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Data is foundational to high-quality artificial intelligence (AI). Given that a substantial amount of clinically relevant information is

embedded in unstructured data, natural language processing (NLP) plays an essential role in extracting valuable information that

can benefit decision making, administration reporting, and research. Here, we share several desiderata pertaining to development

and usage of NLP systems, derived from two decades of experience implementing clinical NLP at the Mayo Clinic, to inform the

healthcare AI community. Using a framework, we developed as an example implementation, the desiderata emphasize the

importance of a user-friendly platform, efficient collection of domain expert inputs, seamless integration with clinical data, and a

highly scalable computing infrastructure.
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INTRODUCTION—NATURAL LANGUAGE PROCESSING IN
DIGITAL MEDICINE

The furor surrounding artificial intelligence (AI) in healthcare has
led to rapid advancement in digital medicine across multiple
clinical specialties, including intensive care,1 cardiovascular
medicine,2 neurology,3 oncology,4 and ophthalmology5; primarily
enabled by big data generated through the digitization of
healthcare. As a majority of clinical information in digitized clinical
data is embedded within clinical narratives, unlocking such
information computationally through natural language processing
(NLP) is of paramount value to advancing healthcare AI.6

NLP approaches can generally be divided into either symbolic
or statistical techniques. A recent review7 has shown that symbolic
techniques predominate in clinical NLP, one major reason being
that dictionary or rule-based methodologies suffice to meet the
information needs of many clinical applications,8,9 whereas
statistical NLP requires labor-intensive production of a set of
labeled examples. Another consideration is the low error tolerance
for clinical use cases. Tuning accuracy in symbolic systems is
transparent and tractable via resource updates (e.g., terms or
filters). This advantage is particularly applicable to clinical use
cases, where the targets to extract are well-defined within a self-
contained application, and authoring interpretable rules reduces
the labor in massive data annotation especially where expert time
is restricted. Unlike symbolic methods, conclusively fixing errors in
statistical systems is difficult without incorporating symbolic
techniques, such as post-processing rules. For instance, with
symbolic NLP, detecting the state code “CA” erroneously as cancer
is relatively straightforward to fix by adding contextual rules (e.g.,
look ahead for zip code or look behind for city name). Fixing this
problem in statistical NLP systems would include time-consuming
productions of training annotations, feature engineering, and
retraining—all with no guarantee of successful resolution.
For end-to-end healthcare AI applications, NLP primarily serves

as a method for information extraction rather than as a full-

fledged standalone solution,10,11 i.e., NLP output is typically taken
as part of a larger input set, or used to systematically extract
training target values, for downstream AI models.
Despite its prevalence in clinical use cases, symbolic NLP lacks

portability12 due to variations in documentation practices across
clinicians. It follows that if the NLP component is not portable,
then any AI that relies on it for feature extraction will also face
similar issues. It is therefore desirable to address these issues, as
they present a significant barrier to healthcare AI development
and adoption.

DESIDERATA FOR THE IMPLEMENTATION OF AN NLP
DEVELOPMENT AND DELIVERY PLATFORM

Here, we present several recommendations for developing NLP
toolsets that were derived from difficulties encountered, while
developing clinical NLP at the Mayo Clinic.

Desideratum I: To innovate, domain expertise must be collected
and preserved

In many of our translational projects, we observed that the
primary bottleneck in NLP development for healthcare AI was the
high time and resource cost. Specifically, domain knowledge is
necessary to successfully navigate clinical narratives, necessitating
engagement of expensive clinical expertise. NLP definitions
created from domain expertise should therefore be preserved
and reused so as to reduce duplicate labor and accelerate
innovation.
Central storage of this domain expertise has an additional

benefit in that it allows for large-scale analysis. The limited
portability of symbolic systems fundamentally stems from each
clinical NLP project, presenting a single-perspective, dataset
specific, definition of clinical concepts. We believe a crowd-
sourcing approach can be used to resolve this issue. Having a
multitude of expert perspectives for each concept allows
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downstream applications to learn from hundreds of different

semantic views. Any target use case can then leverage the

custom-weighted semantics of such views, bridging the portability

gap across projects. To successfully implement this paradigm, the

NLP definitions must be collected into a central location from

which the embedded clinical domain knowledge can be

harnessed across many projects.

