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Abstract

Shadow removal is a challenging task as it requires the

detection/annotation of shadows as well as semantic under-

standing of the scene. In this paper, we propose an auto-

matic and end-to-end deep neural network (DeshadowNet)

to tackle these problems in a unified manner. DeshadowNet

is designed with a multi-context architecture, where the out-

put shadow matte is predicted by embedding information

from three different perspectives. The first global network

extracts shadow features from a global view. Two levels

of features are derived from the global network and trans-

ferred to two parallel networks. While one extracts the ap-

pearance of the input image, the other one involves seman-

tic understanding for final prediction. These two comple-

mentary networks generate multi-context features to obtain

the shadow matte with fine local details. To evaluate the

performance of the proposed method, we construct the first

large scale benchmark with 3088 image pairs. Extensive

experiments on two publicly available benchmarks and our

large-scale benchmark show that the proposed method per-

forms favorably against several state-of-the-art methods.

1. Introduction

The presence of illumination changes in an image, shad-

ows in particular, have been proved to be one of the main

challenging factors for a variety of computer vision tasks,

such as object detection and tracking [6, 24]. As such, shad-

ow removal aims to produce a high-quality shadow-free im-

age given a single shadow image. According to [3, 31, 21,

1], a shadow image Is can be considered as a pixel-wise

product of a shadow-free image Ins and a shadow matte

Sm (or shadow scale factors).

Is = Sm · Ins, (1)

where the shadow matte Sm represents the illumination at-

tenuation effects caused by the shadow.
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Figure 1: Comparison with existing shadow removal meth-

ods. Existing methods fail to correctly remove the shadow

cast on different semantic regions (i.e., horizontal ground

and vertical trunk).

With Eq. 1, the shadow removal process is transformed

to estimating a shadow matte for an input shadow im-

age. Most existing methods follow this formulation to ad-

dress the shadow removal problem [31, 21, 1, 15, 12, 19].

Notwithstanding the demonstrated success, these methods

share the following three limitations.

Lack of a fully-automatic and end-to-end pipeline.

Existing methods for shadow matte estimation require the

prior information of shadow location. It is either obtained

from shadow detection [15, 19] or user input [31, 1, 14, 12,

34]. However, shadow detection itself is a challenging task.

Conventional methods for shadow detection either lack ro-

bust shadow features [35, 20, 15], or can only be applied to

high-quality images [8, 30]. Due to the limited amount of

training data, recent deep learning based methods [26, 19]

are restricted to small network architectures.

Neglect high level semantic information. Existing

works mainly adopt low-level features (e.g., color ratios

[15, 12] or color statistics [31, 19]) to calculate the shadow

matte. However, the shadow matte is also closely related

to the semantic contents (e.g., geometry and material). As

shown in Fig. 1a to 1c, the shadow matte values on two se-

mantic regions, the horizontal ground and vertical trunk, are

apparently distinct from each other since the light intensities

of these two semantic regions are different. Unfortunately,

exiting methods [1, 15, 12] do not consider this semantic
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Figure 2: The architecture of DeshadowNet. DeshadowNet consists of three cooperative sub-networks: a global localization

network (G-Net), an appearance modeling network (A-Net), and a semantic modeling network (S-Net). These three sub-

networks are marked in different colors.

information, leading to unsatisfied results (Fig. 1d to 1g).

Require specific operation for penumbra regions. S-

ince the content of the shadow matte may differ in umbra

and penumbra regions, previous methods often adopt user-

hints [5, 31] or classification (e.g., a bi-directional search

[12] and thresholding operations [19]) to separate them.

However, automatically identifying umbra and penumbra

regions is difficult, especially for some complex back-

ground or tiny shadows (e.g., shadows of leaves).

In this paper, we aim to explore shadow removal in an

end-to-end and fully automatic framework, to address the

above mentioned problems. In contrast to the convention-

al pipeline that detect shadows, classify umbra/penumbra

regions, and then remove shadows, we unify these steps

into one and directly learn the mapping function between

the shadow image and its shadow matte, which can then be

used to recover a shadow-free image with Eq. 1. To this

end, we propose a new deep neural network for shadow

removal, called DeshadowNet. It involves a multi-context

embedding mechanism, which integrates high-level seman-

tic information, mid-level appearance information and local

image details in the final prediction. The multi-context em-

bedding is implemented by jointly training three networks,

global localization network (G-Net), appearance modeling

network (A-Net), and semantic modeling network (S-Net).

