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Design analysis and experimental behavior of precast concrete double-tee girders 

prestressed with carbon-fiber-reinforced polymer strands 

 

Saverio Spadea, Marco Rossini, and Antonio Nanni 

 

• This paper discusses with the design philosophy and the flexural performance under service 

loads of the precast, prestressed concrete girders made of innovative materials and novel 

composite manufacturing technologies of a recently constructed pedestrian bridge. 

• The two girders, cast in the shape of double-tees with shortened flange overhangs, were 

prestressed with carbon-fiber-reinforced polymer tendons and reinforced with basalt-fiber-

reinforced polymer. 

• Carbon-fiber-reinforced polymer prestressing technology can be successfully used in thin-

walled concrete sections, beyond the limits suggested by current literature and without 

significant technological drawbacks. 

 

Being versatile, economical, and, durable (under certain conditions), reinforced concrete and 

prestressed concrete are the most widely used construction techniques throughout the world. 

Unfortunately, corrosion of steel reinforcement is a major cause of durability problems in aged 

reinforced concrete structures.1 In well-preserved structures, corrosion is prevented due to the 

alkalinity of the solution filling the concrete pores, which promotes the formation of a thin oxide 

layer inducing passivation of steel. However, this passivity may be lost when carbonation occurs 

or a critical amount of chloride ions reaches the steel surface.2 Chloride-induced corrosion, 

which occurs in reinforced concrete structures exposed to seawater or deicing salts, is 

particularly critical because it progresses rather rapidly. Reinforced concrete durability thus 

depends on a sufficiently thick and dense concrete cover, the effectiveness of which is time-

limited and susceptible to overwhelming phenomena, such as cracking and local damage.  

A strategy for ensuring the long-term durability of reinforced concrete and prestressed concrete 

structures is to use reinforcement that is not susceptible to corrosion. Fiber-reinforced polymers 

(FRPs) are a proven nonmetallic alternative to steel that have the advantage of being highly 

corrosion resistant. They consist of a fibrous reinforcing phase (for example, carbon, glass, 

aramid, or basalt fibers) embedded into a polymer matrix (for example, epoxies or vinyl esters). 



 

The fibers provide strength and stiffness to the composite and carry most of the applied load 

while the resin encapsulates them, thus transferring stresses and providing protection.3 Glass is 

currently the most commonly used fiber for nonprestressed reinforcement, with advantages such 

as high strength, low cost, high chemical resistance, and insulating properties. Its drawbacks 

include low elastic modulus, sensitivity to abrasion and creep-rupture, and low fatigue strength. 

Basalt fibers have properties similar to glass fibers, but their use is quite recent. They have 

gained increasing attention as a reinforcing material for civil applications because their 

production process requires a lower amount of energy and does not require the use of additives.4 

Even though basalt fiber properties can vary widely with source of the volcanic rock they are 

derived from, they are attractive with respect to both cost and sustainability.5 Carbon, more than 

aramid, is the preferred fiber for FRP prestressing applications due to its higher strength and 

lower sensitivity to creep rupture, but it is rarely used for reinforcing bars due to its high cost. 

A concrete bridge completely reinforced with FRP, was recently constructed for pedestrian 

access.6,7 The bridge consists of the following concrete elements: two precast, prestressed 

concrete girders, two cast-in-place concrete pile caps, eight auger-cast piles, side blocks, back 

walls, deck topping, and curbs. The reinforcing bars are comprised of basalt-fiber-reinforced 

polymer (BFRP) with an epoxy resin matrix and glass-fiber-reinforced polymer (GFRP) with a 

vinyl ester resin matrix. The prestressing tendons are carbon-fiber-reinforced polymer (CFRP) 

with an epoxy resin. Stainless steel was used for the bearing plates of the girders, the anchor 

bolts for the lampposts, and the railings. New fabrication technologies, including continuous 

closed stirrups and preassembled pile cages, similar to that described by Spadea et al.,8 were also 

employed. As a result, there is not a single pound of carbon steel in any element of the bridge.  

The present study deals with the design philosophy and the flexural performance under service 

loads of the precast, prestressed concrete girders that constitute the deck of the bridge. The two 

girders are in the shape of double tees with shortened flange overhangs. These kinds of precast 

concrete elements, commonly used as floors for parking garage structures, are particularly thin 

and efficient. Their employment in a pedestrian bridge allows the construction process to be 

greatly simplified because it is not necessary to perform the casting in place of a separate deck, 

but only to overlay the precast concrete elements with a concrete topping. 

