
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Design and Analysis Cryptographic Hash Function
for The Next Generation

Her, Yong-Sork
Dept. Computer Science & Communication Engineering, KYUSHU University

Sakurai, Kouichi
Dept. Computer Science & Communication Engineering, KYUSHU University

https://doi.org/10.15017/3783

出版情報：Proc. of International Workshop on Information & Electrical Engineering. (1),
pp.168-173, 2002-05. International Workshop on Information & Electrical Engineering
バージョン：
権利関係：

DESIGN AND ANALYSIS OF CRYPTOGRAPHIC HASH FUNCTION

FOR THE NEXT GENERATION

 Yong-Sork HER , Kouichi SAKURAI

Dept. Computer Science & Communication Engineering, KYUSHU University

6-10-1, Hakozaki, Fukuoka, 812-8581, Japan.

Tel : +81- 92-642-4050, Fax : +81- 92-632-5204,

Email: ysher@tcslab.csce.kyushu-u.ac.jp , sakurai@csce.kyushu-u.ac.jp

ABSTRACT

Hash functions play an important role in a branch of

information secret. The hash algorithm provides the

services of information security, authentication,

integrity, non-reputation and so on. As the growth of

computer technologies, the hash value has been become

longer based on the complexity of calculation. It was

known to be desirable that the output lengths of hash

functions are more than 160 bits. The 1st edition of Hash

Function Standard–160 of Korea, namely HAS-160, was

published in 1998 and the revised edition was published

in 2000. In this paper, we propose the three improved

hash functions. First, we propose HAS-256, 384 and 512

that were based on SHA-256, 384 and 512. Second, we

propose SHA-V using HAS-V proposed by P.J.Lee [12]. He

proposed a new hash function with variable output length.

Third, we propose the SHA-V with variable output length

and another HAS-longer-version based on RIPEMD-256/320.

Keyword:Informatics,Cryptography,Information-Securit
y. Hash function, Digital signature, Authentication,

Integrity, HAS, SHA,MD4, RIPEMD, SEED

1. INTRODUCTION
Hash functions[1] take a message as input with an

arbitrary length and produce an output referred to as

a hash-code, hash-result, hash-value, or simply hash.

More precisely, a hash function h maps bit strings of
arbitrary finite length to strings of fixed length, say

n bits.
Hash functions are used for data integrity in

conjunction with digital signature schemes, where for

several reasons a message is typically hashed first, and

then the hash-value, as a representative of the message,

is signed in place of the original message. <Table 1>[10]

shows the efficiency of hash functions based on the

block- cryptography algorithm DES.

A hash function satisfies the following conditions.

First, a hash function maps an input with an arbitrary

length to an output with a specific length. In this case,

the length of output must be shorter than the length of

input. Second, when y=h(x) is given, the inverse

calculation of x must be computationally infeasible. It

is said the ‘one-wayness’. Third, a hash function h
is strongly collision-free if it is computationally

infeasible to find messages x and x’such that x’≠

x and h(x’)=h(x).

In 1990 Rivest proposed the cryptographic hash function

MD4. MD4 [1]is a 128-bit hash function and consists of

3 rounds. After Merkle showed an attack on the first two

rounds of MD4, den Boer and Bosselaers proposed an attack

on the last two rounds of MD4, and Dobbertin finally

demonstrated an attack for finding a collision for

three-round MD4 [6]. So, It is undesirable to use MD4

as a hash function. MD5 was designed as a strengthened

version of MD4 before MD4 collisions were found. MD5 has

an input of 512 bits and output of 128 bits. It is found

the attack method of MD5 that uses the collision on each

different initial functions of two and one input that

was called collision for random.