The G-Net extracts shadow feature representation to de-

scribe the global structure and high-level semantic context

of the scene. The A-Net and S-Net acquire the appearance

information from the shallower layer and semantic infor-

mation from the deeper layer of G-Net, respectively, allow-

ing the prediction of fine shadow matte using multi-context

information. The structure of the proposed DeshadowNet

with three sub-networks is shown in Fig. 2.

To evaluate different shadow removal algorithms, we

further construct a new challenging and large scale shad-

ow removal dataset (SRD) 1. It contains 3088 shadow and

shadow-free image pairs.

2. Related work

Existing approaches for shadow removal generally in-

clude two steps: shadow localization and shadow removal.

These methods first locate the shadow regions either by

shadow detection [15, 19] or with user annotations [1, 14,

12, 34]. Two reconstruction algorithms with hand-crafted

features are then designed for removing the detected shad-

ows from the umbra and penumbra regions.

However, shadow detection itself is a challenging task.

Conventional physically based methods can only be ap-

plied to high-quality images, while statistical learning based

methods rely on hand-crafted features [12, 29, 19]. Recent-

ly, Khan et al. [19] and Shen et al. [26] take advantage of

representation learning ability of Convolutional neural net-

works (CNNs) to learn hierarchal features for shadow detec-

tion. Due to the limited amount of training data, these two

deep-based methods are restricted to small network archi-

tectures. In addition, as they apply CNNs in a patch-wise

manner, a global post-processing step is required to pro-

duce consistent predictions (e.g., least-square optimization

in [26] and CRF in [19]). On the contrary, DeshadowNet

has a fully convolutional architecture, which can be trained

end-to-end, pixels-to-pixels, to produce accurate shadow

1Please refer to http://vision.sia.cn/ourteam/

JiandongTian/JiandongTian.html for the SRD dataset.
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Figure 3: An illustration of several captured shadow and shadow-free image pairs in SRD.

mattes.

Even if the shadow regions are determined, the removal

of shadows is still non-trivial. Existing methods remove

shadows either in the gradient domain [9, 10, 23, 21] or the

image intensity domain [1, 15, 12, 19]. Finlayson et al. [9,

10] detect shadow edges by comparing a physically deduced

illumination invariant image with the original RGB image,

and then propose a series of gradient domain based methods

for shadow removal. These gradient based methods only

modify the gradient variation in shadow edges or penumbra

regions, and thus are not applicable for umbra regions with

illumination variation.

On the other hand, intensity domain based shadow re-

moval methods adopt user-hints [5, 31, 1] or classification

[15, 12, 19] to determine the umbra/penumbra regions. Dif-

ferent low-level features are then used to estimate the shad-

ow matte for umbra/penumbra regions respectively. Given

the user annotated shadow regions, Arbel and Hel-Or [1] de-

termine the penumbra regions using Markov Random Field,

and then fit a smooth thin-plate surface model in the shad-

ow regions to produce an approximate shadow matte. Khan

et al. [19] first detect shadows with two separate CNNs,

and then classify the umbra/penumbra regions according to

gradient intensity change. Finally, they propose a Bayesian

formulation to extract the shadow matte. Instead of using

hand-crafted features to estimate the shadow matte, Gryka

et al. [14] propose a Random Forest based method to mod-

el the relationship between shadow image regions and their

shadow matte. Although it is a data-driven method, it re-

quires accurate shadow annotation and an initial guess of

the shadow matte as input. The final prediction is highly

dependent on the initial shadow matte.

Only a few works focus on deriving a shadow-free im-

age in an end-to-end manner. They recover the shadow-free

image by intrinsic image decomposition and preclude the

need of shadow detection [28, 33, 2, 25]. Strictly speaking,

these intrinsic image based methods may not be considered

as shadow removal methods, as they may alter the colors

of the non-shadow regions (see Fig. 1f). In this paper, we

propose a unified multi-context framework to embed the lo-

calization of shadows in shadow matte prediction. The pro-

posed DeshadowNet can preserve the colors of non-shadow

regions well, while removing the shadows (see Fig. 1h).

