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Abstract

A stepped wedge cluster randomized trial is a type of longitudinal cluster design that sequentially 

switches clusters to intervention over time until all clusters are treated. While the traditional 

posttest-only parallel design requires adjustment for a single intraclass correlation coefficient, the 

stepped wedge design allows multiple outcome measurements from the same cluster and so 

additional correlation parameters are necessary to characterize the within-cluster correlation 

structure. Although a number of studies have differentiated between the concepts of within-period 

and between-period correlations, only a few studies have allowed the between-period correlation 

to decay over time. In this article, we consider the proportional decay correlation structure for a 

cohort stepped wedge design, and provide a matrix-adjusted quasi-least squares approach to 

accurately estimate the correlation parameters along with the marginal intervention effect. We 

further develop the sample size and power procedures accounting for the correlation decay, and 

investigate the accuracy of the power procedure with continuous outcomes in a simulation study. 

We show that the empirical power agrees well with the prediction even with as few as nine 

clusters, when data are analyzed with matrix-adjusted quasi-least squares concurrently with a 

suitable bias-corrected sandwich variance. Two trial examples are provided to illustrate the new 

sample size procedure.
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1 | INTRODUCTION

A unique feature of cluster randomized trials (CRTs) is that intact clusters, such as schools 

or clinics, are randomized to intervention arms.1,2 Randomization at the cluster level often 

carries pragmatic considerations, eg, administrative convenience, political reasons and 

prevention of treatment contamination.3 A stepped wedge CRT is a type of longitudinal 

design that sequentially switches clusters to intervention during the course of the study until 

all clusters are treated.4 Such designs have become increasingly popular due to their 

logistical flexibility and perceived ethical benefits. Because individual outcomes within the 

same cluster tend be more similar than those in different clusters, the intraclass correlation 

coefficient (ICC) plays a central role in designing CRTs. While the traditional posttest-only 

parallel design (ie, parallel cluster randomized design without a baseline period as defined in 

the work of Murray1) requires adjustment for a single ICC, longitudinal cluster randomized 

design such as the crossover or stepped wedge design allows multiple outcome 

measurements from the same cluster and so naturally requires additional correlation 

parameters to characterize the within-cluster structure.5,6 Correspondingly, sample size and 

power calculations for stepped wedge designs necessitate the specification of more than one 

correlation parameters. For example, Hemming et al7 considered both the within-period and 

between-period ICCs in their sample size procedure for a cross-sectional design. Hooper et 

al8 and Li et al5 examined a three-correlation structure that additionally accounts for the 

within-individual repeated measurements in a closed-cohort design.

Despite existing development of multiparameter correlation structures for designing stepped 

wedge trials, most of them assumed a constant between-period ICC with a few exceptions. 

For example, in a cross-sectional design where outcome data are obtained from a different 

set of participants in each cluster period,1,9 Hemming et al7 allowed the between-period ICC 

to be different from the within-period ICC, but restricted the between-period ICC to be 

constant irrespective of the distance between periods. Relaxing the constant between-period 

ICC assumption for a cross-sectional design, Kasza et al10,11 studied a nonuniform 

correlation structure with a decay parameter and proposed a sample size procedure that 

accounts for the exponential correlation decay. Grantham et al12 further extended their 

sample size procedure to allow for continuous-time correlation decay in multiple-periods 

CRTs with continuous recruitment. From a trial planning standpoint, if correlation decay is 

present, Kasza et al10 indicated that omitting the correlation decay in a cross-sectional 

design would either underestimate or overestimate the true variance of the intervention 

effect, which led to inaccurate sample size determination. As we demonstrate in Section 6.3, 

similar considerations carry over to closed-cohort designs, where outcome data are collected 

from the same set of participants in each cluster period.1,9,13 Particularly, the constant 

between-period ICC assumption in the works of Hooper et al8 and Li et al5 may not always 

be realistic and it is therefore necessary to develop alternative design and analysis strategies 

accounting for correlation decay in cohort stepped wedge studies.

Two popular modeling approaches for stepped wedge designs are cluster-specific models 

(eg, random-effects models) and population-averaged models.15 The parameter estimates 

from a population-averaged model can be interpreted as the marginal intervention effect for 

the participating individuals combined over all cluster periods, and may be preferred over 
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the cluster-specific models for trials conducted in the health policy or health services 

settings.5 In this article, we consider a population-averaged model with a decay correlation 

structure. As indicated in Table 1, the first contribution of this article is to fill in the gap and 

characterize a proportional decay structure appropriate for cohort stepped wedge designs. 

Such a proportional decay structure has been previously introduced in analyzing clustered 

longitudinal data; see, eg, the works of Lefkopoulou et al,16 Shults and Morrow17 and Liu et 

al,18 but has not been exemplified in CRTs with a staggered randomization. Based on the 

proportional decay structure, we derive a new closed-form variance expression to facilitate 

sample size and power determination. Based on the derived variance expression, we 

additionally obtain a simple-to-use design effect (DE) and study how the power depends on 

the correlation parameters. Since the sample size procedure requires input for the correlation 

parameters, accurate estimation of the correlations is instrumental for future planning of 

stepped wedge trials. Therefore, a second contribution of this article is to introduce a 

modified generalized estimating equations (GEEs) approach to accurately estimate the decay 

correlation structure along with the marginal mean parameters. The traditional GEE19 is 

modified in the following two ways. (1) As simple moment estimators for the decay 

correlation structure may not be easy to obtain, we estimate the marginal mean and 

correlation parameters by quasi-least squares (QLS).20,21 The QLS approach shares the 

same estimating equations with GEE regarding the marginal mean parameters, but is flexible 

enough to accommodate nonstandard correlation structures. Similar to the traditional GEE 

estimator, the QLS estimator is also robust to correlation misspecification. (2) Since stepped 

wedge cluster randomized design frequently includes a small number of clusters, we refine 

the QLS approach by incorporating appropriate finite-sample bias corrections to both the 

estimation of correlation parameters as well as the variance of the intervention effect.

The remainder of this article is organized as follows. The notation of cohort stepped wedge 

designs is introduced in Section 2. In Section 3, we provide the proportional decay 

correlation structure and discuss the QLS estimators to estimate the correlation structure. In 

Section 4, we develop closed-form procedures for sample size and power calculations based 

on the population-averaged model coupled with the proportional decay structure. We 

conduct a simulation study in Section 5 to examine the accuracy of the proposed power 

procedure when the trials are analyzed by the QLS approach. Section 6 provides two 

illustrative examples of cohort stepped wedge designs and Section 7 concludes.

2 | NOTATION AND BASIC SETUP

We consider a cohort stepped wedge design, where a closed cohort of individuals are 

enrolled at each of the I participating clusters at the start of the trial. We mainly focus on 

cohort designs to inform the applications in Section 6, and will defer the discussion of cross-

sectional designs to Section 7. We assume the trial involves a total of T time periods. All 

clusters start from the control condition, and may be randomly chosen to switch to 

intervention during the course of the study, until all clusters are treated at the end of the Tth 

period. Individual participants will be scheduled for outcome measurement during each 

period, and so each individual has a total of T repeated measurements. Denote yijt as the 

outcome for individual j (j = 1, …, Ni) from cluster i (i = 1, …, I) at period t (t = 1, …, T). A 

step is defined as the preplanned time point when at least one cluster crosses over from 
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control to intervention. We denote the total number of steps by S (2 ≤ S ≤ T − 1), and 

assume that ms clusters cross over at step s such that ∑
s = 1
S

m
s

= I. We assume a complete 

design in the terminology of the work of Hemming et al7 such that outcome measurements 

are taken for all individuals during each period. Following the work of Woertman et al,22 we 

define the baseline measurements as those taken before any cluster is randomized to 

intervention, and follow-up measurements as those taken after at least one cluster is 

randomized to intervention. We assume there are b ≥ 1 baseline measurements planned 

under the control condition, and cs ≥ 1 follow-up measurements planned between step s and 

step s + 1 (or end of study). Each measurement time point is associated with a distinct time 

period and the total number of periods T = b + ∑
s = 1
S

c
s
. A standard stepped wedge design 

is given by b = cs = 1 for all s, and T = S + 1 (T ≥ 3). A schematic illustration of a standard 

design with I = 6 clusters and T = 4 periods can be found in Figure 1. We also provide a 

schematic illustration of an alternative design with I = 6 clusters and T = 6 periods in Web 

Figure 1.

