Design and Analysis Cryptographic Hash Function for The Next Generation
Her，Yong－Sork
Dept．Computer Science \＆Communication Engineering，KYUSHU University
Sakurai，Kouichi
Dept．Computer Science \＆Communication Engineering，KYUSHU University

https：／／doi．org／10．15017／3783

出版情報：Proc．of International Workshop on Information \＆Electrical Engineering．（1）， pp．168－173，2002－05．International Workshop on Information \＆Electrical Engineering バージョン：
権利関係：

DESI GN AND ANALYSI S OF CRYPTOGRAPH C HASH FUNCTI ON FOR THE NEXT GENERATI ON

Yong- Sork HER, Koui chi SAKURAI
Dept. Computer Sci ence \& Communi cation Engi neering, KYUSHU Uni ver sity
6-10-1, Hakozaki, Fukuoka, 812-8581, Japan.
Tel : +81- 92-642-4050, Fax : +81- 92-632-5204,
Enail : ysher @ csl ab. csce. kyushu- u. ac.jp , sakur ai @sce. kyushu-u.ac.jp

Abstract

Hash functions play an important role in a branch of inf or mati on secret. The hash al gorithm provides the services of information security, authentication, integrity, non-reputation and so on. As the grouth of computer technol ogi es, the hash val ue has been become I onger based on the compl exity of cal cul ation. It was known to be desi rable that the out put lengths of hash funct i ons are more than 160 bits. The $1^{\text {st }}$ editi on of Hash Funct i on St andard-160 of Kor ea, namel y HAS 160, was publ i shed in 1998 and the revi sed edi $t i$ on was publ i shed in 2000. In this paper, we propose the thr ee improved hash functi ons. First, we propose HAS 256, 384 and 512 that were based on SHA 256, 384 and 512. Second, we pr opose SHA V usi ng HAS V pr oposed by P. J. Lee [12]. He pr oposed a new hash funct i on with vari abl e out put I engt h. Thi rd, we propose the SHA V with vari abl e out put I engt h and anot her HAS I onger - ver si on based on RI PEMD 256/320.

Keywor d: I nf ormat i cs, Crypt ogr aphy, I nf or mat i on- Secur it y. Hash function, Digital si gnat ure, Aut hentication, I nt egrity, HAS, SHA, MD4, RI PEMD, SEED

1. I NTRODUCTI ON

Hash functions[1] take a message as input with an arbitrary length and produce an out put referred to as a hash-code, hash-result, hash-val ue, or si mply hash. More preci sely, a hash function h maps bit strings of arbitrary finitel ength to strings of fixed length, say n bits.
Hash functions are used for data integrity in conj unction with digital si gnat ure schemes, where for sever al reasons a message is typically hashed first, and t hen the hash- val ue, as a repr esent at i ve of the message, i s si gned in pl ace of the or i gi nal message. <Tabl e 1>[10] shows the efficiency of hash functions based on the bl ock- crypt ogr aphy al gor ithm DES.
A hash function satisfies the following conditions. First, a hash function maps an input with an ar bitrary

I engt h to an out put with a speci fic l ength. In thi s case, the I ength of out put must be shorter than the l ength of i nput. Second, when $y=h(x)$ is given, the inverse cal cul at i on of x must be comput at i onal $I y$ inf easi ble. It is sai d the ' one-wayness'. Thi rd, a hash function h is strongly collisi on-free if it is computationally inf easi ble to find messages x and x^{\prime} such that $x^{\prime} \neq$ x and $h\left(x^{\prime}\right)=h(x)$.
In 1990 Ri vest proposed the crypt ogr aphi c hash function MD4. MD4 [1]is a 128 bit hash function and consi sts of 3 rounds. After Merkle showed an at tack on the first two rounds of MD4, den Boer and Bossel aer s proposed an at tack on the last two rounds of MD4, and Dobbertin finally demonstrated an attack for finding a collision for three-round MD4 [6]. So, It is undesi rable to use MD4 as a hash function. MD5 was desi gned as a strengt hened ver si on of MD4 bef or e MD4 colli si ons were found. MD5 has an i nput of 512 bits and output of 128 bits. It is found the at tack met hod of MD5 that uses the colli isi on on each different initial functions of two and one input that was called collisi on for random
The important properties that a cryptographic hash function must satisfy are the following[1][10].
a) Preimage Resistance: for essentially all pre- speci fi ed out put s, it i s comput at i onally i nf easi bl e to find any input whi ch hashes to that out put, i.e., to find any prei nage x^{\prime} such that $h\left(x^{\prime}\right)=y$ when gi ven any y for whi ch a correspondi ng input is not known.
b) Second Prei mage Resi st ance : it i s computationally inf easi ble to find any second i nput whi ch has the same out put as any speci fied input, i.e., given x, to find a $2^{\text {nd }}$ - pr ei mage $x^{\prime} \neq x$ such that $h(x)=h\left(x^{\prime}\right)$.
c) Collision Resistance : it is computationally inf easi ble to find any two di stinct inputs x, x^{\prime} whi ch hash to the same input,i.e., such that $h(x)=h\left(x^{\prime}\right)$.
One of the important rol es in hash functions is digital si gnat ure. The goal of a practical hash function should be to achi eve both prei mage and collisi on resi st ance. I n present, the I engt h of out put encour ages at I east 160 bits or nore because of the security. Thi s si de can not to keep the saf et y of MD5, ei ther. Sever al hash functions
were desi gned as a strengt hened ver si on. For exampl es, there are SHS(Secure Hash St andar d), HAVAL, SHA 1, REPEMD 160/256/320 and so on. In this paper, we will propose the improved hash functions.
<Table 1> The comparison of efficiency on Digital si gnat ure usi ng hash functions