The double tees are reinforced with BFRP and each stem is prestressed with nine CFRP strands 

with 0.6 in. (15 mm) nominal diameters. Existing applications of the CFRP prestressing 



 

technology include box beams, decked bulb T beams, AASHTO I-beams, and double 

tees.7,9,10,11,12,13,14 Nevertheless, the prestressing of CFRP tendons remains a challenge because of 

the high sensitivity of the material to sharp objects, which does not allow the use of tensioning 

systems that are conventionally used for steel strands. Previous examples of double-tee girders 

include a lower number of CFRP tendons per stem (either two or three tendons). Either smaller 

strands diameters or thicker concrete sections were used.7,14 Finally, the percentage of guaranteed 

strength applied to the CFRP tendons of the pedestrian bridge intentionally exceeds the 

limitation imposed by ACI 440.4R-04 guidelines15 that appears to be overly conservative in 

comparison to recommendations issued by JSCE16. In contrast to the previous studies, the 

prestressing level in this case study has not been achieved previously in other applications 

featuring concrete elements with thin cross sections. 

The structure of the paper is as follows. The specifications and the properties of the materials 

(CFRP, BFRP, and concrete), based on tests conducted either by the authors or the producers, are 

reported. The design philosophy of the bridge and the construction details of the double tees are 

presented. The construction phases of the double tees, including the monitoring of strains on 

instrumented CFRP strands during the different phases, are then illustrated. Finally, the results of 

an experimental test performed with a concentrated load corresponding to service condition are 

presented and discussed. 

 

Materials 

CFRP tendons 

CFRP tendons are recognized as of interest to the Departments of Transportation (DOTs) as 

corrosion-resistant reinforcing solutions.7 CFRP strands have higher tensile fatigue resistance 

than steel strands, and a similar relaxation ratio. CFRP creep elongation is negligible, smaller 

than that of other FRP materials such as GFRP and aramid FRP, and similar to that of steel 

strands.  

Carbon-fiber-composite cable tendons comprised of seven individual wires were used in this 

study. Each wire consists of carbon fibers impregnated with thermosetting epoxy resin (average 

fiber to resin volume-fraction-ratio of 0.75/0.25) and protected with wrapping material (polyester 

fiber). The strand has a 0.6 in. (15 mm) nominal diameter and a guaranteed ultimate strength fpu
* 

of 339 ksi (2340 MPa). According to ACI 440.1R, an environmental reduction factor CE of 0.9 



 

should be adopted for CFRP composites. This results in a design ultimate strength fpu of 305 ksi 

(2106 MPa). 

Table 1 shows the mechanical properties measured by the manufacturer on the specific 

production lot and the values exhibited by conventional low-relaxation steel strands having the 

same nominal diameter but a slightly higher cross-sectional area. A comparison between the two 

sets of data shows how carbon-fiber-composite cable can be considered an efficient prestressing 

material than traditional high-strength steel because of its higher breaking load and lower 

modulus of elasticity. The high tensile strength of carbon-fiber-composite cable allows a high 

prestressing rate, while the lower elastic modulus causes reduced losses resulting from the elastic 

shortening and creep of concrete. The nominal failure capacity guaranteed by the manufacturer is 

60.7 kip (270 kN), a value slightly higher than the capacity of the steel strand. 

The long-term relaxation losses were measured by the manufacturer by mean of 1000 h tests 

conducted on CFRP tendons subject to a strain corresponding to 0.7fpu
*, under temperature 

conditions of 68 ± 4°F (20 ± 2°C). The following logarithmic relation17 was extrapolated from 

the experimental data obtained from three different specimens, using the least squares method: 

Y = 0.147 + 0.142logT (1) 

where 

Y = relaxation rate  

T = time 

 

BFRP 

Nonprestressed reinforcement used for the construction of the double tees was comprised of 

BRFP with an epoxy resin matrix. The fibers were produced from basalt rock through a melting 

process. Due to their recent commercial availability, their use is not currently addressed by ACI 

Committee 440.  

Characterization tests were performed according to ACI 440.3R guidelines,18 following the 

methods currently used for other FRP reinforcements. Table 2 gives the results of those tests. 

Unlike a steel bar, the tensile strength of FRP bars varies with their diameter, while the 

longitudinal modulus does not change appreciably. This phenomenon is primarily due to the 

effects of shear lag as the matrix transfers stresses from outer fibers to inner fibers within the 

bar.19 



 

Concrete 

A self-consolidating concrete (SCC) with specified compressive strength of 8000 psi (55 MPa) 

was used. The measured air content and spread of the fresh concrete were respectively 1.0% and 

25 in. (635 mm). Table 3 gives the average compressive strengths, measured at different times. 

