obtained when
the interactions are additive, as is discussed in
detail in the next section.

geney

As a brief illustration, comnsider the three
variable optimization problem:
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. zaxu uqu,ug
1’7273

: 2,2 2
Subject to ujtujiug < 1

u, >0 all i

i
This problem is weakly decomposable in Uypslsgy and
u.. The solution via SDP is described by t%e fol-
1awing sequence of three subproblems:

Subproblem 1:
Jl(ﬁz,ﬁ3) = Eix u16263
Subject to ui <1l -4 —ﬁg
uy >0
- (1~} -a§)1/2 2, 0,
i - (-0 -ai)llz

Subproblem 2:

2 .2,
Ty = gax (o4 =0) uyly
Subject to ug 5;—0%
U, >0

2
a l/2(1—ﬁ3) u,

&2 =V1/2(1—a§)
‘.‘1 -‘Jl/Z(l-ﬁg)

Subproblem 3:

35(0) = max 1/2 (1=

U3
2
Subject to u, < 1
B u3 >0
=1/9 /3
uy = 1373
%
u, = 1/3 3
*
4, = 1/3 3

This simple example could have been solved
readily in a centralized manner, using the Kuhn-
Tucker Theorem. However, note that the Kubhn-
Tucker conditioms for the overall problem would
form seven equations with seven unknowns, while
the Kuhn-Tucker conditions for each of the above
subproblems consist of only three equations and




three unknowns. This difference suggests how SDP
can perform a large-scale optimization in a com-
putationally tractable manmer by optimizing a se-
quence of smaller subproblems.

6.3 DESCRIPTION OF THE TECHNIQUE FOR DYNAMIC
LARGE-SCALE SYSTEMS WITH ADDITIVE INTER-. -
CONNECTIONS

Interconnected dynamic subsystems possess a
natural spatial structure that can often be ex-
ploited effectively with SDP. The purpose here is
to illustrate how these special structural features
affect the SDP procedure by considering the fol-
lowing minimization problem for a large system
composed of m subsystems to be optimized over N
time periods:

— . m — —
Teg e S HE
1 L
where

X = (1 (0), 1 (L),en,x; ()

ug = (;00), w (1),...,u, (N-1))
and

x, (ktl) = fi(xi(k),ui(k)y+zz: gji(xj(k)),

hf
k =0,...,N-1

The use of a discrete time~invariant system in this
problem is employed merely for convenience and is
not a requirement for SDP. Define
(N=1))) j#4

(x

yji = (gji(xj(o)),gji(xj(l)),---,3ji j

to be the trajectory of inputs to subsystem i re-
sulting from outputs from subsystem j, and define

PR D
j#i
to be the negative of the trajectory of total in~

puts to subsystem i from other subsystems.
Clearly,

m—

2. 75170

j=1
for all i. WNote that in practice g, (x,(k)) is
often equal to zero for many combin;%ioﬂs of 1,3,
and k. This not only simplifies the intercon-
nection structure, but also increases the effi-
clency of SDP, since SDP is best suilted for sys-
tems with sparse (but not necessarily weak) inter-
actions.

A diagram of the sequence of subsystems and
the general  interconnection structure appears in
Figure 6.1. Note that the outputs from each sub-
system (i.e., {y i|i # i} for subsystem .j) leave
verically (either upward or downward) and are
summed into a "bus' with other outputs headed for
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the same subsystem. The buses appearing above

the subsystem boxes run to the left and repre-
sent inputs to a subsystem resulting from outputs
of subsystems that follow that particular sub-
system in the sequence. The buses below the sub-
system boxes run to the right and represent inputs
to a particular subsystem from other subsystems
preceding in the sequence.

Note that if an imaginary vertical line is
drawn between any two subsystems you will cross
exactly m buses. In particular, if the line is
drawn between subsystem k and subsystem k+1 (see
Figure 6.2) the line will cross k buses in the
upper sec and m~k buses in the lower set. In SDP
the value of the outputs in each bus at the point
where the line intersects thevbuﬁ is used as a
parameter (zk or -z%) for the k© step optimiza-
tion in the §DP procedure. This figure illustrates
the physical interpretation of those parameters:
If subsystems 1 to k are treated as a composite,
then the upper buses runming between subsystems
k and k+l will carry the value of the net inputs
to each subsystem in the composite from subsystems
not in the composite; the lower buses will carry
the value of net output from the composite sub-
system to each subsystem not included in the com-
posite. As was observed, a k increases, the num-
ber of "input buses" increases and the number of
"output buses" decreases, yet the sum of the two
is always m. : '

Now we proceed with the algebraic description
of SDP for this problem. Define

- =i -1
Ji(zl’ zz,...,zm)
to be equal tothe optimal cost of controliing the

composite system created at the i Y step of the
procedure subject to parameters zj, where

55,

k=1i+1

1=t

i —
:Z: Vi3 i>1
K=l

reEresents the negative of the net input to the
j*0 subsystem in the composite from all subsystems
outside the composite for ] < i, and represents
the net output of the composite subsystem to the
jth subsystem for j > i. As will be seen below,
inputs are assigned a negative value merely for
algebraic convenience.

We now consider the m~step process which
successively adds subsystems to a composite system
optimization until all subsystems have been in-
cluded. )
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Step 1

In the first step, the first composite sub-
system is equivalent to subsystem 1 (see Figure

6.3). The optimization problem is to determine
-1 -1 = =1 - -
Jl(zl, Zysenes zm) éﬁp Ll(xl,ul)

subject to yij = ;}, all j.

-1 _Eiveu the determination of a solution for any
2y, zz,...,ii, we proceed to Step 2.

Step 2

We add subsystem 2 to subsystem 1 to create
a2 new composite (see Figure 6.4) and determine

-2 =2 =2 - - - -
J2(z0s25,00052)) = min_ (Ll(xl,ul)+L2(x2,u2)}
u, ,u
1’72
subject to ?ij +'§Zj - ;?, all j

Using the definition of 22

and the results of
Step 1, this can be expre;sed

min jL (; ,:)
‘ll 2772072

uz,zl,zz,...,zm

-2 =2 -2
Jz(zl,zz,...,zm)

— —l—.

I G
subject to ;éj = ;? - ;?

Given the solution for any specified ;?,;g,...,;z,
we proceed to Step 3. a

For all k, 3 < k < m-1, we have

LI

Step % B

We add subsystem k to the previous k-1 sub-
systems to create the k™M composite (see Figure
6.2) and determine

k
I E675,....259 = mia f I L (x,,u,)
k71772 o 3 - 11-1 Ly
1oy
k —
subject to I ylj - zj, all j
L=1
—k

Using the definition of z, and the results of
Step k-1, this optimizatién problem can be ex-
pressed

J, (2 z z) =
k71 200 p = —k-1 —k-1 k-1
UprZy a2y seees2y

) - = ~k~-1 —k=
L (o) + Te-1€21 Toeeenzy 5}

—k-1

- %
- - l
subject to ykj zj zj , all 3
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" We note two things.