3. A New Dataset for Shadow Removal – SRD

Although the shadow removal problem has been stud-

ied for decades, publicly available datasets for this purpose

are still limited. Among them, the most widely adopted

shadow removal dataset is [15], which contains only 76

shadow/shadow-free image pairs. To facilitate the evalu-

ation of shadow removal methods, we have constructed a

large-scale dataset called SRD, which contains 3088 shadow

and shadow-free image pairs. To the best of our knowledge,

SRD is the first large scale benchmark for shadow removal.

To construct our dataset, we use a Canon 5D camera with

a tripod and a wireless remote controller for image captur-

ing. We set the manual capture mode with a fixed expo-

sure parameter to capture a shadow image, where the shad-

ow is cast by different objects. We then remove the shad-

ow source to capture the corresponding shadow-free image.

These arrangements minimize the illumination difference

between two captured images.

We enrich the diversity of the proposed dataset in the

following four aspects:

• Illumination: We take the shadow images at different

illumination conditions to include hard and soft shad-

ows in the dataset. Specifically, we capture shadows

in cloudy and sunny days, and at different time of the

day (e.g., dawn, morning, midday, afternoon, dusk).

For example, in Fig. 3, the first two are hard shadow

images and the 3rd to 5th are soft shadow images.

• Scene: We capture shadow images from a variety of

scenes, e.g, parks, campuses, buildings, streets, moun-

tains and beaches.

• Reflectance: We cast shadows on different semantic

objects to obtain different reflectance phenomena. The

6th and 7th images in Fig. 3 show two examples.

• Silhouette: We use occluders of various shapes and

geometries to cast shadows of different silhouettes and

penumbra widths. The 4th and 5th images in Fig. 3

show two examples.

4. Proposed Method

The proposed multi-context embedding deep network,

called DeshadowNet, is shown in Fig. 2. It aims to learn a
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(a) (b) (c) (d) (e) (f) (g)

Figure 4: Visualization of the intermediate results of the proposed network. (a) shows the original shadow images and (g)

shows the shadow mattes obtained from Eq. 1 and the original image pairs. (b) shows some example feature maps of the

Conv3 layer of G-Net that produce (d) via A-Net, which encode appearance information of the shadow regions. (c) show

some example feature maps of the Conv5 layer of G-Net that produce (e) via S-Net, which encode semantic information of

shadow regions. The final predicted shadow mattes (f) embed multi-context information.

mapping function between the shadow image and its shad-

ow matte. In this section, we first discuss the motivation

and architecture of DeshadowNet, and then present the de-

tails of the training procedure.

4.1. Multi­context Convolutional Architecture

Our ideas are that an accurate shadow matte estimation

method needs to understand the image content from a global

perspective and model the precise illumination attenuation

effects with local image details. Hence, in DeshadowNet,

we implement these two ideas by designing three cooper-

ative networks. The first network, G-Net, takes a shadow

image as input and extract shadow feature representation

which describes the global structure and high-level seman-

tic information of the scene. The other two networks, A-

Net and S-Net, acquire the appearance information from the

shallower layer and semantic information from the deeper

layer of G-Net, respectively, facilitating the prediction of

fine shadow matte using multi-context information.

G-Net: Global localization network. G-Net is con-

structed on the basis of VGG16 network [27], which is orig-

inally designed for object recognition. Recent works sug-

gest that CNNs trained with large amount of data on image

classification task, can be well generalized across datasets

and tasks such as semantic segmentation and depth predic-

tion [11, 22, 7]. Thus, we adopt the convolutional layers

of a pre-trained VGG16 model [27] and transfer their fea-

ture representation to the shadow matte prediction task with

fine-tuning.

The VGG16 network contains thirteen 3×3 convolution-

al layers (five convolution blocks) and three fully connected

layers, along with five max-pooling layers and subsampling

layers. These five convolutional groups and spatial poolings

substantially increase the receptive field of the network, and

are thus able to extract the global context and semantic in-

formation of the scene. However, these five max-pooling

layers introduce a stride of 32 pixels in the network, making

the final prediction map coarse. Hence, instead of directly

applying the original VGG16 architecture, we set the pool-

ing stride to 1 in the last two max pooling layers to get a

denser prediction. Except this modification, we further re-

place the fully-connected layers in VGG16 network with a

1×1 convolutional layers [22], followed by a deconvolution

layer (see Fig. 2). These 1 × 1 convolutional layers enable

our network to run in a fully convolutional fashion.

