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Design-adaptive Nonparametric Regression 

JlANQlNG FAN* 

In this article we study the method of nonparametric regression based on a weighted local linear regression. This method has 
advantages over other popular kernel methods. Moreover. such a regression procedure has the ability of design adaptation: It adapts 
to both random and fixed designs, to both highly clustered and nearly uniform designs, and even to both interior and boundary 
points. It is shown that the local linear regression smoothers have high asymptotic efficiency (i.e.. can be 100% with a suitable choice 
of kernel and bandwidth) among all possible linear smoothers, including those produced by kernel. orthogonal series, and spline 
methods. The finite sample property of the local linear regression smoother is illustrated via simulation studies. Nonparametric 
regression is frequently used to explore the association between covariates and responses. There are many versions of kernel regression 
smoothers. Some estimators are not good for random designs, such as in observational studies, and others are not good for nonequispaced 
designs. Furthermore, most nonparametric regression smoothers have "boundary effects" and require modifications at boundary 
points. However, the local linear regression smoothers do not share these disadvantages. They adapt to almost all regression settings 
and do not require any modifications even at boundarq. Besides. this method has higher efficiency than other traditional nonpararnetric 
regression methods. 

KEY WORDS: Boundary effects: Kernel estimator: Linear smoother: Local linear regression: Minimax efficiency 

1. INTRODUCTION 

Consider bivariate data that can be thought of as a random 
sample from a certain population. It is common practice to 
study the association between covariates and responses via 
regression analysis. Nonparametric regression provides a 
useful explanatory and diagnostic tool for this purpose. See 
Eubank (1988), Hardle (1990), and Muller (1988) for many 
examples of this and good introductions to the general subject 
area. 

Let (XI ,  YI ), . . . , (X,,, Y,,) be a random sample from a 
population having a density f'( x, y) . Let fx( x)be the mar- 
ginal density of X .  Denote the regression function by m ( x )  
= E(Y I X = x )  and the conditional variance function by 
a2(x)= var(Y I X = x) .  Several methods have been proposed 
for estimating m ( x )  : kernel, spline. and orthogonal series 
methods. Among these are two popular kernel methods pro- 
posed by Gasser and Miiller (1979), Nadaraya (1964), and 
Watson ( 1964). With K being a kernel and h, being a band- 
width, Table 1 summarizes the asymptotic behavior of the 
Nadaraya-Watson estimator (3.4), the Gasser-Muller esti- 
mator (3 .5 ) , and the local linear (regression) smoother (2.2) 
to be introduced in Section 2. 

The bias of the Nadaraya-Watson estimator depends on 
the intrinsic part m" interplaying with the artifact 
m!f f'x /j;i due to the local constant fit. Keeping m"(x) fixed, 
we first remark that in the highly clustered design where 
1.f; ( x ) /  fx( x) 1 is large, the bias of the Nadaraya-Watson 

estimator is large. Thus this estimator cannot adapt to highly 
clustered designs. Note also that when I ml(x )1 is large, so 
is the bias of that estimator. Thus, even in the situation of 
linear regression m(x )  = a + bx with a large coefficient b. 
the bias of the estimator is also large. In other words the 
Nadaraya-Watson estimator is not good at testing linearity. 
See Chu and Marron (1991) for further discussion. 

For random designs, the Gasser-Muller estimator has an 
asymptotic variance 1.5 times as large as that of the Nada- 
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raya-Watson estimator (Chu and Marron 199 1; Mack ana 
Muller 1988). On the other hand the bias of the Gasser- 
Muller estimator is simpler; it does not share the drawbacks 
mentioned in the last paragraph. In other words the bias of 
the Gasser-Muller estimator is superior to that of the Na- 
daraya-Watson estimator. 

Can one find an estimator that overcomes the disadvan- 
tages of these kernel methods? We introduce in Section 2 a 
design-adaptive regression method based on a weighted local 
linear regression that repairs the drawbacks of the two pop- 
ular kernel smoothers (see Table 1). It will be shown that 
such a method adapts to various design densities, to both 
fixed and random designs, and to both interior and boundary 
points. Because of these adaptations, we sometimes refer to 
it as a design-adaptive regression estimator. 