Desideratum II: To facilitate, toolsets should engage and empower
domain experts

To collect domain expertise, experts must be incentivized to utilize
the centralized platform. A common criticism of many publicly
available NLP pipelines is that they are difficult to use and

customize,13 particularly without NLP expertise. Clinical expertise is
however held by clinicians, who do not typically have this expertise.
For many of our projects, this disparity caused inefficiency by

requiring a middleman to handle NLP development.8,11,14–17 To
facilitate adoption and development, a clinical NLP platform should
be easily customizable via a user-friendly front-end.
Given the known limitations of statistical methods, we observed

that our collaborating clinicians and scientists have predominantly
preferred rule-based NLP systems for integration into their

analytics pipelines8,11,14,15,18 due to the relative ease of customiza-
tion for improving information extraction performance: a pre-
ference that should optimally also be reflected in clinical NLP
system implementations to incentivize usage. Here, we emphasize

the NLP tasks that benefit most from directly interacting and
soliciting clinical expert input, as is the case for concept extraction.
For lower level linguistic tasks, such as tokenization and sentence

chunking, statistical models can still be a decent option especially
when adequate training data is available.

Desideratum III: To accelerate, NLP platforms should be responsive
and scalable

The amount of data needed to successfully develop healthcare AI
can be a bottleneck, as we found that many of our projects involved
datasets that would take months to process per iteration. Additional
complications arise when these projects move out of development
into clinical care, where near-instantaneous responsiveness is
expected. In the general domain, this is handled by leveraging
horizontal scaling and parallel computing, which, while beginning to
be employed for clinical research and operations,19–21 remains
largely inaccessible to casual end users.
To address challenges intrinsic to large data needs, clinical NLP

infrastructure should (a) be developed with big data capabilities.
Aside from operational throughput, scalability would naturally
benefit any research, involving statistical power. Loading data into
a big data platform and selecting only the desired data for
processing are, however, challenging tasks.22 NLP solutions should
(b) ideally integrate with existing EHR data stores on big data
infrastructure to remove manual selection, retrieval, and loading of
an impractically large set of documents prior to execution. In line
with the prior desiderata, cohort definitions utilizing these
integrations should be definable via an end user-friendly front-end.

IN PURSUIT OF THE DESIDERATA—MAYO CLINIC ENTERPRISE
NLP PLATFORM TO ACCELERATE CLINICAL NLP AND CROWD-
SOURCE KNOWLEDGE ENGINEERING

Here, we present NLP as a Service (NLPaaS), an example
implementation of these desiderata as done at the Mayo Clinic.
An NLP task can be defined as an amalgamation of four

components, which we will refer to throughout this section:

Projects: Defines what to extract
Cohorts: Defines what data to use

Fig. 1 NLPaaS architecture diagram.
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Resources: User-customizable artifacts for project or cohort
definitions
Jobs: Executing a project on a cohort to produce NLP results

An overview of the platform is shown in Fig. 1, and is presented
in detail in the ensuing sections.