The compressive test results were used to compute the tensile strength of the concrete and its 

modulus of elasticity at different stages. ACI’s Building Code Requirements for Structural 

Concrete (ACI 318-14) and Commentary (ACI 318-R)20 correlation formulae and the Florida 

DOT aggregate characterization factor, were used. 

 

Design 

The pedestrian bridge was designed taking into account existing guides and technical reports on 

the use of FRP reinforcement in concrete.15,19,21 This section focuses on the structural details of 

the prestressed double tees.  

The design of CFRP prestressed concrete elements is generally based on the assumptions 

traditionally adopted for steel prestressed concrete. Of particular interest are the brittle nature of 

CFRP strands, their long-term behavior under imposed deformations, and their bond-to-concrete 

properties.23 Whereas steel tendons are typically stressed up to 85% of their yield stress fsy, 

allowable stresses in FRP tendons are limited to a significantly lower percentage of their design 

ultimate strength fpu to prevent possible rupture. According to ACI 440.4R, the recommended 

maximum jacking stress and maximum stress after the release of CFRP tendons should not 

exceed 65% and 60% of their design strength, respectively. Conversely, JSCE set these limits to 

80% and 70% of the guaranteed strength rather than design strength. 

Figure 1 shows a diagram of the pedestrian bridge, including the two double-tee girders (DT1 

and DT2), the pile caps, the concrete curb, and the location of the cast-in-place concrete piles. 

The two juxtaposed girders, nominally identical, are simply supported on a 66 ft (20 m) clear 

span, resulting in a span width of 14 ft 3 in. (4.34 m). 

The bridge is designed to remain uncracked under a distributed live load of 100 lb/ft2 (4.8 

kN/m2) over its 75-year service life22. This load includes dead weights and results in a maximum 

service moment demand of 947 kip-ft (1280 kN-m) for each of the girders. This corresponds to 

an ultimate bending demand of 1266 kip-ft (1716 kN-m) and an ultimate shear demand of 76.7 

kip (341 kN).  



 

 

Details 

Figure 2 shows the cross section of girder DT1 completed with concrete topping and curbs, and 

Fig. 3 shows the top view of the precast concrete element only. The total depth of the precast 

concrete section is 30 in. (790 mm) with a flange thickness of 4 in. (100 mm).  

The total width of the flange is 85¼ in. (2165 mm), and the total length of the girders is 68 ft 8 

in. (20.9 m). The thickness of each stem is 7¼ in. (184 mm) at the top and 6 in. (150 mm) at the 

bottom. Each stem of the double tees includes nine seven-wire CFRP tendons tensioned with an 

initial prestressing force of 41.25 kip (183.5 kN) per strand before losses. Hence, a total jacking 

force of 743 kip (3300 kN) with a 10.7 in. (272 mm) eccentricity was applied to each of the 

double tees.  

In addition to the prestressed CFRP tendons, a no. 8 (25M) BFRP bar was positioned at the top 

and bottom of each stem. The additional nonprestressed reinforcement consists of two 

preassembled reinforcing meshes made of interwoven BFRP bars. The first mesh acts as 

longitudinal (no. 4 [13M] at 6 in. [150 mm]) and transverse reinforcement (no. 4 at 6 in.) in the 

flange. The second mesh (no. 3 [10M] at 6 in. in both directions) was placed on both sides of the 

CFRP with the aim of reinforcing the transfer length region of the stems. Lastly, no. 4 BFRP 

continuous closed stirrups were partially embedded on one side of the flange of both double tees 

at the time of precasting to serve as transverse reinforcement for the concrete curbs. 

The deck was completed on-site with a 3 in. (75 mm) topping and a 14 × 14 in. (360 × 360 mm) 

curb on the two sides, both cast with a 4000 psi (28 MPa) specified strength concrete. The 

topping embeds an additional preassembled reinforcing mesh made of interwoven no. 3 (10M) 

BFRP bars at 8 in. (200 mm) in both the longitudinal and transverse directions. 

 

Material stresses and double tees capacity 

Table 4 shows the total force applied at jacking and the corresponding losses due to elastic 

shortening of concrete. The prestressing forces imposed intentionally exceeded the threshold 

suggested by ACI 440.4R, whilst satisfying JSCE requirements. A stress corresponding to 75% 

of the CFRP design strength (68% of the CFRP guaranteed strength) was therefore applied on 

each strand at jacking, with the purpose of better exploiting the mechanical properties of CFRP 

tendons.  