Cl assi fy	Ti me <seconds>	Menory
Not use of hash funct i on	4,800	100 Kbyt es
Use of hash funct i on	16	50.5 Kbyt es

(A si ze of transmi ssi on nessage: 50 Kbytes)

- Synbol s

\wedge : Bitwi se And oper at ion
V : Bitwi se OR (" i ncl usi ve- OR") oper at i on
\oplus : Bitwi se XOR(" excl usi ve-OR") oper at i on
ᄀ : Bitwise complement operation

+ : Addition modul o 2^{w}
\ll : Left-shift oper ation, where $x \ll n$ is obt ai ned by di scar ding the I eft-most n bits of t he word x and then paddi ng the result with z zeroes on the right.
>> : Ri ght-shift oper at ion, where x>> n i s obt ai ned by di scarding the right-most n bits of the word x and then paddi $n g$ the result with n zeroes on the left

2. HAS 160

HAS 160 (Hash Al gor i thmSt andar d) pr ovi des the met hods to compress bit strings with arbitrary lengths into a hash code with fixed I engt hs (160 bits) [15]. Thi s hash al gorithm inputs messages of the random length with bl ock unit of 512 bits. The length of out put is 160 bits and compressi on function deal swith bl ock of 512-bit unit. It is composed of 4 rounds, 80 steps and 5 words of chai ni ng variables. The number of variable ressage to apply in each step is 20 words. If it inputs the message M of the randoml ength in thi s hash al gorithm Mis made up of the multiple of 512- bit through at tach processing and di vi ded intothe bl ock M_{i} of 512 bits, (o $\leq \mathrm{i} \leq t)$.

- Initial val ues

The initial hash val ues are as follows:
$H_{6}=67452301, H_{1}=e f$ cdab89, $H_{2}=98$ badcfe ,
$H_{3}=10325476, \quad H_{4}=c 3 d 2 e 1 f 0$

- Const ant s

These const ants are the int eger parts of $230 \sqrt{2}, 2^{30}$ $\sqrt{ } 3$ and $2^{30} \sqrt{ } 5$.
$K=00000000 \quad(0 \leq j \leq 19: r o u n d 1)$
$K=5 a 827999 \quad(20 \leq j \leq 39:$ round 2$)$
$K=6 e d 9 e b a 1 \quad(40 \leq j \leq 59:$ round 3$)$
$K=8 \mathrm{fl}$ bbcdc $\quad(60 \leq j \leq 79:$ round 4$)$
The ready of message val uable
The message bl ock M_{i} of each 512bits are transmitted to the 16 wor ds, namel y $x[0], x[1]$, , , $x[15]$, by the transmit role of bit string-word string. Four messages are additional created with x[16], x[17], x[18], x[19] from 16 wor ds.
$<$ Tabl e 2> Message ordering of HAS160

I	Round 1	Round2	Round 3	Round 4
0	X[18]	X[18]	X[18]	X[18]
1	X[0]	X[3]	X[12]	X[7]
2	X[1]	X[6]	X[5]	X[2]
3	X[2]	X[9]	X[14]	X[13]
4	X[3]	X[12]	X[7]	X[8]
5	X[19]	X [19]	X[19]	X[19]
6	X[4]	X [15]	X[0]	X[3]
7	X[5]	X[2]	X[9]	X[14]
8	X[6]	X[5]	X[2]	X[9]
9	X[7]	X[8]	X[11]	X[4]
10	X[16]	X[16]	X[16]	X[16]
11	X[8]	X[11]	X[4]	X[15]
12	X[9]	X[14]	X[13]	X[10]
13	X[10]	X[1]	X[6]	X[5]
14	X[11]	X[4]	X[15]	X[0]
15	X[17]	X[17]	X[17]	X[17]
16	X[12]	X[7]	X[8]	X[11]
17	X[13]	X[10]	X[1]	X[6]
18	X[14]	X[13]	X[10]	X[1]
19	X[15]	X[0]	X[3]	X[12]

