
Design and analysis of a lean interface
for Sanskrit corpus annotation

Pawan Goyal1 and Gérard Huet2
1 IIT Kharagpur, India

2 INRIA Paris Laboratory, France

abstract

Keywords:
Sanskrit, text
segmentation,
annotation,
interface

We describe an innovative computer interface designed to assist an-
notators in the efficient selection of segmentation solutions for proper
tagging of Sanskrit corpora. The proposed solution uses a compact
representation of the shared forest of all segmentations. The main
idea is to represent the union of all segmentations, abstracting from
the sandhi rules used, and aligning with the input sentence. We show
that this representation provides an exponential saving, in both space
and time.

The segmentation methodology is lexicon-directed. When the lex-
icon does not have full coverage of the corpus vocabulary, some
chunks of the input may fail to be recognized. We designed a lexicon-
acquisition facility, which remedies this incompleteness and makes
the interface more robust.

This interface has been implemented, and is currently being ap-
plied to the annotation of the Sanskrit Library corpus. Evaluation over
1,500 sentences from the Pañcatantra text shows the effectiveness of
the proposed interface on real corpus data.

1 generalities on sanskrit linguistics

Sanskrit is the primary language used as a vehicle of culture in In-
dia. Literature in Sanskrit for all fields of human endeavour has been
produced continuously over the past four millennia, giving rise to an
immense corpus, which is, to date, only partially digitised. It benefits

Journal of Language Modelling Vol 4, No 2 (2016), pp. 145–182

Pawan Goyal, Gérard Huet

from a very sophisticated linguistic tradition stemming from the fairly
complete grammar composed by Pāṇini by the fourth century B.C.E.

During the last 15 years, significant efforts have been made to de-
velop computational linguistics for Sanskrit, and considerable progress
has been achieved in providing computer assistance for Sanskrit cor-
pus processing (Goyal et al. 2009; Hellwig 2009; Huet et al. 2009;
Kulkarni and Huet 2009; Kulkarni and Shukl 2009; Scharf and Hyman
2009; Jha 2010; Kulkarni et al. 2010; Kumar et al. 2010; Goyal et al.
2012). Nevertheless, there does not exist at this time a complete ana-
lyser for Classical Sanskrit texts able to compute morphological tag-
ging reliably in a completely automatic way. The main difficulty con-
cerns segmentation, since Sanskrit is represented in writing by contin-
uous phonetic enunciation, which demands complex processing for its
analysis in separate word forms. Although complete algorithms for this
segmentation preprocessing have been proposed (Huet 2005), human
assistance is still needed to focus on the appropriate solution within
all possible analyses.

We propose in this paper a new human-machine interface to help
a professional annotator to decide quickly between all possible seg-
mentations, in order to select a unique morphological analysis among
the many possible ones. Indeed, there exist thousands of such segmen-
tations for simple sentences, and literally billions for complex ones.
Once a sufficient amount of tagged corpus data has been made avail-
able using such semi-automated annotation tools, it is hoped that it
will be possible to use it to train a fully automated parser using statis-
tical methods.

A preliminary version of this paper was presented at the ICON
conference in Hyderabad in December 2013 (Huet and Goyal 2013).
The novel aspects and contributions of this paper with respect to the
previous version are: a) it is an extended version of the conference
paper, with a detailed explanation of the segmentation methodology,
related work and illustrative examples, b) we conduct a thorough eval-
uation of the proposed system with respect to robustness as well as
convergence time taken, in practice, on real corpus data with 1,500
sentences, and c) we propose a module for error recovery and lexical
acquisition, which makes the system much more usable when deal-
ing with a corpus that is error-prone, or contains words that are not
present in the lexicon used by the system.

[146]

Lean interface for Sanskrit corpus annotation

The paper is organized as follows. Section 2 discusses related
work on the problem of word segmentation. Section 3 gives the nec-
essary formalisms required for segmentation analysis of Sanskrit text.
The concept of aligned segmentations and the graphical display of
the interface, which are the central themes of this paper, are detailed
in Sections 4, 5 and 6. The use of the proposed interface as a tagging
tool is discussed in Section 7, using a complete walk-through example.
We present the evaluation of the proposed interface using 1,500 sen-
tences from real corpus data in Section 8. An experimental segmenter
for lexical acquisition is described in Section 9. Section 10 concludes
the paper.

2 related work
The task of word segmentation is a necessary initial step for processing
those natural languages where word boundaries are not maintained
in the written text. A lot of prior work concerns word segmentation
for Chinese text. The two dominant models for Chinese word seg-
mentation are ‘word-based’ and ‘character-based’ (Sun 2010). Word-
based methods read the input sentences from left to right, predicting
whether the current piece of continuous characters is a word token.
Once a word is found, they move on and search for the next word.
The methods vary in terms of the strategies used for word prediction
and disambiguation, if there are multiple possibilities. For instance,
the maximum matching approach (Chen and Liu 1992) chooses the
longest word for disambiguation, while prediction is based on a dic-
tionary. Recently, machine-learning methods have been employed to
solve these problems. Zhang and Clark (2007) used a linear model with
an average perceptron algorithm where, given an input sequence of
characters c, the model finds a segmentation ŵ such that

ŵ= max
w∈GEN(c)

(α ·ϕ(c, w)),

whereϕ is a feature map, α is the parameter vector, which is learnt via
training, and GEN(c) enumerates the set of segmentation candidates
for the character sequence c.