3 | ANALYSIS CONSIDERATIONS: MODELS AND STATISTICAL 

INFERENCE

3.1 | Population-averaged models

The population-averaged model relates the marginal mean, μijt, to the time trend and the 

intervention effect by

g μi jt = βt + Xitδ, (1)

where g is the link function and βt is the tth period effect.5 Furthermore, Xit is the 

intervention status, which is equal to 1 or 0 depending on whether cluster i receives 

intervention during period t, and δ describes the intervention effect on the link function 

scale. Model (1) can be regarded as the marginal counterpart of a number of existing 

random-effects models, such as those proposed in the works of Hemming et al,7 Hooper et 

al8 and Kasza et al.10,11 Like these random-effects models, our marginal model (1) does not 

specify treatment by period interaction and so δ should be interpreted as the average 

intervention effect across periods. We write the collection of model parameters as θ = (β1, 

…, β, δ)′, the collection of intervention status for cluster i (a sequence of ones preceded by 

zeros) as Xi = (Xi1, …, XiT)′, and define v(μijt) as a known variance function. To allow for 

potential correlation decay over time, we define the proportional decay correlation structure 

similar to the work of Lefkopoulou et al.16 Specifically, we define the within-period 

correlation as the correlation between outcomes for two distinct individuals from the same 

cluster during the same period, ie, corr(yijt, yij′t) = τ for j ≠ j′. The same definition is 

prevalently used in the posttest-only parallel designs.1 We then assume a first-order 

autoregressive structure for the set of within-individual repeated measurements. Therefore, 

the within-individual correlation, which describes the association between outcomes 

measured at time t and t′ of the same individual, is corr(yijt, yijt′) = ρ|t − t′|, t ≠ t′. Finally, we 

define the between-period correlation as the correlation between outcome measured at time t 
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for individual j and outcome measured at time t′ for individual j′, and assumes a decay 

structure as corr(yijt, yij′t′) = τρ|t−t′| for j ≠ j′, t ≠ t′.

In a closed-cohort design, typically, the between-period correlation is much smaller than the 

within-individual correlation for any two fixed periods, since the former is defined for 

measurements from two distinct individuals, while the latter is defined for those from the 

same individual. This ordering of magnitude is reflected in the proportional decay structure 

because τ < 1 and corr(yijt, yij′t′) = τρ|t−t′| < corr(yijt, yijt′) = ρ|t−t′|. By comparison, the 

exponential decay structure by Kasza et al10 is based on cross-sectional designs and 

therefore obviates the need for modeling the within-individual correlation from repeated 

measurements. In fact, the exponential decay structure assumes corr(yijt, yij′t′) = τρ|t−t′| 

irrespective of whether j = j′ since two different sets of participants are included in two 

different periods for a cross-sectional design. In this respect, parameters τ and ρ have similar 

interpretations in both structures. We provide a visual comparison of these two structures in 

Table 2. In summary, the proportional decay correlation structure is defined through two 

parameters, τ and ρ, with the former resembling the traditional ICC definition in a parallel 

design and the latter controlling for the degree of correlation decay. Of note, the works 

Shults and Morrow17 and Liu et al18 also adopted the same proportional decay structure in 

longitudinal CRTs with a parallel assignment, and we extend the discussion of this decay 

structure to CRTs with a staggered assignment.

3.2 | Quasi-least squares analysis

We use the QLS approach introduced by Shults and Morrow17 to simultaneously estimate 

the intervention effect in model (1) and the correlation parameters in a cohort stepped wedge 

design. In particular, the QLS approach and the traditional GEE approach share the same 

estimating equations for the marginal mean parameters, whereas the former provides a 

flexible and convenient way to estimate nonstandard correlation structures. Furthermore, 

both the QLS and GEE approaches are robust to correlation misspecification, namely, 

estimators for the marginal intervention effect remain consistent even if the working 

correlation model is misspecified. In sufficiently large samples (usually I ≥ 30), the robust 

sandwich variance could also be used to adequately quantify the uncertainty of the 

intervention effect estimate even under correlation misspecification. We refer the readers to 

the textbook of Shults and Hilbe23 for a full exposition on the advantages of QLS over the 

traditional GEE.

Write yij = (yij1, …, yijT)′, μij = (μij1, …, μijT)′, y
i

= y
i1′ , …, y

iN
i

′ ′, and μ
i

= μ
i1′ , …, μ

iN
i

′ ′. 

Furthermore, define Di(θ) =∂μi ∕∂θ′, and let the working covariance of yi be 

V
i

= ϕA
i
1/2(θ)R

i
α0, α1 A

i
1/2(θ), where ϕ > 0 is the dispersion parameter, 

A
i
(θ) = diag A

i1(θ), …, A
iN

i
(θ) , Aij(θ) = diag{v(μij1), …, v(μijT)}, and Ri(α0, α1) is a 

positive definite working correlation parameterized by α0 and α1. We assume the true 

correlation structure among elements of yi is the proportional decay structure, denoted by 

Ri(τ, ρ). In matrix notation, we can verify that the proportional decay structure induces 

separability between τ and ρ in that Ri(τ, ρ) = Gi(τ) ⊗ F(ρ), where Gi(τ) is a Ni × Ni 
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exchangeable correlation matrix (with respect to τ) and F(ρ) is a T × T first-order 

autoregressive correlation matrix as follows:

G
i
(τ) =

1 τ τ … τ

τ 1 τ ⋯ τ

⋮ ⋮ ⋮ ⋱ ⋮

τ τ τ ⋯ 1

, F(ρ) =

1 ρ ρ
2 … ρ

T − 1

ρ 1 ρ … ρ
T − 2

⋮ ⋮ ⋮ ⋱ ⋮

ρ
T − 1

ρ
T − 2

ρ
T − 3 … 1.

.

We could verify that the determinant

det R
i
(τ, ρ) = det G

i
(τ)

T
det F(ρ)

N
i = (1 − τ)

T N
i
− 1

1 + N
i

− 1 τ
T

1 − ρ
2

(T − 1)N
i
.

Therefore, valid correlation values that ensure positive definite Ri(τ, ρ) should be contained 

in the triangular region

𝒮 = (τ, ρ): −
1

max N1, …, NI − 1
< τ < 1, − 1 < ρ < 1 . (2)

Finally, the inverse of the Ri also exists in closed form and is given by 

R
i
−1(τ, ρ) = G

i
−1(τ) ⊗ F

i
−1(ρ), where

G
i
−1(τ) =

1
1 − τ

I
i

−
τ

(1 − τ) 1 + N
i

− 1 τ
J
i
, F

−1(ρ) =
1

1 − ρ
2

I + ρ
2
C2 − ρC1 ,

Ii is a Ni × Ni identity matrix, Ji is a Ni × Ni matrix of ones, C2 = diag(0, 1, …, 1, 0), and C1 

is a T × T tridiagonal matrix with zeros on the main diagonal and ones on the two 

subdiagonals.

To introduce the QLS estimating equations, we further define r
i j

(θ) = A
i j
−1/2(θ) y

i j
− μ

i j
, 

and write r
i
(θ) = r

i1′ (θ), …, r
iN

i
′ (θ) ′. The first-stage QLS estimates for θ, α0, and α1 are 

obtained by alternating between the following estimating equations until convergence:

∑
i = 1

I

Di′(θ)Ai
−1/2(θ)Ri

−1
α0, α1 ri(θ) = 0, (3)

∑
i = 1

I
∂

∂α0
ri′(θ)Ri

−1
α0, α1 ri(θ) = 0, (4)

∑
i = 1

I
∂

∂α1
ri′(θ)Ri

−1
α0, α1 ri(θ) = 0. (5)
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In particular, (3) is the usual GEE coupled with the proportional decay structure, and (4) and 

(5) are scalar equations for the first-stage correlation estimates. Further, closed-form 

solutions exist for α0 and α1 (within an iterative step) and are provided in Web Appendix A. 

Chaganty and Shults21 showed that α0 and α1 are asymptotically biased for τ and ρ. To 

eliminate the large-sample bias in the first-stage correlation estimates, Chaganty and 

Shults21 provided the following second-stage estimating equations to obtain: τ , ρ

∑
i = 1

I

tr
∂Gi

−1
α0

∂α0
Gi(τ) = 0 (6)

tr
∂F

−1
α1

∂α1
F(ρ) = 0. (7)

The closed-form solution for (6) and (7) are provided by the work of Shults and Morrow17 

as

τ = ∑
i = 1

I N
i

N
i

− 1 α0 2 + N
i

− 2 α0

1 + N
i

− 1 α0
2

/ ∑
i = 1

I N
i

N
i

− 1 1 + N
i

− 1 α0
2

1 + N
i

− 1 α0
2

,

and ρ = 2α1/ 1 + α1
2 .