- Bool ean functions

The t hr ee bool ean funct i ons wer e used $i n t h i s$ al gor $i t h m$ These bool ean functions usi ng each j th st ep comput at ion are foll owing:
$f_{j}(x, y, z)=(x \wedge y) \vee(\sim x \wedge z) \quad(0 \leq j \leq 19: r$ ound 1$)$ $f_{j}(x, y, z)=x \oplus y \oplus z$

$$
(20 \leq \mathrm{j} \leq 39,40 \leq \mathrm{j} \leq 59: \text { round 2, } 4)
$$

$f_{j}(x, y, z)=y \oplus(x \vee \sim z)(40 \leq j \leq 59: r o u n d 3)$

$$
(\sim: N O T, \wedge: A N D, \vee: O R, \oplus: X O R \quad)
$$

- Step computations

The step computations of each j th are as follows [1]: $T \leftarrow A^{\ll S 1(j)}+f_{j}(B, C, D)+E+X[I(I)]+K ; E \leftarrow D$; $D \leftarrow C ; C \leftarrow B^{\ll S 2(j)} ; B \leftarrow A ; A \leftarrow T$;

$<$ Fi gure1> St ep computat ion

3. The proposes of HAS 256, 384 and 512

3.1 HAS 256

HAS 256 oper at es on the met hods of MD4, MD5, SHA 1 and SHA 256[11]. The HAS 256 compr essi on funct i on oper at es on a 512 - bit message block and a 256 - bit inter medi ate hash value. It is the essential 256-bit bl ock ci pher al gorithm that encrypts the intermedi ate hash val ue usi ng the nessage block as key.

- Padding message

For HAS 256, the padded message is par sed int o N512- bit bl ocks; $\quad M^{11}, \quad M^{2}, \cdots \quad, \quad M^{N}$. For interoper abl e i mpl ementations i nvol ving byte-to-word conversions, this al gorithmuses thelittle-endian. Inlittle-endi an architecture, the byte with the lowest menory address is the least significant byte; $W \neq 2^{24} \mathrm{~B}_{4}+2^{16} \mathrm{~B}_{3}+2^{8} \mathrm{~B}_{2}+\mathrm{B}_{1}$.

- Initial val ues

For HAS 256, the initial hash val ue H^{0} shall consi st of the following ei ght 32-bit words.
$H_{b}{ }^{(0)}=6 a 09 e 667, \quad H_{1}^{(0)}=$ bb67ae85,
$H_{2}^{(0)}=3 c 6 e f 372, \quad H_{3}^{(0)}=a 54 f f 53 a$
$\mathrm{H}_{4}^{(0)}=510 e 527 \mathrm{f}, \quad \mathrm{H}_{5}^{(0)}=9 \mathrm{~b} 05688 \mathrm{c}$,
$\mathrm{H}_{6}^{(0)}=1 \mathrm{f} 83 \mathrm{~d} 9 \mathrm{ab}, \quad \mathrm{H}_{7}^{(0)}=5 \mathrm{beOcd} 19$.

- Functions

$$
\begin{aligned}
& C h(x, y, z)=(x \wedge y) \oplus(\neg x \wedge z) \\
& \operatorname{Aaj}(x, y, z)=f_{t}(x, y, z)=(x \wedge y) \oplus(x \wedge z) \oplus(y \wedge z) \\
& \sum_{o^{i 256]}(x)=\operatorname{ROTR}^{2}(x) \oplus \operatorname{ROTR}^{13}(x) \oplus \operatorname{ROTR}^{22}(x)}^{\Sigma_{1}^{i 256\}}(x)=\operatorname{ROTR}^{6}(x) \oplus \operatorname{ROTR}^{11}(x) \oplus \operatorname{ROTR}^{25}(x)} \\
& \sigma_{0}^{i 256]}(x)=\operatorname{ROTR}^{7}(x) \oplus \operatorname{ROTR}^{18}(x) \oplus \operatorname{SHR}^{3}(x) \\
& \sigma_{1}^{i 256]}(x)=\operatorname{ROTR}^{17}(x) \oplus \operatorname{ROR}^{19}(x) \oplus \operatorname{SHR}^{10}(x)
\end{aligned}
$$

- Const ant s

HAS 256 const ants are the same with SHA 256. That is, HAS 256 uses a sequence of 64 constants 32 - bit words,
$K_{0}{ }^{[256]}, K_{1}{ }^{\{256]}, \cdots, K_{63}{ }^{\{256]}$. These wor ds represent the first 32- bit of the fractional parts of the cube roots of the first 64 prime numbers.