Character-based approaches, on the other hand, attempt to assign
labels to the characters in the sequence, indicating whether a charac-
ter ci is a single character word (S), or the beginning (B), middle (I)

[147]

Pawan Goyal, Gérard Huet

or end (E) of a multi-character word, thus treating this as a sequence
labelling problem. Word tokens are inferred, based on the character
classes. Several models, such as Conditional Random Fields (CRFs),
have been used for this task (Tseng 2005).

Various approaches have since been proposed to combine word-
based and character-based methods (Sun et al. 2009). For instance,
Wang et al. (2014) recently proposed a method based on dual decom-
position (Rush et al. 2010) to combine these approaches in an efficient
framework.

The problem of word segmentation in Sanskrit, however, is more
difficult than in languages such as Chinese, where the words are com-
bined without any euphonic assimilation at the boundary. The next
section describes in further detail the problem of word segmentation
for Sanskrit text.

3 segmentation analysis for sanskrit text

We shall now formalize the word segmentation problem in Sanskrit
written text at various levels of abstraction. Sanskrit may be written
in all Indian scripts, most usually in the devanāgarī script used by lan-
guages of North India such as Hindi, but such syllabic representation is
awkward for morpho-phonetic computations. It is preferable to trans-
late it into a list of phonemes, with one-to-one translation. We assume
the standard set of 50 phonemes, already known from the time of
Pāṇini. Such low-level representation issues are discussed at length in
Scharf and Hyman (2009) and Huet (2009).

In Sanskrit, where oral tradition dominated the sphere of learn-
ing and an advanced discipline of phonetics explicitly described eu-
phonic assimilation, the phonetic transformations at the juncture of
successive words, well known by the term sandhi, are represented in
writing. Assimilation obscures word boundaries in speech, and these
word boundaries are correspondingly eliminated in writing as well.
For example, vasati ‘dwells’ atra ‘here’ becomes vasatyatra in contin-
uous speech. Some euphonic changes, like this one, can be separated
in alphabetic Roman transcription despite the sound alteration, viz.
vasaty atra. Other assimilation changes, however, preclude word sep-
aration, even in alphabetic transcription, because the final sound of
the preceding word and the initial sound of the following word merge

[148]

Lean interface for Sanskrit corpus annotation

into a single sound. Thus vidyā ‘knowledge’ āpyate ‘is attained’ be-
comes vidyāpyate; the single sound ā belongs to both words. This phe-
nomenon has been well recognized and formally analysed since an-
tiquity (Pāṇini gave a complete axiomatisation of sandhi in terms of
string rewriting in his 4th century B.C. treatise Aṣṭādhyāyī). The most
difficult task in parsing a Sanskrit sentence is determining the word
boundaries. Solutions to this problem have valuable ramifications for
speech analysis, where a similar problem is encountered in virtually
all languages.

We assume that the reader is familiar with the use of finite-state
methods for morpho-phonemic computations, as explained in stan-
dard references such as Roche and Schabes (1997), Kaplan and Kay
(1994) and Beesley and Karttunen (2003). We also assume some fa-
miliarity with the lexicon-driven Sanskrit segmenter of Huet (2005),
from which we extract the following definitions.
Definitions. A lexical juncture system on a finite alphabet Σ is com-
posed of a finite set of words L ⊆ Σ∗ and a finite set R of rewrite rules
of the form [x]u|v → w, with x , v, w ∈ Σ∗ and u ∈ Σ+. Note that in
the Kaplan and Kay notation, the rule we write [x]u|v → w would be
written as u|v→ w/x__.1

The word s ∈ Σ∗ is said to be a solution to the system (L, R) iff there
exists a sequence 〈z1,σ1〉; . . . ; 〈zp,σp〉 with z j ∈ L and σ j = [x j]u j |v j →
w j ∈ R for (1 ≤ j ≤ p), vp = ε and v j = ε for j < p only if σ j = o,
subject to the matching conditions: z j = v j−1 y j x ju j for some y j ∈ Σ∗
for all (1 ≤ j ≤ p), where by convention v0 = ε, and finally s = s1 . . . sp

with s j = y j x jw j for (1 ≤ j ≤ p). ε denotes the empty word. We also
say that such a sequence is an analysis of the solution word s.

In this formalization, Σ is the set of phonemes, R is the set of
sandhi rules, and L is the vocabulary as a set of lexical items. As a first
approximation, one may think of L as the lexicon of inflected words.
In Section 7, we shall partition L according to lexical sorts, some of
which are morphemes such as stems and affixes, in order to segment
compound words by the same method as explained here for sentence

1This algorithm assumes that the segmenter induces the segment boundaries
from a generative lexicon of permitted inflected forms. Another method would
guess arbitrary segment boundaries with rules uv→ w/x__, and attempt morpho-
logical analysis of the segments, but this is less efficient. Some rules could also
use the v part as right context, when it is unchanged. Many variations exist.