The important properties that a cryptographic hash

function must satisfy are the following[1][10].

a) Preimage Resistance : for essentially all

pre-specified outputs, it is computationally infeasible

to find any input which hashes to that output,i.e., to

find any preimage x’such that h(x’)=y when given any
y for which a corresponding input is not known.

b) Second Preimage Resistance : it is computationally
infeasible to find any second input which has the same

output as any specified input,i.e.,given x, to find a
2nd-preimage x’≠x such that h(x)=h(x’).
c) Collision Resistance : it is computationally

infeasible to find any two distinct inputs x, x’which

hash to the same input,i.e., such that h(x)=h(x’).
One of the important roles in hash functions is digital

signature. The goal of a practical hash function should

be to achieve both preimage and collision resistance.

In present, the length of output encourages at least 160

bits or more because of the security. This side can not

to keep the safety of MD5, either. Several hash functions

were designed as a strengthened version. For examples,

there are SHS(Secure Hash Standard), HAVAL, SHA-1,

REPEMD 160/256/320 and so on. In this paper, we will

propose the improved hash functions.

<Table 1> The comparison of efficiency on Digital si

gnature using hash functions

Classify
Time

<seconds>
Memory

Not use of hash

function
4,800 100Kbytes

Use of hash

function
16 50.5Kbytes

(A size of transmission message: 50 Kbytes)

-Symbols
∧: Bitwise And operation

∨: Bitwise OR (“inclusive-OR”) operation

⊕: Bitwise XOR(“exclusive-OR”) operation
¬ : Bitwise complement operation

+ : Addition modulo 2w

<< : Left-shift operation, where x<<n is obtained by

discarding the left-most n bits of the word x and then

padding the result with z zeroes on the right.

>> : Right-shift operation, where x>> n is obtained by

discarding the right-most n bits of the word x and then

padding the result with n zeroes on the left

2. HAS-160
HAS-160 (Hash Algorithm Standard) provides the methods

to compress bit strings with arbitrary lengths into a

hash code with fixed lengths (160 bits)[15]. This hash

algorithm inputs messages of the random length with

block unit of 512 bits. The length of output is 160 bits

and compression function deals with block of 512-bit

unit. It is composed of 4 rounds, 80 steps and 5 words

of chaining variables. The number of variable message

to apply in each step is 20 words. If it inputs the

message M of the random length in this hash algorithm,
M is made up of the multiple of 512-bit through attach
processing and divided into the block Mi of 512 bits, (o

≤ i ≤t).

- Initial values
The initial hash values are as follows:

H0 =67452301 , H1 =efcdab89 , H2 =98badcfe ,

H3 =10325476, H4 =c3d2e1f0

- Constants
These constants are the integer parts of 230√2 , 230

√3 and 230√5.

Kj = 00000000 (0 ≤ j ≤19 : round 1)

Kj = 5a827999 (20 ≤ j ≤39 : round 2)

Kj = 6ed9eba1 (40 ≤ j ≤59 : round 3)

Kj = 8flbbcdc (60 ≤ j ≤79 : round 4)

- The ready of message valuable
The message block Mi of each 512bits are transmitted to

the 16 words, namely x[0], x[1], , , , x[15], by the

transmit role of bit string-word string. Four messages

are additional created with x[16], x[17], x[18], x[19]

from 16 words.

<Table 2> Message ordering of HAS160
I Round 1 Round2 Round 3 Round 4

0 X[18] X[18] X[18] X[18]

1 X[0] X[3] X[12] X[7]

2 X[1] X[6] X[5] X[2]

3 X[2] X[9] X[14] X[13]

4 X[3] X[12] X[7] X[8]

5 X[19] X[19] X[19] X[19]

6 X[4] X[15] X[0] X[3]

7 X[5] X[2] X[9] X[14]

8 X[6] X[5] X[2] X[9]

9 X[7] X[8] X[11] X[4]

10 X[16] X[16] X[16] X[16]

11 X[8] X[11] X[4] X[15]

12 X[9] X[14] X[13] X[10]

13 X[10] X[1] X[6] X[5]

14 X[11] X[4] X[15] X[0]

15 X[17] X[17] X[17] X[17]

16 X[12] X[7] X[8] X[11]

17 X[13] X[10] X[1] X[6]

18 X[14] X[13] X[10] X[1]

19 X[15] X[0] X[3] X[12]

- Boolean functions
The three boolean functions were used in this algorithm.