A-Net: Appearance modeling network / S-Net: Se-

mantic modeling network. After extracting the global

shadow features with G-Net, we then design two parallel

and complementary networks (A-Net and S-Net) to predict

a fine shadow matte with multi-context features.

In G-Net, each convolution block is followed by a max-

polling layer, thus each of them have an progressively larg-

er receptive field. The deeper layers of G-Net are good at

capturing high-level semantic context but poor for accurate

localization due to the resulted coarse features. While the

shallower layers, which capture more local appearance in-

formation, cannot inject contextual information into final

prediction. To better localize the shadow regions and pre-

dict fine details for the shadow matte, we further design a

multi-context mechanism for local detail refinement. With

this mechanism, two levels of features are derived from the

G-Net and transferred to the two parallel networks (i.e., A-

Net and S-Net). Specifically, while the A-Net acquires the

appearance information from the shallower layer of G-Net

to help model the appearance of the shadow image with lo-

cal image details, the S-Net extracts the semantic informa-

tion from the deeper layer of G-Net to provide semantic un-

derstanding in the final prediction. These two networks are

then integrated with a convolution layer.

Fig. 4 shows some intermediate results of the proposed

4070



Table 1: The model architecture. It takes a shadow image of resolution 8n × 8n as input and outputs a shadow matte of the

same size, where n is an arbitrary natural number. In this table, we set n = 56 (i.e., input size of 224× 224) for illustration.

Layer convs1 convs2 convs3 convs4 convs5 Decv2-1 Decv3-1

G-Net

# of convs 2 2 3 3 3 1 1

# of channels 64 128 256 512 512 256 256

Filter size 3× 3 3× 3 3× 3 3× 3 3× 3 8× 8 8× 8

Conv. stride 1 1 1 1 1 4 4

Zero-Padding 1 1 1 1 1 2 2

Pool-size 2× 2 2× 2 2× 2 2× 2 2× 2 - -

Pool-stride 2 2 2 1 1 - -

Output size 112× 112 56× 56 28× 28 28× 28 28× 28 112× 112 112× 112

Layer
conv2-1 conv2-2 conv2-3 conv2-4 conv2-5 conv2-6 Decv2-2

(conv3-1) (conv3-2) (conv3-3) (conv3-4) (conv3-5) (conv3-6) (Decv3-2)

A-Net

# of channels 96 64 64 64 64 64 3

Filter size 9× 9 1× 1 5× 5 5× 5 5× 5 5× 5 4× 4

Conv. stride 1 1 1 1 1 1 2

(S-Net)
Zero-Padding 4 - 2 2 2 2 1

Pool-size 3× 3 - - - - - -

Pool-stride 2 - - - - - -

Output size 112× 112 112× 112 112× 112 112× 112 112× 112 112× 112 224× 224

network. By feeding with the mid-level appearance infor-

mation in Fig. 4b, A-Net predicts shadow matte in coarse

scale but helps model the appearance of shadow matte (e.g.,

the color value of the bag and wall). On the other hand, S-

Net predicts shadow matte with the guidance of high-level

semantic context (e.g., semantic objects and shadows in

Fig. 4c). It can predict shadow matte in fine scale (e.g., fine

object boundary in Fig. 4e compared with Fig. 4d). These

predicted intermediate shadow mattes demonstrate that the

convolutional features in the shallower layer and deeper lay-

er are complementary in predicting the final shadow matte.

We will further analyze the effectiveness of different sub-

networks in the experiment section.

To avoid the overfitting problem and achieve an optimal

local minimum, drop-out is applied after each convolution-

al layer, and all the rectified linear Unites (ReLUs) in the

networks are replaced with Parametric Rectified Linear U-

nits (PReLUs) [17]. In contrast to ReLU, the coefficient of

PReLU is adaptively learned and defined as:

p(xi) =

{

xi,

axi,

xi ≥ 0
xi < 0

, (2)

where xi is the input of the activation function p at channel

i, and a is the learned parameter.