[149]

Pawan Goyal, Gérard Huet

segmentation into words. This extension is necessary to keep L finite,
in view of the fact that nominal compounding in Sanskrit is productive
to an arbitrary depth. But all the notions defined here will apply eas-
ily to this refinement, which allows us to keep notations simple. We
shall also assume the system (L, R) to be non-overlapping, as defined in
Huet (2005). This assumption is met in classical Sanskrit, except for
a small number of uni-phonemic morphemes, which are amenable to
the general treatment, modulo the introduction of so-called phantom
phonemes, as explained in Huet (2006); Goyal and Huet (2013).

Note that the sandhi problem is expressed in a symmetric way.
Going from z1|z2| . . . |zn| ∈ (L · |)∗ to s ∈ Σ∗ generates a correct phone-
mic sentence s with word forms z1, z2, . . . , zn, using the sandhi transfor-
mations. Whereas going the other way means analysing the sentence
s as a possible phonemic stream, using words from the lexicon trans-
formed by sandhi. It is this second problem that the Sanskrit segmenter
has to solve, since sandhi, while mostly deterministic in generation,
is strongly ambiguous in analysis. Below, we provide a brief summary
of the solution proposed by Huet (2005). The basic data structures
used by the system are Tries, Decos, and variations on applicative data
structures to represent finite automata and transducers. This method-
ology has recently been extended to a general paradigm of relational
programming, using the notion of effective Eilenberg machines (Huet
and Razet 2015).
Definitions. Tries are tree structures that store finite sets of strings
sharing initial prefixes. We assume that the alphabet of string repre-
sentations is some initial segment of positive integers. Thus a string is
encoded as a list of integers that will from now on be called a word.
Definitions. A word may be associated with a non-empty list of infor-
mation of polymorphic type α, absence of information being encoded
by the empty list. We shall call such associations a decorated trie, or
deco for short.

To solve the sandhi problem for analysis, the inflected form tries
are decorated with the rewrite rules. The algorithm proceeds in one
bottom-up sweep over each inflected form trie. For every accepting
node (i.e. lexicon word), at occurrence z, we collect all sandhi rules2

2The treatment of a contextual rule [x]u|v → w is similar: we check that
z = λxu, but the decorated state is now at occurrence λx . In both kinds of rules,

[150]

Lean interface for Sanskrit corpus annotation

σ : u|v→ w such that u is a terminal substring of z: z = λu for some λ.
When we move up the trie, recursively building the automaton graph,
we decorate the node at occurrence λwith a choice point labelled with
the sandhi rule. This builds in the automaton the prediction structure
for rule σ, at distance u above a matching lexicon word. At inter-
pretation time, when we enter the state corresponding to λ, we shall
consider this rule as a possible non-deterministic choice, provided the
input tape contains w as an initial substring. If this is the case, we shall
then move to the state of the automaton at occurrence v (before this,
the program checks that all sandhi rules are plausible in the sense that
occurrence v exists in the inflected trie, i.e. there are some words that
start with string v). When we take this action, the automaton acts as
a transducer, by writing on its output tape the pair (z,σ).

Coming back to the solution word, we may think of s as a pho-
netically correct utterance over vocabulary L, and its analysis S =
〈z1,σ1〉; . . . ; 〈zp,σp〉 as one of its possible segmentations. Analysis S
is completely explicit, in the sense that s may be computed from S,
applying sandhi rules σi in sequence, going from left to right. Con-
versely, there may be many possible segmentations S of a given utter-
ance s, typically thousands for a moderately long sentence, although
it is proven in Huet (2005) that they are always finite in number. We
write Segs(s) for the set of segmentations of s. The algorithm described
in Huet (2005) shows how to enumerate the complete set Segs(s) from
a given input string s. In view of its possibly enormous size, attempts
have been made, e.g. Huet (2007), to filter out non-sensible segmenta-
tions by a semantic analysis in the manner of dependency grammars.
This method works well for simple sentences, but is not sufficient
for more complex sentences, particularly in the presence of ellipses
and other anaphoric or discourse operators where dependencies are
context-sensitive. Furthermore, the set Segs(s) is not easily amenable
to sharing, and as a consequence the segmentation-cum-tagging Web
service of the Sanskrit Heritage site3 has not been of practical use so
the choice point is put at the ancestor of z at distance u. This suggests as imple-
mentation to compute at the accepting node z a stack of choice points arranged by
the lengths of their left component u. Furthermore, once the matching is done,
the context x may be dropped when stacking a contextual rule, since it is no
longer needed.

3http://sanskrit.inria.fr/

[151]

http://sanskrit.inria.fr/

Pawan Goyal, Gérard Huet

far on real corpus data, since it tended to generate very long Web
pages, even to the point of choking the server. Wading through such
long lists of segmentations was very tedious and error-prone. The new
interface described in the present paper completely solves this prob-
lem. We shall now explain its main concepts.

4 aligned segmentations
The key idea behind the new interface is to represent an abstraction of
the union of all segmentation decompositions, realigned on the input
utterance. This new representation is now amenable to sharing, and
may thus be represented very compactly on one computer screen.
Definition. We consider a sandhi analysis S as above, generalized to
allow empty sequences. It may be defined inductively, as being either
empty or of the form S = 〈z1,σ1〉; S′, with S′ a similar sequence. Let n
be a natural number. We define the alignment of S with offset n, noted
as S ,→ n, as a set of pairs of aligned segments of the form (k, z), with
k ∈ N and z ∈ L, as follows. If S is the empty sequence, then S ,→ n= ;.
Otherwise, let S = 〈z,σ〉; S′ with σ = [x]u|v → w. We define S ,→ n =
{(n, z)} ∪ S′ ,→ n′, where n′ = n+ |z|+ |w| − (|u|+ |v|).