Backend—utilizing big data platforms to support high-throughput
NLP (Desideratum III)

The backend performs the computation involved with an NLP
task, while handling the large datasets involved in a distributed
manner to enable responsive computation within reasonable
timeframes.
To address scalability and responsiveness, the implementation

presented here was built on top of the Hortonworks Data
Platform,23 a distribution of the Hadoop ecosystem which
provides a software framework for users to distribute computa-
tional (via a paradigm termed MapReduce) and storage (via the
Hadoop File System) tasks across a cluster of computing nodes.
To support responsive document search and retrieval in a

distributed environment, we used Elasticsearch (ES; an open-
source distributed search engine) as the document source. The
framework leveraged existing institutional infrastructure17 that
produced an ES document store updated in near-real-time that
contains all narratives and associated metadata generated in the
clinical practice.
Storing these documents in ES in a standardized format with

consistent metadata keys enabled high-throughput retrieval and
simplified NLP pipeline integration. Using the ES-Hadoop library,24

documents corresponding to any arbitrary cohort definition can
be retrieved to populate a Spark25 (an in-memory implementation
of the MapReduce paradigm) dataset, which is then consumed by
the NLP component.
The NLP component extends MedTagger,26 a rule-based NLP

engine built on the UIMA framework.27 To support distributed
execution, we extended this pipeline by encapsulating it as a
Spark mapping operation, with a document collection as input,
and the set of NLP annotations and metadata extracted from the
documents as output. Pseudocode for the mapping function can
be found in Supplementary Methods.
To enable customizability without requiring separate software

packages for each job, MedTagger was modified to retrieve its
project definition from middleware as opposed to using
embedded or file-based resources.
The large volume of input data being processed in parallel

results in output annotations of high velocity and volume. While
traditional relational database management systems (RDBMS) will
have difficulty handling this, it is still desirable to store these
annotations in an SQL accessible format, as it is both computa-
tionally accessible and traditionally used for many data science
pipelines to handle and analyze data sets.
The output is thus written to Apache Hive,28 an implementation

of a data warehouse that can be queried using SQL in a
distributed manner, and is therefore capable of handling the
large volume of data being generated.
Job resource allocation and scheduling (i.e., load balancing

across the cluster and determining which machines to use) is
handled by Yet Another Resource Negotiator (YARN),29 while the
actual job configuration and subsequent call to YARN is handled
through the Livy REST API.
To run a job, the corresponding cohort definition is first

retrieved and used to determine the number of documents
involved, from which the amount of computational resources to
allocate is derived. This information is then sent alongside the
identifiers of the resources associated with the job to Livy to
initiate NLP execution.

Middleware—programmatic access to centralized resource and
job management (Desideratum I)

Middleware, implemented using Spring Boot (https://spring.io/),
supplies a centralized repository for NLP artifacts produced via
clinical expertise and bridges users to the backend by providing a
RESTful API for resource and job management, including creation,

editing, and deletion. It also supplies the backend with these user-
defined resources. A SQL database was used as storage for
persistence of resource and job definitions.
Beyond resource and job management, middleware is ideal to

handle auditing to comply with data protection standards, as it is

the gateway through which data access occurs. All REST calls and
associated metadata, including the date/time, user, and request
content, were logged.

Front-end—an user-friendly interface for self-service NLP
functionality (Desideratum II)

Middleware helps facilitate computational access to NLP manage-
ment and execution, but does little to improve the end user

experience and to incentivize clinician participation and usage. As
such, a graphical user interface (GUI) built using the Java Swing30

framework was implemented to encapsulate the functionality
provided by middleware in a user-accessible manner.
Each project defines what to extract from text, as well as how to

determine the semantic context of extracted items, e.g., whether it

is negated, a historical mention, who the subject is, etc. The self-
service layer also functions as a crowd-sourcing proxy that
amasses diverse user perspectives and routes them to middle-

ware’s knowledge repository.
The GUI lists the user’s projects, and allows projects to be

defined and modified; allowing clinicians to create groups of
textual patterns that together represent some normalized concept
(Fig. 2a), and define the document types and sections that contain
such concepts. It also allows users to fine-tune the ConText31

algorithm that is used by MedTagger for semantic context
detection, although a ruleset that has been found to have a high
performance on clinical narratives is loaded by default. The GUI
also allows users to arbitrarily define the cohort to be used (Fig.