4.2. Training

The relationship of a shadow image Is and its shadow

matte Sm is given by Eq. 1. During training, we transform

them into log space as:

log(Is) = log(Sm) + log(Ins) . (3)

Given a shadow and shadow-free image pair, we first cal-

culate the corresponding ground-truth shadow matte Sm ac-

cording to Eq. 3. Then, our goal is to learn a mapping func-

tion that infers the relationship between a shadow image and

its shadow matte as:

Sm = F (Is,Θ), (4)

where Θ represents the learned parameters of the deep net-

work. We adopt the Mean Squared Error (MSE) as the loss

function in the log space to train our model:

L(Θ) =
1

K

K
∑

i=1

∥

∥log(F (Ii
s
,Θ))− log(Si

m
)
∥

∥, (5)

where K is the total number of training samples in a batch.

We minimize the loss using stochastic gradient descent (S-

GD) with back-propagation.

Training strategy. Although the performance improves

significantly with the increase of the network depth, train-

ing a very deep network is a non-trivial task due to the in-

stability of the gradient vanishing/exploidng problems [4]).

In this paper, we adopt the following four strategies for fast

convergence and to prevent overfitting:

1. Multi-stage training strategy. We train DeshadowNet

with two stages. The appearance and semantic streams

(G-Net+A-Net and G-Net+S-Net) are first trained sep-

arately. These two streams are then connected with

a convolution layer, and all three networks are jointly

optimized.

2. Multi-size training strategy. The fully convolutional

fashion of DeshadowNet enables our model to train

on images of resolution 8n × 8n. To inject scale-

invariance to the network [16], we adopt a multi-size

training strategy by feeding images of three sizes:
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Table 2: Quantitative results using RMSE (smaller is better). The original difference between the shadow and shadow-free

images is reported in the third column. The best and second best results are marked in red and blue colors, respectively.

Dataset Different regions Original Guo et al. [15] Yang et al. [33] Gong et al. [12] Gryka et al.[14] Khan et al. [19] Ours

UIUC [15]

Shadow 42 13.9 21.6 11.8 13.9 12.1 9.6

Non-shadow 4.6 5.4 20.3 4.9 7.6 5.1 4.8

All 13.7 7.4 20.6 6.6 9.1 6.8 5.9

LRSS [14]

Shadow 44.45 31.58 23.35 22.27 - - 14.21

Non-shadow 4.1 4.87 19.35 4.39 - - 4.17

All 17.73 13.89 20.70 10.43 - - 7.56

SRD

Shadow 42.38 29.89 23.43 19.58 - - 11.78

Non-shadow 4.56 6.47 22.26 4.92 - - 4.84

All 14.41 12.60 22.57 8.73 - - 6.64

Table 3: Quantitative results using SSIM (larger is better). The original difference between the shadow and shadow-free

image is reported in the third column. The best and second best results are marked in red and blue colors, respectively.

Dataset Different regions Original Guo et al. [15] Yang et al. [33] Gong et al. [12] Gryka et al.[14] Ours

UIUC [15]

Shadow 0.6227 0.9228 0.8757 0.9551 0.9418 0.9751

Non-shadow 0.9861 0.9811 0.9230 0.9839 0.9695 0.9859

All 0.8975 0.9669 0.9114 0.9769 0.9627 0.9832

LRSS [14]

Shadow 0.6194 0.7905 0.8814 0.8723 - 0.9518

Non-shadow 0.9882 0.9813 0.9226 0.9863 - 0.9888

All 0.8637 0.9169 0.9087 0.9478 - 0.9763

SRD

Shadow 0.5403 0.7381 0.8601 0.8695 - 0.9487

Non-shadow 0.9843 0.9685 0.8735 0.9790 - 0.9823

All 0.8687 0.9087 0.8700 0.9509 - 0.9735

coarse scale 64 × 64, medium scale 128 × 128, and

fine scale 224× 224.