3.3| Bias-corrected correlation estimation

Although the correlation estimates obtained from the second-stage QLS estimating 

equations are unbiased in large samples, they could be subject to finite-sample bias. The 

finite-sample bias is a typical consideration in stepped wedge CRTs,5 as they usually include 

a small number of clusters (I ≤ 30). We refine the QLS approach with finite-sample bias 

corrections to the correlation estimating equations by utilizing the cluster leverage,24 defined 

as H
i

= D
i
(θ) ∑

i = 1
I

D
i
′(θ)V

i
D

i
(θ)

−1
D

i
′(θ)V

i
. Specifically, when I is small, the estimated 

residual y
i

− μ
i
 tends to be biased toward zero, and following the work of Preisser et al,25 we 

have E y
i

− μ
i

y
i

− μ
i

′ ≈ I − H
i

cov y
i

= ϕ I − H
i

A
i
1/2corr y

i
A

i
1/2 and, therefore, 

E r
i
(θ )r

i
′(θ ) ≈ ϕA

i
−1/2

I − H
i

A
i
1/2corr y

i
. This last equation suggests that 

ϕ
−1

A
i
−1/2

I − H
i

−1
A

i
1/2

r
i
(θ )r

i
′(θ ) is a better estimator for corr(yi) compared to the simple 

cross-product ϕ−1
r
i
(θ )r

i
′(θ ), since the former accounts for finite-sample bias in a 

multiplicative fashion. Furthermore, observe that

r
i
′(θ)R

i
−1

α0, α1 r
i
(θ) = tr R

i
−1

α0, α1 r
i
(θ)r

i
′(θ) ∝ ϕ

−1tr R
i
−1

α0, α1 r
i
(θ)r

i
′(θ)

for all values of α0, α1, and θ; we propose to replace the first-stage estimating equations (4) 

and (5) by
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∑
i = 1

I
∂

∂α0
tr Ri

−1
α0, α1 Ri(θ) = ∑

i = 1

I
∂

∂α0
tr Gi

−1
α0 ⊗ F

−1
α1 Ri(θ) = 0 (8)

∑
i = 1

I
∂

∂α1
tr Ri

−1
α0, α1 Ri(θ) = ∑

i = 1

I
∂

∂α1
tr Gi

−1
α0 ⊗ F

−1
α1 Ri(θ) = 0, (9)

where R
i
(θ) = ϕ

−1
A

i
−1/2

I − H
i

−1
A

i
1/2

r
i
(θ)r

i
′(θ) represents the matrix-adjusted estimator for 

the correlation structure. The solutions obtained from (8) and (9) could effectively reduce 

the finite-sample bias in α0 and α1, which would in turn decrease the finite-sample bias in 

the QLS estimators for τ and ρ. Of note, similar finite-sample matrix adjustment was 

developed by Preisser et al25 for the Prentice-type GEE,26 and we extend this finite-sample 

bias-correction approach to the QLS estimating equations. Accurately estimating the 

correlation parameters in the analysis stage has practical implications since these estimates 

could be used to guide the planning of future trials.1 Additional details of the matrix-

adjusted estimating equations, (8) and (9), along with the closed-form updates are provided 

in Web Appendix B.

3.4 | Bias-corrected covariance estimation

The availability of a small number of clusters may also have implications for estimating the 

variance using GEE-based approaches.27 In general, the variance of the marginal mean 

model parameter θ  can be estimated using the model-based variance 

Ω1
−1 = ∑

i = 1
I

D
i
′V

i
D

i

−1
 or the sandwich variance Ω1

−1Ω0Ω1
−1, where

Ω0 = ∑
i = 1

I

CiDi′V i
−1

Bi yi − μi yi − μi ′Bi′V i
−1

DiCi, (10)

and both Ω0 and Ω1 are evaluated at (θ , τ , ρ). When both Ci and Bi are identity matrices, 

Equation (10) reduces to the uncorrected sandwich estimator of Liang and Zeger,19 which 

we denote as BC0. BC0 provides valid inference regardless of the correct specification of 

the working correlation Ri, as long as the number of clusters is sufficiently large (I ≥ 30), 

while the consistency of the model-based variance requires the correct specification of the 

correlation structure. As r
i
(θ ) is biased toward zero with a limited number of clusters, BC0 is 

likely to underestimate the variance and alternative choices of matrices Ci and Bi maybe 

necessary to provide a partial correction to the finite-sample bias.27 We consider three 

popular approaches for bias corrections summarized as follows and also in Table 3: the 

finite-sample correction due to the work of Kauermann and Carroll,28 or BC1, is given by Ci 

= I and Bi = (I − Hi)
−1/2; the finite-sample correction due to the work of Mancl and 

DeRouen,29 or BC2, is given by Ci = I and Bi = (I − Hi)
−1; and the finite-sample correction 

due to the work of Fay and Graubard,30 or BC3, given by 

C
i

= diag 1 − min ζ, D
i
′V

i
−1

D
i
Ω1

−1
j j

−1/2
 and Bi = I, where the bound parameter ζ is a 
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user-defined constant (< 1) with a default value 0.75. Because the matrix elements of the 

cluster leverage are between 0 and 1, we generally have BC0 < BC1 < BC2 in terms of the 

amount of correction.25 Furthermore, Scott et al31 have shown that BC3 tends to be close to 

BC1. Of note, the estimation of dispersion parameter should only affect the model-based 

variance. Similar to the work of Liang and Zeger,19 we propose to consistently update the 

dispersion parameter from iteration s to s + 1 by 

ϕ
(s + 1)

= ϕ
(s)

∑
i = 1
I tr R

i
/ ∑

i = 1
I

TN
i

− (T + 1) .

4 | DESIGN CONSIDERATIONS: SAMPLE SIZE AND POWER 

CALCULATIONS

4.1 | Closed-form variance of the intervention effect

Under the null hypothesis H0: δ = δ0, the large-sample variance of n δ − δ0  is provided by 

the (T + 1, T + 1) element of the large-sample covariance matrix of n θ − θ0 . Since the 

QLS estimator δ  is asymptotically normal, we could use the z-test statistic δ / var(δ ) to test 

the null of no intervention effect H0: δ = 0, and the power to detect an intervention effect of 

size δ ≠ 0 with a prescribed type I error rate α is approximately

power  = Φ zα/2 +
δ

var(δ )
, (11)

where Φ is the standard normal cumulative distribution function and zα/2 is the normal 

quantile such that Φ(zα/2) = 1 − α∕2. Because there is uncertainty in estimating the 

asymptotic variance var(δ ), an alternative two-sided test uses the same statistic but refers to 

the t-distribution. We consider two choices of degrees of freedom (DoF). The first DoF dates 

back to the work of Mancl and DeRouen29 and equal to the number of clusters minus the 

number of regression parameters; this DoF has been previously used in the GEE analyses of 

parallel CRTs,32 three-level CRTs,33 crossover CRTs,6 stepped wedge CRTs,5,34 and shown 

to have test size not exceeding the nominal level. The second DoF was suggested in the PhD 

dissertation of Ford35 and specifies DoF = I − 2. This choice of DoF was found to provide 

excellent control of type I error rate for GEE analyses of both parallel CRTs and stepped 

wedge CRTs in the work of Ford and Westgate.35,36 With the same effect size δ and 

prescribed type I error rate α, the power of the t-test is approximately

power  = ΨDoF tα/2, DoF +
δ

var(δ )
, (12)

where ΨDoF is the t distribution function and the quantile tα/2 is chosen such that ΨDoF(tα/2) 

= 1 − α∕2. We notice that, because the t-distribution has a heavier tail compared with the 

standard normal distribution, the QLS z-test ismore likely to result in an inflated type I error 

rate with the use of BC0 than the corresponding QLS t-test. As the bias-corrected sandwich 

variance estimators (BC1, BC2, and BC3) provide different degrees of inflation relative to 

the uncorrected variance BC0, an investigation of both the z- and t-tests coupled with the 
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collection of alternative variance estimators could help inform the practical choice among 

the analytical options for stepped wedge CRTs.

To assist the design of stepped wedge trials allowing for correlation decay, we derive a new 

closed-form variance expression for δ  assuming the outcome is continuous and g is the 

identity link function. We will return to categorical outcomes and nonlinear link functions in 

Section 7. To do so, we follow the work of Shih37 and assume the covariance of Yi to be 

known as var(Yi) = Vi. Therefore, var(δ ) is the (T+1, T+1) element of themodel-based 

variance Ω1
−1. We further assume a balanced design such that an equal number of 

participants will be recruited in each cluster prior to the first period, so that Ni = N. Such a 

simplification assumption is routinely made in designing stepped wedge trials.