" we must have E? = 0 for all j.

‘ 1
Given the solution for all E‘,...;:,vwe proceed

to Step. k+l. 1

Step m

All m systems are now conceptually combined
into a composite. Determine .

o
-u -m | T
Jm(zl, zz,...;zm) _oin _ ii Ll(xz,ui);

ul,...,um al

m
- -a

subject to I =z, all j
3 i 2 j i

First, since
m—

r y,, =0

gal 4

Second, by defi-~
nition,

JM(O,O,...,O) = J

So this is the global system optimization cri-
terion:

min

J=_ _

u T

m —
ZE Lz(xz’“z)
1 m

=1

m
subject to ¢ Yoq = 0, all j
el 4

By definition of ;m-l and Step m-l (see Figure
6.5), we canm refot&ulate the problem:

= win v
S iy —m-lle(xm’um)
usZy 12y veeeaZp

—m-1 —m-1

—o-1 l
o+ Jm-l(zl 329 " aen )

.,Zm )

subject to ;; ,»_;m-l’ all j

T

The solution of Step m provides the optimal
~m=-1 Z

— —m~
~ < -

n 2%y ,_:E}ch by Step m-~1 identifies
the optimal um— ) zl ,...,zm » etc., Be re-
peating this procediire backward through the suc-
cessive steps the entire set of optimal input

trajectories @, T ye..,d, are obtained.
n’ o=l 1

U)zl ’.

An important observation is that the above
procedure exploits the fact that inputs to each
subsystem from the other subsystems are additive.
This permits the above definition of ZX parameters
that efficiently summarize the net effdet of a
potentially large number of interactions between
subsystems inside and outside the defined com~
posite system. The embedding of composite sub-
systems into slightly larger composite subsystens
serves to simplify the optimization relative to
the complex network of interactioms inside the
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composite. The procedure is most efficient when
the interactiomns are sparse, but it does not re-
quire that the nonzero interactions be weak.

6.4 CHARACTERISTICS OF SPATIAL DYNAMIC PRO-
GRAMMING

Spatial dynamic programming provides an ex-
tremely powerful approach to the optimization of
a set of interconnected subsystems. Basically,
the total optimization problem is decomposed into
two types of problems ~ optimization of the sub-
system itself and optimization of the interactions
of the subsystem with the remainder of the over-
all system. 1In the subsystem optimization prob-
lem, it is necessary to find a solution for every
possible sequence of interaction variables; thus,
the effective dimensionality of the subsystem
problem is the dimensionality of the subsystem
itself plus the total number of interaction vari-
ables assoclated with the subsystem. If the per-
formance criterion meets the weak decomposibility
of Section 6.2, a global optimum is found by
first solving each subsystem problem and then
sequentially optimizing the interactions of each
subsystem with the rest of the system.

The computational implications of this
approach are quite impressive. Basically, if the
number of interaction variables is small compared
to the dimensionality of the subsystems, the so-
lution of the total problem, which has a number
of state variables equal to the sum of the dimen-
sionalities of the individual subsystems, is
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reduced to solving a sequence of sub-problenms,
each of which has dimensionality on the order

of the dimensionality of the subsystems. Be-~
cause of the well-known exponential growth of
computational requirements with respect to system
dimensionality, this reduction is extremely sig-
nificant. For example, consider a system con-
sisting of 10 interconnected subsystems, each of
which has 10 state variables and 3 interaction
variables. If the problem were solved in a
straightforward manner, there would be 100 state
variables, a very formidable problem. On the
other hand, using spatial dynamic programming,
the solution can be obtained by solving 10 sub-
system problems, each with an effective dimen-
sionality of 13, and 10 interaction optimization
problems, each with an effective dimensionality
of 3; clearly, these problems are much more
manageable. Note that this great reduction in
dimensionality is obtained with no requirement
for iteration and that a global optimum is guar-
anteed with no assumption on system equations,
constraints, or performance criterion, other than
the decomposability of the problem.

In addition to the great reduction in di-
mensionality with no loss of optimality, the
technique is ideally structured for decentralized
control and distributed data processing. Note
that there is no requirement for accumulating in-
formation about the total state of the system at
a central point. Thus, the optimal control of
the total system can be implemented by a series
of local coutrollers, one for each subsystem,




each of which communicates only with the other

subsystems with which it interacts. Each local
controller solves the subsystem problem parame-—
terized on its interaction variables. The inter-
action variables are then optimized by proceeding
through the subsystems in a fixed sequence; this
sequence can be pre-determined, so that, in real-
time, the local controllers can solve the inter-
action problem in the proper order. The oaly
communication requirements are for sending the
minimum cost function as a function of the inter-
action variables to interconnected subsystems.
Because of these relatively modest computational
and communication requirements, the technique is
potentially suitable for implementation in a net-
work of minicomputers or microprocessors con-
nected by communication links.

The technique also provides an extremely
attractive approach for responding to subsystem
failures. If a subsystem becomes disabled for
some reason, then it is only necessary to inform
the interconnected subsystems, specify a new se-
quence of subsystems for computing the inter-~
action variables (this could be pre~determined
for all possible failure modes), and then proceed
as before. In this manner the new system struc-
ture is automatically optimized, without any
additional computations. This opens up a whole
new approach to optimizing systems that are sub-
ject to subsystem failure.

The basic spatial dynamic programming pro-
cedure also has a number of important theoretical
implications. Because it always obtains a global
optimum, it provides a very useful tool for eval-
uating other decomposition techniques and for
proving theorems about their properties. In
particular, the dynamic programming successive
approximation technique developed by Larson and
Korsak [31] has a number of similarities to
spatial dynamic programming; essentially, this
technique fixes all the interaction variables
according to an initial policy and iteractively
optimizes one subsystem at a time. The successive
approximation technique thus has lower computa-
tional requirements than spatial dynamic program-
wing, but it is only globally optimal under cer-
tain conditions. By exploiting the similarity of
the two techniques, it should be possible to de-
velop algorithms that retain the computational
simplicity of the former and the global optimality
of the latter.

It should be noted that the theoretical value
of spatial dynamic programming is not limited to
techniques that use dynamic programming to-solve
the sub-problems. Basically, the ideas of dynamic
programming are necessary only inm the decomposi-
tion into subsystem problems and interaction vari-
able problems. Any technique can be used to solve
the subsystem problem and/or the interaction vari-
able problem. This observation greatly increases
the class of decomposition techniques that cano be
analyzed in terms of spatial dymamic programming.