3. Data synthesis. To prevent overfitting and improve the

robustness of the network, we pre-train the proposed

method on a large scale synthetic shadow removal

dataset. Similar to [14], we apply computer graph-

ics techniques to synthesize shadow and shadow-free

image pairs. We configure Maya with realistic light

sources to project light on occluder objects, thus cast-

ing shadows on a projection plane. We have rendered

60,000 640× 480 shadow/shadow-free image pairs by

changing the light sources, occluder objects, and pro-

jection planes. We randomly change the shape and the

position of the light source. There are 256 segmented

objects in [13] are used as the occluder objects. Fi-

nally, we collect more than 1000 real images (without

shadows) from the Internet as the projection plane.

4. Data augmentation. We augment the training data with

three different operations: image translations, flipping

and cropping.

Implementation. We have implemented DeshadowNet

using Caffe [18]. All the networks described in this pa-

per are trained and tested on a single NVIDIA Tesla K40m.

The proposed network takes 3 ∼ 5 weeks of training to

converge. The detailed configuration of DeshadowNet is

shown in Table 1. The filter weights in A-Net and S-Net

are initialized with random Gaussian variables (with mean

value µ = 0 and standard deviation σ = 0.001). We set

the momentum to 0.9 and the weight decay to 0.0005 for

training. The learning rate for G-Net is set to 10−5. The

learning rate for the rest of the network is set to 10−4, and

it is progressively decreased during training. In general, the

proposed DeshadowNet is fast, and it takes only 0.3s to re-

cover a shadow-free image of resolution 640× 480.

5. Experiments

In this section, we extensively compare DeshadowNet

with several state-of-the-art shadow removal methods on

the publicly available UIUC dataset [15] and LRSS

dataset [14], as well as on our proposed SRD dataset.

UIUC dataset [15]. It contains 76 shadow and shadow-

free image pairs. We use all these images for testing.

LRSS dataset [14]. It contains 37 image pairs. It is spe-

cially designed to evaluate the performance on soft shad-

ow removal. LRSS mainly contains shadows with diverse

penumbra widths. We use all these images for testing.

SRD dataset. Our new dataset contains 3088 image

pairs. We divide them into two parts randomly: 2680 for

training and the remaining 408 images for testing.

Compared methods. We compare the proposed De-

shadowNet with five state-of-the-arts methods: three au-

tomatic methods [15, 33, 19] and two interactive methods

[12, 14] (requiring annotations of shadow and non-shadow
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(a)

Image GT Guo [15] Yang [33] Gong [12] Ours

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5: Shadow removal results of different methods on images with different types of shadows. The RMSE errors with

respect to different regions (shadow, non-shadow, and the entire image) are marked at the top-left hand corner of each image.

regions). For fair comparison, we use either the publicly

available source codes provided by the authors [15, 33, 12]

or the quantitative/quanlitative results reported in the pa-

pers [19, 14] 2. Note that [19] and [14] only report their

performances on the UIUC dataset [15].

5.1. Performance Comparisons

Following the setting in [15] and [32], we adopt the root

mean square error (RMSE) and structure similarity index

(SSIM) in the LAB color space as evaluation metrics. While

RMSE directly measures the per-pixel error between the re-

covered images and the ground truth images, SSIM con-

2The shadow-free results of [14] are obtained from their project web-

site: http://visual.cs.ucl.ac.uk/pubs/softshadows/.

siders structural information, which is more consistent with

human visual perception.

Table 2 and 3 reports the RMSE and SSIM values, re-

spectively, of different shadow removal methods on the

UIUC dataset [15], LRSS dataset [14], and the proposed

SRD test dataset. We evaluate the performance of different

methods on the shadow regions, non-shadow regions, and

the whole image. We can see that the proposed Deshad-

owNet achieves the best performance among all the com-

pared methods and datasets.

In Fig. 5, we show some qualitatively shadow removal

results from different methods, marked with their RMSE er-

rors with respect to different regions (shadow, non-shadow,

and whole image). The images in the first three rows
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Table 4: The effectiveness of different sub-networks in De-

shadowNet (measured by RMSE on the UIUC dataset [15]).