Under a balanced design, we could write the design matrix corresponding to cluster i as Zi = 

1N ⊗ (IT, Xi), where 1N is a N-vector of ones. Then, the variance of the intervention effect δ

is equal to the lower-right element of ϕ ∑
i = 1
I

Z
i
′R

i
−1(τ, ρ)Z

i

−1
, where ϕ is the marginal 

variance. We show in Web Appendix C that a closed-form variance expression for δ  is

var(δ ) =
(ϕI /N) 1 − ρ

2 1 + (N − 1)τ

(IU − W) 1 + ρ
2 − 2(IV − Q)ρ

, (13)

where the design constant U = ∑
i = 1
I ∑

t = 1
T

X
it
 is the total number of cluster periods 

exposed under the intervention condition, W = ∑
t = 1
T ∑

i = 1
I

X
it

2
 is the squared number of 

clusters receiving the intervention summed across periods, and V = ∑
i = 1
I ∑

t = 1
T

X
it

X
i, t + 1

and Q = ∑
t = 1
T − 1 ∑

i = 1
I

X
it

∑
i = 1
I

X
i, t + 1  are cross-product terms resulting from the decay 

correlation structure. It is interesting to see that this variance expression does not depend on 

the magnitude of the period effect βt as long as they are controlled for in the marginal mean 

model. Noticeably, the QLS-based variance (13) extends the formula due to the work of Liu 

et al18 to longitudinal cluster designs with staggered randomization. Furthermore, as the 

cohort size N becomes large, the variance expression converges to

lim
N ∞

var(δ ) =
ϕI 1 − ρ

2
τ

(IU − W) 1 + ρ
2 − 2(IV − Q)ρ

, (14)

which is a finite constant since |ρ| < 1 and τ > 0 for large N, according to (2). Therefore, the 

limit of the variance is a positive constant determined by available design resources I, T, and 

two correlation values, τ and ρ, and cannot be made arbitrarily small. In other words, the 

power of the stepped wedge design may not be increased to one by solely increasing the 

cohort size, which is consistent with the known results for parallel cluster randomized 

designs.1 For this reason, when N is large, variance (14) could be used in the design stage to 

approximate the variance (13). Finally, given hypothesized values for I, N, T, and correlation 

parameters, variance expression (13) or (14) can be used in Equations (11) and (12) to obtain 

the predicted power.
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4.2 | The design effect

For determining the required sample size based on Equations (11) and (12), it is 

straightforward to solve N by fixing the required number of clusters I but not the other way 

around. However, with a predetermined cohort size N for each cluster, we could postulate a 

series of values for I and find the smallest value such that the estimated power is at least 

equal to the prescribed level. Additionally, in the following case studied by Woertman et al,
22 we could derive a simple expression for the design effect (DE) relative to an individually 

randomized trial to simplify sample size calculation. Specifically, we assume that an equal 

number of clusters switch to intervention at each step so that ms = m, and, furthermore, an 

equal number of measurements are taken between steps such that cs = s for all s = 1, …, S. 

We then write the total number of clusters I = Sm and total number of periods T = b + Sc, 

and the design constants become

U =
1
2

S(S + 1)mc, W =
1
3

S
3 +

1
2

S
2 +

1
6

S m
2
c,

V = U − Sm, Q = W −
1
2

S(S + 1)m2 .

Plugging the design constants back into the variance formula (13) and dividing by the 

variance of the two-sample mean difference 4ϕ∕(NSm), we obtain

DE =
3S

2(S − 1)

1 − ρ
2

(S + 1)c(1 − ρ)2 + 6ρ
1 + (N − 1)τ . (15)

The aforementioned DE allows us to easily study how the design resources affect the 

statistical efficiency relative to individual randomization and how the correlation parameters 

affect the statistical power. For example, since the DE is free of b, the relative design 

efficiency does not change according to the number of baseline periods. However, for fixed 

values of the correlation parameters, increasing the number of steps S and number of 

measurements between steps c decreases the DE and increases the efficiency. On the other 

hand, for fixed design resources, larger values of the within-period correlation τ increases 

the DE, confirming that τ functions as the traditional ICC of a parallel CRT. By contrast, the 

role of correlation parameter ρ is characterized by f(p) = (1 − ρ2)∕[(S + 1)c(1 − ρ)2 + 6ρ], 

which is monotonically increasing on (−1, r) and decreasing on (r, 1), where

r = 1 +
3 3 − 2(S + 1)c − 3

(S + 1)c − 3
∈ (0, 1) .

For convenience, we can also define the decay parameter d = 1 − ρ so that d = 0 and d = 1 

correspond to no decay and total decay, respectively. Since it is more plausible that ρ ∈ (0, 

1), the aforementioned result suggests that, with an increasing level of correlation decay, the 

DE first increases to its largest value and then decreases, with the maximum DE obtained at 

ρ = r. A numerical illustration of the DE as a function of the decay parameter is provided in 

Web Figure 2.
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5 | A SIMULATION STUDY

5.1 | Simulation design

We carry out a simulation study (1) to compare the correlation estimates from the 

uncorrected QLS and the proposed matrix-adjusted QLS (MAQLS), and (2) to evaluate the 

utility of the proposed power formula for QLS-based analyses of stepped wedge CRTs. For 

the second objective, we first determine the empirical type I error rates for the QLS-based 

tests coupled with alternative variance estimators, and then identify valid tests (those with a 

close-to-nominal type I error rate) whose empirical power corresponds well with the 

predicted power from the proposed formula. Findings specific to the second objective are 

informative for practical data analysis since we prefer tests that maintain a valid size and 

meanwhile demonstrate empirical power that is at least the magnitude of the analytical 

prediction.

Within-cluster correlated continuous outcomes were generated from a multivariate normal 

distribution with mean given by μijt = βt+Xitδ and covariance ϕR(τ, ρ), where R(τ, ρ) is the 

proportional decay structure defined in Section 3.1. We set the marginal variance ϕ = 1 and 

assumed a gently increasing period effect such that β1 = 0 and βt+1−βt = 0.1×(0.5)t−1 for t ≥ 

1. As discussed before, the predicted power should be insensitive to the magnitude of the 

period effects as long as they are accounted for in the QLS analyses. We fix the effect size 

δ∕ϕ1/2 at zero for studying test size and choose δ∕ϕ1/2 from {0.2, 0.3, 0.4, 0.5} for studying 

power. We choose the within-period correlation τ ∈ {0.03, 0.1}, which represent typical ICC 

values reported in the parallel CRTs.1 We further chose ρ ∈ {0.2, 0.8}, representing large 

and moderate degree of correlation decay over time. The number of clusters is varied from 9 

to 24 as stepped wedge CRTs usually include a limited number of clusters. We specify the 

number of periods 3 ≤ T ≤ 8 as these values are frequently reported in practice, according to 

recent reviews by the works of Martin et al38 and Grayling et al.39 Finally, the cohort size is 

chosen as 5 ≤ N ≤ 24 to ensure that the predicted power is at least 80%. For illustration, we 

focus on standard stepped wedge designs so that there is only one baseline period and the 

number of steps S = T − 1. In other words, an equal number of I∕S clusters cross over to 

intervention during each step, and the outcome is measured only once for each individual 

between consecutive steps. For each scenario, 10 000 data replications were generated and 

analyzed using both QLS and MAQLS. For the first objective, we report the percent relative 

bias in estimating τ and ρ. In general, an unbiased approach for estimating the correlation 

parameters is preferred since accurate reporting of correlations is critical for planning future 

trials. Web Tables 1 and 2 provide a summary of the simulation scenarios along with the 

convergence rates. The convergence rates are similar between QLS and MAQLS, and all 

exceed 97%. For the second objective, we consider both the z-tests and the t-tests for testing 

the null hypothesis of no intervention effect, coupled with five different variance estimators 

for δ , namely, the model-based variance, BC0, BC1, BC2, and BC3. The nominal type I 

error rate is held fixed at 5%, and we consider an empirical type I error rate between 4.5% 

and 5.5% to be acceptable based on the margin of error from a binomial model with 10 000 

replications. By a similar reasoning, since the predicted power in each scenario is at least 

80%, we consider an empirical power that differs by no more than 0.8% from the predicted 

value to be acceptable.
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5.2 | Results

For the first objective, we summarize in Table 4 and Web Table 3 the percent relative bias in 

estimating the correlations with QLS and MAQLS. It is evident that the percent bias in 

estimating the within-period correlation τ is much larger than that in estimating the 

correlation parameter ρ, without respect to the incorporation of matrix adjustment to the 

first-stage estimating equations (4) and (5). However, the QLS estimator for τ exhibits 

noticeable downward bias, especially when the number of clusters is not large. By contrast, 

MAQLS substantially reduces such finite-sample bias and improves the estimation of τ. On 

the other hand, the QLS estimator for the parameter ρ seems more accurate in that the 

absolute percent bias only occasionally exceeds one. Nevertheless, MAQLS still mildly 

improves the estimation of ρ in that the absolute percent bias is always maintained under 

one. The comparative findings between QLS and MAQLS are consistent regardless of the 

magnitude of intervention effect δ. Therefore, MAQLS is the preferred approach because it 

provides much less biased estimates for the correlation parameters; these more accurate 

correlation estimates will eventually facilitate accurate estimation of sample size and power 

for future cohort stepped wedge trials.