Descriptor variable representation plays a
critical role in spatial dynamic programming. The
subsystem problems must be solved for all possible
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sequences of interaction variables. For any par-
ticular set of sequences of these variables, the
problem has constraints on both inputs and outputs.
These constraints introduce static relationships

of the type that require descriptor variable repre-
sentation. Thus, even if the subsystem itself is
a state-space representation, the subsystem
problem can be expressed via descriptor variables.
0f course, even more generality can be allowed in
spatial dynamic programming by permitting the sub=-
systems themselves to be in descriptor variable
form. '

The results in Chapter V on the analysis of
linear-quadratic descriptor variable systems are
particularly relevant to.spatial dynamic program-
ming. If the individual subsystems are linear
state-variable systems and if the performance
¢riterion is quadratic, then the results developed
there can be applied to show that the solutions to
the sub-problems consist of a linear fumctionm of
the state variables plus a linmear function of the
interaction variables. This greatly facilitates
the computations for these systems, both for the
subsystem problem and for the interaction variable
problem.

Spatial dynamic programming is also aa effec—
tive procedure. for large-scale systems without .
explicitly defined subsystems. In this sense, SDP
provides a technique for decomposing large mathe-
matical programming problems. To use SDP, each
variable must be assigned to one of a sequence of
vectors to create weak decomposibility. In many
cases, this decomposition can be effectively cre-
ated by first decomposing the comstraints into
constraint subsets. After arranging the con-
straint sets into a sequence, a corresponding se-
quence of variable vectors is determined in the
following manner:  variable vector k will contain
all variables that affect only coustraint sets
l,...,k and that are not in vectors k-1,k=-2, ...,1.
This decomposition leads to a natural definition
of the constraint sets for each subproblem in the
SDP algorithm.

The efficiency of SDP relies heavily on the
decomposition of the variables into input vectors
and on their sequencing. The existence of an
efficient decomposition and sequencing obviously
depends on the structure of the system. However,
the efficiency will vary significantly for dif-~
ferent decompositions of the same system. Some
principles of effective decomposition and se-
quencing have been recognized. As stated earlier,
the decomposition is most effective when the inter-
connections can be summarized by a relatively
sparse set of variables. Also, if ome subsystem
affects a second subsystem but not vice-versa,
the latter subsystem should precede the former in
the sequence. The recognition of additional prinm-
ciples is an important research area for spatial
dynamic programming.




6.5 OPTIMAL POWER FLOW USING SPATIAL DYNAMIC PRO~-
GRAMMING

An important problem in power system opera-
tion is the determination of control parameters
that minimize the costs of generation, main-
tenance, load curtailment, etc.. The controls
typically include torque angles and voltage mag~
nitudes at network nodes, transformer tap set-
tings, and the network topology. Since power net-
works are usually sparse and the fundamental laws
governing power flow have the weak decomposability
property, spatial dynamic programming is naturally
suited for the optimal power flow problem. This
section will formulate the optimal flow problem
and describe an example network for which this
problem was solved using SDP. Some promising ex~
tensions of this application of SDP to power sys-~
tem analysis are also discussed.

The problem formulation presented here assumes
a network of N nodes, which can be load nodes and/
or generation nodes. The system equations cor-
respond to a balance of real and reactive power
flows at each node. These equations are standard
in power systems literature (see for example '
‘Elgerd {32]):

*
Py - 3Q =t Tie Vi Ve i=l,...,8 (6.3)
k=l

where
i=/~1
* denotes complex conjugationm
Pi = the net real ﬁowet flow at node i
Qi = the net reactive power flow at node i

Y = the admittance of the branch connecting
ik
nodes i and k

Vi = (complex) voltage at node i
3é
- vl t

i

61 = torque angle at node i

Upper and lower bounds are specified for each Pi’
Qi.lV |, and 6;. Constraints are also imposed

od the power f}ows over individual branches or on
the differences between the angles at the con-
nected nodes.

A given set of real and reactive power loads
may be satisfied by zero, ome, or multiple con-‘
figurations of the node angles and voltage magni-
tudes. When there are several possihle configu=-
rations, a cost criteriom will generally allow the
determination of 4 best set of controls. For
most applications it is reasonable to assume a
cost criterion of the form

> <,

i=]1
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where the function C depends only on variables
asgociated with node 1 or branches incident to
node 1. :

The system equations (6.3) and the additive
cost criterion pogsess the weak decomposability to
guarantee that spatial dynamic programming will de-
termine the optimal coutrols. SDP is efficient
for this problem because most power system networks
are sparse in the sense that the number of branches
is small compared to the total number of branches
possible. Since the network is sparse, the number
of variables processed at each stage of the solu-
tion will be small relative to the total number of
variables.

The SDP algorithm for solution of the optimal
power flow problem has been translated into a com-
puter program for power system models that:

(1) incorporates branch flow constraints

(2) allows arbitrary generaction costs at each node

(3) solves the real pover flow equations (with
losses) :

(45 assumes arbitrary, but fixed, node voltage
magnitudes

(5) permits an arbitrary order for processing
the nodes

(6) accepts upper and lower bounds on all torque

angles and generations.

The cost criterion i3 the sum of all generation
costs at the nodes where generatiom can ocecur,
The SDP algorithm proceeds by adding a new node
in each iteration to the subset of nodes serving
as the composite in the previous iteration. The
interaction variables for a subproblem are the
torque angles corresponding to (1) nodes that are
in the composite and directly linked to a node that
is not in tbe composite or (2) nodes that are not
in the composite and are directly linked to nodes
in the composite. Due to the nonlinearity of the
System equations, the interactions are not addi-
tive.

This SDP algorithm was successfully applied
to the seven node example 1llustrated in Figure
6.6, which has four load nodes, two generation
nodes, and one node with both generation and load.
The generation costs were assumed to be quadratic
functiona of the real pover generation:

2
C(Gi) 10 G1 + 5 Gl + 2
2
C(GS) 13.32 G5 +7 G5 +5

2 .
C(G7) = 8§ G7 + 4 G7 +3




Figure 6.6. Seven Node Exampie for
Optimal Power Flow Problem

The given
were

real power loads at nodes 2 through 6
70

30

100

160 .

L, = 40

All node voltage magnitudes were set equal to one.
The admittances were

1000 if i#k and nodes i and k are
directly linked
Yik = 50 if i=k

0 otherwise
Following the implementation of the SDP al-
gorithm, the optimal torque angles were determined
to be (in radiamns): .