To gain an intuition on the benefits of the local linear 
regression smoother, consider Figures 1 and 2. Here the op- 
timal bandwidths are used in computing pointwise asymp- 
totic mean squared errors (MSE's). In Figure 1 .a, the MSE 
for the local linear regression smoother is the smallest, and 
the Nadaraya-Watson estimator performs better than the 
Gasser-Muller estimator in a region close to 0,and performs 
worse in the other region. The performance ofthe Nadaraya- 
Watson estimator worsens in the case X = (the quantity 
fk(x) / J ;  ( x )  = 1/ X is twice as large as the first case). It can 
be seen that the performance of the Nadaraya-Watson es-
timator worsens as x increases, because 1 ml(x )1 becomes 
larger. A similar phenomenon is illustrated in Figure 2. The 
reason that the Nadaraya-Watson estimators worsens for 
large I x 1 is that I f  f'x (x)/fx( x )  1 increases. It will be shown 
that the Gasser-Muller estimator has an asymptotic relative 
efficiency of 66.7%. Thus, the relative efficiency of the Na- 
daraya-Watson estimator is much less than 66.7% in Figure 
1 .b and 2.b. 

The local linear smoother not only is superior to the two 
popular kernel regression estimators. but also i q  the best 
among all linear smoothers, including those produced by 
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Table 1. Pointwise Bias and Variance of Kernel Regression Smoothers 

Method Bias Variance 

Nadaraya-Watson 

Gasser-Muller 

Local linear smoother im8 ' (x )Jz u 2 ~ ( u )duh: 

orthogonal series and spline methods. It will be shown in 
Section 4 that the best local linear regression smoother has 
100% efficiency among all linear smoothers in a minimax 

Figure 1. The Square Root of Pointwise Asymptotic MSE for the 
Regression Model Y = X - 2X + .5c With Sample Size n = 100 and 
the Covariate X Distributed Exponentially With Mean (a) X = f and (b) X 
- 1- -,. The solid curve represents the MSE of the Nadaraya-Watson esti- 

mator, the dotted curve represents the MSE of the Gasser-MUller estimator, 
and the dashed curve represents the MSE of the local linear regression 
smoother. 

sense. Moreover, Fan (in press) showed that it has a high 
minimax efficiency among all possible estimators, including 
nonlinear smoothers such as median regression. See also 

-0.4 -0.2 0.0 0.2 0.4 

X 

(b)  

Figure 2. The Square Root of Pointwise Asymptotic MSE for the 
Regression Model Y = sin (3x /4)  + .3c With Sample Size n = 100 and 
the Covariate X Distributed as (a) X - N (0, 1) and (b) X - N(0, .25'). 
The solid curve represents the MSE of the Nadaraya-Watson estimator, 
the dotted curve represents the MSE of the Gasser-Muller estimator, and 
the dashed curve represents the MSE of the local linear regression 
smoother. 
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Donoho and Liu (1991) for more discussion on minimax 
theory. 

We illustrate the finite sample behavior of the local linear 
regression smoother via simulation studies. It turns out in 
Section 5 that the two popular kernel smoothers suffer low 
relative efficiency. Even in the uniform design case, one can 
still gain by using the local linear regression smoother, even 
though its asymptotic result is the same as the Nadaraya-
Watson estimator. 