For the second objective, we present the empirical type I error rates of the z-tests and t-tests 

for the QLS and MAQLS analyses in Web Tables 4 to 6 and Web Figure 3. Overall, we 

observe that the matrix adjustment to the correlation estimation mildly affects the tests with 

the model-based variance but has little impact on the tests with the sandwich variance. This 

is in accordance with the work of Lu et al,40 who observed the same results for the GEE 

analyses of pretest-posttest CRTs. Since MAQLS provides more accurate estimation of the 

correlations, we will focus on this approach. Table 5 summarizes the empirical type I error 

rates of the MAQLS z-tests and t-tests with DoF = I − 2. We leave the results for t-tests with 

DoF = I − (T + 1) to Web Table 6 as these tests are conservative in many cases. From Table 

5, we observe that MAQLS z-tests are more liberal than the corresponding MAQLS t-tests. 

The type I error rates of the MAQLS z-tests coupled with the model-based variance or BC2 

are close to nominal when I ≥ 20, while the MAQLS z-tests coupled with BC0, BC1, or BC3 

are always liberal. By contrast, only the MAQLS t-tests with BC0 remain liberal, while 

MAQLS t-tests with BC1 or BC3 maintain close-to-nominal size and MAQLS t-tests with 

model-based variance or BC2 are conservative. Overall, the t-tests with DoF = I − 2 and 

BC1 demonstrate test sizes that consistently agree with the nominal level.

Web Tables 7 to 9 and Web Figure 4 present the predicted and empirical power for each 

simulation scenario. Because we are only interested in tests that maintain close-to-nominal 

sizes, we summarize in Table 6 the differences between the empirical and the predicted 

power only for the MAQLS z-tests and t-tests with DoF = I − 2. Among the z-tests, only the 

choice of BC2 provides substantially lower power than predicted. While the choices of 

model-based variance BC1 and BC3 provide adequate power for the z-tests in a number of 

scenarios, one should be cautious in adopting these tests with a small number of clusters 

since they may carry an inflated test size. On the other hand, the empirical power for 

MAQLS t-tests coupled with the model-based variance, BC1 or BC3 corresponds reasonably 

well with the analytical prediction from the proposed formula even for as few as nine 

clusters, while the empirical power for MAQLS t-tests with BC2 still tends to be 
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substantially lower than predicted. Interestingly, the MAQLS t-test with DoF = I − (T + 1) 

coupled with model-based variance, BC1 or BC3 also demonstrates empirical power fairly 

close to prediction, even though these tests are more conservative under the null. These tests 

may not be preferred over the t-tests with DoF = I − 2 since they are less powerful.

6 | NUMERICAL ILLUSTRATIONS

6.1 | The AEP study

We illustrate the proposed sample size procedure to design a cohort stepped wedge CRT that 

aims to study the effect of an exercise intervention on the physical function of patients with 

end-stage renal disease.41 The intervention was an accredited exercise physiologist (AEP) 

coordinated resistance exercise program, offered at hemodialysis clinics to improve the 

quality of life for dialysis patients. During the planning phase, it was determined that I = 15 

clinics (clusters) were available, and would be randomized over T = 4 periods evenly spaced 

across 48 weeks. At baseline, no exercise programs were offered to any clinic. At week 12, 

36 and 48, a random subset of 5 clinics cross over from control to intervention. A closed 

cohort of patients was recruited at baseline, and would be followed up during the study 

period. The primary patient-level outcome was the 30-second sit-to-stand test, recording the 

number of times a patient could rise from and return to a seated position in a 30-second time 

frame. The 30-second sit-to-stand test was conducted at the end of each period, resulting in 

four outcome measurements per patient. Based on a prior study within a similar context, a 

conservative estimate of the effect size was given by δ∕ϕ = 0.325,42 and the within-period 

correlation was estimated to be τ = 0.03.43 With I = 15 clusters, the simulations suggest the 

MAQLS t-test with DoF = I − 2 = 13 could maintain nominal size and adequate power; we 

illustrate the power calculation based on the t-test statistic.

Given this is a standard stepped wedge design where an equal number of clinics switch to 

intervention at each step, we can show that U = IT∕2, W = I2T(2T − 1)∕{6(T − 1)}, V = I(T 

− 2)∕2 and Q = I2T(T − 2)∕{3(T − 1)}. The variance expression (13) is then simplified to

var(δ ) =
6(ϕ/N)(T − 1) 1 − ρ

2 1 + (N − 1)τ

I(T − 2) T(1 − ρ)2 + 6ρ
. (16)

If we anticipate large correlation decay so that ρ = 0.2, the power is estimated using 

Equations (11) and (16) to be 79.4% if N = 21 and 80.5% if N = 22. Therefore, at least N = 

22 patients should be recruited in each clinic to achieve 80% power under the proportional 

decay structure. On the other hand, we could arrive at the same results by using the DE 

formula (15). For example, in an individual randomized study, 348 patients would be 

required for the hypothesized effect size. Assuming 21 patients will be included in each 

clinic, the DE is approximately 0.92, indicating a total of 320 patients in approximately 15.2 

clinics would be required. Since the study affords to randomize only 15 clinics, we increase 

the cohort size to N = 22, resulting in a DE 0.94. Therefore, 326 patients are required for a 

total of 326∕22 ≈ 14.8 clinics, and we conclude that 22 patients in 15 clinics ensured 80% 

power.

Li Page 14

Stat Med. Author manuscript; available in PMC 2020 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While the within-period correlation estimate was available from prior studies, published 

estimates of the correlation parameter ρ (or decay parameter d = 1 − ρ) are currently rare. 

For this reason, we carry out a sensitivity analysis on the power and present the results in 

panel (A) of Figure 2, where we fix the design resources but vary τ ∈ (0.03, 0.06) and ρ ∈ 
(0, 1). Note that the upper bound of the within-period correlation τ was reported by the work 

of Littenberg and MacLean43 and is used in this assessment. As expected, larger values of 

the within-period correlation reduce the study power, and furthermore, given a certain value 

of the within-period correlation, a greater magnitude of decay (smaller ρ or larger d) 

generally reduces the study power unless ρ ≈ 0 (or d ≈ 1). For the hypothesized τ = 0.03, the 

study power remains at least close to 80% regardless of the correlation decay. On the other 

hand, the amount of correlation decay could result in further power loss if the within-period 

correlation τ increases. Nevertheless, the power loss is at most around 10% even if the 

within-period correlation τ approximates the upper bound 0.06.

6.2 | The CORE study

We next illustrate the proposed sample size procedure by designing the CORE stepped 

wedge trial. The CORE study aims to evaluate the patient-centered service design in health 

providers to improve the psychosocial recovery outcomes for people with severe mental 

illness in Australia.44 The new service design intervention adopted the experience-based co-

design to identify users’ positive and negative experiences of the service, and involved 

patients’ participation to co-design solutions to the negative experiences. A total of I = 11 

teams from four health service providers would be participating the study; each team 

involved a number of service users who will be affected by the intervention. A stepped 

wedge design was considered appropriate for the study due to logistical constraint in 

simultaneously introducing the intervention to more than a few teams. The experience-based 

co-design intervention will be delivered to the clusters in three waves, each with a duration 

of 9 months. Four teams will start the intervention in wave 1 and wave 2, respectively, while 

the remaining three teams receive the intervention in the final wave. In other words, the 

study includes four periods, with a baseline period lasting about 6 months.