3. 2 HAS 384 and HAS 512

- HAS 384 and HAS 512 functions

HAS 384 and HAS 512 use each six logical functions, where each function oper at es on 64 bit words which are represented as x, y, and z. The result of each function is a new 64 bit word. HAS 512 uses a variant of HAS 256 that operates on ei ght 64 bit words.
The HAS 512 compr essi on funct i on oper at es on a 1024 bi t nessages bl ock and a 512 bit inter nedi ate hash val ue. It is the essential 512-bit bl ock ci pher al gorithmt hat encrypts the intermedi ate hash val ue usi ng the message bl ock as key.
$C h(x, y, z)=(x \wedge y) \oplus(\neg x \wedge z)$
$\mathrm{N}_{\mathrm{Aj}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{f}_{\mathrm{t}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x} \wedge \mathrm{y}) \oplus(\mathrm{x} \wedge \mathrm{z}) \oplus(\mathrm{y} \wedge \mathrm{z})$ $\Sigma_{0}{ }_{0}^{\{512]}(x)=\operatorname{ROTR}^{28}(x) \oplus \operatorname{ROTR}^{34}(x) \oplus \operatorname{ROTR}^{39}(x)$
$\Sigma_{1}{ }_{1}^{\{512\}}(x)=\operatorname{ROTR}^{14}(x) \oplus \operatorname{ROTR}^{18}(x) \oplus \operatorname{ROTR}^{11}(x)$
$\sigma_{0}{ }^{\{512\}}(x)=\operatorname{ROTR}^{1}(x) \oplus \operatorname{ROTR}^{3}(x) \oplus \operatorname{SHR}^{7}(x)$
$\sigma_{1}{ }^{\{512\}}(x)=\operatorname{ROTR}^{19}(x) \oplus \operatorname{ROTR} R^{61}(x) \oplus \operatorname{SHR}^{6}(x)$

HAS 384 and HAS 512 Constants

HAS 384 and HAS 512 use the same sequence of ei ghty const ant 64 bit words, $\mathrm{K}_{0}^{\{512\}}, \mathrm{K}_{1}^{\{512\}}, \cdots, \mathrm{K}_{79}{ }^{\{512\}}$. These words represent the first sixty-four bits, which are the fractional parts of the cube roots of the first ei ghty prime numbers. These const ant words are as I i ke SHA- 384 and SHA 512.

Initial val ues of HAS 384 and HAS 512

For HAS 384 and HAS 512, the initi al hash val ue $\mathrm{H}^{(0)}$ shal I consi st of the foll owing ei ght 64 bit words.
(1)I nitial val ue of HAS 384
$\mathrm{H}^{(0)}=\mathrm{cbbb9d5dc} 1059 e d 8, \quad \mathrm{H}_{1}^{(0)}=629 a 292 a 367 c d 507$,
$\mathrm{H}_{2}^{(0)}=9159015 a 3070 \mathrm{dd17}, \mathrm{H}_{3}^{(0)}=152 \mathrm{fecd8f} 70 \mathrm{e} 5939$,
$H_{4}^{(0)}=67332667 f \mathrm{fc} 00 \mathrm{~b} 31, \mathrm{H}_{5}^{(0)}=8 \mathrm{eb} 44 \mathrm{a} 8768581511$,
$\mathrm{H}_{6}^{(0)}=$ db0c2eOd64f 98f a7, $\mathrm{H}_{7}^{(0)}=47 \mathrm{~b} 5481 \mathrm{dbef}$ a4f a4
(2) Initial val ue of HAS 512
$H^{(0)}=6 a 09 e 667 f 3 b c c 908, \quad H_{1}^{(0)}=b b 67 a e 8584 c a a 73 b$,
$\mathrm{H}_{2}^{(0)}=3 \mathrm{c} 6 \mathrm{ef} 372 \mathrm{fe94f} 82 \mathrm{~b}, \quad \mathrm{H}_{3}^{(0)}=\mathrm{a} 54 \mathrm{f} f 53 \mathrm{a} 5 \mathrm{f} 1 \mathrm{~d} 36 \mathrm{f} 1$,
$\mathrm{H}_{4}^{(0)}=510 e 527 \mathrm{f}$ ade682d1, $\mathrm{H}_{5}^{(0)}=9 \mathrm{~b} 05688 \mathrm{c} 2 \mathrm{~b} 3 \mathrm{e} 6 \mathrm{c} 1 \mathrm{f}$,
$\mathrm{H}_{6}^{(0)}=1 \mathrm{f} 83 \mathrm{~d} 9 \mathrm{abf}$ b41bd6b, $\mathrm{H}_{7}^{\left({ }^{(0)}\right.}=5 \mathrm{be}$ Ocd19137e2179

3. 3 Security of HAS 256, 384, 512

The security of hash functions has been studied. The I ength of the hash- code is an i mport ant fact or to connect directly to the security of the hash function.
(1) A round is added. Thi s neans the difficulty to at tack the each round.
(2) Each step now has a uni que additive constant.
(3) Add the result of the previ ous step to each step.
(4) The or der in whi ch message sub- bl ocks are in the each round is changed.
(5) The I eft circul ar shift anounts in each round have been approxi mately optimized, to yield a faster aval anche effect.