2. LOCAL LINEAR REGRESSION 

Suppose that the second derivative of m ( x ) exists. In a 
small neighborhood of a point x ,  m ( y )- m ( x )+ m l ( x ) ( y  
- x )  = a + b ( y- x ) . Thus the problem of estimating m ( x )  
is equivalent to a local linear regression problem: estimating 
the intercept a .  Now consider a weighted (local) linear 
regression: finding a and b to minimize 

Let â  and 8 be the solution to the weighted least squares 
problem (2.1).Simple calculation yields 

where w, is defined by (2.3).Thus we define the local linear 
regression smoother by 

(2.2) 
I 

with 

where 

This idea is an extension of Stone (1977),who used a 
kernel function K ( x )= 4 1 and was studied by Cleve-
land (1979),Fan (in press), Lejeune ( 1  985),Miiller (1987),  
and Tsybakov (1986).Note that & ( x ) is a weighted average 
of the responses and is called a linear smoother in the lit-
erature. The intuition at the beginning of this section suggests 
that 6 estimates m l ( x ) .Discussions on the behavior o f 8  are 
beyond the scope of this article. 

The bandwidth h, can be chosen either subjectively by 
data analysts or objectively by data. A frequently used band-
width selection technique is the cross-validation method 
(Stone 1977),which chooses h, to minimize 

where &-,( .) is the regression estimator (2.2),without using 
the jth observation (X,, Y , ) . An alternative method is the 
plug-in approach (Hall, Sheather, Jones, and Marron 199 l ) ,  
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which offers a faster rate of convergence in the density es-
timation setting. 

3. ASYMPTOTIC PROPERTIES 

Let ( X I ,Y1), . . . , (X, ,  Y,) be a random sample from a 
population ( x ,  y ) with regression function m ( x )= E(Y I X 
= x ) ,We need the following conditions: 

1. The regression function m ( x )has a bounded and con-
tinuous second derivative. 

2. The conditional variance a 2 ( x )= var(Y I X = x )  is 
bounded and continuous. 

3. The marginal densityf, of the covariate X is continuous 
and bounded away from the zero in an interval ( a o ,bo). 

4. The kernel function K is a bounded density function 
with SFmx K ( x )  d x  = 0 and S_", x 4 K ( x )d x  < a. 

In the sequel we always denote 

a a 

K 2 ( u )du.CK = J-=U ' K ( U )  d u ,  dn = lm 
We state the following pointwise and global properties of the 
local linear regression smoother and omit their proofs. 

Theorem 1. Under Conditions 1-4, if h, -t 0 and 
nh,  -t co, then for x E ( a o , bo) estimator (2.2) has the 
conditional MSE 

- m ( x ) ) 2 i X l y  . . Xnl 
1 


= - (c,m"(x))'hfi + A* + op

4 nh, fx( x )  

Theorem 2. Under the conditions of Theorem 1, the 

weighted MISE is given by 

a 
-- J ( m " ( ~ ) ) ~ w ~ ( x )dxh: 

4 -c 

provided that the weight function has a support containing 
in (ao, bo). 

Simple algebra yields the optimal bandwidth for the con-
ditional mean integrated square error (MISE) (3.2) is 

These results are stated for the random design; they are 
essentially the same for the fixed design of form X, = G-' ( i l  
n ) + o(1I n ) ,where the function G is the cdf of&. Thus the 
results are also applicable to such a design, namely, the local 
linear regression smoother adapts to both fixed and random 
designs. It also adapts to both highly clustered and nearly 
uniform designs, as suggested by Theorems 1 and 2. 

We remark that the unconditional versions of Theorems 
1 and 2 remain valid. Indeed, with a slight technical modi-
fication-defining & * ( x )  = C:=l W,Y,/(C:=~w, + n P 2 )to 
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guard against zero denominator-Fan (in press) showed that 

a similar result holds for the unconditional MISE. 
When the design density fx has a bounded support, say 

(0, I) ,  the performance of regression smoothers at boundary 
points usually differs from the performance at interior points. 
Theoretically, the rate of convergence at boundary points is 
slower. For example, the Watson-Nadaraya and Gasser- 
Muller estimators have boundary effects-bias of order 
O(h,) instead of O( h:)-and require boundary modifica- 
tions (see Muller 1988). But the local linear smoother (2.2) 
does not require such a modification. Consider, for example, 
the left boundary points x, = ch, with a positive constant c. 
It can be shown (Fan and Gijbels 1992) that 

E((&(x,)  - . . ,Xn)~ ( X , ) ) ~ / X I , .  