61 = 0.08463
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0.013

o
L}

0.02406

0.0

o
[ ]

0.02831

o
[}

0.03437

o
L}

0.1145
The corresponding real generations were:

Gl = 132.1

G5 = 100.4

G7 = 166.1
Note that there is a small difference hetween the
sum of the real loads and the sum of the real gen-
arations. Of course, theoretically the difference
does not exist; the numerical disparity is the re-
sult of the granularity of the grid used to dis-
cretize the continuous variables.

In addition to solving the optimal power flow
problem, the SDP algorithm has other potential
applications to power systems. For example, in the
case of expansion planning, the dynamic programming
procedure can be used to find the optimal combina-
tion of new generators lines that meets require-
ments and minimizes the overall costs. Also, since
the SDP algorithm must account for feasibility con-
straints, the procedure is capable of determining
all sets of loads that can be satisfied without
violating some capacity constraint. Finally, by
accommodating variacion in the network topology due
to potential outages, SDP can be applied in the
evaluation of system reliability.
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VII. APPLICATION: NETWORKS OF ECONOMIC MARKETS

7.1 INTRODUCTION

Large economic systems are often analyzed as
a coordinated set of supplier, producer, and con-
sumer sectors. The classical approach has been
to treat large economic networks as ome large
production system and determine the production
flows that satisfy a given consumer demand at min-
imum cost. The drawback of this approach is that
the demand behavior in responding to market con-
ditions is ignored, so that these models do not
determine a true market equilibrium.

The extensive use of the classical approach
is certainly not due to the absence of a theo~
retical understanding of equilibrium. Neoclassical
economics accommodates price-elastic demands and
has produced significant achievements in charac-
terizing the equilibrium of general closed economic
systems (Debreu [33], Quirk and Saposnik [34],
Arrow and Hahn [35]). However, the modeling and
computation of general equilibrium is overwhelming,
and usually the analysis concerns only a small
piece of the genmeral economy. Thus, practical con-
siderations often suggest using partial equilibrium
analysis as opposed to general equilibrium amalysis.
The distinguishing feature between partial and
general analyses is that in a partial equilibrium
analysis, a major portion of the flows in the ecom
omy are suppressed so that an "equilibrium" in the
sectors of interest is more easily deternined.

The recent focus, then, has been to develop
approaches to partial equilibrium analysis, as
evidenced by recent accomplishments in large-scale
economic modeling (Brock and Nesbitr [36], Hoffman
and Jorgenson [37], Hogan (38,39], Levis ec. al.
{40], Manne [41], Naill (42], Takayama and Judge
[43]). Many of these efforts have represented the
respective system as ome large supplier-consumer
market. While it can be argued that such a market
exists conceptually, such representations generally
are not convenient for describing the economic be-
havior of sectors within the system. Viewed at
the level of sectors, an economic system is really
a network of sectors, linked by markets between
sectors where there are commodity flows.

It i{s common to conceptualize these markets
as each having a supply function and a demand func-
tion, which together determine the equilibrium in
that market. However, the existence of these con~
structs does not immediately follow from models of
sector behavior. While supplier sectors may be
characterized by supply functions and demand sec~-
tors may be characterized by demand functions,
sectors producing intermediate goods in the system
cannot be modeled by such constructs. Producers
are simultaneously suppliers and consumers, with
the quantities purchased being dependent on the
amount of outputs that are sold.

Therefore, this intuitive notion of market
supply and demand functiong lacks analytical just-
ification in complex networks of economically-
based sectors. This chapter examines this justi-
fication for economic networks consisting of a
chain of sectors, with good flows as illustrated
in Figure 7.1. :

In a network consisting merely of a single
supply commodity undergoing a chain of transfor-
mation processes, under certain conditions it 1is
straightforward to demonstrate that a supply func~-
tion and demand function exist at each market be~
tween adjacent sectors. Since each supply func-~
tion reflects cost of inputs plus cost of produc-
tion, the supply function can essentially be de~
termined from the supply function for the previous
market in the chain. 1In this way, the supply func-
tion can be 'propagated” from the supplier market
to the consumer market. Similarly, one can "propa~
gate' the demand function of consumers through the
chain to the supply market. Thus, a supply and

demand function exist at each market in the network.

This notion of propagating supply and demand
functions has been employed in explaining more
complex chain networks where sectors may use mul-
tiple inputs and have multiple outputs. In par-
ticular, a methodology called generalized equilib=
rium modeling (Cazalet [44]) has been described
as conducting this propagation in a pointwise
fashion. However, while this description is help-~
ful in motivating an understanding of this algo-
rithm, this argument has problems in explaining
difficult cases where multiple types of inputs are
used in a single output or am output can be used
for multiple production and consumption purposes.
Still, this intuitive idea of propagation is very
appealing in its unification of the conceptual
framework of supply and demand with a system de-
scription that is consistent with behavior at the
sector level. This appeal encouraged the investi-
gation of chain-structure networks, where by formu-
lating the network model as a descriptor variable
system, an analytical justification is established
for certain classes of system models.

7.2 COMPOSITION AND STRUCTURE OF ECONOMIC NETWORKS

Economic systems are composed of a number of
economic agents who either possess goods or are
capable of performing services that either trans-
form or transport these goods. These goods and
services are exchanged, thereby creating a general

. market. The general market can be decomposed into

markets for particular types of goods and services,
for particular locations, or for particular times.

In making decisions or designing policies,
one may be interested in assessing all the good
flows and prices (or exchange rates) operating in
the general market. Since these flows and prices
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generally correspond to some balance of individual
preferences, such an assessment is called a general
equilibrium analysis. Often, however, one is in-
terested in assessing flows and prices associated
with only a set of particilar markets; this is a
partial equilibrium amalysis.

There is an important difference between gene-
ral analysis and partial analysis models in the
role of prices. In a well-defined.general equi-
librium model, prices reflect the substitucion rate
and are homogeneous of degree zero. This means
that all prices could be multiplied by a uniform
constant and the same flow of goods and services
will result. Prices are generally not homogeneous
of degree zero in partial equilibrium models be-
cause the prices must reflect the substitution be-
tween any goods or services endogenous to the
model and goods and services outside the model.
Since the exogenous flows and prices are assumed
fixed in some sense, the homogeneity property is
lost. However, the prices will still continue to
reflect the exchange rate between goods endogenous
to the model.

Any model intended to reflect actual markets
assumes a considerable amount of aggregation, re-
gardless of its size. This is an important point,
because profit-maximization or utility-maximization
by individual firms or comsumers may not translate
when the firms or consumers are aggregated. There-
fore, the models may also reflect behavioral aspects
that correspond to the inner dynamics of the aggre-
gated set. This suggests the feasibility of models
that make sense for aggregated sets without making
sense at the level of the individual decision-
maker.