If S is a segmentation analysis of utterance s, we define its cor-
responding aligned segment collection as the set of aligned segments
S = S ,→ 0. Note that in this new notion we leave aside the precise
sandhi rules used in the analysis S, keeping only the tabulation infor-
mation that allows us to present its set of segments aligned with the
original input s.

Let S be a set of segmentation analyses of utterance s. We define
the tabulated display of S , noted D(S), as the set of aligned segments
obtained as the union of all its corresponding aligned segment collec-
tions:

D(S) = ∪
S∈S

S

We say that an aligned segment (k, z) is relevant to a segmentation
analysis S iff (k, z) ∈ S. Let S be a non-empty set of segmentation anal-
yses of some utterance s, and (k, z) ∈ D(S). We define the restriction
of S to (k, z), noted S ↓ (k, z), as the set of all segmentation analyses
in S to which (k, z) is relevant:

S ↓ (k, z) = {S ∈ S | (k, z) ∈ S}
We obtain of course S ↓ (k, z) ⊆ S .

[152]

Lean interface for Sanskrit corpus annotation

Fact 1. (k, z) ∈ D(S)⇒S ↓ (k, z) ̸= ;.
Proof. Trivial compactness property of union.

Let S be a non-empty set of segmentation analyses of some ut-
terance s, and (k, z) ∈ D(S). We say that (k, z) is critical in D(S) iff it
is not relevant to some S′ ∈ S . This implies that

|D(S ↓ (k, z))|< |D(S)|
Thus, selecting a critical segment in the interface will effectively

reduce the search space. In practice, it will reduce it by half or more,
and convergence will be ensured in log(N) steps, where N is the total
number of segmentation solutions. Let us now give a sufficient condi-
tion for criticality.

Let (k, z) and (k′, z′) be two distinct aligned segments in some
tabulated display D(S). We say that (k, z) and (k′, z′) conflict if k ≤
k′ < k+ |z| − 1 or k′ ≤ k < k′ + |z′| − 1.
Fact 2. Let (k, z) and (k′, z′) conflict in D(S). They are both critical,
as they are mutually exclusive – no segmentation may contain both.
Proof. By inspection of sandhi rules, we may check that every rule
[x]u|v→ w is such that |u|+|v| ≤ |w|+1. Thus any overlap of a segment
with its successor in any segmentation is at most of length one. Since
every segment is of length at least one, overlap of a segment with some
other segment in the same segmentation solution may be at most of
length one. Let (k′, z′) be an aligned segment of D(S) conflicting with
(k, z). No segmentation analysis to which (k′, z′) is relevant may belong
to S ↓ (k, z), and thus (k′, z′) /∈ D(S ↓ (k, z)).

Note that the conflicting condition is sufficient to show that two
segments may not appear in a common segmentation solution, but that
this is not a necessary condition, even for contiguous segments. The in-
terest of this notion is that it is easy to check visually, whereas the nec-
essary and sufficient criterion is not, since sandhi rules are not shown.

We now state a fact which may not be true of all lexical junc-
ture systems, but is verified for Sanskrit sandhi, as we shall argue in
Section 7.3.
Fact 3. If D(S) has no critical aligned segment, S is a singleton.

5 a graphical interface
Let s be the utterance under consideration. Initially, we compute the
set S = Segs(s) of all its possible segmentations, and we display D(S),

[153]

Pawan Goyal, Gérard Huet

where every aligned segment (k, z) is represented as the segment z
displayed with an offset of k spaces from the left margin. When two
aligned segments overlap, we represent them in separate rows of the
display. We sort all segments, so that longer segments are listed above
shorter ones. Each segment is displayed either with a blue check sign,
if it does not conflict with any other segment, or else with two signs, a
green check sign to select the segment, and a red cross sign to discard
it. These green check and red cross signs are mouse-sensitive; they
trigger as call-back the segmentation routine that will compute all
segmentation analyses consistent with this particular choice, that is,
for which all aligned segments currently selected with green check
signs are present, and those segments discarded with red cross signs
are absent. If s is segmentable at all, S is non-empty, and so is D(S).
At any point in the computation, the current display D(S) represents
the union of a non-empty set S of segmentations of s, by repeated
application of Fact 1. Consequently, selecting or discarding a segment
can never fail.

Furthermore, if the user selects or discards a critical segment,
there is visible progress, since all conflicting segments vanish when a
segment is selected, while any segment vanishes when discarded. This
corresponds to the case where it conflicts with some other segment,
which is easy to see in the visual display, since it covers a column that
is strictly inside the conflicting segment.

When a segment is selected using the green check sign, both the
check and cross signs are replaced by a single blue check sign, which
is mouse-insensitive, thus making the segment inert for the rest of the
interaction. On the other hand, if a segment is discarded using the
red cross sign, it vanishes and in the particular case where it conflicts
only with one other segment, the other segment will become inert.
Note that the user cannot select a non-critical segment, since these
are presented with blue check signs, which are not mouse-sensitive.
When there are no more critical segments, we have reached a unique
segmentation solution, consistent with Fact 3.