Table 4 also gives the prestressing applied using the prestressed concrete steel strands, according 



 

to current practice15. 

The order of prestressing to be achieved using the two different materials was within a 10% 

difference and, due to the higher stiffness, the elastic losses due to concrete shortening were 

slightly higher when steel strands were used rather than CFRP strands (see Table 4). 

The nominal flexural capacity of the girders was calculated using the specified values of material 

properties and the full section of the girders after the concrete topping casting. As previously 

specified, the environmental reduction factor CE was adopted to account for long-term exposure 

to environmental loads. A step-by-step analytical procedure based on the model proposed by 

Naaman24 was adopted to compute concrete creep and shrinkage.  

Equation (1) was employed to calculate the CFRP relaxation losses after a 75-year service life. 

The resulting nominal flexural capacity and cracking moment of the single double tee, including 

the concrete topping and curb, at the 75-year service life, were 2306 kip-ft (3127 kN-m) and 

1050 kip-ft (1424 kN-m), respectively. 

Table 5 shows the resulting computed values of stresses in all materials at different phases of the 

girder’s life. The depth axis points downward and its origin is fixed on the girder top (Fig. 2). 

Compressive stresses are considered to be positive, whereas tensile stresses are negative. 

The double tee loaded by its self-weight was considered at one-day (after tendon’s releasing and 

demolding phases were completed) and 28-day life (fully developed concrete strength). The 

double tees were installed 126 days after casting, and the completed girder with topping was 

service loaded at 154-day (with the additional 28 days corresponding to the full development of 

topping concrete strength) and 75-year life.  

ACI 440.4R14 recommends strength reduction factors of 0.85 for tension-controlled behavior 

when the CFRP tendon strain is above 0.005, and 0.65 for compression-controlled behavior 

when the net tendon strain is below 0.002. The section lies in the transition zone: the strength 

reduction factor, computed as a function of the net strain in the furthest tendon at failure, is 0.82. 

Further discussion of flexural resistance factors for the design of concrete structures prestressed 

with CFRP is provided by Kim and Nickle25 and Forouzannia et al.26 

The factored flexural capacity of each girder, complete with concrete topping and curb, is 1899 

kip-ft (2575 kN-m), a value exceeding the demand of the structure at ultimate. 

 

Construction 



 

The double-tee precast concrete girders were constructed and instrumented using a casting bed 

and prestressing equipment available for conventional girders. The tendons and the prefabricated 

meshes were handled without the aid of mechanical equipment. All the reinforcement was 

installed and secured before the tensioning took place. Figure 4 shows the in-line casting bed for 

the two double tees after the CFRP tendons were tensioned and all BFRP reinforcement was in 

place. Visible are the BFRP top mat and the continuous closed stirrup projecting above the 

flange. As the prestressed concrete elements were arranged in series, the tensioning was applied 

concurrently to the two girders. 

 

Instrumentation 

To monitor the strains during the entire service life of the bridge and measure the effective 

strains and transfer lengths during construction, girder DT1 was instrumented with six vibrating 

wire gauges (VWGs): four installed on the CFRP tendons and two installed on the BFRP 

reinforcement. The top tendon T9 and the bottom tendon T1of a selected stem of girder DT1 

were instrumented with two gauges at the double-tee midspan (VWG-T9-m and VWG-T9-s) and 

two more at about 3 ft (0.9 m) from one of the end sections (VWG-T9-s and VWG-T9-s) (Fig. 2 

and 3). VWG-BFRP-m and VWG3-BFRP-s were installed on the BFRP longitudinal 

reinforcement similarly to the gauges on the monitored stem, at the double-tee midspan and at 3 

ft from the same end section, respectively. Figure 4 shows the red and blue cables connected to 

the installed VWGs. 

 

Tensioning 

CFRP is a brittle material, sensitive to shocks caused by hard and sharp objects. Consequently, 

applying a tension force to CFRP using a mechanical device is a process that requires particular 

care.  

The conventional tensioning apparatus available at the precasting plant, consisting of a hydraulic 

jack powered by a pump, was used to pull the steel cables. The CFRP strands were attached to 

the steel cables using a proprietary mechanical anchorage system that facilitates the pulling of 

the strands without causing local damage. 