These boolean functions using each jth step computation

are following:

fj (x, y, z) = (x∧y)∨(～x∧z) (0 ≤j ≤19 :round 1)

fj (x, y, z) = x ⊕ y ⊕ z
(20 ≤ j ≤39 , 40 ≤ j ≤59: round 2, 4)

fj (x, y, z) = y ⊕ (x ∨ ～z) (40 ≤ j ≤59 : round 3)

(～:NOT, ∧:AND, ∨:OR, ⊕ :XOR)

- Step computations
The step computations of each jth are as follows [1]:

T←A<<S1(j) + fj(B,C,D) +E+X[l(I)]+Kj; E←D;

D←C;C←B<<S2(j) ; B←A; A←T;

<Figure1> Step computation

3. The proposes of HAS-256, 384 and 512
3.1 HAS-256
HAS-256 operates on the methods of MD4, MD5, SHA-1 and

SHA-256[11]. The HAS-256 compression function operates

on a 512-bit message block and a 256-bit intermediate

hash value. It is the essential 256-bit block cipher

algorithm that encrypts the intermediate hash value

using the message block as key.

- Padding message
For HAS-256, the padded message is parsed into N 512-bit

blocks; M(1), M(2), … , M(N). For interoperable

implementations involving byte-to-word conversions,

this algorithm uses the little-endian. In little-endian

architecture, the byte with the lowest memory address

is the least significant byte; W= 224B4+ 2
16B3+2

8B2+B1.

- Initial values
For HAS-256, the initial hash value H(0) shall consist

of the following eight 32-bit words.

H0
(0) = 6a09e667, H1

(0) = bb67ae85,

H2
(0) = 3c6ef372, H3

(0) = a54ff53a

H4
(0) = 510e527f, H5

(0) = 9b05688c,

H6
(0) = 1f83d9ab, H7

(0) = 5be0cd19.

- Functions

Ch(x,y,z) = (x∧y) ⊕ (¬ x∧z)

Maj(x,y,z) = ft (x, y, z)=(x∧y) ⊕ (x∧z) ⊕ (y∧z)

∑0
{256}(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)

∑1
{256}(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)

σ0
{256}(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x)

σ1
{256}(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x)

- Constants
HAS-256 constants are the same with SHA-256. That is,

HAS-256 uses a sequence of 64 constants 32-bit words,

K0
{256} , K1

{256}, …, K63
{256}. These words represent the first

32-bit of the fractional parts of the cube roots of the

first 64 prime numbers.

3.2 HAS-384 and HAS-512
- HAS-384 and HAS-512 functions
HAS-384 and HAS-512 use each six logical functions,

where each function operates on 64-bit words which are

represented as x, y, and z. The result of each function

is a new 64-bit word. HAS-512 uses a variant of HAS-256

that operates on eight 64-bit words.

The HAS-512 compression function operates on a 1024-bit

messages block and a 512-bit intermediate hash value.

It is the essential 512-bit block cipher algorithm that

encrypts the intermediate hash value using the message

block as key.

Ch(x,y,z) = (x∧y) ⊕ (¬ x∧z)

Maj(x,y,z)=ft(x, y, z) = (x∧y) ⊕ (x∧z) ⊕ (y∧z)

∑0
{512}(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x)

∑1
{512}(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x)

σ0
{512}(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)

σ1
{512}(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x)

- HAS-384 and HAS-512 Constants
HAS-384 and HAS-512 use the same sequence of eighty

constant 64-bit words, K0
{512}, K1

{512},…,K79
{512}. These

words represent the first sixty-four bits, which are the

fractional parts of the cube roots of the first eighty

prime numbers. These constant words are as like SHA-384

and SHA-512.