Several other actions, besides the selection of a segment, are pos-
sible at any moment. Firstly, users may undo the previous selections,
up to an arbitrary depth. Secondly, they may revert to the old in-
terface, which gives a linear listing of all segmentations consistent
with the segments currently selected. A counter indicates how many

[154]

Lean interface for Sanskrit corpus annotation

distinct segmentations remain. Users may also opt to use the seman-
tic pruning mechanism to provide machine assistance, for potentially
faster convergence. Finally, it is possible to send the remaining set of
segmentations to the more complete dependency parser under devel-
opment at the University of Hyderabad (Kulkarni et al. 2010; Kulkarni
and Ramakrishnamacharyulu 2013).

A complexity analysis of the interface is presented in the Ap-
pendix. From experimental evidence, it has been observed that the
number of solutions grows exponentially with the length of the ut-
terance and the bound O(Cn) has actually been reached for the real
corpus (see Figure 10). For instance, the following sentence, excerpted
from the Vikramorvaśī play by Kālidāsa, has 6,967,296,000 (≈ 232) seg-
mentations. The sentence has 240 phonemes, and the desired solution
has 40 segments. This sentence can be managed by our interface in
17 clicks, so the convergence is quite fast.
yā tapasviśeṣapariśaṅkitasya sukumāram praharaṇam mahendrasya
pratyādeśaḥ rūpagarvitāyāḥ śriyaḥ alaṃkāraḥ svargasya sānaḥ priyasakhī
urvaśī kuberabhavanāt pratinivartamānā samāpattidṛṣṭenakeśinā dānave-
nacitralekhādvitīyā bandigrāhaṃ gṛhītā. ‘Our dear friend Ūrvaśī, who
is the youthful weapon of Mahendra, the one fearful of the power of
extra-ordinary penance, who is an overshadower of Śrī, who is proud
of her beauty, and who is an ornament of heaven, was taken captive,
together with Citralekhā, by the demon Keśī, who had appeared by
chance, while she was returning from the house of Kubera.’ (English
translation by Brendan Gillon)

More example cases will be presented in Section 8.

6 graphical rendering of the display

Figure 1 presents the graphical rendering presented by our system for
the following sentence:
satyaṃbrūyātpriyaṃbrūyānnabrūyātsatyamapriyaṃpriyaṃcanānṛtambrū-
yādeṣadharmaḥsanātanaḥ.
This is the well-known saying (subhāṣitam): ‘One should tell the truth,
one should say kind words; one should neither tell harsh truths, nor
flattering lies; this is a rule for all times.’

As indicated in the display, this diagram summarizes 120 distinct
segmentations. The colour code used for the segments indicates var-

[155]

Pawan Goyal, Gérard Huet

Figure 1: Initial display of the aligned segments for the sentence
satyaṃbrūyātpriyaṃbrūyānnabrūyātsatyamapriyaṃpriyaṃcanānṛtambrūyādeṣa-
dharmaḥsanātanaḥ

ious lexical categories, e.g., blue for substantives, red for finite verb
forms, purple for adverbs, pale blue for pronouns and yellow for com-
pounds.

The main notion behind the interface is that of the display D(S)
for a consistent set of segmentations S . Initially, we take S = Segs(s),
and we progressively select aligned segments (k1, z1), . . . , (kn, zn). The
only data kept in memory are the initial sentence s, and the stack
of choices Cn = (k1, z1), . . . , (kn, zn). The interface interaction is imple-
mented as a CGI coroutine, which receives arguments s and Cn in its
invoking URL. The server recomputes the sequence of all segmenta-
tions Segs(s) at every step, keeping only those consistent with the stack
of choices Cn, sorted by alignments into a sorted list of checkpoints.
The display of all consistent segmentations is stored in an array ‘dis-
play’ of size |s|. The display value at index i is the list of all segments
z such that (i, z) is an aligned segment of some segmentation solution
consistent (i.e. not conflicting) with all the checkpoints Cn. This test is
easy, since Cn is sorted. One may think of the display as a shared repre-
sentation of D(S), for S , the set of segmentation solutions consistent
with the current stack of choices. Actually the array ‘display’ may be
thought of as a hashcoding array for the set D(S), with the hashcode
of an aligned segment (k, z) being its alignment k in the input string.

[156]

Lean interface for Sanskrit corpus annotation

What is crucial for the efficient sharing of the tree of all segmen-
tations as a directed acyclic graph (DAG) is the abstraction of sandhi
rules. Indeed, our methodology is reminiscent of parsers based on tab-
ulationmethods, which use such dynamic programmingmethods (Ear-
ley 1983; Tomita 1985; Billot and Lang 1989; Stolcke 1995).

Implementation of ‘Undo’ is trivial, since it consists in calling the
interface with the same stack of choices minus the last choice.

Note the simplicity of this implementation: at every step, all the
information is recomputed with the standard segmenter but, since the
technology is very fast, this is not noticeable to the user as the reaction
seems instantaneous (at least on a localhost server).

