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Design, Analysis, and Control of a Low
Power Joint for Walking Robots, by
Phasic Activation of McKibben Muscles

Richard Q. van der Linde

Abstract—This paper describes the development of an efficient this shortcoming to a control problem, at the cost of high
mechanical oscillator. It is capable of combining the energetic energy consumption and robust actuators. Since this trade off
advantages of ballistic movement with cycle adjustability and iy most likely not lead to success in rehabilitation research
active orbital control. Pneumatic artificial McKibben muscles are . . .
used as variable springs, from which the stiffness is varied in and autonomous robotics, the_ f|rs.t method 'S_ p_r_eferred. .
order to induce a limit cycle. Lack of control parameters implies no possibility to modify
the limit cycle or to intervene when disturbances arise. This
restriction can be eliminated by applying an adjustable system
parameter. If mass distribution and dimensions are fixed,
then joint compliance can be chosen to be adjustable. Active

. INTRODUCTION adjustment of joint stiffness offers the ability to:

UTONOMOUS robots are inevitably restricted to a lim- 1) add or withdraw energy to or from the system;

ited amount of energy supply. This is even more the case2) modify the natural frequency;
for prosthetic and orthotic devices in rehabilitation technology, 3) give the system a protection against high disturbance
where weight is also an important design criterion. It would forces.
therefore be advantageous to design for minimal energy capenergy storing properties are to be used also, then the
sumption and weight, especially when cyclic movements likesmpliance must be passive.
walking are involved. In comparison to active joint stiffness actuators, only little

The first criterion can be fulfilled by choosing optimakesearch on the area of passive joint stiffness actuators has been

movements and recycling energy as much as possible. Frgghe. A good review is given by [27]. However, the goals of
the viewpoint of energy consumption a typical optimal movenost of these researches were mainly focused on force control
ment is one which utilizes the natural frequency of thgsks [13], [23] or position control tasks [4], [14]. Passive
system. This concept has been a leading topic in sevesglings have also been combined in series with (electric)
robotic research projects: bipedal ballistic walking [8], [S]displacement actuators [1], [3]. However, the eigenfrequency
[16], self-excited vibratory actuators [19], joint compliancef the passive component is fixed, and a continuous torque
and trajectory selection [1], [3]. Very much related to thenust be delivered by the actuator. This paper will on the
use of the natural frequency is energy recycling by springher hand merely focus on cyclic movements caused by
like properties. Humans and mammals use this concept #dtive adjustment of passive stiffness. The acquired actively

running, hopping, and jumping [2], [17]. This principle isyariable passive stiffness is realized by two opposite pneumatic
based on using the natural frequency of compliant structur@gtificial McKibben muscles.

These concepts have been successfully utilized in many mobilgrirst a model will be derived for a simple joint with two

robotic systems before, especially in hopping mono-, bi-, amguscles. Amplitude and frequency, and the associated stability
quadrupeds [1], [3], [7], [18], [20], [21]. and energy consumption of a limit cycle as a function of
So using the natural frequency of the robot is shown {tessure course parameters can then be obtained by return
be a useful concept for energy efficient walking. Howevemap analysis. Measurements of an experimental set-up showed
the natural frequency of a system is determined by inhereqkt the model was able to predict the cyclic behavior rather
system properties like: dimensions, mass distribution, collisigfell. The inverse solution is approximated by an analytic
behavior, and joint compliance. Constructing and controllingikpression of the cyclic solutions map, which can serve as
a desired movement with these parameters is not as easy ag éfiscrete feedforward control. By adding feedback through

the case with conventional servo mechanisms, which merghodulation of the activation pulse, orbital stability can be
obey a calculated trajectory. The first method has its maiproved significantly.

point in lack of control parameters. The latter method shifts

Index Terms—Limit cycle, McKibben muscles, phasic activa-
tion, variable passive stiffness.
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length changes under a load. However, during contraction this
change in volume will be small (maximal 5% of the total
muscle volume, at 18% muscle stretch). Therefore the muscle
volume (V3;) can be modeled as a constant accumulator, or
capacitor ;). The hose can be modeled as a resistoy. (
Modeling the activation muscle pressu¥es(,;) dynamics then
results in a first order filter, given by the differential equation

PAM(t) _ Ps(t)

Pan(t) + = 1
Aﬂl() CuR CuR (1)
where C); can be expressed by
Fig. 1. Parameter conventions for the pendulum model. The muscles act as
springs with a variable stiffness as a function of internal pressure. Therefore DA dm/dt dm
only the force-stretch relationship of the activation muscle varies in time. Cy = = = = (2)
Py dPay/dt dPay
A. The Experimental Set-Up where ® 4, = the mass flow through the hose and= the