- Initial values of HAS-384 and HAS-512
For HAS-384 and HAS-512, the initial hash value H(0) shall

consist of the following eight 64-bit words.

①Initial value of HAS-384

H0
(0) = cbbb9d5dc1059ed8, H1

(0) = 629a292a367cd507,

H2
(0) = 9159015a3070dd17, H3

(0) = 152fecd8f70e5939,

H4
(0) = 67332667ffc00b31, H5

(0) = 8eb44a8768581511,

H6
(0) = db0c2e0d64f98fa7, H7

(0) = 47b5481dbefa4fa4

② Initial value of HAS-512

H0
(0)= 6a09e667f3bcc908, H1

(0)= bb67ae8584caa73b,

H2
(0) = 3c6ef372fe94f82b, H3

(0) = a54ff53a5f1d36f1,

H4
(0) = 510e527fade682d1, H5

(0) = 9b05688c2b3e6c1f,

H6
(0) = 1f83d9abfb41bd6b, H7

(0) = 5be0cd19137e2179

3.3 Security of HAS-256,384,512

The security of hash functions has been studied. The

length of the hash-code is an important factor to connect

directly to the security of the hash function.

① A round is added. This means the difficulty to attack

the each round.

② Each step now has a unique additive constant.

E D C B A

E D C B A

<<<S1

fj

X[l(j)]

K[j]
<<<S2

③ Add the result of the previous step to each step.

④ The order in which message sub-blocks are in the each

round is changed.

⑤ The left circular shift amounts in each round have

been approximately optimized, to yield a faster

avalanche effect.

4. RIPEMD-160
4.1 Introduction of RIPEMD
The main contribution of MD4 is first cryptographic hash

function. MD4 was made optimally to use of structure of

current 32-bit processors [5]. The design of MD4

represented an uncomfortable compromise between

security and speed [14]. As a consequence, the more

conservatively designed MD5 has always been recommended

for using instead of MD4. It was intended to be used as

a secure replacement for the 128-bit hash functions MD4,

MD5 and RIPEMD. MD4 and MD5 were developed by Ron Rivest

for RSA Data Security, while RIPEMD was developed in the

framework of the EU project RIPE1.

4.2 RIPEMD-160
RIPEMD-160 [2][5] is a 160-bit cryptographic hash

function designed by Hans Dobbertin, Antoon Bosselaers

and Bart Prenell. There are two good reasons to consider

such a replacement.

- A 128-bit hash result does not offer sufficient

protection anymore.

- In the first half of 1995, Hans Dobbertin found

collisions for a version of RIPEMD restricted to two

rounds out of three.

RIPEMD-160 is a strengthened version of RIPEMD with a

160-bit hash result. The bit-size of the hash-result and

chaining variable for RIPEMD-160 are increased to five

32-bit words (160 bits), the number of round is increased

from three to five, and the two lines are made more

different. The results of parameters are as following.

- Operations in one step
A= (A+ f (B,C,D) + X + K)≪S+E , and C=C≪10,

Here«S denotes cyclic shift (rotation) over a positions.

- Ordering of the message words
Take the following permutation p:

i 0 1 2 3 4 5 6 7 8 9
1

0

1

1

1

2

1

3

1

4

1

5

p 7 4
1

3
1

1

0
6

1

5
3

1

2
0 9 5 2

1

4

1

1
8

Line Round1 Round2 Round3 Round4 Round5

1 RACE Integrity Primitives Evaluation, 1988-1992

Left Id p P2 P3 P4

right Π pΠ P2 Π P3 Π P4 Π

- Boolean functions

Boolean functions are as following:

f1 (x, y, z) = x ⊕ y ⊕ z
f2 (x, y, z) = (x∧y)∨(¬x∧z)

f3 (x, y, z) = (x∨¬y) ⊕ z
f4 (x, y, z)= (x∧z)∨(y∧¬z)

f5 (x, y, z)= x ⊕ (y∨¬z)
These Boolean functions are applied as following.