The device (Fig. 5) consists of two anchoring systems based on sleeves and wedges (one for 

CFRP and one for steel), connected by a coupler. Each CFRP tendon was equipped with a mesh 

sheet and a braided grip to protect it from damage (Fig. 5). Table 1 gives the steel cable 



 

properties. The tensioning force of 41.25 kip (183.5 kN) was measured by means of a calibrated 

pressure transducer and applied stresses were verified by measuring the cable elongation as well 

as detecting the strains in the instrumented tendons. After the tensioning was completed, the SCC 

was placed. 

 

 

Releasing 

Steel strands are normally flame cut using a torch to take advantage of the gradual energy release 

caused by the elevated temperature, which lowers the yielding point of steel. This process cannot 

be adopted for FRP tendons because they would be degraded by the heat. Rather they must be 

severed using high speed grinder. For this reason, the tension was released at the two extreme 

sides of the tensioning bed by acting on the steel rather than on CFRP strands. Following the end 

release, the CFRP strands between the two double tees were carefully cut using a grinder. The 

release of the prestressing forces took place 24 hours after casting. At that time, the measured 

concrete compressive strength was 5307 psi (36.59 MPa). Following these operations, the girders 

were successively demolded. Figure 6 shows girder DT1 being lifted from the casting bed one 

day after casting. The nine plus nine CFRP tendon terminations and the continuous closed 

stirrups (curb reinforcement) are visible. The red and blue cables visible on the top are connected 

to the VWGs installed on tendons and reinforcing bars. 

 

Strain monitoring 

Table 6 and Fig. 7 show the strain measurements detected on the CFRP tendons at the 

instrumented sections after the tensioning phases (0 hours), after the concrete placement (six 

hours), after the release of prestressing forces (24 hours), and after the complete curing of the 

prestressed concrete girders (26 days). The first strain loss deals with the pretensioning apparatus 

settlement (CFRP and steel cable anchorage systems). The second loss is due to the elastic 

shortening of concrete at the time of the release and the overnight CFRP relaxation. The third 

loss  

is caused by concrete creep and CFRP relaxation during the 26 days of curing. The average 

between the experimental values measured at the top tendon T9 and bottom tendon T1 is the 

strain at the centroid of the tendons. Table 6 and Fig. 7 give the analytical prediction of the 

strains at the girder midspan section with respect to the centroids of the tendons. The computed 



 

values of losses due to the CFRP tendon relaxation were two orders of magnitude lower than that 

due to the creep effects in concrete. For this reason, the numerical values provided in Table 6 are 

not visibly affected by the relaxation contribution of the CFRP tendons. 

The strains measured at the DT midspan (VWG-T9-m and VWG-T1-m) confirm the prescribed 

values at jacking and are in agreement with the theoretical prediction of losses (Fig. 7). The 

strains detected at 3 ft (0.9 m) from the end section (VWG-T9-s and VWG-T1-s) show a partial 

loss of bond of the bottom tendon T1. This phenomenon was not expected because both the 

VWGs were meant to be installed beyond the development length zone of the tendons. However, 

the sleeves installed to tendons T2 and T3 at the two ends of the double tees (Fig. 2) may have 

negatively affected the bond behavior of tendon T1 (Fig. 7).  

 

Load test 

To analyze the flexural response under service conditions, a static load test was conducted on the 

instrumented girder DT1 at the precast yard before its installation on-site. The test, conducted 

according to a three-point loading scheme over the 66 ft (20 m) effective span, took place 26 

days after casting. 

 

 

 

Test arrangement 

The test load magnitude was designed to avoid concrete cracking. The analytical procedure was 

refined to account for the actual properties of the concrete used and the progressive gain of 

strength and stiffness due to aging (Table 3). 

As the original design requires the girders to remain uncracked under service loads, the test was 

run accordingly. The effects of the 100 lb/ft2 (4.8 kN/m2) distributed live load on the fully 

completed bridge (double tees with topping and curbs) were considered to back-calculate the 

point load that would produce the same effect on the double tees only. This resulted in a 27 kip 

(120 kN) test load in addition to the self-weight, which was supposed to produce a maximum 

moment of 809 kip-ft (1100 kN-m) on the single double tee. The test condition corresponds to 

the 85% of the double-tee cracking moment, defined as that which forces the concrete from the 

initial compressive stress of -1840 psi (-12.7 MPa) to the cracking tensile stress of 673 psi (4.64 



 

MPa), computed per ACI 318-14 recommendations and accounting for concrete strength gain 

over time. 