The outcome of interest is the improvement in psychosocial recovery measured by the 

recovery assessment scale revised,45 and was measured for each user at the end of baseline 

period and each of the three follow-up period. The standardized effect size on the 

psychosocial recovery outcome was estimated to be 0.35, and the within-period correlation 

was assumed to be τ = 0.1.44 Since the study affords to randomize only 11 clusters, there 

may be a risk of inflated type I error rate with a z-test. As the t-test with DoF = I − 2 = 9 

performs best with respect to empirical size and power in the simulations, we determine the 

required cohort size based on a test using expressions (12) and (13). Assuming the 

correlation decay is only moderate so that ρ = 0.8, power is estimated to be 0.79 for N = 8 

and 0.81 for N = 9, barring drop out. Therefore, N = 9 is required to ensure 80% power 

given a 5% test size. We further conducted a sensitivity analysis to see how power changes 

according to the degree of correlation decay, and presented the power contour in panel (B) of 

Figure 2. Due to the small sample size and the heavy tail of the t distribution, the study is 

sensitive to correlation decay when τ = 0.1, and remains so even if τ approaches zero. On 

the other hand, the actual study planned to recruit N = 30 users in each team. With this larger 
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cohort size, panel (C) of Figure 2 suggests that the power becomes less sensitive to the 

correlation decay, especially as the within-period correlation approaches zero. For example, 

if τ ≤ 0.02, the study power remains at least around 80% regardless of the amount of 

correlation decay.

6.3 | Consequences of specifying a nondecay correlation structure

For GEE analyses of cohort stepped wedge designs, Li et al5 recently developed the block 

exchangeable correlation structure for estimating the sample size and power. With a 

continuous outcome and identity link function, the block exchangeable correlation structure 

is also implied by the linear mixed effects model for cohort studies discussed in the works of 

Hooper et al,8 and Girling and Hemming.46 To understand the implications of alternative 

correlation models, we compare the variance of the intervention effect estimator obtained 

under the proportional decay correlation structure to that obtained under the block 

exchangeable correlation structure. Specifically, both the proportional decay structure and 

the block exchangeable correlation structure assume a constant within-period correlation, ie, 

corr(yijt, yij′t) = τ for j ≠ j′. However, the latter correlation model also assumes constant 

between-period and within-individual correlations such that corr y
i jt

, y
i j′t′ = α1

BE for j ≠ j′, t 

≠ t′ and corr y
i jt

, y
i jt′ = α2

BE, t ≠ t′. To focus ideas, we carry out the comparisons based on 

the standard stepped wedge designs with a single baseline period and an equal number of 

clinics switching to intervention at each step. We refer to the variance of δ  obtained under 

the proportional decay structure as varPD(δ ), whose expression is provided in (16). We refer 

to the variance of δ  obtained under the block exchangeable structure as varBE(δ ), whose 

expression is derived in the work of Li et al5 as

varBE(δ ) =
12(ϕ/N)(T − 1)λ3λ4

I(T − 2) (T − 1)λ3 + (T + 1)λ4

, (17)

with λ3 = 1 + (N − 1) τ − α1
BE − α2

BE and 

λ4 = 1 + (N − 1)τ + (T − 1)(N − 1)α1
BE + (T − 1)α2

BE as the two distinct eigenvalues of the 

block exchangeable matrix. If we define function h α1
BE, α2

BE = (N − 1)α1
BE + α2

BF, we can 

write the relative variance as

varPD(δ )

varBE(δ )
=

1 − ρ
2

2 T(1 − ρ)2 + 6ρ

(T − 1) 1 + (N − 1)τ

1 + (N − 1)τ + (T − 1)h α1
BE, α2

BE
+

(T + 1) 1 + (N − 1)τ

1 + (N − 1)τ − h α1
BE, α2

BE
.

(18)

For each value of the within-period correlation τ and each value of the decay parameter d = 

1 − ρ in the proportional decay model, there may exist pairs of values for (α1
BE, α2

BE) that 

result in the same variance of the intervention effect. Obtaining the equal variance 

correspondence is equivalent to finding the straight line h α1
BE, α2

BE = η that solves 
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varPD(δ )/varBE(δ ) = 1. Because the relative variance is quadratic in h α1
BE, α2

BE , such a line 

may not always exist within the plausible range of (α1
BE, α2

BE) that ensures a positive definite 

block exchangeable correlation matrix. We confirm this observation by plotting the relative 

variance for varying correlation parameters. Fixing τ = 0.03, T = 4 and N = 20 similar to the 

accredited exercise physiologist study, we present in Figure 3 the contour of 

varPD(δ )/varBE(δ ) over the (α1
BE, α2

BE) plane for each level of decay d ∈ {0, 1, …, 0.9}. The 

dashed thick line indicates the equal variance correspondence. We also present the contour 

plots by specifying N = 100, T = 8, and τ = 0.1 in Web Figures 5 to 7. It is evident that the 

existence and location of the equal variance line on the (α1
BE, α2

BE) plane depends on the 

value of correlation decay, cohort size and number of periods. If the equal variance line 

exists, the value of τ and number of periods only affects its location while cohort size N 

further affects its slope, as expected from inspecting expression (18). Apart from the equal 

variance correspondence, the two variances are generally different. Depending on the gray 

shades (colored shades in the online version), either the proportional decay or the block 

exchangeable structure will lead to a larger variance of the intervention effect and require a 

larger sample size. As a result, using the block exchangeable correlation structure in the 

presence of correlation decay could lead to an overestimation or underestimation of the true 

intervention effect variance, and vice versa. Particularly, the variances returned from these 

two correlation models become close when α1
BE, α2

BE approximate zero and when the decay 

parameter, d = 1 − ρ, approximates one. These two restrictions result in many nearly-zero 

entries in the block exchangeable and proportional decay correlation matrices, increasing the 

dependence of sample size estimation on the within-period correlation τ. Therefore, it is 

anticipated that the variances from the two models become similar in this particular scenario, 

even though in general there could be large differences between varPD(δ ) and varBE(δ ). To 

summarize, our key message for cohort stepped wedge designs echo the principal findings in 

the work of Kasza et al10 for cross-sectional designs. It is possible to grossly overestimate or 

underestimate the variance of the intervention effect if the correlation model is misspecified, 

except in restrictive scenarios. In practice, researchers could investigate the sensitivity of 

sample size estimates to misspecification of the correlation structure when there is limited 

preliminary data at the design stage of the trial.

7 | DISCUSSION

This article expanded on the design and analysis considerations for cohort stepped wedge 

CRTs in the presence of correlation decay. Since a cohort design involves repeated outcome 

assessments for fixed sets of individuals, we adopted the proportional decay structure of 

Lefkopoulou et al16 to characterize the within-cluster correlations among the outcome 

measurements. Based on a marginal mean model accounting for the treatment and period 

effects, we developed a new sample size and power procedure to design stepped wedge 

CRTs accounting for such correlation decay. To apply this procedure, a key step is to obtain 

reasonable values for the correlation parameters. The within-period correlation, τ, is similar 

to the traditional ICC in a parallel CRT, and may often be found in previous studies with a 

similar endpoint. By contrast, the correlation parameter, ρ (or decay parameter d = 1 − ρ), is 
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not as commonly reported in the literature, and therefore the sensitivity of power should be 

investigated across a range of values for ρ, as illustrated in Section 6. Given that accurate 

reporting of correlations is vitally important for designing future stepped wedge trials, we 

also provided an improved MAQLS approach to estimate the correlation parameters along 

with the marginal mean parameters. The MAQLS has little impact on the estimation of the 

marginal mean parameters and the associated statistical tests coupled with the sandwich 

variance, but it substantially reduces the bias in estimating the within-period correlation τ 
and mildly improves the estimation of ρ, as confirmed in our simulation study.

In our simulation study with a small number of clusters, we found that, regardless of choice 

of variance estimators, the t-tests provide better control of the type I error rates compared to 

the z-tests, which are often liberal. Regardless of the two choices of DoF, the t-tests coupled 

with the model-based variance, BC1 and BC3 preserve the nominal size and demonstrate 

empirical power that agrees well with analytical prediction. Since the t distribution with a 

smaller DoF has a heavier tail, which implies a smaller power under the alternative, we 

prefer the t-tests with DoF = I − 2 for the design and analysis of cohort stepped wedge CRTs 

under the proportional correlation decay structure. An additional piece of evidence that 

favors DoF = I − 2 is found in the recent simulation study by Ford,35 who showed that the 

GEE t-tests with DoF = I − 2 provide satisfactory control of type I error rates even for I = 6 

but in the absence of correlation decay. Additional work is needed to investigate whether 

these extremely small sample sizes could provide adequate power under the proportional 

decay structure. On the other hand, although the t-tests with DoF = I − (T + 1) could provide 

adequate power using the model-based variance, BC1 or BC3, they are frequently 

conservative under the null with a small number of clusters. In fact, one needs a minimum of 

T+2 clusters to provide at least one DoF, which further limits the applications of such a t-test 

in the design and analysis of small stepped wedge trials.