Aggregation in these models is often done on
the basis of activities rather than by individual
persons. Therefore, one individual's behavior as
a producer may be aggregated in one producer group,
while his different types of consumption are re-
flected by separate aggregate comsumption groups.
We will refer to such groups as sectors. We dis-
tinguish three types of sectors:

Suppliers - Suppliers exchange goods for money.
Supplier models relate supply flow to the price.

Producers - Producers purchase goods and sell
goods. Producer models relate the inflow of goods,
the price of inflowing goods, the outflow of goods,
and the price of outflowing goods.

Consumers - Counsumers exchange money for goods.

Consumer models relate consumption flows to the
price.
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In general equilibrium models, the consumer
sectors are also suppliers of some nature (e.g.
providers of labor). In partial equilibrium
models, there is no reason to assume cCOnsumers
must supply some good that is endogenous to the
model. Since we will be interested in the partial
case, we will continue the discussion assuming
suppliers and consumers to be separate.

If the model is sufficiently aggregated, one
can examine the structure of the model, 1.e., the
pattern of the commodity flows between the sectors.
It is useful to visually represent this structure
as a network, and the convention is to use arrows
to show the flow of goods along a link. It is
implicitly understood that either money(or goads)
must flow in the opposite direction since the link
represents an exchange in this comtext.

For the purpose of this chapter, we distin-
guish simple networks from looped networks. A net-
work is a looped network if it is possible to find
a path following the directions of arrows from
sector to sector, such that the path leaves and
returns to the same sector. Otherwise, it is a
simple network. Figure 7.2 shows a simple network,
while Figure 7.3 displays a looped network.

Simple networks are an important case because
the absence of loops accommodates a natural chain-
structure corresponding to the goods markets, as
{llustrated in Figure 7.1. In some cases the
chain-structure may not be immediate, but can be
created readily by the following simple procedure:

1. Determine the longest chain of sectors,
i.e., the path connecting the most sectors. Call
the number of sectors N+2.

2. Assign each sector to an index i, 0<i<N+l,
such that each sector providing it with goods 1is
assigned to a lower index and each sector to which
it provides goods i3 assigned to a higher index.
Therefore, all supplier sectors will have index O,
all consumer sectors will have index M+l, and all
producer sectors index j, where 1<j<N.

3. 1In general, the system grouped by index
sets will still not have the chain-structure in-
dicated on Figure 7.1, since a sector 1n sector
set j could directly provide to a sector in set
j+k, k>2. To create the chain-structure oune
creates "dummy" sectors in the incervening sector
sets: for any good that can flow between the
sectors, the dummy sectors merely set the flow in
equal to the flow out, and the unit price in equal
to the unit price out.
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As a simple example, consider the simple
energy network in Figure 7.4. Clearly the longest
path connects three sectors, so we assign index
values of 0, 1, and 2 to the fossil fuels, elec-
tricity, and consumer sectors, respectively.
are three markets in this network:
electricity market, an electricity-consumer market,
and a fossil fuels-consumer markec.
ket includes sectors that are not in adjoining
sector sets. Therefore we create a "dummy fuel"
sector with index 1 and split the fossil fuels-
consumer market into fossil fuels-dummy fuel and
dummy fuel-consumer markets. The network of mar-
kets now has a chain~structure.

There
a fossil fuels-

The third mar-

sLicTRICITY
FOSSIL CONSUMERS
FUZLS
‘\‘\ ,4’
~ . rd
~ - — = — 7
) 1 -
Jwery 1V
FUELS \

Figure 7.4. A Simple Energy Network.

The construction of this chain-structure it-
self is not immediately meaningful. However, as
noted in descriptor variable systems, such struc-
tures are useful decomposition tools. The con-
cepts developed for descriptor variable systems

A Looped Network.
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provide some fundamental insights into these
equilibrium models. For example, the condition
systems corresponding to this network often have
an intuitive significance, since they can corre-
spoud to supply and demand functions, as will be
demonstrated in Section 7.4.

7.3 THE DECENTRALIZED CONTROL MODEL FOR CHAIN-
STRUCTURE ECONOMIC NETWORKS

In neoclassical microeconomic theory, all
participants in the exchanges are assumed to be
price~takers, i.e. they decide the quantities to
be bought and sold based on given prices. The
prices are "given" by a fictitious "auctioneer,"
whose task 1s to announce a set of prices for which
all excess demands for quantities are zero. How-
ever alternative models can be formulated where a
sector of participants may decide prices as well
as commodities. One such modeling approach is
discussed here, called the decentralized comtrol
approach. '

The decentralized comtrol approach is de-
scribed by the following behavior for the three
fector types: Suppliers are given the good flow
rate demanded of them; they respond by announcing
the price at which such flows will be provided.
Producers are given the flow rate of output they
are to produce and the unit prices of their in-
puts; they choose the composition of inputs they
will use to produce the outputs and the price
they will charge for each unit of output. Con=
sumer sectors behave in the same manner as in the
neoclassical approach - they are given prices and
they choose their consumption of goods.

Under the decentralized approach, each price
or quantity flow is determined by exactly one



sector model. The problem of determining equilib-
rium in these networks is to determine a set of
quantities and prices such that each sector model
will "choose" responses that are identical to the

equilibrium signals. This notion of equilibrium

corresponds to the game theoretic concept of Nash
equilibrium, where no player (sector) has an in-

centive to change his response.

The sector models for suppliers and producers
clearly assume that the sectors are not individual
free enterprise firms, since an individual firm
would clearly choose an infinite price for its
outputs under this formulation. Therefore, these
sector models embed some internal competition
that results in the response of a finite price.
However, these sectors may reflect oligopoly-
type situations, such that while there is limited
competition, the price can still exceed marginal
cost.

This chapter will consider simple economic
networks using the decentralized approach. The
gsector models will be assumed to be linear. The
primary motivation for this assumption is that such
networks are very tractable from the standpoint of
descriptor analysis. However, the use of linear
models requires some additionmal justificationm.

Other than perhaps being simplisgtic as a
representation of reality, linear models admit
infeasible possibilities such as negative prices
or negative goods. While this may be conceptually
disturbing, this is of practical comnsequence only
if the equilibrium is infeasible, and this should
happen only with grossly unrealistic sector models.
When one expects a feasible solution, the addition
of proper feasibility comstraints is likely to pro-
duce only inoperative constraints at the expense
of additional complexity.