1 
= - f ---( a K ( ~ ) m " ( O + ) ) ~ h ~-

4 

where with sl,, = S:oc K( u)  u' du ( I  = 0, 1, 2, 3), 

Note that this conditional MSE shares the same form as 
(3.1) and an interior point corresponds to c = m, namely 
aK(co)= CK and PK(m ) = dK. Figure 3 plots the functions 
a$ and PK for the Gaussian kernel. Remark that a$(c)  
I a$(co) and PK(c) 2 PK(m)-the bias at the boundary is 
smaller than at the interior because the local linear approx- 
imation is used on a smaller interval, and the variance is 
larger at the boundary because of fewer data points. Thus 
estimator (2.2) has desired biases and variances at boundary 
points and does not require any modifications. Figure 3 also 
suggests that a point 1.5h, away from the boundary can be 
considered to be an interior point when Gaussian kernel is 
employed, because the function PK becomes flat when c 
2 1.5. 

Remark 1. The pointwise MSE (3.1) holds uniformly in 
the class of joint densities 

C 
r - x ) ~(y  - with fx and a2 (x )  independent 

2 

of m(x )  and satisfying conditions 1-3 \ . (3.3) 

Here the marginal density fx and the conditional variance 
a2 (x )  remain the same over e 2 ,  whereas the regression 
function m(x )  varies. The condition on the regression func- 
tion is slightly weaker than I m"( .) I I C. In the next section 

0
.--

." 
, 
o 1 2 3 4 5 

c 


Figure 3. Constant Factors of the Asymptotic MSE at Boundary Points 
for the Gaussian Kernel. The solid curve represents the function &, and 
the dotted curve represents the function P,. 

this class of joint densities will be used to study the best 
linear smoother. 

Remark 2. The bias of the Nadaraya-Watson estimator 

depends on the derivatives offx. Hence its maximum risk 
over e 2 ,  say, is infinity and its asymptotic minimax efficiency 
is 0. But in the case of uniform designs, the Nadaraya-Wat- 
son estimator has the same asymptotic properties as the local 
linear regression smoother. 

Remark 3. Gasser and Muller (1979) defined the follow- 
ing estimator: 

x - t  
S G M ( X )= Y; [, K(T) dl, (3.5) 

j = 1  

where { (Xi ,  Y:)) are ordered samples according to XJs, to 
= -m, t, = a,and tj = (X(, + XJ+1) /2 .  The variance of 
the local linear smoother is only two thirds of a corresponding 
Gasser-Muller estimator, while the bias is the same. (See 
Chu and Marron 1990; Jennen-Steinmetz and Gasser 1988; 
and Mack and Muller 1989 for the expression of the variance 
of the Gasser-Muller estimator.) Thus, in the case of random 
designs the latter estimator uses only two-thirds of the avail- 
able data and is not admissible. For fixed designs, however, 
these two smoothers have the same asymptotic performance. 

4. BEST LINEAR SMOOTHERS 

Definition 1. A linear smoother is defined by the follow- 
ing weighted average: 

n 


&L(x) = C WJ(X1, . . . ,Xn)Y. (4.1) 
1-1 

It is obvious that estimator (2.2) is a linear smoother, as 
are the Nadaraya-Watson and Gasser-Muller estimators. 
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Estimation of regression using techniques of splines and or- 
thogonal series is also linear. Thus linear smoothers include 
the most of regression techniques in the literature. For such 
a broad class of estimators, which one is the best? The answer 
depends on the class of regression function under consid- 
eration. For e 2 ,  the best design-adaptive regression estimator 
(defined in Theorem 3) is a best linear smoother. 

Lemmal .  L e t a = ( a l  , . . . ,  a , ) ' andw=(wl  , . . . ,  w,)' 
be n-dimensional real vectors. Then 

n 


(w'a - b)2 + 2 C,W? I = 
b2 

1 + C,"=, a, 2 /c, ' 
, = I  

and the minimizer is attained at 

We omit the proof of Lemma 1. The conditional risk of 
linear smoother (4.1) is given by 

The latter inequality follows from Lemma 1. Note that the 
lower bound (4.2) is possessed by all linear smoothers, that 
is, it is independent of the smoother l+'zL. Further study on 
(4.2) yields the following theorem. 