Four rectangular hollow steel tubes placed over prismatic concrete elements were used as 

supports (Fig. 8). A soft wood interface was provided between the supports and the girder 

bearing plates to help the leveling process and prevent stress concentration during the test. Three 

rectangular concrete blocks, each of them weighing 9 kip (40 kN), were used to apply the 

intended load by means of a crane (Fig. 8 and 9). 

The double-tee girder displacements were monitored using 10 analogic dial gauges (DG) 

installed on the two stems (Fig. 10). Dial gauges 1, 2, 3, and 4 were used to monitor the supports 

settlement. Dial gauges 7 and 8 were intended to measure the double-tee deflection at midspan 

and dial gauges 5, 6, 9, and 10 were positioned symmetrically at the quarter spans (Fig. 10). 

The 27 kip (120 kN) total load was applied in three steps. After applying one block, the second 

and third concrete blocks were positioned on the double-tee girder, then removed and 

permanently repositioned on the girder midspan. The total load was sustained over a 24-hour 

period. The loading and unloading phases required about two hours each. The dial gauge 

measurements were monitored at each load step. Figure 11 shows a diagram of the adopted 

loading cycle. 

 

Results and discussion 

Figure 12 shows the midspan and quarter-span deflections compared with experimental load 

values obtained during the 24- hour loading cycle. The analytical prediction of midspan 

deflection-load curve is also shown. 

The girder exhibited the elastic performance expected under loading corresponding to service 

conditions, with no visible cracking. Due to the sustained 27 kip (120 kN) load, additional 

deformations (mainly resulting from concrete creep) were observed during the 24-hour 

monitoring. The observed elastic deflection at 27 kip and additional deflection after 24 hours of 

sustained load were consistent with analytical prediction (errors of +2% and +12%, 

respectively) (Table 7). However, the experimental value of the residual deflection immediately 

after the load removal is considerably higher than predicted (error of +30%), probably because 

elastic recovery is not instantaneous.  

Similar considerations apply to the measurement performed on the girder camber. The predicted 



 

analytical values of the camber deviate only +6% and +5% from the values measured before 

and after the performance of the load test, respectively, with the experimental absolute values 

being slightly higher than expected (Table 7). 

Figure 13 shows the deflection profiles of the girder at the different loading phases and the 

corresponding analytical curves. Also in this case, the theoretical modeling appears fully 

capable of describing the behavior of the structural element at the monitored sections and for 

different levels of loads. 

Finally, Fig. 14 illustrates the measured strain profile at the girder midspan section and the 

analytical prediction of elastic strains corresponding to the 27 kip (120 kN) loading. The 

experimental data detected on the tendons are in satisfactory agreement with the theoretical 

values and show the expected linearity of the strains along the midspan cross section. The strains 

measured on bottom tendon T1 and the top  tendon T9 differ by +3% and -6%, respectively, 

from the analytical predictions. Only the strain measured on the BFRP mesh is considerably 

higher than the predicted analytical value (+36%).  

 

Conclusions 

In this study, assumptions traditionally used for steel-prestressed concrete were adopted for the 

design of thin-walled double-tee CFRP-prestressed concrete sections, leading to construction 

details similar to those of steel-prestressed concrete structures to resist the same loads. Some 

differences arose with respect to the tensioning procedure. A mechanical anchoring system able 

to facilitate pulling of the strands without damaging them allowed the CFRP tendons to be 

attached to prestressed concrete steel cables and consequently the a conventional tensioning 

apparatus. In this respect, the great flexibility of the method was recognized in view of the 

limited use of FRP strands and unavailability of tensioning equipment in precast plants. 

CFRP tendons showed mechanical efficiency comparable with standard steel strands, due to a 

higher guaranteed load, elastic behavior up to failure, and a lower elastic modulus, resulting in 

reduced losses. Increasing the level of pretension over the current ACI 440.4R limit and using 

0.6 in. (15 mm) diameter CFRP tendons in the thin stems of double tees are the key factors to 

exploit the properties of such materials, which, if properly employed, may lead to levels of 

performance even higher than those achievable by steel-prestressed concrete structures. Though 

beyond the scope of this study, this goal could be achieved by improving manufacturing and 



 

quality control techniques, resulting in a higher guaranteed load and the possibility of exploiting 

a larger percentage of the tendons’ ultimate strength. 

Monitoring of tendon strain in the construction phase and the elastic response of the double tee 

to the static load test, along with the long-term measurement of camber and deflection, 

demonstrated the reliability of the analytical predictions. All calculations were performed based 

on established theories and mechanical models, demonstrating that the implementation of CFRP 

tendons may not require additional design efforts by practitioners.  