Recent reviews of stepped wedge CRTs9,38,39 indicated that both the cross-sectional and 

cohort designs were common in practice. Although we have developed the design and 

analysis strategies specifically for cohort stepped wedge CRTs, a parallel discussion for 

cross-sectional stepped wedge CRTs could be equally informative. As discussed in Section 

3.1, the exponential decay structure is often used to model correlation decay in multiperiod 

CRTs with repeated cross-sectional samples.10 Assuming there are Ni observations in each 

period for each cluster, we could write the exponential decay structure as Li(τ, ρ) = (1 − 

τ)ITNi + τJN ⊗ F(ρ) without changing the interpretation of τ and ρ from the cohort setting. 

To estimate the intervention effect and correlation parameters, the MAQLS approach could 

still be applied once we replace the second-stage estimating equations 6 and (7) by

∑
i = 1

I

tr
∂L

i
−1

α0, α1
∂α0

L
i
(τ, ρ) = 0,

∑
i = 1

I

tr
∂L

i
−1

α0, α1
∂α1

L
i
(τ, ρ) = 0.
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Such modifications are necessary because τ and ρ are no longer separable in Li(τ, ρ), and 

hence, updates for τ and ρ do not come in closed forms. Correspondingly, the inseparability 

between τ and ρ also precludes the derivation of an analytical inverse L
i
−1(τ, ρ), and 

therefore, one may not be able to obtain a simple algebraic expression for var(δ ). As a result, 

sample size and power calculation requires numerically inverting the correlation matrix Li(τ, 

ρ). In fact, with a continuous outcome and the identity link, it is straightforward to show that 

the QLS-based sample size procedure with Li(τ, ρ) coincides with the mixed-effects model-

based sample size procedure developed in the work of Kasza et al10 with exponential 

correlation decay.

We have assumed that each individual has complete follow-up during the study. In reality, 

individual dropout may be anticipated and could be accounted for in the design phase. Given 

an expected attrition rate γ, a simple and commonly used strategy is to inflate the required 

total sample size by 1∕(1 − γ), so that a complete-trajectory GEE analysis may provide 

adequate power if the drop-out or missingness is completely at random.47 More 

sophisticated approaches that deal with monotone missingness have been studied for 

repeated-measure randomized trials and may be adapted to the stepped wedge context by 

considering staggered treatment assignments and appropriate levels of clustering.48,49 In any 

event, trial implementation methodologies to prevent attrition bias in longitudinal CRTs 

merit further investigation.50

One simplification we made in the sample size and power calculations was to assume equal 

cluster (cohort) sizes. It has been shown that cluster size imbalance leads to reduced power 

in parallel CRTs and therefore may be accounted for in the design phase.51 For a stepped 

wedge trial, Girling52 computed the relative efficiency of unequal versus equal cluster sizes 

by assuming a linear mixed-effects model without correlation decay. It was concluded that 

the efficiency loss due to unequal cluster sizes is unlikely to exceed 12% across a wide range 

design of resources and correlation values. Nevertheless, a corresponding expression for the 

relative efficiency accounting for correlation decay is currently not available and should 

merit additional study. The availability of such expressions for relative efficiency could 

inform the amount of additional design resources required to compensate the efficiency loss 

due to unequal cluster sizes. Another limitation of our design strategy is that we have 

assumed the proportional decay correlation is the correctly specified within-cluster 

dependency structure. However, both the QLS or MAQLS estimators for the intervention 

effect remain consistent even if the correlation structure is misspecified. If it is anticipated in 

the design phase that the working correlation may be misspecified, one could follow the 

general idea of Rochon48 to develop a modified sample size procedure based on the 

sandwich variance.

Finally, we have assumed a continuous outcome and an identity link function, corresponding 

to the scenarios of the illustrative examples. In practice, categorical outcomes could be 

collected in cohort stepped wedge designs. Under correlation decay, we could extend the 

QLS-based sample size procedure to accommodate binary and count outcomes by following 

the steps outlined in section 3.2 of the work of Li et al.5 In those cases, a further 

complication is that the variance is an explicit function of the marginal mean, and so the 
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magnitude of the period effects necessarily affects the variance for the intervention effect. 

Future work is required to investigate the operating characteristics of such extensions for 

calculating sample size and power with binary and count outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 

A schematic illustration of a standard stepped wedge design with I = 6 clusters and T = 4 

periods. Each cell with a zero entry indicates a control cluster period and each cell with a 

one entry indicates an intervention cluster period
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FIGURE 2. 

Sensitivity analysis of study power for (A) the accredited exercise physiologist (AEP) study 

with I = 15 clusters and N = 22 individuals within each cluster, (B) the CORE study with I = 

11 clusters and N = 9 individuals within each cluster, and (C) the CORE study with I = 11 

clusters and N = 30 individuals within each cluster
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FIGURE 3. 

Contour plots for the relative variance obtained under the proportional decay correlation 

model and the block exchangeable correlation model, for varying values of the proportional 

decay model decay parameter d and the block exchangeable model correlation parameters 

α1
BE, α2

BE. In all panels, the within-period correlation τ = 0.03, the number of periods T = 4, 

and the cohort size N = 20. The dashed thick line indicates the equality of variances. A, τ = 

0.03 d = 0.1; B, τ = 0.03 d = 0.2; C, τ = 0.03 d = 0.3; D, τ = 0.03 d = 0.4; E, τ = 0.03 d = 

0.5; F, τ = 0.03 d = 0.6; G, τ = 0.03 d = 0.7; H, τ = 0.03 d = 0.8; I, τ = 0.03 d = 0.9
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TABLE 1

Example correlation structures in the literature on designing stepped wedge cluster randomized trials

Decay Design feature Correlation structure Example references

No Cross-sectional Nested exchangeable Hemming et al,7 Hooper et al,8 and Li et al5

Closed-cohort Block exchangeable Hooper et al8 and Li et al5,14

Yes Cross-sectional Exponential decay Kasza et al,10 Kasza and Forbes,11 and Grantham et al12

Closed-cohort Proportional decay This article
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TABLE 2

Examples of the proportional decay structure for cohort designs and the exponential decay structure for cross-

sectional designs. The illustration is based on a stepped wedge trial with T = 3 periods and Ni = 2 

measurements per cluster period. Define yi = (yi11, yi12, yi13, yi21, yi22, yi23)′

Proportional decay structure Exponential decay structure

corr(yi)
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TABLE 3

Summary of bias-corrected sandwich variance estimators for θ

Label Correction Ci Bi References

BC0 none I I Liang and Zeger19

BC1 less I (I − Hi)
−1/2 Kauermann and Carroll28

BC2 more I (I − Hi)
−1 Mancl and DeRouen29

BC3 less
diag 1 − min ζ, D

i
′V

i
−1

D
i
Ω1

−1
j j

−1/2 I Fay and Graubard30
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TABLE 4

Percent relative bias of the correlation parameters based on uncorrected quasi-least squares (QLS) and matrix-

adjusted QLS (MAQLS) for each simulation scenario when the treatment effect is zero

Correlations Effect size Design resource Percent bias for τ Percent bias for ρ

τ ρ δ I N T QLS MAQLS QLS MAQLS

0.03 0.2 0 18 10 7 −26.6 3.5 −0.6 0.2

0.03 0.2 0 18 24 4 −16.0 5.5 −0.3 0.0

0.03 0.2 0 20 14 5 −20.2 3.4 −0.5 0.0

0.03 0.2 0 21 8 4 −29.4 3.2 −0.4 0.2

0.03 0.2 0 15 8 4 −41.3 4.7 −0.6 0.3

0.03 0.8 0 16 12 5 −26.2 4.4 −0.6 0.0

0.03 0.8 0 24 7 5 −27.7 0.6 −0.6 −0.1

0.03 0.8 0 12 8 5 −49.4 8.2 −2.1 −0.4

0.03 0.8 0 12 5 4 −74.2 6.6 −2.3 −0.5

0.03 0.8 0 10 5 3 −91.6 −0.4 −1.5 −0.5

0.10 0.2 0 21 11 8 −9.2 3.9 −0.6 0.6

0.10 0.2 0 24 11 7 −8.1 3.4 −0.4 0.6

0.10 0.2 0 15 16 6 −11.8 7.1 −0.6 1.1

0.10 0.2 0 18 8 7 −12.7 3.9 −0.8 0.7

0.10 0.2 0 16 7 5 −16.7 3.7 −0.7 1.0

0.10 0.8 0 20 18 5 −8.0 5.0 −0.1 0.2

0.10 0.8 0 15 9 4 −15.2 3.1 −0.2 0.2

0.10 0.8 0 10 20 3 −16.9 6.5 −0.1 0.3

0.10 0.8 0 12 5 5 −27.0 2.6 −1.5 0.0

0.10 0.8 0 9 7 4 −29.7 3.8 −1.0 0.1
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TABLE 5