Line Round1 Round2 Round3 Round4 Round5

Left f1 f2 F3 f4 f5

Right f5 f4 F3 f2 f1

- Constants

Take the integer parts of the following numbers.

Line Round1 Round2 Round3 Round4 Round5

Left 0 230・√2 230・√3 230・√5 230・√7

right 230・√7 230・√5 230・√3 230・√7 0

The basic design philosophy of RIPEMD was to have two

parallel iterations; the two main improvements are that

the number of rounds is increased from three to five.

4.3 Optional Extensions to 256 and 320 bit
Hash-Results

RIPEMD-256 and RIPEMD-320 are optional extension of

RIPEMD-128 and RIPEMD-160, and are intended for

applications of hash functions that require a longer

hash result without needing high security level.

Some applications of hash functions require a longer

hash-result without needing high security level. A

straightforward way to achieve this would be to use two

parallels instances of the same hash function with

different initial values. An extension of MD4, which

yields a 256-bit hash-result by running two parallels

instances of MD4 that differs only in the initial values

and the constants in the second and third round, was

proposed. After every application of the compression

function, the value of the register A is interchanged

between the two chains.

5. HAS-longer-version based on RIPEMD-256

and RIPEMD-32

5.1 HAS-longer-version based on RIPEMD-256

RIPEMD-256 is an iterative hash function that operates

on 32-bit words. The round function takes as input an

8-word chaining variable and a 16-word message block,

and maps this to a new chaining variable. All operations

are defined as 32-bit words. The padding is identical

with that of HAS.

- Boolean functions

fJ (x, y, z) = x ⊕ y ⊕ z (0 ≤ j ≤15),
fJ (x, y, z) = (x∧y)∨(¬x∧z) (16 ≤ j ≤31),

fJ (x, y, z) = (x∨¬y) ⊕z (32 ≤ j ≤47),
fJ (x, y, z)= (x∧z)∨(y∧¬z) (48 ≤ j ≤63)

- Constants
K(j):000000 (0 ≤j ≤15), K(j):5a827999 (16 ≤j ≤31),
K(j):6ed9eba1(32 ≤j ≤47), K(j):8f1bbcdc (48 ≤j ≤63),

K’(j):50a28be6(0 ≤j ≤15),K’(j):5c4dd124(16 ≤j ≤31),

K’(j):6d703ef3 (32 ≤j ≤47),

K’(j):00000000(48 ≤j ≤63)

- Initial values
h0: 67452301, h1: efcdab89, h2: 98badcfe,

h3:10325476, h4:76543210, h5: fedcba98,

h6:89abcdef, h7:01234567

5.2 HAS-longer-version based on RIPEMD-320
The round function takes as input a 10-word chaining

variable and a 16-word message block, and maps this

to a new chaining variable. The padding is identical

with that of HAS.

- Boolean functions

fJ (x, y, z) = x ⊕ y ⊕ z (0≤j ≤15),
fJ (x, y, z) = (x∧y)∨(¬x∧z) (16 ≤j ≤31),

fJ (x, y, z) = (x∨¬y⊕z (32≤j ≤47),
fJ (x, y, z)= (x∧z)∨(y∧¬z) (48≤j ≤63)

fJ (x, y, z) = x ⊕ (y∨¬z) (64≤j ≤79)

- Constants
K(j):000000 (0 ≤j ≤15), K(j):5a827999 (16 ≤j ≤31),

K(j):6ed9eba1 (32 ≤j ≤47),K(j):8f1bbcdc (48 ≤j ≤63),

K(j):a953fd4e(64 ≤j ≤79),K’(j):50a28be6 (0 ≤j ≤15) ,

K’(j):5c4dd124(16 ≤j ≤31),
K’(j):6d703ef3 (32 ≤j ≤47) ,

K’(j):7a6d76e9, (48 ≤j ≤63),

K’(j):00000000, (48 ≤j ≤63)

- Initial values
h0:67452301, h1:efcdab89, h2:98badcfe, h3: 10325476,

h4:c3d2e1f0, h5:76543210, h6: fedcba98, h7:89abcdef,

h8:01234567, h9:3c2d1e0f

6. HAS-V
HAS-V[12] was proposed to meet the needs of various

security levels desired among different applications.