4. RI PEMD 160

4. 1 I nt roduction of RI PEMD

The mai n contribution of MD4 is first crypt ogr aphi c hash function. MD4 was made optimally to use of structure of current 32-bit processors [5]. The desi gn of MD4 repr esented an unconfortable compromise between security and speed [14]. As a consequence, the more conser vat i vel y desi gned MD5 has al ways been recommended for usi ng instead of MD4. It was int ended to be used as a secure repl acement for the 128 bi t hash funct i ons MD4, MD5 and RI PEMD. MD4 and MD5 wer e devel oped by Ron Ri vest for RSA Dat a Secur ity, whil e RI PEMD was devel oped in the framework of the EU project RIPE ${ }^{1}$.

4. 2 RI PEMD 160

RI PEMD 160 [2] [5] is a 160-bit cryptographic hash functi on desi gned by Hans Dobbertin, Ant oon Bossel aer s and Bart Prenell. Ther e are t wo good reasons to consi der such a repl acement.

- A 128 bit hash result does not offer sufficient protection anymore.
- In the first half of 1995, Hans Dobbertin found collisi ons for a ver si on of RI PEMDrestrict ed to two rounds out of three.
RI PEMD 160 is a strengt hened versi on of RI PEMD with a 160 bit hash result. The bit-si ze of t he hash- resul t and chai ni ng vari able for RI PEMD 160 are i ncreased to fi ve 32- bit wor ds (160 bits), the number of round is increased from three to five, and the two lines are made more different. The results of parameters are as foll owing.

- Operations in one step

$A=(A+f(B, C, D)+X+K)^{\ll}+E$, and $C=C^{\ll 10}$,
Her $e^{\text {"s }}$ denot es cycl ic shift (rot at i on) over a positions.

Crdering of the message words

Take the foll owing per mot at i on p.

i	0	1	2	3	4	5	6	7	8	9	1	1	1	1 3	1	1
p	7	4	$\begin{aligned} & \hline 1 \\ & 3 \end{aligned}$	1	1	6	$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	3	2	0	9	5	2	4	1 1	8
Li ne			Round1		Round2			Round3			Round4			Round5		

[^0]| Left | $/ d$ | p | P^{2} | p^{3} | P^{4} |
| :--- | :---: | :---: | :---: | :---: | :---: |
| right | Π | $p \Pi$ | $P^{2} \Pi$ | $P^{3} \Pi$ | $P^{4} \Pi$ |

- Bool ean functions

Bool ean functions are as following:
$f_{1}(x, y, z)=x \oplus y \oplus z$
$f_{2}(x, y, z)=(x \wedge y) \vee(\neg x \wedge z)$
$f_{3}(x, y, z)=(x \vee \neg y) \oplus z$
$f_{4}(x, y, z)=(x \wedge z) \vee(y \wedge \neg z)$
$f_{5}(x, y, z)=x \oplus(y \vee \neg z)$
These Bool ean functions are applied as following.

Li ne	Round1	Round2	Round3	Round4	Round5
Left	f_{1}	f_{2}	$\mathrm{~F}_{3}$	f_{4}	f_{5}
Ri ght	f_{5}	f_{4}	$\mathrm{~F}_{3}$	f_{2}	f_{1}

- Const ants

Take the integer parts of the following nunbers.

Li ne	Round1	Round2	Round3	Round4	Round5
Left	0	$2^{30} \cdot \sqrt{ } 2$	$2^{30} \cdot \sqrt{ } 3$	$2^{30} \cdot \sqrt{ } 5$	$2^{30} \cdot \sqrt{ } 7$
ri ght	$2^{30} \cdot \sqrt{ } 7$	$2^{30} \cdot \sqrt{ } 5$	$2^{30} \cdot \sqrt{ } 3$	$2^{30} \cdot \sqrt{ } 7$	0

The basi c desi gn phi losophy of RI PEMD was to have two par al lel iter at i ons; the two mai n i mpr ovement s are that the number of rounds is increased fromthree to five.