Linear models are often justified by the argu-
ment that they are a good approximation in the
region close to an operating point. This is valid
in assessing the properties of an equilibrium
point, such as stability. However, the purpose
here is to study the underlying structure of the
networks, and not merely the equilibrium point it-
self. Therefore, the use of linear models is not
intended to only approximate local behavior, but
also to reflect a topological structure of the
sector models in the region of interest. The
linearity of sector models assumes the following
properties of the economic sector models:

- The models are continuous and well-defined
in the region of interest. The models ex-
press responses as functions of the signals.

- Partial derivatives of the models are
finite and remain either nounpositive or
nonnegative in the region of interest, i.e.
monotonicity.

We now proceed to study networks of these
linear sector models using descriptor amalysis.
Let q, be a vector representing the flow of out-
puts %rom supply or producer sectors in sector set
1, 0<i<N, where there are N+2 sector sets in the
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network chain. Let p, be the vector of corre-
sponding prices per udit. The model for all supply
sectors in sector set 0 is given by -

Po ™ fo * 50 9 .1
The model for all producer sectors in sector set
j, 1<j<N, is given by’

+ B (7.2a)

Uyop T Bgoy T Ayag Py T OBy

+ D (7.2b)

Py = £y * Cyop Pyar * Dy

Finally, the model for all consumer sectors, sec-
tor set N+l, is given by

ay " 8y * Ry Py

Note that all flows and prices are expressed

(7.3)

as functions of other flows and prices. The sys-
tem can be re-expressed:
—— —_— ——
o1 -S [ fo
-, 1 -8, y, 8
-Co I‘ -Dl pl tl
-
A T Yy el 1Y
e S T Py fy
Ryt L-fu By
t— w—— e — ——d
(7.4)

This system has a unique solution if and only if
the matrix in (7.4) is nonsingular. We would like
to establish properties for tha submatrices that
insure the existence of a condition system.

Clearly (7.1) serves a sat of initial con-
ditions for the N+l set chain, while (7.3) serves
as end-conditions. Equations (7.l) correspoand to
an inverse supply function for the goods provided
by the supply sectors.  Intuitively, one expects
the forward condition at any location to also
represent an inverse supply function. Specifi-
cally, we hypothesize that.the forward condition
that summarizes the models for sector sets 0O
through k is given by a matrix equation of the
form

Pe ™ et S %
Likewise, since the consumer sectors conditions
correspond to a demand function, we hypothesize
that the backward condition summarizing the models
of sector sets k+l through N+l is given by a vec-
tor demand function:

G " et Ry P

(7.3

(7.6)




Since (7.1) correspouds to an inverse supply
function, it is reasomable to assume some property
of the matrix S.,. Occasionally in the economic
literature, one finds that this matrix is assigned
the property of positive definiteness. The eco-
nomic justification for this assumption has been
somewhat unclear. This does reflect that in-
creasing the output of a supply good will increase
the price of that good. Similariy, the matrix RN
in the consumer demand functiom is assumed to be
negative definite. This reflects that increasing
the price of a consumer good will decrease the
amount of that good consumed. (In this analysis
the assumption of positive definite or negative
definite will not imply symmetry of the matrix.)
In addition, if we simply had a single market of
suppliers and consumers, a unique equilibrium
(solvability) would be assured:

Theorem 7.1: Given a market specified by inverse
supply function

p=f + Sq (7.7)
and demand function
qQ =g + Rp (7.8)

where q and p are vectors and where S is positive
definite and R is negative definite, a unique
equilibrium exists.

Proof: Substituting (7.7) into (7.8) yields

q = g + Rf + RSq

Existence of a unique solution depends on the
existence of (I-RS)'l. Suppose it does not. Then
I-RS is singular. By negative definiteness of

R, R™* exists and 1s negative definite. Clearly

R M(1-rs) = °F -5

i1s also singular. However, since S is positive
definite, R™* - S must be negative definite and
nonsingular. This contradicts (I-RS) being sing-
ular. Hence (I—RS)'l exists and the equilibrium
is given by

q ~ (1-8S)"L (RE + g]
p = £ + S(I-RS)"™L [Rf + g] s

Therefore, based on the desirable first
derivative and solvability properties, we will
agssume (Al) S. is positive definite and (A2) is
negative definite. We would like to assume prop-
erties on the producer sectors (7.2) such that §
in the forward condition (7.5) is positive defin&te
and RE in the backward condition (7.6) is negative
definite for all k.

Consider the matrix B, im (7.2a). This can
be interpreted as the "tecﬂnology matrix" of in-
dex set j since the k'@ element in the 1ith row of
matrix indicates how much of the 1 element in
1,1 is required for each output unit of the k©
eiement q,. With this interpretation, it follows

naturally~ that (A3) Bj is assumed to be nonnegative.

If the sectors in sector set j are all fairly
competitive, one would expect the price of an out-
put to be determined by the marginal cost of the
inputs. In this case, there would be duality be-
tween the input composition for a unit of output
and the marginal cost of the output. For example,
if che production of good z requires 2 units of
good x and 3 units of good y, the marginal cost of
z would be twice the marginal cost of x plus three
times the marginal cost of y. In terms of (7.2b),
the matrix C -1 would represent the transpose of
the technolo matrix. So we will assume (A4)
cj-l = 83 for all j, 1<j<N.

Now consider A, , imn (7.2a). This matrix can
be interpreted as eiogeuous effects, like other
consumers for the output that are outside the net-
work. Therefore, to the extemnt that A, is of
consequence, we may expect that it hasJSéhavior
similar to a demand function. Therefore, we will
assume (A5) A -1 is negative semi-definite. The
remaining macéix in (7.2b), D,, may reflect the
effects of other inputs outsi&anzhe network. In
this sense, D, is similar to S0 in (7.1), however,
since there mly be no external effects, we will
assume (A6) a weaker condition of positive semi-
definiteness for Dj' (As in the case of S0 and
RN’ these matrices”may be asymmetric).

7.4 EQUILIBRIUM IN THE DECENTRALIZED CONTROL MODEL

This section presents the major result for
networks modeled via the decentralized control
approach. The following theorem simultaneously
demonstrates the existence of a unique equilibrium
and establishes the hypothesized condition systems
of (inverse) supply functions and demand functions.
The significance of this result 1s that it is cono-
sistent with the intuitive notions for these net-
works discussed in Sectiom 7.1.

Theorem 7.2: Given an economic network described
by (7.1), (7.2), and (7.3), with the accompanying
assumptions (Al) - (46), sufficient conditions for
the completeness of the network model are that

Ber1 Brr ¥ D (7.9)
is positive definite for all k and
Bty Brrl * A
18 negative definite for all k. Furthermore,

there is a condition system described by (7.5)
and (7.6).