2b). Fields that can be defined include demographic information,
such as the record numbers, start, and end dates, of a set of
patients, as well as document level information, such as the

document type, originating hospital service, or radiological exam
modality and type.
Upon selection of both a project and a cohort, users are

prompted to initiate a job. Middleware is triggered to schedule a
job with the current project and cohort definitions. Job manage-
ment (listing, progress, deletion, and retrieving results from jobs)

is also made available in the GUI.

TRIALING NLPAAS AT THE MAYO CLINIC

To test the NLPaaS platform, we solicited usage for 61 unique
projects relating to clinical AI efforts at the Mayo Clinic with an
average cohort size of 6.6 million documents from 01 May 2019

through 30 September 2019. There were 269 distinct clinical
concepts defined in these projects.
Based on audit logs from middleware during the specified time

period, an average of 256 executor threads were used for job
execution (16 nodes × 16 cores), and on average a project

required 3.9 h of cluster computation, equivalent to 247.9 h of
continuous computation on a standard quad-core workstation.
Please refer to Table 1 for details.
Here, we highlight two projects from differing clinical settings

that utilized NLPaaS.
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Identification of patients with cardiac sarcoidosis

Cardiac sarcoidosis is a rare disease where clumps of white blood
cells form in heart tissue. Diagnosis is elusive and commonly made
in a probable or presumptive manner based on clinical and
imaging criteria, which must be assembled via chart review.

Because of these difficulties and the accompanying inconsistency
between different abstractors, computational automation of this

process was desired.
As much of the required information is in unstructured text,

NLPaaS was used by a cardiologist to identify relevant concepts,

Fig. 2 The NLPaaS clinical concept and cohort definition interfaces. Clinical concept definition interface a and cohort definition interface b.

A. Wen et al.

4

npj Digital Medicine (2019)   130 Scripps Research Translational Institute



which led to the definition of six clinical concepts to identify

patients with cardiac sarcoidosis.
Users expressed that NLPaaS was very intuitive to use, after they

received a 15min in-person tutorial and a 13-page manual for
reference. Additionally, the analysis-friendly structured format of
the output allowing for out-of-the-box filtering of the data
according to the user’s needs was indicated to be a major

advantage over other toolsets.
The feedback however also indicated that identification of

exactly what constituted any given clinical concept required
multiple iterations of trial-and-error, and that semiautonomous
rule generation based on user input was desirable.

Identification of silent brain infarction events

Silent brain infarctions (SBIs), brain lesions presumed to be due to
vascular occlusion, are commonly detected as incidental findings in
patients without clinical manifestations of stroke via neuroima-
ging.32,33 Despite serious consequences and high prevalence,

identification of SBI events is challenging as no overt symptoms
are presented and the screening required for detection is nonroutine,
resulting in an absence of diagnoses in structured data.32–34

Descriptions of these events are frequently documented in
radiology reports as text, rendering NLPaaS an ideal tool to assist
in identification of SBI cases. Through iterative refinement

conducted by a neurologist and neuroradiologist, 36 SBI-related
terms were generated and grouped into three semantic
concepts.16

User feedback indicated that NLPaaS was easily adoptable and
usable due to being distributed as a standalone executable with

easy-to-follow instructions. The integration of multiple data
sources (e.g., neuroimaging reports and clinical notes) substan-
tially reduced the effort of data collection and preprocessing.

DISCUSSION

It is important to note that the NLPaaS platform is only one of
many possible implementations representing these desiderata.
Indeed, a growing number of projects within the community

independently manifest some of these desiderata: from end user
accessibility,35 to high-throughput NLP,36 to knowledge collection
and aggregation.37 These echoes corroborated that the summar-

ized principles did not come out of vacuum. Additionally, there are
additional factors, such as staffing, infrastructure, and budgeting
to consider but were intentionally left outside our planned scope.
While promoting convergence toward the desiderata, we should