4.3 Optional Extensi ons to 256 and 320 bit Hash- Results

RI PEMD 256 and RI PEMD 320 are optional extensi on of RI PEMD 128 and RI PEMD 160, and are intended for applications of hash functions that require a longer hash result without needing high security level.
Some applications of hash functions requi re a longer hash-result without needing high security level. A st r ai ght for war d way to achi eve thi s woul d be to use two parallels instances of the same hash function with different initial val ues. An extensi on of MD4, which yi el ds a 256-bit hash-result by running two parallels inst ances of MD4 that differs onl y inthe initial val ues and the constants in the second and third round, was proposed. After every application of the compression function, the val ue of the register A is inter changed bet ween the two chai ns.

5. HAS I onger - ver si on based on RI PEMD 256 and RI PEMD 32

5. 1 HAS I onger - ver si on based on RI PEMD 256

RI PEMD 256 is an iter ative hash function that oper at es
on 32-bit words. The round function takes as input an 8 word chai ni ng vari able and a 16 - word message bl ock, and maps thi s to a new chai ni ng vari abl e. Al I oper at i ons are defined as 32-bit words. The padding is identical with that of HAS.

Bool ean functions

$f_{j}(x, y, z)=x \oplus y \oplus z$
$(0 \leq \mathrm{j} \leq 15)$,
$(16 \leq \mathrm{j} \leq 31)$,
$(32 \leq \mathrm{j} \leq 47)$,
$(48 \leq \mathrm{j} \leq 63)$
$f_{ر}(x, y, z)=(x \wedge y) \vee(\neg x \wedge z)$
$f_{j}(x, y, z)=(x \vee \neg y) \oplus z$
$f_{j}(x, y, z)=(x \wedge z) \vee(y \wedge \neg z)$

Const ant s

$K(j): 000000(0 \leq j \leq 15), K(j): 5 a 827999(16 \leq j \leq 31)$, $K(j):$ Ged9eba1 $(32 \leq j \leq 47), K(j): 8 f 1 b b c d c(48 \leq j \leq 63)$, $K(j): 50 a 28 b e 6(0 \leq j \leq 15), K(j): 5 c 4 d d 124(16 \leq j \leq 31)$, $K(j): 6 d 703 e f 3(32 \leq j \leq 47)$,
K (j):00000000 ($48 \leq j \leq 63$)

Initial val ues

h0: 67452301, h1: ef cdab89, h2: 98badcfe,
h3: 10325476, h4: 76543210, h5: fedcba98,
h6: 89abcdef , h7: 01234567

5. 2 HAS I onger - ver si on based on RI PEMD 320

The round function takes as input a 10 word chai ni ng variable and a 16 - word message block, and maps this to a new chai ni ng variable. The padding is identical with that of HAS.

- Bool ean functions

$f_{j}(x, y, z)=x \oplus y \oplus z$
($0 \leq j \leq 15$) ,
$f_{j}(x, y, z)=(x \wedge y) \vee(\neg x \wedge z)$
($16 \leq \mathrm{j} \leq 31$),
$f_{j}(x, y, z)=(x \vee \neg y \oplus z \quad$ ($32 \leq j \leq 47)$,
$f_{ر}(x, y, z)=(x \wedge z) \vee(y \wedge \neg z)$
($48 \leq \mathrm{j} \leq 63$)
$f_{j}(x, y, z)=x \oplus(y \vee \neg z)$
($64 \leq j \leq 79$)

- Const ant s

$\mathrm{K}(\mathrm{j}): 000000(0 \leq j \leq 15), \quad \mathrm{K}(\mathrm{j}): 5 a 827999(16 \leq j \leq 31)$, $\mathrm{K}(\mathrm{j})$: Ged9eba1 ($32 \leq \mathrm{j} \leq 47), \mathrm{K}(\mathrm{j}): 8 \mathrm{f} 1 \mathrm{bbcdc}(48 \leq \mathrm{j} \leq 63)$, $K(j):$ a953f d4e($64 \leq j \leq 79), K \quad(j): 50 a 28 b e 6(0 \leq j \leq 15)$, $K(j): 5 c 4 d d 124(16 \leq j \leq 31)$,
K (j): 6d703ef $3(32 \leq j \leq 47)$,
K (j):7a6d76e9, ($48 \leq j \leq 63)$,
K (j):00000000, ($48 \leq j \leq 63$)

Initial val ues

h0: 67452301, h1: ef cdab89, h2: 98badcf e, h3: 10325476, h4: c3d2e1f 0, h5: 76543210, h6: f edcba98, h7: 89abcdef, h8: 01234567, h9: 3c2d1eOf

6. HAS V

HAS V 12] was proposed to meet the needs of various
security level s desi red anong different applications. The length of the hash- code is an important fact or di rectly connect ed to the security of the hash function. KCDSA (Korea Certificate-based Digital Si gnature Al gorithm) is an example of a crypt ogr aphic appl ication where a vari able length of hash- code is needed. There exists an optional extensi on of RI PEMD 128 and RI PEMD 160 to produce 256 bit and 320 bit hash-code. However, these methods do not provi de any increase in security level, but merely an increase in the length of the hash- code. Thi s gi ves a clear notivation to desi gn a new hash function with variable length hash-code, which is both efficient and secure.