(7.10)

Proof: We will demomstrate the existence of the
condition system, and then using the forward and
backward conditions at any market, observe that
each market can be solved by Theorem 7.1. There-
fore, the entire network of markets has a unique
equilibrium. ‘

The demonstration of the existence of the
forward condition system can be established by
induction. Suppose we have established the for-
ward condition (7.5) for k with positive definite
S, (this holds by assumption for k=0). Now con-
sider (7.2) for j=k+l. This gives a system of



equations
P = My F S I (7.11)
U 7 8£'+ 4P * B Y (7.12)
Prer = Firr ¥ BaPi * Dirr Yt

Substituting (7.12) into (7.11) gives

(I—SkAk) P = hk + Skgk + SkBk+lqk+l
Now (I-S Ak) is ndonsingular b{ the same argument
used in Theéorem 7.1, since Si -A¥ is positive
by assumption of negative semi-definite Ak' So
we get

-1

Py = (I-S,4) Ty + S+ S B Gy )
-t . +B, (I-S,A) T(h +5_g]

Prer = Epgp T B (I-SAY) Ty + 5y gy

. -1
+ (Bl (T84 TS By + D] gy (7013)

.Equation (7.13) gives the desired forward
condition at k+l1 where

. -1
Bipr = fr ¥ B (IS iy * Sigd

. 1
Sier1 B (T8

Now the matrix S + is the sum of two positive
semi-definite ma%rices, and therefore is positive
definite unless there exists some vector d#0 such
that both

SiBurr ¥ Pkl

d’Bk+l‘ (I—SkAk) Q (7.14)

SkBk+ld=
and

d Dk+l d=Q (7.15)

Now (I-S Ak)-ls is positive definite since its
k k
inverse

-1 -1

S~ A TS (I-8,A)
is positive definite. Hence (7.14) holds if and
only if

d Bk+l Bk+1 d=0 (7.16)
By theorem condition (7.9), both (7.15) and (7.16)
cannot hold for any d. Therefore S, is positive
definite for all k and we have a forward condition
system of inverse supply functions with positive
definite Sk'

The establishment of the backward condition
system of demand functions for each market follows
the same inductive argument, except the induction
goes in the opposite direction in the network.

The demand function for q, exists by assumption.
Given the demand function for 9y s the demand
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function for 4 % summarizing (7.3) and (7.2) for

§>k is equivalént to the backward conditiom that

summarizes
Yo = Bt RePy S (7.17)
P T fk + Bk Pr.1 + Dk qk' (7.18)

Aoy = Brep * ArPrar T B
Substituting (7.18) into (7.17) gives

(I-RDy) Qe = 4 * Ry £ + Ry Bpy g

Now (IV--Rka).l exists by previous argument, so
-1 .
9 = (T-RDY) "4 + RE + ReBipy ]

-1
Uop = Geap + B (I-RDY T+ R
(7.19)

. L
+ (B (I-RyD) " RBL + A 11 oy
Letting

Yt T B1 Bk(I-Rka)—l (2 * Ryl
- -1 .
Ry = B (TR DY) — ReBp + A

Equation (7.19) gives the desired backward con-
dition in the form of a demand functiom for q -1
Matrix Rk- is negative definite by theorem
conditiod (7.10), using the same type of argu-
ment as in demonstrating the positive definiteness
of S, .

k

Therefore, at each market j with good flows

q, and prices p , we have an inverse supply func-
:1on and demandjfunction that determine a unique
equilibrium. L ]

A physical interpretation can be given to the
conditions in Theorem 7.2. Suppose the techmology
matrix Bk+ does not have full column ramk. In
this case %here is no unique vector of outputs
that the corresponds to a vector of inputs to in-
dex sector set k+l. Furthermore, there exists a
vector of outputs + 4 # which requires
the same inputs tec 3%1031§§Iiyx§§& for which
Bk+lek+l=e' Therefore,

(8 Bryy " By 8 ™ 0
Hence (7.9) is positive definite ounly 1if

(8% 40) Diyy B%pyp > 0

In other words, in such cases where B 1 does not
have full column rank, there need to %e external

effects, like consumption outside the network, in
order that (7.9) be positive definite.




A similar conclusioan can be made about con-

dition (7.10). 1If Bk+ does not have full row
‘rank, the marginal cost of outputs determined on
the basis of marginal cost of inputs in the model
does not correspond to a unique vector of input
prices. Therefore, there must exist externalities,
such as unspecified inputs, reflected in the AE-l
matrix to insure that (7.10) is negative definite.

The iterative process used to create the in-
verse supply function and demand functiom for each
market and their significance as forward and back-
ward conditions indicate that the initial inverse
supply function "sweeps" forward through the net~
work sector sets, while the consumer demand func-
tion "sweeps" backward through the network sector
sets. This notion intuitively underlies much
discussion of such networks and the design of
large-scale equilibrium models. The preceding
analysis justifies this {intuition for the linear
case.

Condition systems of supply and demand func-
tions are likely to exist for other modeling
approaches characterizing sector behavior. For
example, the existence of the condition system can
be established for simple networks where each sec-
tor is modeled as a price~taker, using assumptions
similar to those in the decentralized control
approach. The identification of these underlying
condition systems follows directly from the funda-
mentals of descriptor variable systems. Since
many economic network models can be expressed as
chain-structure networks, descriptor variable sys-
tems appear to be a natural framework for network
equilibrium analysis.

7.5 ANALYSIS OF ECONOMIC NETWORKS IN DESCRIPTOR
FORM

The expression of a simple network model in
descriptor form has benefirs beyond the existence
of supply and demand functions at each market in
the chain-structure network. Often the purpose of
creating these models is to aid policy analysis.
Some of the results in this report, particularly
in Chapter V, were developed to support such
analyses.

For example, the objective of determining the
best policy is often the problem of solving for
the optimal controls. From Section 5.2, it is
known that any system in descriptor form can be
optimized using dynamic programming. 1If the policy
variables are each directed at specific markets,
(e.g., taxes or subsidies), dynamic programming
will apply, despite the fact that system is non-
regular and has varying numbers of quantities and
prices associated with each market. One perfor-
mance criterion that is often cited for evaluating
policy is the social surplus. The social surplus
consists of the sum of all profits to supplier and
producer sectors plus the consumers' surplus, which
is roughly the difference between the amount con-
sumers are willing to pay and the amount they
actually pay. At each iteration of a dynamic pro-
gramming algorithm, the objective would be to
choose policy inputs to markets k,...,N that

maximize the surplus realized by sector sets
k+l,...,N1, given the output quantity and output
price of sector set k. Each iteration is, of
course, eased by the previous iteration. Thus, the
policy for attaining the optimal social surplus can
be determined by optimizing the surplus of suc-
cessively longer subchains of the network.