A simple pendulum model was chosen to be representatf/@aS Mass. Using the ideal gas equation (2) can be rewritten as

for swing leg behavior during walking. Two artificial pneu-

matic McKibben muscles were used as an agonist-antagonist Cy = dm - d< Vi ) o Vi (3)
couple (Fig. 1). A McKibben muscle is an actuator which mBgasT)  RaasT

converts pneumatic energy into mechanical energy by short- N

ening [5], [10]-[12], [14], [28], [29]. It consists of an internalVheré Kcas = the specific gas constant aril = gas

rubber tube covered with a nonelastic braiding. One end gmperature. o _
the tube is closed, while the other end is the pneumatic input YVhen dissipating friction forces are modeled by a viscous

When pressure is applied in the rubber tube the muscle wARMPing, the pendulums equation of motion according Fig. 1

become stiffer. So adjusting the pressure in both musclg® be written as
results in a joint stiffness change, comparable to cocontraction .
in biological systems. Ipb(t) = — Mgl sin 6(t) — Far(6(t), P1(t))r

A fixed point within the limit cycle can be chosen to trigger + Fara(6(t), Po)r — 2kr?0(t) 4)
the activation of one of the muscles. This point is chosen to
be the maximal amplitude of the joint angle, which is equgjhere
to a downwards triggered zero-crossing of the rate. Therefore_,P
a gyroscope was mounted at the end of the pendulum. Th
activation is obtained by raising the pressure &y in the
activation muscle. In the set-up a three-way valve was used td,
switch the pressure in muscle 1 between the nominal pressure
and the activation pressure (Fig. 1). When an activation time
At has elapsed the supply pressufe is set back to the
nominal pressuré’y again. The switching time of the valve
is very small compared with the time scale of an activation

pulse (Section IlI-A), and will therefore be neglected. Musc'ﬁ/luscle 1 was chosen to be the activation musclePs@) =

2 is kept on a constant pressuf;.
b o P . - . P4 (t), and muscle 2 was kept on a constant presstire
In order to optimize energetic efficiency of the muscles dis- L . .
An approximation of the force-braiding angle relation of

S|pat|(_)n was m|n|m|z_e(_j by matena_ll choice. Different materl%{n ideal McKibben muscle has been derived by Chou and
combinations for braiding and tubing were tested by ISOtomﬁ’annaford (1996), rewriting gives

guasi static stretching tests. Wall thickness of the tubing was '
a trade off between minimizing visco-elastic dissipation and 2p / I2
maximal allowable muscle pressure. Due to a dense braiding Fy(e, Py = <3—2°(1 +€)* - 1) (5)
the internal muscle pressure could be raised to a maximum of b

3.5 x 10° Pa with only 0.2 mm wall thickness. With polyester

braiding and latex tubing an efficiency of up to 94% couléflvhere o
be achieved. Fyr  longitudinal force on the muscle;

b thread length of a fiber;

P’ muscle pressure relative to the environment;
B. Modeling the Experimental Set-Up n number of thread turns;

pendulum inertia around the joint;

pendulum mass;

gravitational acceleration;

distance from the joint to the center of gravity of
the pendulum;

Fy;, force of musclen as a function of the pendulum
angle# and muscle pressurg,;

radius of the cylinder;

constant of damping of one muscle.

4mn?

The pneumatic muscle dynamics can be simplified by aLo initial muscle length at” = 0;
lumped parameter model. The muscle volume changes as it§ muscle stretch.
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TABLE | B. Return Map Analysis

VALUES OF THE SYSTEM PARAMETERS . . . . .
In this paper, only cyclic motions are considered, since

parameter unit value parametet unit vaie  they form the essence of walking. Only frequency, amplitude,
s - 0036 U, i oot orbital stability, and energy consumption are cycle parameters
Cu kg m*/N] 1.55-10" g [m/s7] 9.81 of interest. These cycle properties must be quantified and
R“ [N-s/m] 22*8“7)(1)8 // [m] 0.273 expressed as a function of supply pressure course parameters:
”/;‘rijlq ot M ::; ]I W% Py, AP, and At. Return map analysis is a useful tool in
v, ] 131 10° , (m] 0.065 studying global dynamics of dynamic systems with periodic
T K] 293 I, [kgm?| 0.0317 behavior [15], [24]. Fixed points are defined by the condition
" - 183 , that their state in perio@d equals their state in period + 1,

thus can be obtained by finding the roots of the equation

There can be no stretch when there is no load, so the initial fy)=Py,) 9,41 =0 9)
muscle length can be calculated Bs = (1/3)bv/3.