- +: addition of words, i.e., addition by modul o- 2^{32}
- $X^{\ll s}$: the circul ar left shift of X by s bit positions - $ᄀ$: the bitwise compl ement oper ation
$-\wedge, \vee, \oplus:$ the bitwi se OR, AND, and XOR oper ation (X $\wedge Y$ i s al so denoted as $X Y$ for simplicity)
<Table 3> Characteristics of HAS-V

Lengt h of I nput Bl ock (bits)	1024
Lengt h of Out put (bits)	128320
Nunber of Rounds	10
Nunber of Chai ni ng Vari abl es	10
Nunber of Steps	200

- Initial values

A: 67452301, B: ef cdab89, C: 98badcfe, D: 10325476 E: c3d2e1f 0, F: 8796a5b4, G 4b5a6978, H: Of 1e2d3c I : a0b1c2d3, J : 68794e5f

```
- Step operation
\(T \leftarrow A^{\ll s}+f(B, C, D, E)+X+K ; E \leftarrow D ; D \leftarrow C ;\)
\(C \leftarrow B^{\ll 30} ; B \leftarrow A ; A \leftarrow T\);
- Bool ean Function
\(f_{0}(x, y, z, u)=x y \oplus \neg x z \oplus y u \oplus z u\),
\(f_{1}(x, y, z, u)=x z \oplus y \oplus u\)
\(f_{2}(x, y, z, u)=x y \oplus \neg x u \oplus z\),
\(f_{3}(x, y, z, u)=x \oplus y z \oplus u\left(=f_{1}(y, x, z, u)\right)\)
\(\left.f_{4}(x \neg y \neg z\urcorner u\right)=\neg x y \oplus x z \oplus y u \oplus z u\left(=f_{0}(x, z, y, u)\right)\)
```


Const ant s

$K_{0}: 000000, \quad K_{1}: 5 a 827999, \quad K_{2}:$ 6ed9eba1,
$K_{3}: 8 f 1 b b c d c, \quad K_{4}:$ a953f d4e

7. The propose of SHA V

We propose a hash function with vari able out put I ength based on SHA, namel y SHA V. The basi c struct ure of the compressi on function is same as HAS V[12]. That is, it is two parallel Iines, denoted as the X-Iine and the

Y-Iine and consists of 100 steps each. Each line is composed of 5 rounds, where each round consists of 20 steps, and mai ntains 5 words of chai ni ng variabl es in the X - I i ne and Y - I i ne aft ter each round. The message wor ds using in the compressi on function are 32 words of the i nput messages.

- Initial val ues
$H_{b}^{(0)}=67452301$,

$$
\mathrm{H}_{2}^{(0)}=98 \text { badcf } \mathrm{e},
$$

$$
\mathrm{H}_{4}^{(0)}=\mathrm{c} 3 \mathrm{~d} 2 \mathrm{e} 1 \mathrm{f} 0,
$$

$$
\mathrm{H}_{6}^{(0)}=4 \mathrm{~b} 5 \mathrm{a} 6978,
$$

$$
\mathrm{H}_{8}^{(0)}=\mathrm{a} 0 b 1 \mathrm{c} 2 \mathrm{~d} 3,
$$

$$
\begin{aligned}
& \mathrm{H}_{1}^{(0)}=\text { ef cdab89, } \\
& H_{3}^{(0)}=10325476, \\
& H_{5}^{(0)}=8796 a 5 b 4, \\
& H_{7}^{(0)}=0 f 1 e 2 d 3 c, \\
& H_{3}^{(0)}=68794 e 5 f
\end{aligned}
$$

Bool ean function

<Table 4> Order of Bool ean function

Li ne	Round1	Round2	Round3	Round4	Round5
X	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}
Y	f_{4}	f_{3}	f_{2}	f_{1}	f_{0}

$f_{j}(x, y, z, u)=x y \oplus \neg x z \oplus y u \oplus z u$
$f_{j}(x, y, z, u)=x z \oplus y \oplus u$
$f_{j}(x, y, z, u)=x y \oplus \neg x \oplus z$
$f_{j}(x, y, z, u)=x \oplus y z \oplus u$
$f_{j}(x, y, z, u)=\neg x y \oplus x z \oplus y u \oplus z u$
$g_{j}(x, y, z, u)=\neg x y \oplus x z \oplus y u \oplus z u$
$g_{j}(x, y, z, u)=x \oplus y z \oplus u$
$g_{j}(x, y, z, u)=x y \oplus \neg x u \oplus z$
$g_{j}(x, y, z, u)=x z \oplus y \oplus u$
$g_{j}(x, y, z, u)=x y \oplus \neg x z \oplus y u \oplus z u$