The length of the hash-code is an important factor

directly connected to the security of the hash function.

KCDSA (Korea Certificate-based Digital Signature

Algorithm) is an example of a cryptographic application

where a variable length of hash-code is needed. There

exists an optional extension of RIPEMD-128 and

RIPEMD-160 to produce 256-bit and 320-bit hash-code.

However, these methods do not provide any increase in

security level, but merely an increase in the length of

the hash-code. This gives a clear motivation to design

a new hash function with variable length hash-code,

which is both efficient and secure.

- +: addition of words, i.e., addition by modulo-232

- X<<s: the circular left shift of X by s bit positions
- ¬ : the bitwise complement operation

-∧,∨, ⊕ : the bitwise OR, AND, and XOR operation (X
∧Y is also denoted as XY for simplicity)

<Table 3> Characteristics of HAS-V

Length of Input Block (bits) 1024

Length of Output (bits) 128- 320

Number of Rounds 10

Number of Chaining Variables 10

Number of Steps 200

- Initial values

A: 67452301, B: efcdab89, C: 98badcfe, D: 10325476

E: c3d2e1f0, F: 8796a5b4, G: 4b5a6978, H: 0f1e2d3c

I : a0b1c2d3, J : 68794e5f

- Step operation
T←A<<s + f(B,C,D,E) +X+K; E←D;D←C;

C←B<<30 ; B←A; A←T;

- Boolean Function

f0 (x,y,z,u) = xy ⊕ ¬xz ⊕ yu⊕ zu,

f1 (x,y,z,u) = xz ⊕ y ⊕ u

f2 (x,y,z,u) = xy ⊕ ¬xu ⊕ z,

f3 (x,y,z,u) = x⊕yz⊕u (=f1 (y,x,z,u))

f4 (x,y,z,u) = ¬xy⊕ xz ⊕ yu ⊕ zu (=f0 (x,z,y,u))

- Constants
K0:000000, K1:5a827999, K2:6ed9eba1,

K3: 8f1bbcdc, K4:a953fd4e

7. The propose of SHA-V
We propose a hash function with variable output length

based on SHA, namely SHA-V. The basic structure of the

compression function is same as HAS-V[12]. That is, it

is two parallel lines, denoted as the X-line and the

Y-line and consists of 100 steps each. Each line is

composed of 5 rounds, where each round consists of 20

steps, and maintains 5 words of chaining variables in

the X-line and Y-line after each round. The message words

using in the compression function are 32 words of the

input messages.

- Initial values
H0

(0) = 67452301, H1
(0) = efcdab89,

H2
(0) = 98badcfe, H3

(0) = 10325476,

H4
(0) = c3d2e1f0, H5

(0) = 8796a5b4,

H6
(0) = 4b5a6978, H7

(0) = 0f1e2d3c,

H8
(0) = a0b1c2d3, H9

(0) = 68794e5f

- Boolean function
<Table 4> Order of Boolean function

Line Round1 Round2 Round3 Round4 Round5

X f0 f1 f2 f3 f4

Y f4 f3 f2 f1 f0

fj (x,y,z,u) = xy ⊕ ¬xz⊕yu⊕zu (0 ≤ j ≤19),

fj (x,y,z,u) = xz⊕y⊕u (20 ≤ j ≤39),

fj (x,y,z,u) = xy⊕¬xu⊕z (40 ≤ j ≤59),

fj (x,y,z,u) = x⊕yz⊕u (60 ≤ j ≤79),

fj (x,y,z,u) = ¬xy⊕xz⊕yu⊕zu (80 ≤ j ≤99),

gj (x,y,z,u) = ¬xy⊕xz⊕yu⊕zu (0 ≤ j ≤19),

gj (x,y,z,u) = x⊕yz⊕u (20 ≤ j ≤39),

gj (x,y,z,u) = xy⊕¬xu⊕z (40 ≤ j ≤59),

gj (x,y,z,u) = xz⊕y⊕u (60 ≤ j ≤79),

gj (x,y,z,u) = xy⊕¬xz⊕yu⊕zu (80 ≤ j ≤99)