bear in mind that implementations will naturally vary between
institutions due to existing workflows and infrastructure. Similarly,
the presented performance metrics should only be used to gauge
the potential gains from deploying big data technologies, but not

to naively endorse the solution’s performance after following
these desiderata.
To that end, we present the NLPaaS platform here as it was

implemented at the Mayo Clinic for two reasons: (1) to
demonstrate the benefits of adopting these desiderata, and (2)

to provide an implementation reference.
From the pilot phase, we demonstrated that NLPaaS was found

to be useful and sufficiently intuitive to attract clinician users,
which is vital to successfully crowd-source knowledge. A set of 269
distinct clinical concepts covering a wide range of clinical
specialties being produced from the 61 projects demonstrates

the potential of such a centralized NLP platform to collect and
crowd-source domain knowledge at a large scale.
Our success in engaging users from numerous projects within a

five month timeframe is testament to the benefits of following
these desiderata, and the number of unique clinical concepts

collected in middleware during this pilot period suggested that
our automated collection of domain knowledge to be working.
In addition, we demonstrated the utility of implementing

NLPaaS on a big data platform, allowing for a greater number of
tuning iterations and shorter cycles of NLP development. Such
efficiency strongly incentivized usage, especially in situations with

limited funding. Had the pilot projects been done on standard
quad-core workstations, an average of 247.9 h of execution per
project would have been needed, instead of a mere 3.9 h.
Despite these successes, a tradeoff was made for ease-of-use:

several advanced NLP subtasks, such as dependency parsing, are
not currently accessible. In the future, we plan to enable an

advanced features portion of the GUI that leverages UIMA’s
inherent modularity to customize these functions.
Formal evaluation of crowd sourcing for semantic portability

was deferred, as the existing projects have not yet attained a
sufficient number of converging concepts for a proper evaluation.

Future work will also include a formal satisfaction survey to record
detailed user feedback.

CONCLUSION

Feature extraction via NLP is critical for successful healthcare AI.
Despite this, current clinical NLP pipelines are difficult to use, scale,

and customize. Additionally, because NLP tends to be a feature
extraction method rather than standalone, there is a tendency
towards symbolic systems that are easier to adopt and use, but

lack portability.
In this paper, we have outlined several desiderata addressing

these limitations for consideration when designing NLP platforms.
We also presented the implementation, successes, and limitations
of a platform built using these principles at the Mayo Clinic.

Table 1. NLPaaS pilot usage metrics from 01 May 2019 through 30

September 2019—cluster statistics and resulting workstation

estimates are determined based on a calculated average of 256

executor threads (16 executor nodes × 16 cores).

Metric Name Value

Number of projects 61.0

Number of jobs 246.0

Number of pilot users 13.0

Number of unique concepts
(across all projects)

269.0

Average number of unique concepts
per project

5.0

Average number of documents per job 6,624,651.1

Average number of jobs ran per project 4.0

Average job runtime (cluster) 1.0 h

Average project runtime (cluster; avg job
runtime × avg number of jobs per project)

3.9 h

Average document throughput (cluster) 6,896,784.1 documents
per hour

Total job runtime (cluster) 236.3 h (9.8 days)

Estimated equivalent average job runtime
(quad-core workstation)

61.5 h (2.6 days)

Estimated equivalent average project
runtime (quad-core workstation)

247.9 h (10.3 days)

Estimated equivalent total job runtime
(quad-core workstation)

15,122.8 h (630.1 days)
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DATA AVAILABILITY

Middleware audit logs are not publicly available due to privacy and security concerns,

and would be difficult to distribute to researchers not engaged in IRB-approved

collaborations with the Mayo Clinic.

CODE AVAILABILITY

All software components as utilized in the example implementation of this platform

are open-source projects: MedTagger can be found at https://github.com/OHNLP/

MedTagger, the elastic stack can be found at (distributable binary): https://www.

elastic.co/ or (source code): https://github.com/elastic. All other components can be

found as top-level Apache projects.
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