Const ants

K: 000000, K j: a953fd4e,
$K_{K}: 5 a 827999, K_{j}: 8 f 1 \mathrm{bbcdc}$,
K : 6ed9eba1, K_{j} : 000000,
$K_{\text {: }}$: $1 \mathrm{bbbcdc}, K_{j}$: 5a827999,
$K_{j}:$ a953f $d 4 e, K_{j}:$ Ged9eba1,
($0 \leq \mathrm{j} \leq 19$),
($20 \leq \mathrm{j} \leq 39$),
($40 \leq \mathrm{j} \leq 59$),
($60 \leq \mathrm{j} \leq 79$),
($80 \leq \mathrm{j}$ <99),
($0 \leq \mathrm{j} \leq 19$),
($20 \leq \mathrm{j} \leq 39$),
($40 \leq \mathrm{j} \leq 59$),
($60 \leq \mathrm{j} \leq 79$),
($80 \leq \mathrm{j} \leq 99$)
($0 \leq \mathrm{j} \leq 19$),
($20 \leq \mathrm{j} \leq 39$),
($40 \leq \mathrm{j} \leq 59$),
($60 \leq \mathrm{j} \leq 79$),
($80 \leq \mathrm{j} \leq 99$)

8. Concl usi on

We proposed HAS 256, 384 and 512 whi ch were based on SHA 256, 384 and 512. HAS funct i ons have the struct ure of little-endi an and are suited for a systematization of Intel 80XXX. On the ot her hand, SHA functions choose the structure of big-endian. Generally, the processor of big-endi an structure is faster than little-endi an' s [4]. Ther ef ore, we have to desi gn the al gorithmto fit the structure of little-endian. It exi sts al ways as the pair of collision because an input has al ot of dat a than the out put in the hash function. Because an input has a lot of nunbers, the existing probability of collision pairs is high. That is, the safety of hash
functions depends on the difficulty to find the colli si on pairs. Al so, we pr opose the SHA V based on the HAS V. Thi s desi gn is expect ed to be used to the sever al cryptographic applications because it has the various out puts of hash code.

9. Ref er ences

[1] A.J. Menzs, P.C. Van Oor shot, S.A. Vanst one " Handbook of Appl i ed Orypt ogr aphy" CRC Pr ess, 1997
[2] Ant oon Bossel aers " The Hash Functi on RI PEMD 160" htt p: //muw. esat. kul euven. ac. be/~bossel ae/ri pend1 60. ht mi
[3] B. Schnei er" Appl i ed Crypt ogr aphy" WLEY, Vol 2, 1996
[4] C. C. Park" Crypt ogr aphy Theory and Security" Deyung Press, 1999
[5] H. Dobberti n, . Bossel aer s, B. Pr eneel" RI PEMD 160: A Strengened Versi on of RI PEM htt p: //wuw. esat. kul enven. ac. be/~cosi cart/pdf /
[6] H. KLMAKADO, H. TANAKA " New Al gorithmf or Fi ndi ng Prei mage in a Reduced Ver si on of the MD4 Compr essi on Function" IEI CE TRANS, Fundament al s, Vol.E83-A. No. 1, Jan, 2000
[7] Korea Information Security Agency " A Design and Anal ysi s of SEED' Dec, 1999
[8] MJ.B. Robshaw" On Recent Results for MD2, MD4, MDF" April, 1996
[9] MS. Lee " Nbdern Cryptography" KyoU Press, 1999
[10] National Security Research Institute " Nbdern Crypt ol ogy" Kyungmoon, 2000
[11] NST " Descriptions of SHA 256, SHA 384, and SHA 512" http://csr.ni st.gov/cryptval/shs. ht mh
[12] N. K. Par k, J. H. Hwang, P. J. Lee" HAS V: A New Hash Function with Variable Output Length" SAC2000, LNCS2012, Springer-Verlag, 2001
[13] P. Sar kar, P. J. Schel I enber g" A Par al I ei zabl e Desi gn Principle for Cryptographic Hash Function " http://eprint.iacr. or g/2002/031
[14] RSA Labor at ories " Bulletin" Nunner 4, Nov. 12, 1996, http: //wuw. ras.com
[15] TTA Standard " Hash Functi on Standard - Part 2: Hash Function Al gorithm Standard (HAS 160)" TTA, KO 12. 0011/R1, Dec
[16] U. S Department of Commerce, N ST " Secure Hash St andar d" FI PS PUB 180-1, Apr, 1995

[^0]: ${ }^{1}$ RACE Integrity Primitives Evaluation, 1988-1992