Presenting the tabulated display of the aligned segmentations as
an HTML page was not entirely trivial. The segmentation analysis
gives us all possible segments, appearing at various offsets. First, for
an arbitrary offset ki, the number of segments may be quite large.
Also, the length |zi | of the largest segment (ki , zi) at offset ki might
be such that it conflicts with the aligned segments at the next offset
ki+1. Since the objective was to have a compact display, keeping the
alignment intact, the problem of where to fit the aligned segments at
offset ki+1 remains, in such a case, once the HTML display has been
populated with the segments at offset ki. The second issue is related to
the fact that, while the maximum size of the display array is fixed as
the length of the utterance (|s|), the size of an aligned segment (ki , zi)
is |zi |, a variable depending on the segment zi. Thus, the problem is to
show the aligned segment as a single entity.

Now, a simplistic implementation to keep the alignment in-
tact would have been to list all the segments corresponding to
the offset ki+1, starting from the next row after all the segments
at offset ki have been enumerated. This would obviously not lead
to a compact display. Similarly, a very simple implementation to
handle variable-sized segments would be to define an array of |s|
columns and display each solution (ki , zi) in |zi | columns, starting
from the ki

th column. The problem with this approach is that the
display of a word does not appear continuous here. Also, depend-
ing upon the transliteration scheme used, some phonemes would
require more space than others, so the row length will be vari-
able. And the segment zi cannot be treated as a single HTML en-
tity in this case, which is a requirement for user-friendly display

[157]

Pawan Goyal, Gérard Huet

of morphological tags, as well as for the callbacks, initiating user
interaction.

To alleviate these problems, we sorted the segments at each off-
set according to length.4 Thus, the longer segments appear at the top.
Now, while filling the segment (ki+1, zi+1) at offset ki+1, we search for
the first row from the top where the last filled segment does not con-
flict with (ki+1, zi+1), and fill this segment in that row. This gives a
much more compact display.

Similarly, to handle the second issue, instead of using |zi | columns
for an aligned segment (ki , zi), we used the HTML ‘colspan’ attribute
to use variable width columns in a row. Thus, an aligned (ki , zi) is
displayed, using a |zi |width column at offset ki. This allows continuous
display of a segment, as well as treating it as a single HTML entity.

7 lexical categories and tagging

7.1 Dealing with lemmatized segments
Since our method is lexicon-directed, our candidate forms are mor-
phologically generated, and may be kept along with their lemmas.
Furthermore, we may restrict our segmenter to recognize only mor-
phologically correct sequences, according to a regular grammar ex-
pressing morphological constraints. This refinement is also necessary
because the sandhi relation after preverbs (upasarga) is different from
the external sandhi between words or compound components. This
grammar is compiled into the state-transition graph of a finite automa-
ton/transducer, which expresses the control of our lexical scanner in
the usual manner. The states of this automaton, called phases, corre-
spond to the lexical categories associated with colours in the interface.
We may refine the above formalization to this new situation easily,
replacing the notion of aligned segment (k, z) by the finer notion of
aligned lemmatized segment (k, (l, z)), where l is the lemmatization of
segment z.

We can go back to the example sentence in Section 6, for which
the initial display summarizing 120 distinct segmentations is pre-
sented in Figure 1. At the right side of the diagram, one sees the long

4Note that this sorting is prioritized from left to right, as this is the most
natural order for reading Sanskrit text.

[158]

Lean interface for Sanskrit corpus annotation

segment sanātanas (‘eternal’) and below it several choices of smaller
words that are obviously overgenerated items. Clicking on the green
sign under the blue segment sanātanas removes all this noise, and the
number of potential solutions drops to 12, generating the display given
in Figure 2 – note the blue unlinked check sign indicating the previ-
ously selected segment.

Similarly, one immediately notices the segment satyam (‘truth’),
together with conflicting noisy alternatives. Similarly, for cana (‘and
not’), these two selections will leave us with only one choice between
segments brūyāt and brūyām (two forms of root brū ‘to say’ in the opta-
tive mood of the present active voice in the singular number, respec-
tively in the 3rd and 1st person). By obvious symmetry with its other
occurrences in the sentence, brūyātmust be chosen, obtaining the cor-
rect segmentation in a total of 4 easy clicks, shown in Figure 3. At this
point, one may click on the explicit button “Unique Solution”, where
fine tuning of the final morphological parameters, such as ambiguities
of gender of substantival forms, may be effected through a final user
interface, shown in Figure 4. This last stage is necessary, because our
lemmas label a given form with a multi-tag, factoring out all values of
morphological parameters usable to generate this form. The user can
select the appropriate options to produce the final unambiguous tag-
ging of the sentence as a list of lemmas, where segments are hyperlinks
to the digital lexicon, as shown in Figure 5.

This page may be stored, and the next sentence may then be read
from the corpus input stream, in order to progressively annotate the
digital library.

Sometimes it is useful for annotators to see the lemmatization of
a segment in order to make a decision with more information than
merely its lexical category (indicated by the colour code). This facility

Figure 2: Aligned segments after selection of segment sanātanas

[159]

Pawan Goyal, Gérard Huet

Figure 3: Aligned segments after 4 clicks

Figure 4: The interface for selecting unique tags from multi-tags

[160]

Lean interface for Sanskrit corpus annotation
Figure 5:
Final tagging

[161]

Pawan Goyal, Gérard Huet

is available in the interface: every segment is mouse-sensitive, and
clicking on it yields its lemma, as shown in Figure 6 for the segment
brūyāt.