The strain of muscle 1¢() and muscle 2 ) can be
expressed irf

where f(y) = a vector function andP(y,,) = a mapping
function which maps a state vectg(t,,) onto a state vector

Y(tnt1).
Uy + 0 Uy — 16 A solution of this mapping equation can be found with
=7 and ey = 17 (6) a Newton Raphson method. For each combinationAd?
0 0

and Py (and choosingAt) a matching cycle exists with

where U, = pre-elongation of the muscle. certain cycle properties, plotted in Fig. 2(a)—(d) by contour
Fyn and Fyz2 can now be obtained by substituting (6) irfines. Within the working area of the muscles Fig. 2(a) gives

(5). Combining the result with (4) this yields an expression ¢f1€S of equal angle@r), and Fig. 2(b) gives lines of equal

the complete pendulum dynamics cycle period {’r). Fig. 2(c) gives lines of equal eigenvalues
of the Jacobian ofP, which is a measure for the orbital
i— Mgt | 0 2/W29. stability [22]. The mapping function is a discrete function so
-~ Ip sin o= Ip the eigenvalues must lie within the unit circle to guarantee
r02Par(t) [ (Uo+76)2  2(Ug + 1) stability. All periodic solutions in Fig. 2(c) are slightly stable.
T a2l < 72 To ) The power consumptiofy during one cycle is given by
0
1
WPy (W= r6) | Al —r0) - Q=2 j{ ParsdVians (10)
4mn2Ip 12 Lo ' T Jevers
where
IIl. PERFORMANCE Van actuator muscle volume (no longer assumed to be
| .
In this section, the outcome of the model will be discussed r ggtnusat\?grt%uscle pressure;
and validated. Return map analysis will be used to study theT cycle period.

cycle properties. . L .
In Fig. 2(d) the power consumption is plotted for different
) . settings of AP and Py.
A. Experimental Versus Theoretical Results

First the outcome of the model is compared with the resuls Adjustability

of the experimental set-up of which the values of the system—r, o maps express an input parameter settg, (
parameters are given by Table |. The damping coefficient ,, and A#) in periodic angle ©) and period Tr). Howi
was determined by curve fitting of unactuated responses e’r the inverse relationship would be of great use too.
the pendulum. This dimensionless damping ratio could be w e,most simple way to find this inverse relationship is

approximated as a constant for the frequencies in the raqgeapproximate the return maps [Fig. 2(a) and (b)] by an

of interest. Its relauon to_the_ constant of dampindor one analytical expression of which the inverse can be found easily.
muscle according to (7) is given by Such an approximation is given by

k= [3(4)3_[]) 8 ) o0 17/
i ® or] _|0Py 9AP| [Py] , [K:
Tr | | 87T or AP K,
wherewg = the natural frequency of the pendulum. aAD
! o 0PN OAP
The time constant of the activation muscle can be found Py
as T4y = RC) = 0.043 s. Isotonic, quasi static stretch =VL- [AP} +K (11)

experiments were performed for different muscle pressures.

With parameters according to Table I, (5) predicts muscle forédere

with a mean error 2.2%. Also it needs to be noted that O estimation of the periodic pendulum angle in a fixed
remains constant in theory, but varied 3% in practice. point [rad];
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Fig. 2. (a)-(d) Results of a return map analysis for the nonlinear model. For each setiin§ ahd P a fixed point is calculated. Each figure gives the
lines of equal values of angle (&p¢) deg, (b) period{r) s, (c) eigenvalue of the Jacobian, and (d) energy consumpfdmW within each fixed point.