Strains and deformations observed under sustained load appear to be largely dominated by the 

rheological behavior of concrete. As expected, the relaxation phenomena of CFRP tendons do 

not seem to affect the deformation of the girders. Additional tests are planned to monitor the 

bridge’s performance over time and are intended to confirm the short-term conclusions. 

This study demonstrates that CFRP prestressing technology can be successfully employed on 

thin-walled concrete sections without technological drawbacks compared with the use of steel 

reinforcement and beyond the limits imposed by current guidelines. 
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Notation 

CE = environmental reduction factor 

fpu = carbon-fiber-reinforced polymer tendon design ultimate strength 

fpu
* = carbon-fiber-reinforced polymer tendon guaranteed ultimate strength 

 

fsy = steel yield stress 

T = time 

Y  = carbon-fiber-reinforced polymer 
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Abstract 

This paper deals with the design philosophy and the flexural performance under service loads of 

the precast, prestressed concrete girders constituting the deck of a recently constructed pedestrian 

bridge. This simple structure combines innovative materials and novel composite manufacturing 

technologies to ensure that degradation due to steel corrosion does not undermine the longevity 

of the bridge. 

The two girders, cast in the shape of double-tees with shortened flange overhangs, were 



 

prestressed with nine plus nine 0.6 in. (15 mm), seven-wire carbon-fiber-reinforced polymer 

(CFRP) tendons and reinforced with basalt-fiber-reinforced polymer. Despite the complexity 

inherent their tensioning, CFRP strand have already been used for other prestressed or post-

tensioned applications, but never before in large diameters for the fabrication of structural 

elements with thin cross sections. The selected percentage of the guaranteed capacity of the 

CFRP tendons applied at jacking was, for the first time, higher than the 65% limit imposed by 

ACI 440.4R-04 guidelines. 

A load test was performed at the precast yard with concentrated loads corresponding to service 

condition, with the tested girder remaining uncracked. The strains measured in the reinforcement 

and the detected deflections of the girder showed agreement with the analytical predictions. 

CFRP prestressing technology can be successfully used in thin-walled concrete sections, beyond 

the limits suggested by current guidelines and without significant technological drawbacks. 
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Figure 1. Diagram of the pedestrian bridge. Note: 1 in. = 25.4 mm; 1 ft = 0.305 m. 

Figure 2. Cross section of the double tee with concrete topping and curb. Note: BFRP = basalt-

fiber-reinforced polymer; CFRP = carbon-fiber-reinforced polymer; VWG = vibrating wire 

gauge. No. 3 = 10M; no. 4 = 13M; no. 8 = 25M. 1 in. = 25.4 mm; 1 ft = 0.305 m. 

Figure 3. Plan view of the double tee girder DT1. BFRP = basalt-fiber-reinforced polymer; 

VWG = vibrating wire gauge. 



 

Figure 4. Double tee casting bed and detail of reinforcement at casting. 

Figure 5. Carbon-fiber-composite cable and prestressed concrete strand anchorage system. Note: 

CFRP = carbon-fiber-reinforced polymer. 

Figure 6. Girders demolding. 

Figure 7. Strains in carbon-fiber-reinforced polymer tendons. Note: 1 ft = 0.305 m. 

Figure 8. Double-tee girder loading phase, dial gauges and supports. 

Figure 9. Double-tee girder loaded under a three-point-load setup. 

Figure 10. Dial gauge locations. Note: 1 in. = 25.4 mm; 1 ft = 0.305 m. 

Figure 11. Loading cycle. Note: 1 kip = 4.448 kN. 

Figure 12. Load-deflection curves. Note: 1 in. = 25.4 mm; 1 kip = 4.448 kN. 

Figure 13. Deflection profile along the beam axis. Note: 1 in. = 25.4 mm; 1 ft = 0.305 m; 1 kip = 

4.448 kN. 

Figure 14. Measured strain profile at DT1 midspan. Note: 1 in. = 25.4 mm; 1 kip = 4.448 kN. 

 

 

 

Table 1. Mechanical properties of carbon-fiber-reinforced polymer and prestressed concrete 

steel tendons 

Material 

Nominal 

diameter,in. Area,in.2 

Breaking 

load, kip 

Guaranteed 

load, kip 

Yield 

load, 

kip 

Elastic 

modulus, 

ksi  

Carbon-fiber-

composite cable 

(1×7) 

0.6 0.179 83.1 60.7 n/a 21,600 

Prestressed 

concrete steel (1×7) 
0.6 0.217 61.2 58.6 54.5 28,700 

Note: n/a = not applicable. 1 in. = 24.5 mm; 1 kip = 4.448 kN; 1 ksi = 6.895 MPa 

 

Table 2. Mechanical properties of basalt-fiber-reinforced polymer reinforcement 

Bar type 

Nominal 

diameter, 

in. 