Figure 6: Asking for the lemma of the segment brūyāt

Note that, in this lemma, the root brū is itself mouse-sensitive; it
is a hyperlink to its lexical entry, allowing access to its meaning. We
provide two aligned digital lexicons, our original Sanskrit-to-French
Heritage dictionary, and also the more complete classical Sanskrit-
to-English Monier-Williams (MW) dictionary (Monier-Williams et al.
1899).5 Thus annotators have all available information at their dis-
posal at any point, but with minimal cluttering of the workspace.

It should be noted that this interface is not only easy to use, it
is actually fun to play with. It may be thought of as some kind of
electronic game.

7.2 Rationale for using the cross signs
The cross signs presented for conflicting segments are used to discard
a particular segment. However, it may be argued that this result may
more efficiently be achieved by selecting the correct segment. While
this would be the appropriate in majority of cases, there are a few
instances where one would need to use a cross sign to select the ap-
propriate solution. Figure 7 describes the possible segmentations for
the utterance, ihehi, which can be analysed either as iha + ā + ihi
or as iha + ihi. The interface presents the segments iha and ihi with
blue check signs, indicating that these do not conflict with any other
segment, but the segment ā is presented with a green check and a
red cross sign. If we had used only a green check sign, it would not
have been possible for the annotator to select the solution iha + ihi,

5The protocol for the non-trivial task of mutually linking these lexical re-
sources has been discussed in Goyal et al. (2012)

[162]

Lean interface for Sanskrit corpus annotation
Figure 7:
The aligned segmentations
for ihehi.

since there would have been no opportunity to discard the ā segment.
With this facility, the annotator is free to choose either of these two
analyses.6

7.3 Justifying Fact 3
In the example just shown, we assumed implicitly that when no more
choices were available to the user, there was only one segmentation
solution left, and we could then proceed to the final disambiguation
of the remaining multi-tags of this unique solution. This assumption
is precisely what we called Fact 3 above, and that we now restate:
Fact 3. If D(S) has no critical aligned segment, S is a singleton.
Proof. Assume that D(S) has no critical aligned segment. In other
words, all the segments are marked with a blue mark, indicating that
they belong to all remaining solutions. Thus, all remaining solutions
have the same segments. We shall need to prove that all the aligned
segments are strictly ordered within one unique solution. Consider any
two remaining segments (k, z) and (k′, z′)where, without loss of gener-
ality, we may assume k ≤ k′. If k < k′, the z segment must precede the
z′ one. Now let k = k′. It is not the case that both |z| > 1 and |z′| > 1,
since the two segments would conflict with each other. Assume with-
out loss of generality |z|= 1. If |z′|> 1, the z segment must precede the
z′ one. We are left to consider the case where |z| = |z′| = 1. The only
relevant mono-phonemic segments in classical Sanskrit are the pri-
vative prefix a, forming so-called nañ-tatpuruṣa compounds, and the

6Another possible way to achieve this would have been to use null segments
and allow the annotators to choose between the null segment or the other pos-
sibility. We, however, prefer to use the cross sign, since it also helps a reader to
reduce the number of possibilities by discarding some nonsensical combinations.

[163]

Pawan Goyal, Gérard Huet

preposition ā, used as prefix (upasarga) to final (tiṅanta) and propo-
sitional (kṛdanta) verbal forms.7 We thus only have to consider the
proper ordering of co-aligned a and ā segments. The privative particle
a can prefix only consonant-initial nouns, since it alternates with the
form an for vowel-initial ones. The preposition ā is assumed not to be
iterated, which would be redundant. Thus, the only possible ordering
is that an ā segment could precede an a segment (but we do not know
of even one concrete example). This explanation justifies Fact 3 in the
case of classical Sanskrit.

7.4 Robustness
The interface is remarkably robust for realistic sentences, as shown
in the example in Section 5. Figure 8 shows the initial display of our
interface, where the sentence from the Vikramorvaśī play by Kālidāsa,
as mentioned in Section 5, is processed by the Sanskrit reader. The
interface shows all the 6,967,296,000 possible solutions in a compact
display. The display presents various choice points to the user, and is
manageable in 17 clicks. A full evaluation of the interface, for robust-
ness as well as convergence analysis, is presented in the next section.

8 evaluation

To evaluate the robustness of the proposed system, we used a dataset
consisting of 1,500 sentences from Pañcatantra. These sentences were
annotated, using a software-assisted human interface for morpholog-
ical tagging, built on top of the Sanskrit Heritage Reader (Goyal et al.
2012). The annotators were allowed to give their own annotations,
when the correct segmentation did not appear in the system. The
length distribution of the sentences used in this study is shown in
Figure 9. Clearly, many of the sentences contained more than 90 char-
acters.

To study its robustness, we checked whether the sets of segmen-
tation analyses for these sentences contained the segmentations iden-
tified by the annotators. When these sentences were given as input
to the system, the system gave a summary page in each of the cases.

7Vedic Sanskrit offers additional difficulties, with autonomous prepositions
and the mono-phonemic interjection u.

[164]

Lean interface for Sanskrit corpus annotation

Fig
ur
e8

:C
he
ck
ing

the
int

erf
ac
ef

or
al

on
gs

en
ten

ce

[165]

Pawan Goyal, Gérard Huet
Figure 9:

Distribution of length for
the sentences used in the

evaluation

Figure 10 plots the log of the number of solutions identified by the
system, with respect to the length of the sentence. The plot is trun-
cated at 125 characters both for the sake of visibility and also because
few sentences exceed that limit. We can clearly see that the number
of solutions increased exponentially with the length of the sentence.