T estimation of the periodic pendulum period in a&an be improved by adding a feedback, e.g., on the pulse width
fixed point [s]; of the activation time 4At¢) of the activation muscle pressure
K, K> constants. (Fig. 3). Modulation of At costs only very little extra gas

K can be found by choosing an operational point in Fig. 2(§pnsumption for the muscle volume remains nearly constant
and (b) for AP and Py for a specificAt and calculating during contraction. If a small disturbanaky,, occurs on a
O©p, Tr, and VL by return map analysis. The workingfixed pointyy, then (9) can be approximated by

area of (11) after specifying an operational point covers oP

the complete domain of pressure input parameters rather y, ., + Ay, ,; = P(y,) + VP Ay, + ~—AX  (13)

accurately, for Fig. 2(a) and (b) contain nearly straight, parallel ox
lines. Equation (11) has a simple inverse, given by where

P - A Y, state space vector on time

[AJ},} =VL!. { [Gﬂ - K}. 12 P mapping function;

vPF Jacobian ofP evaluated in fixed poing;;

The appropriate parameter settings f¢ and AP in order Ay deviation from the fixed point;

to obtain a desired pendulum angle and period can now beAX  control action.

found with (12). A simple proportional discrete control law on activation
time At is chosen

IV.  CONTROLLER DESIGN At = Aty +AX = Aty +GAy,  0< At < 1/2T (14)
The orbital stability was very low for each settingBf; and
AP [a discrete pole around 0.9, Fig. 2(c)], which implies slowhere Aty = a nominal activation time an@ = feedback

convergence to the attractor after an external disturbance. Tépsn.
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Fig. 3. Control scheme of the discrete controller, where the muscle activationG b S
At is modulated by a proportional discrete feedback. A control action is © — B
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Fig. 5. The effect of the activation timat on the periodic angl®, as a

0 1 2 3 4 5 6 7 8 function of pressure parametéty .

However, according to (16) an optimal gain is a function
of the effect of the applied control action (here: the activation
time At) on the return map (here: periodic angle), and the
Jacobian. Fig. 2(c) shows that the Jacobian changes only
slightly as a function of pressure settings” and Py. In
Fig. 5 ©F is plotted againsiAt as a function ofPy. Clearly
(80 /0At) is not a constant in the working area Bf;, thus
, , ‘ ‘ 8 the value of an optimal gain is cycle dependent.

Angle [deg]

(b)

Fig. 4. Experimental results of the pendulum set-up for pressure settings P . - . . . .
Px =15-10° Pa,AP = 0.4-10° Pa, Aty = 0.1 5: (a) without feedback |1 this paper a variable passive stiffness joint with phasic

control and (b) with optimal feedback control axt. At about timet = 2 s activation is presented. By utilizing the spring-like proper-
a perturbation is applied in both trials. ties of energetically optimized pneumatic artificial muscles
a mechanical oscillator with low power consumption can be
The boundaries or\¢ prevent the activation pressure to dgonstructed. It is capable of combining passive motions with
negative work as the direction of motion changes. Howevégctive actuation and control. _
this mechanism could be used as a brake wherbecomes A pendulum model was chosen to be representative for
negative due to (14). Substituting (14) in (13) and cancelir ing leg behavior of walking robots. Two antagonistic McK-

V. CONCLUSION

cyclic terms gives ibben muscles realize a joint stiffness, approximately pro-
portional to the internal muscle pressure. Limit cycles are

Ay, = <VPF + 3_PG> Ay, (15) induced by a phasic change of the stiffness of one of the

oX muscles. With this, cycle properties like amplitude and fre-

From (15) it can be seen that dead beat control is achieved f€ncy are individually adjustable, and for each cycle a dead
5X beat proportional discrete control setting can be calculated. An

G=__2vpF, (16) experimental pendulum set-up was constructed according to
oP this principle. Its energy consumption lies within the range of
An experiment with the set-up was done for settifgs = 5-50 mW, depending on amplitude and frequency. A nonlinear

1.5-10° Pa,AP = 0.4-10° Pa,At = 0.1 s and during a steady model was derived of which the overall behavior matched the
oscillation a perturbation was applied [Fig. 4(a)]. Next webservations rather accurately.

numerically calculated the fixed point with (1), (7), and (9) for Eventually this joint is to be implemented in the hips of a
these settings. Thef@© r/dAt) = 0.256 and VPY = 0.866 currently existing prototype biped [25]. This implies different
were calculated within the fixed point. With (16) we find alynamic conditions in which this joint will have to operate.
gain: G = —3.38. This controller setting was applied in theCollision behavior will be present due to foot contact at the
set-up and again a perturbation was applied during steaslyd of the swing phase. The swing leg will then become stance
oscillation [Fig. 4(b)]. Within one cycle the pendulum hadeg and visa versa. However, once a stable walking cycle is
returned to its orbit. This result clearly shows the effectivenessenstructed [26], the orbit of a swing leg will be known. This
of the introduced control action. orbit will be different from the isolated pendulum studied in
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this paper. Still, this work can serve as a basis for, e.g., foat]
placement by swing leg control.
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