Theorem 3. Let the minimax risk of linear smoothers 
be 

= inf sup E ( [ h L ( x )  - m(x)]"  x I ,  . . . ,Xu),
Gljinear /Ee2 

where e2was defined by (3.3). Assume that u2( .  ) is bounded 
away from 0 and infinity and the marginal density is bounded 
and continuous. Then 

and the best linear smoother i?zo is given by (2.2) with kernel 

3 15a2(x)  ] I 5
K 

O 
-
-
-
4 

1 - x2]+ and hn = (
fx (  x )C2n ) 

where C is defined by (3.3). 
The quantity (4.3) plays a role similar to that of the Fisher 

information in the parametric inference. For a linear 
smoother 6iL, its minimax efficiency (among all linear 
smoothers) can be defined by 

efficiency of &, 
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Table 2. Minimax Efficiency for Kernel Regression Estimators 

Local linear 
smoother Gasser-Miiller Nadaraya-

Kernel P/4, P/4, Watson 

Epanechnikov 100 66.67 0 
Normal 95.12 63.41 0 
Uniform 92.95 61.97 0 

100 works as well as the optimal estimator with sample 
size 80. 

It can easily be calculated from (3.1) that the local linear 
regression smoother (2.2) has the minimax efficiency (with 
the bandwidth chosen to minimize its risk) of 

where the factor .268 is computed from (315 X 15 115)514. 
For random designs, the Gasser-Miiller estimator (3.5) has 
the efficiency 

The Nadaraya-Watson estimator has minimax 0, as indi- 
cated in Remark 2. Table 2 compares the minimax efficien- 
cies of the three different types of kernel estimators for some 
commonly used kernels. 

5. SIMULATIONS 
We have shown, via asymptotics, that the local linear 

regression smoother possesses a number of desired properties. 
Nevertheless, its finite sample behavior is unknown. In this 
section we use three simulated examples to illustrate its finite 
sample behavior. 

Simulation 1. A random sample of size n is simulated 
from the model 

with E N(0, 1) independent o f X  -- N(0, a 2 ) .  When a is 
small, the quantity If ;i(x)/ fx(x)  I gets large. Thus we an- 
ticipate that the Nadaraya-Watson estimator does not behave 
well for small u. 

We estimate the regression function in the interval x 
E [-2u, 201, two standard deviations away from its normal 
mean. The integrated square error (ISE) is computed by 

( & ( x ) - m ( ~ ) ) ~ d x ,  

with an equal weight. The bandwidths of regression smooth- 
ers are chosen to minimize their asymptotic MISE, which 

Table 3. MlSE and Relative Efficiency Based on 300 Simulations 

Gasser-Mllller Nadaraya- Watson 
Local linear 

Sample smoother Efficiency Efficiency 
a size MISE MISE w) MlSE PIo) 

.25 100 ,0024 .0110 14.9 ,0045 45.6 
200 ,001 3 ,0066 13.1 ,0028 38.3 
400 ,0006 ,0036 11.6 ,0016 29.3 

By this definition an 80% efficient estimator uses only about 
80% of the available data; the estimator with sample size 
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can be computed from Table 1. Gaussian kernel function is 
used. 

Table 3 shows the simulation results for the three different 
regression smoothers based on 300 simulations with a = .25 
and a = 1. We also report the relative efficiency in compar- 
ison with the local linear regression smoother. The relative 
efficiency is computed by the following [compare with (4.4)] : 

relative efficiency of an estimator 

MISE of estimator (2.2) 
MISE of the estimator 

The relative efficiencies for both the Nadaraya-Watson 
and Gasser-Muller estimators are small. The Nadaraya- 
Watson estimator has smaller relative efficiencies for the case 
a = .25 than it has for the case a = 1. This seems compatible 
with the claim that the Nadaraya-Watson estimator can not 
be adaptive to highly clustered designs. 