Regions S-Net G-Net+A-Net G-Net+S-Net DeshadowNet

Shadow 14.2 11.85 10.3 9.6

Non-shadow 5.85 5.04 4.82 4.8

All 7.90 6.7 6.2 5.9

(Fig. 5a, 5b, and 5c) contain shadows cast on different se-

mantic regions. Both Guo [15] and Gong [12] may perform

well on a specific semantic region, but fail to remove the

shadows on others. For example, in Fig. 5b, Guo [15] suc-

cessfully removes the shadow on the ground, but fails on

the box surface. As a contrast, the proposed DeshadowNet

works well on these situations by integrating multi-context

information and local image details.

The images in Fig. 5d and 5e contain shadows of widely

varying penumbra widths. It is difficult for existing meth-

ods [15, 12] to detect these shadows accurately. As shown

in Fig. 5d, Guo [15] fails to detect the soft shadow. Even

though the shadow is detected perfectly in [12] (through

user annotation), the recovery of the shadow-free image is

still unsatisfactory, due to the difficulty in automatically i-

dentifying umbra and penumbra regions from this image.

Yang [33] can directly obtain a shadow-free image without

shadow detection, but it also alters the colors of the non-

shadow regions. Fig. 5f and 5g show results of different

methods on more complicated situations, i.e., shadow cast

on multiple semantic regions (e.g., brick, wall, and teddy

bear) in Fig. 5f and the highly complex shadow in Fig. 5g.

These quantitative and qualitative comparison results

demonstrate that the proposed DeshadowNet can effectively

recover high-quality shadow-free images from shadow im-

ages, even though with shadows cast on different semantic

regions.

5.2. Component Analysis

Our DeshadowNet consists of three sub-networks, i.e.,

G-Net, A-Net, and S-Net. To further analyze the effec-

tiveness and necessity of different sub-networks, we have

trained three variant models of DeshadowNet and conduct-

ed a series of experiments on the UIUC shadow dataset [15].

These three variant models are: a model using S-Net only

(or A-Net, since without the feature map of G-Net, A-Net

is identical to S-Net in architecture), a model using G-Net

and A-Net, and a model using G-Net and S-Net.

Table 4 shows the shadow removal performances of these

three models on the UIUC dataset [15], measured in RMSE.

We can see that none of the three models perform better than

DeshadowNet. When removing G-Net, S-Net alone has rel-

ative poor performance and the RMSE error on the shad-

ow regions reaches 14.2, compared with 10.3 by G-Net+S-

Net. This demonstrates the effectiveness of the embedding

mechanism in our network, where G-Net provides the ap-

pearance information and semantic context for the A-Net

and S-Net, respectively.

Fig. 6 qualitatively compares these three models. Feed-

ing with high-level semantic context and local image de-

tails, the G-Net+S-Net predicts more accurate shadow mat-

te, as shown in Fig. 6d. On the other hand, G-Net+A-Net

combines local image details with the mid-level appearance

information from G-Net, predicts shadow matte in coarse

scale but helps model the appearance of shadow matte (i.e.,

Fig. 6c obtains more accurate values in shadow matte than

Fig. 6d but coarse segmentation). Thus in DeshadowNet,

these multiple contextual information is incorporated for

fine and accurate shadow matte prediction.

(a) Shadow (b) S-Net (c) G+A (d) G+S (e) Final (f) Result

Figure 6: The effectiveness of different sub-networks in De-

shadowNet. From left to right: (a) shadow images, shad-

ow mattes predicted by (b) S-Net, (c) G-Net+A-Net, (d)

G-Net+S-Net, and (f) DeshadowNet; (g) the final shadow

removal results by DeshadowNet.

6. Conclusion

In this paper, we have proposed an end-to-end Deshad-

owNet to recover a shadow-free image from a single shad-

ow image. Unlike the conventional pipeline that requires

shadow detection or user annotations, and removes shadows

with hand-crafted features, DeshadowNet unifies these step-

s into one and directly learns the mapping function between

the shadow image and its shadow matte. It does not require

a separate shadow detection step nor any post-processing

refinement step. Thus, DeshadowNet is adaptive to shad-

ows with widely varying penumbra widths, and works well

for shadows cast on different semantic regions.

The proposed multi-context embedding network, which

integrates both high-level semantic context, mid-level ap-

pearance information and local image details, provides new

insight for the research on low-level computer vision tasks.

In the future, we will adapt and extend this multi-context

embedding network to handle other complex illumination

variations tasks (e.g., highlight, rain and snow removal).
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