Average 

area, in.2 

Peak load, 

kip  

Guaranteed 

load, kip 

Nominal 

ultimate 

strain, % 

Elastic 

modulus, 

ksi 

No. 3 0.375 0.151 19.7 17.4 1.32 6590 

No. 4 0.5 0.244 29.3 25.8 1.70 7080 

No. 8  1 0.887 98.9 81.7 1.70 6560 

Note: no. 3 = 10M; no. 4 = 13M; no. 8 = 25M. 1 in. = 24.5 mm; 1 kip = 4.448 kN; 1 ksi = 6.895 



 

MPa. 

 

Table 3. Mechanical properties of self-consolidating concrete 

 

24 hours 

(1 sample) 

7 days 

(3 

samples) 

28 days 

(3 

samples) 

75 years 

(analytical) 

Compressive 

strength, psi 
5307 7335 8068 8668 

Tensile strength, psi 546 642 674 698 

Modulus of elasticity, 

ksi 
3599 4232 4438 4600 

Note: 1 psi = 6.895 kPa; 1 ksi = 6.895 MPa. 

 

Table 4. Jacking forces, elastic losses, and forces after transfer 

Material 

Jacking forces Elastic losses Forces after transfer 

Stress Load, kip Percentage Load, kip Stress Load, kip 

Carbon-fiber-

composite cable 

(1×7) 

0.75fpu 731 5.7 42 0.70fpu 689 

Prestressed 

concrete steel (1×7) 
0.85fsy 834 9.3 78 0.77fsy 756 

Note: fpu = carbon-fiber-reinforced polymer tendon guaranteed ultimate strngth; fsy = steel yield 

stress. 1 kip = 4.448 kN. 

 

Table 5. Computed values of stresses at different phases  

Location 

Depth, 

in. 

Girder only 

(under self-weight) 

Girder with concrete topping  

(under service loads) 

1-day, ksi 28-day, ksi 154-day, ksi 75-year, ksi 

Curbs (reinforced 

concrete) 
-1 n/a n/a  -2.4 -2.4 

Topping (reinforced 

concrete) 
-3 n/a n/a -1.6 -1.6 

Double-tee top 

(prestressed 

concrete) 

0 -0.5 -0.5 -1.4 -1.4 

Tendon T9 (carbon-

fiber-reinforced 

polymer) 

12 220.6 216.2 214.0 211.7 

Tendon T1 (carbon-

fiber-reinforced 

polymer) 

28  216.0 209.7 211.9 208.9 



 

Double-tee bottom 

(prestressed 

concrete) 

30 -2.1 -2.0 0.4  0.4  

Note: n/a = not applicable. 1 in. = 24.5 mm; 1 ksi = 6.895 MPa. 

 

 

 

Table 6. Strains in carbon-fiber-reinforced polymer tendons 

Location 

Measured/compute

d quantity 

Tensioning  

(0 hours), % 

Casting  

(6 hours), % 

Releasing  

(24 hours), % 26 days, % 

Midspan 

VWG-T1-m 1.06 1.03 1.01 0.94 

VWG-T9-m 1.01 0.95 0.93 0.90 

Average 1.04 0.99 0.97 0.92 

Analytical (centroid) 1.05 n/a 0.97 0.93 

3 ft (0.9 

m) from 

end 

VWG-T1-s 0.95 0.92 0.54 0.17 

VWG-T9-s 0.99 0.93 0.98 1.07 

Average 0.97 0.93 0.76 0.62 

Note: VWG = vibrating wire gauge. 

 

Table 7. Deflection at midspan and girder camber (absolute values) 

 
Experimental values, 

in. 

Analytical 

prediction, in. Error,% 

Elastic deflection (27 kip – 0 

hours) 
1.076 1.093 +2 

Additional deflection (27 kip – 24 

hours) 
0.116 0.104 +12 

Residual deflection (0 kip – 24 

hours) 
0.135 0.104 +30 

Initial camber (26 days) 1.957 1.843 -6 

Post-test camber (27 days) 1.823 1.738 -5 

Note: 1 in. = 24.5 mm; 1 kip = 4.448 kN. 
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