To visualize the global performance of the regression es- 
timators, Figure 4 plots the estimates based on five repetitions 
for the case n = 100, a = .25. In this case the regression 
curve is almost linear, and the Nadaraya-Watson estimate 
does not perform well in detecting linearity. Both the local 
linear regression smoother and the Gasser-Muller estimator 
are suitable for detecting linearity. But the variability of the 
Gasser-Muller estimator from one simulation to the other 
(i.e., variance) is larger. 

Simulation 2. Instead of detecting linearity, consider the 
following model: 

Y = sin(2.5X) + .4&, (5.2) 
? 
9 '  with E -- N(0, 1) and X -- .5N(-1, 1) + SN(1.75, .25). The 

estimating procedures and computation are similar to those 
=? 
0 ' for Simulation 1. The ISE is computed by 

I I 

-0.4 -0.2 0.0 0.2 0.4 


X ISE= C( & ( ~ ) - m ( x ) ) ~ d x  (5.3) 

(b) 
for an estimator &(x) .  Table 4 reports the MISE and relative 

' 4 .  efficiencies. 
0 

Simulation 3. Instead of using the mixture normal den- 
sity for the covariate X, we use Model (5.2) with marginal 
density Xuniformly distributed on [-2.5,2.5] and compute 
the ISE defined by (5.3) based on 300 simulations. Table 5 
reports the simulation results as well as the relative efficien- 
cies. 

Asymptotically, the performance of the local linear 
regression smoother is the same as the Nadaraya-Watson 
estimator. However, Table 5 indicates that the former 
smoother performs better than the latter at finite sample 

Table4. MISE and Relative Efficiency Based on 300 Simulations 

I I 

Gasser-MUller Nadaraya- Watson -0.4 -0.2 0.0 0.2 0.4 

Local linear 

x Sample smoother Efficiency Efficiency 
size MISE MISE ("10) MlSE ("10)

(c) 

Figure 4. Estimates Based on Five Simulations from Model (5.1) With 100 0.1321 .I561 81.2 ,1862 65.1 

n = 100 and X - N(0, .252): (a) Local linear regression smoother, (b) 200 0.0701 ,0868 76.6 ,1009 63.4 
400 0.0370 ,0504 68.0 ,0540 62.3 


Nadaraya-Watson method, (c) Gasser-Mliller approach. 

http:SN(1.75
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Table 5. MISE and Relative Efficiency Based on 300 Simulations 

Gasser-MUller Nadaraya- Watson 
Local linear 

Sample smoother Efficiency Efficiency 
size MISE MlSE ("10) MlSE ("10) 

100 ,0751 ,0927 76.9 ,0871 83.1 
200 .0424 ,0552 71.9 ,0483 85.0 
400 ,0237 ,031 8 69.2 ,0259 .89.5 

sizes. This suggests that the asymptotic theory takes in effect 
at a larger sample size for the Nadaraya-Watson estimator. 

The efficiency of the Gasser-Miiller estimator decreases 
when n increases. When n = 400, the relative efficiency 
is 69.276, which is close to the asymptotic relative effi- 
ciency 66.7%. 

APPENDIX: PROOF OF THEOREM 3 

Because the sequence X I ,. . . ,Xn are iid, it follows that 

This, together with (4.2),leads to 

Specifically, take mo(y = (b2,/2)[1- C ( y- ~ ) ~ / b ; ] +so that mo 
E 6 2 ,  where bn= C~~(x)/nf~(x))~~~maximizes( 1 5$- (A.3).Then 

and E m 4 ( X l ) l u 4 ( X I )= O(b:).By (A. l )and (A.2),we have 
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Thus 

On the other hand, with A o ( x )defined by Theorem 3, by (3.1) 
one can easily show that 

The result follows from (A.4)and (A.5). 

[Received February 1991. Revised September 1991.1 
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