- Constants

Kj:000000, K’j:a953fd4e, (0 ≤ j ≤19),

Kj:5a827999, K’j: 8f1bbcdc, (20 ≤ j ≤39),

Kj:6ed9eba1, K’j:000000, (40 ≤ j ≤59),

Kj: 8f1bbcdc, K’j:5a827999, (60 ≤ j ≤79),

Kj:a953fd4e, K’j:6ed9eba1, (80 ≤ j ≤99)

8. Conclusion
We proposed HAS-256, 384 and 512 which were based on

SHA-256, 384 and 512. HAS functions have the structure

of little-endian and are suited for a systematization

of Intel 80XXX. On the other hand, SHA functions choose

the structure of big-endian. Generally, the processor

of big-endian structure is faster than little-endian’

s [4]. Therefore, we have to design the algorithm to

fit the structure of little-endian. It exists always as

the pair of collision because an input has a lot of data

than the output in the hash function. Because an input

has a lot of numbers, the existing probability of

collision pairs is high. That is, the safety of hash

functions depends on the difficulty to find the

collision pairs. Also, we propose the SHA-V based on the

HAS-V. This design is expected to be used to the several

cryptographic applications because it has the various

outputs of hash code.

9. References
[1] A.J. Menzs, P.C. Van Oorshot, S.A.Vanstone

“Handbook of Applied Cryptography” CRC Press, 1997

[2] Antoon Bosselaers “ The Hash Function RIPEMD 160”

http://www.esat.kuleuven.ac.be/~bosselae/ripemd1

60.html

[3] B.Schneier”Applied Cryptography” WILEY, Vol 2,

1996

[4] C.C.Park “Cryptography Theory and Security” Deyung

Press, 1999

[5] H.Dobbertin,.Bosselaers, B.Preneel “ RIPEMD-160 :

A Strengened Version of RIPEMD ”

http://www.esat.kulenven.ac.be/~cosicart/pdf/

[6] H.KUWAKADO, H. TANAKA “ New Algorithm for Finding

Preimage in a Reduced Version of the MD4 Compression

Function”IEICE TRANS, Fundamentals, Vol.E83-A.

No.1, Jan, 2000

[7] Korea Information Security Agency “ A Design and

Analysis of SEED” Dec, 1999

[8] M.J.B.Robshaw “On Recent Results for MD2, MD4, MD5”

April, 1996

[9] M.S. Lee “Modern Cryptography” KyoU Press, 1999

[10]National Security Research Institute “ Modern

Cryptology” Kyungmoon, 2000

[11]NIST “ Descriptions of SHA-256, SHA-384, and

SHA-512” http://csr.nist.gov/cryptval/shs.html

[12]N.K.Park, J.H.Hwang, P.J.Lee “ HAS-V : A New Hash

Function with Variable Output Length” SAC2000,

LNCS2012, Springer-Verlag, 2001

[13]P.Sarkar, P.J.Schellenberg “A Paralleizable Design

Principle for Cryptographic Hash Function

“ http://eprint.iacr.org/2002/031

[14]RSA Laboratories “ Bulletin” Number 4, Nov.12,

1996, http://www.ras.com

[15]TTA Standard “ Hash Function Standard – Part 2:
Hash Function Algorithm Standard (HAS-160) ”

TTA,KO-12.0011/R1, Dec

[16]U.S Department of Commerce, NIST “ Secure Hash

Standard” FIPS PUB 180-1, Apr, 1995