In some cases the purpose of creating a net-
work model is simply to ascertain the effects of a
particular policy instrument. For example, the
concern may be the effect of increasing the tax on
a commodity in market i on the quantity of a com-
modity exchanged in market j. For a linear model,
these effects can be determined using the sensi-
tivity analysis procedure described in Section 2.5.

Sometimes a policy instrument behaves like a
constraint on the system rather tham as an input.
Examples of this are price ceilings or output
quotas. If constraints are imposed oun individual
markets, these constraints can be "propagated"
forward and backward through a chain-structure
network in a way similar to forward and backward
condition functions. The result of such a con=-
straint propagation is that the new constraints
will reflect both the direct and indirect impacts
created by the set of imposed levels. (For further
discussion of policy analysis for networks in de-
scriptor form, see [45]).

As described in Chapter IV, the propagation
of forward and backward condition functions applies
in the nonlinear case as well as in the linear
case. However, actually performing numerical prop-
agations of the entire nonlinear supply or demand
function may be too complex. In such cases, iter-
ative methods can be an effective means of deter-
nining the equilibrium. Most iterative techniques
involve using the model to update "guesses' on
some or all of the unknown quantities, iteratively
repeating the updating procedure until the updated
guesses are the same as the former guesses, indi-
cating convergence. Although usually applied to
nonlinear systems, iterative techniques are best
examined on linear systems.

Two important results have been demonstrated
involving iterative methods for chain-structure
economic networks that are modeled via the decen-
tralized control approach (Section 7.3). The first
result concerns the comparison of the methods of
simultaneous displacements and alternating dis-
placements. In simultaneous displacements, each
sector set simultaneously updates its responses
based on the responses of the previous iteratiom.
In alternating displacements, the sectors that up-
date responses alternate between the odd-numbered
sector sets and the even-numbered sector sets.

One method will converge to an equilibrium if and
only if the other wéthod converges, however alter=-
nating displacements is twice as efficient as
simultaneous displacements when there is conver-
gence.

A second result concerns the method of suc-
cesgive displacements, where in each cycle price
vectors are successively updated for market O,




market 1, etc., -to market N, and then quantity
vectors are successively updated for market N,

market N-1, etc., to market 0. The issue of in-
terest is whether the coanvergence of this tech-
nique for the network depends on the couvergence
of this technique when applied to one of the chain
of markets, i.e. holding fixed the prices ard
quantities of the other markets. With additional
assumptions oun the A -1 and D, matrices of the -
decentralized cpnttoi oodel , ihe general coun-
vergence of successive displacements for any in-
dividual markat is necessary for general con-
vergence in a chain of markets. The proofs of
these results appear in (45]. ’
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Looped networks of economic systems cam be
expressed in descriptor form, however the cou=-
dition systems will not correspond to supply
functions and demand functions. Looped networks
can be expressed as the interconnection of two
simple networks oriented in opposite directioms.
Thus, if the prices and quantities corresponding
to flows in one of the networks are held fixed,
the remaining flows in the other network will have
partial condition systems of conditiomal supply
and demand fumctions. This observation suggests
an effective procedure for determining the equi-
librium of a network where the reverse-oriented
flows are sparse with respect to the forward-
oriented flows [45].




VIII. SYNTHESIS AND FUTURE RESEARCH

8.1 SYNTHESIS OF PROJECT THEMES

The discussion in Chapter VII describes how
an economic network of markets can be converted to
an equivalent network suitable for a model in de~
scriptor form. This equivalent restructuring can
be applied to many other types of large=-scale net-
works. More importantly, however, the equivalence
of many network models with a model in descriptor
form provides a unifying link between the two
themes of this project: descripcor variable
theory and large-scale optimization.

In a wide sense, many models of large sys-
tems or dynamic systems can be expressed as a
chain of interconnected subsystem models. For
models of economic networks, the subsystems cor-
respond to the sector sets. In the coantext of
discrete dynamic system models, the subsystem
model is the relationships governing the change
of the system over a particular time interval.
Suppose the variables describing the interaction
between two adjacent subsystems are defined as a
descriptor vector. With this interpretation, a
chain of interconnected subsystem models 1is a
model in descriptor form.

- Consider the procedure of spatial dynamic
programming, which applies to systems where a
chain-structure is not immediate. In applying dy-
namic programming to a sequence of subsystems, in-
teraction variables can be identified to make the
optimization more efficient. The interaction
variables at each iteration may he interpreted as
forming the descriptor vectors characterizing the
behavior of the system at particular links. When
expressed in this manner, spatial dynamic pro-
gramming is equivalent to dynamic programming for
descriptor variable systems.

Thus, both descriptor variable theory and
spatial dynamic programming operate on the same
principle: exploitation of the chain~structure of
the model. A system in descriptor form assumes
this chain-structure, and therefore descriptor
variable theory is the appropriate theoretical
framework for any model in this form. Spatial
dynamic programming relies on an efficient se-
quencing of subsystems and identification of cor-
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‘subsystems.

responding interaction parameters, which evokes a
chain-structure to accommodate the dynamic pro-
wramming procedures. Therefore, together de-
scriptor variable theory and spatial dymamic pro~-
gramming form a general approach to the wide class
of large-scale systems that can be efficiently
expressed as a chain of subsystems.

8.2 TFUTURE RESEARCH

Descriptor variable theory provides a con-
venient framework for understanding many of the
standard notions for analyzing dynamic systems, as
illustrated in Section 2.6. The applicatioms in
Chapter II suggest that a descriptor representation
often constitutes a more appropriate formulation
for the study of dynamic systems, even when the sys~
tem is originally in state-space form. Further re-
search in this direction is likely to develop a
comprehensive theory of dynamic systems and identify
new concepts for the study of these systems.

The application of descriptor variable theory
and spatial dynamic programming to different classes
of large-scale systems will not only test the use-
fulness of this approach, but will encourage other
theoretical developments and extension of the ap-
proach. The applications to economic networks and
power systems have been very promising and are
worthy of further development. Additiomal work on
dynamic economic systems and defense systems has
also indicated significant benefits from this ap~
proach. Other applicatioa areas, such as com—
munication systems and transportation networks, are
being explored.

The exploitation of natural structure in the
analysis of a system model provided the major focus
for the research in this project. The results
underscore the importance of recognizing and under-
standing structure. The approach that was developed
here used the paradigm of 2 chain of interconmected
Of -course, this approach will best
suit systems that have or nearly have this structure.
Other paradigms can and should be explored. For
example, systems could be viewed from the standpoint
of a grid of subsystems. By developing approaches
for other important structure paradigms, our abil-
ity to analyze large-scale systems will be enhanced.
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