Simulation scenarios and nominal size, along with the empirical type I error rates corresponding to the 

MAQLS z-test and t-test (DoF = I − 2) with different variance estimators. Empirical type I error rates between 

4.5% and 5.5% are highlighted in boldface and considered acceptable based on the margin of error from a 

binomial model with 10 000 Monte Carlo replications. Pred: nominal type I error rate; MB: model-based 

variance; BC0: uncorrected sandwich variance of Liang and Zeger (1986); BC1: bias-corrected sandwich 

variance of Kauermann and Carroll (2001); BC2: bias-corrected sandwich variance of Mancl and DeRouen 

(2001); BC3: bias-corrected sandwich variance of Fay and Graubard (2001)

z-test t-test

τ ρ δ I N T Pred MB BC0 BC1 BC2 BC3 Pred MB BC1 BC2 BC2 BC3

0.03 0.2 0 18 10 7 5.0 4.8 8.4 6.8 5.1 7.1 5.0 3.4 6.3 4.7 3.8 4.9

0.03 0.2 0 18 24 4 5.0 4.9 8.1 6.5 5.0 6.5 5.0 3.4 6.0 4.7 3.6 4.7

0.03 0.2 0 20 14 5 5.0 5.1 8.3 6.9 5.8 7.0 5.0 3.8 6.5 5.4 4.4 5.5

0.03 0.2 0 21 8 4 5.0 5.2 7.9 6.6 5.3 6.6 5.0 3.8 6.2 5.0 4.0 4.9

0.03 0.2 0 15 8 4 5.0 5.7 9.7 7.7 5.8 7.7 5.0 3.7 7.0 5.3 4.1 5.3

0.03 0.8 0 16 12 5 5.0 5.6 9.0 7.3 5.6 7.3 5.0 3.8 6.7 5.1 3.8 5.1

0.03 0.8 0 24 7 5 5.0 5.3 7.7 6.6 5.5 6.6 5.0 4.3 6.2 5.2 4.3 5.3

0.03 0.8 0 12 8 5 5.0 6.0 10.6 7.9 5.8 7.9 5.0 3.5 7.0 4.9 3.2 5.0

0.03 0.8 0 12 5 4 5.0 5.7 10.3 7.8 5.7 7.5 5.0 3.4 6.9 5.0 3.5 4.9

0.03 0.8 0 10 5 3 5.0 6.3 11.2 8.2 5.6 7.1 5.0 3.0 7.0 4.6 3.1 3.8

0.10 0.2 0 21 11 8 5.0 5.0 8.1 6.9 5.7 7.0 5.0 3.8 6.6 5.3 4.4 5.6

0.10 0.2 0 24 11 7 5.0 5.1 7.7 6.4 5.3 6.5 5.0 3.8 6.1 5.1 4.3 5.2

0.10 0.2 0 15 16 6 5.0 4.8 9.7 7.5 5.7 7.8 5.0 3.1 6.8 5.2 4.0 5.3

0.10 0.2 0 18 8 7 5.0 4.8 8.8 7.1 5.6 7.3 5.0 3.4 6.7 5.2 4.0 5.4

0.10 0.2 0 16 7 5 5.0 5.2 9.1 7.2 5.5 7.3 5.0 3.4 6.6 5.1 3.8 5.2

0.10 0.8 0 20 18 5 5.0 5.3 7.9 6.4 5.2 6.5 5.0 3.8 6.1 4.8 3.9 4.8

0.10 0.8 0 15 9 4 5.0 5.5 9.1 7.2 5.3 7.0 5.0 3.7 6.6 4.8 3.7 4.6

0.10 0.8 0 10 20 3 5.0 5.6 11.7 8.5 6.0 7.4 5.0 2.8 7.3 4.9 3.0 4.0

0.10 0.8 0 12 5 5 5.0 5.8 10.5 7.9 5.7 7.9 5.0 3.3 6.9 4.9 3.3 4.9

0.10 0.8 0 9 7 4 5.0 6.0 12.0 8.6 5.7 8.3 5.0 2.8 7.2 4.7 2.9 4.5
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TABLE 6

Simulation scenarios and predicted power, along with the difference between empirical and predicted power 

corresponding to the MAQLS z-test and t-test (DoF = I − 2) with different variance estimators. Differences 

from the prediction within 0.8% are highlighted in boldface and considered acceptable. Pred: predicted power; 

MB: model-based variance; BC0: uncorrected sandwich variance of Liang and Zeger (1986); BC1: bias-

corrected sandwich variance of Kauermann and Carroll (2001); BC2: bias-corrected sandwich variance of 

Mancl and DeRouen (2001); BC3: bias-corrected sandwich variance of Fay and Graubard (2001)

z-test t-test

τ ρ δ I N T Pred MB BC0 BC1 BC2 BC3 Pred MB BC0 BC1 BC2 BC3

0.03 0.2 0.3 18 10 7 89.9 −0.5 1.1 −1.0 −3.4 −0.9 86.0 0.2 2.4 −0.1 −3.4 0.2

0.03 0.2 0.3 18 24 4 88.6 −0.4 1.5 −0.4 −2.9 −0.5 84.4 0.5 3.2 0.5 −2.5 0.4

0.03 0.2 0.3 20 14 5 89.7 0.0 1.5 −0.5 −2.6 −0.3 86.2 0.3 2.6 0.2 −2.5 0.4

0.03 0.2 0.4 21 8 4 87.5 −0.5 1.3 −0.8 −3.4 −0.9 83.9 −0.1 2.2 −0.5 −3.2 −0.6

0.03 0.2 0.5 15 8 4 90.7 −1.1 1.0 −1.2 −3.9 −1.1 85.9 −0.3 3.0 −0.2 −4.3 −0.3

0.03 0.8 0.2 16 12 5 88.6 −0.5 1.2 −1.4 −4.4 −1.3 83.8 0.1 2.5 −0.6 −4.4 −0.6

0.03 0.8 0.2 24 7 5 88.2 −0.5 1.1 −0.6 −2.4 −0.7 85.2 0.2 1.8 0.0 −2.3 0.0

0.03 0.8 0.3 12 8 5 94.1 −1.1 0.4 −1.8 −4.6 −1.9 88.7 0.3 2.7 −0.4 −4.8 −0.3

0.03 0.8 0.4 12 5 4 95.2 −0.8 0.7 −1.2 −3.8 −1.5 90.3 0.5 2.8 −0.3 −4.1 −0.6

0.03 0.8 0.5 10 5 3 94.6 −0.7 1.1 −1.1 −4.8 −2.3 87.8 0.8 4.3 −0.3 −6.0 −2.4

0.10 0.2 0.3 21 11 8 87.8 −0.6 1.5 −0.4 −2.8 −0.1 84.3 −0.1 2.6 0.1 −2.8 0.5

0.10 0.2 0.3 24 11 7 87.8 −0.6 1.2 −0.3 −2.5 −0.1 84.8 0.0 2.1 0.2 −2.2 0.4

0.10 0.2 0.4 15 16 6 90.6 −1.3 1.2 −1.0 −4.3 −0.8 85.8 −0.8 2.9 −0.3 −4.1 0.1

0.10 0.2 0.4 18 8 7 91.6 −0.1 1.5 −0.4 −2.7 −0.1 87.9 0.4 2.7 0.3 −2.5 0.6

0.10 0.2 0.5 16 7 5 88.6 −0.8 1.9 −0.6 −3.5 −0.4 83.8 −0.1 3.4 0.3 −3.5 0.6

0.10 0.8 0.2 20 18 5 86.1 −0.5 1.8 −0.5 −3.0 −0.6 82.1 −0.3 2.7 0.0 −3.2 0.0

0.10 0.8 0.3 15 9 4 89.5 −1.0 1.0 −1.5 −4.6 −1.8 84.5 −0.1 2.6 −0.8 −4.8 −1.1

0.10 0.8 0.4 10 20 3 94.4 −0.6 1.6 −0.8 −4.3 −2.1 87.5 0.4 4.6 0.6 −5.3 −1.8

0.10 0.8 0.4 12 5 5 93.2 −0.5 0.9 −1.3 −4.4 −1.4 87.5 0.7 3.2 −0.3 −4.8 −0.3

0.10 0.8 0.5 9 7 4 97.3 −0.6 0.4 −1.1 −4.2 −1.4 91.4 1.1 3.5 −0.2 −5.7 −0.7
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