On further analysis, we found that in 1,092 out of 1,500 sentences,
all the segmentations from the gold standard were present in the set
of segmentation analyses, returned by the summary interface of the
system. On analysing the rest of the cases, we found that, in 59 cases,
the annotated sentence did not match the input sentence, and a few
changes had been introduced by the annotators. We therefore studied
the performance of the system on the remaining 1,441 sentences. First,
we measured the recall of the system by identifying how many of the
words in the segmentation were also present in the summary inter-
face. We measured both micro- and macro-averaged recall. As per the
standard definition, for macro-averaged recall, we computed recall for
each of the sentences and then took an average for all 1,441 values,
one for each sentence. For micro-averaged recall, we computed the

[166]

Lean interface for Sanskrit corpus annotation
Figure 10:
Scatter plot showing the
distribution of the number
of solutions (log) with
respect to the length of the
sentence

fraction of words present overall. These values were found to be high:
0.96 and 0.97 respectively.

For 349 cases, one or more words in the gold-standard segmen-
tations could not be mapped to the segmentations returned by the
summary interface. A further analysis revealed that, in 204 of these
cases, the system could not recognize a word from the sentence, mostly
because of the incompleteness of the lexicon used by the Sanskrit Her-
itage system. This problem can be solved by supplementing the lexicon
with new words specific to the particular corpus under consideration.
In the next section, we describe how the current system helps annota-
tors to do this in an interactive manner. For most of the other cases, the
main issue was that the original sentence contained a quote, or that
a punctuation mark occurred in the middle of the sentence, e.g., the
sentence,8 tatas tayā, manorathānām apy agamyam, iti matvā, tathā, iti
pratipannam was pre-processed and the following was the input to the
system: tatas tayā manorathānām apy agamyam iti matvā tathā iti prati-

8And she assented, for she thought: “It is a thing beyond my fondest aspira-
tions.” (English translation)

[167]

Pawan Goyal, Gérard Huet

pannam, resulting in the words tathā iti being separated by a space in
‘sandhied’ mode.9 This was not recognized by the system, as it de-
notes the pada-pāṭha (‘unsandhied’) form and not the sandhied form.
In ‘sandhied’ mode, the correct input would have been tatheti, as tathā
iti leads to other interpretations, such as tathās + iti, tathau + iti, etc.
In future, we might be able to auto-detect this, along the lines of spell-
correction.

In many such cases, the system could not make use of sentence
breaks and punctuation information, which were removed during pre-
processing. The system has to be adapted to allow such informa-
tion in the input, to be able to make adjustments during segmen-
tation.

Further, to empirically evaluate the convergence time to get the
unique solution out of all the possible segmentations returned by the
system, we took a sample of 10 sentences of length ≥ 100, and the
annotators were asked to use the summary interface to come up with
the unique solution. We noted down the actual time taken, as well as
the number of clicks used by the evaluators. The details are provided
in Table 1 below. The length of the sentences varied between 113 and
224, and the total solutions were as high as 3,736,212,480. However,
in all cases, at most 19 clicks were required to achieve the unique

Table 1:
Empirical evaluation of the

convergence time for
10 different sentences

S. No. Sentence Total Number Time
length solutions of clicks (in sec.)

1 150 22,394,880 14 59.2
2 115 4,368 6 28.2
3 156 19,051,200 17 56.3
4 224 248,832,000 17 73.6
5 149 18,662,400 14 42.9
6 149 3,736,212,480 19 78.7
7 113 2,880 8 32.3
8 122 9,216 8 17.0
9 122 17,600 10 36.4

10 169 167,215,104 17 65.8

9This is one of the parameters of the system. The user can choose the mode
‘sandhied’ to read a sentence that is not segmented and the mode ‘unsandhied’
to read text that has already been sandhi analysed (pada-pāṭha form).

[168]

Lean interface for Sanskrit corpus annotation

solution, and the maximum time taken was 78.7 seconds, which is
quite fast, as well as practical.

The segmentation method is lexicon-directed. Thus, for any
aligned segment (ki , zi) to appear in the segmentation solution, the
segment zi must belong to the vocabulary L. It will thus be incomplete,
if the generative lexicon does not completely cover the vocabulary of
the targeted corpus. In the next section, we will describe how our
interface is robust enough to handle the cases when a chunk (part of
the utterance s, which is segmentable, independent of the rest of the
utterance) is not recognized by the system.

9 partial segmentation, error recovery,
lexical acquisition

In general, given an utterance s, a chunk may remain ‘unanalysed’ or
‘ill-analysed’. The case of ‘unanalysed’ chunks might occur due to one
of the following reasons:
• The utterance s contains an invalid chunk zi, not allowed by the
grammar, or

• s contains a segment (chunk) zi, which is a valid segment, but does
not appear in the vocabulary L, due to the incompleteness of the
lexicon.10

A chunk may remain ill-analysed if the desired solution does not
appear in the segmentation returned by the system. This mostly occurs
because of the incompleteness of the lexicon.

In order to deal with this incompleteness, and make our interface
robust, we extended it in such a way that it will report the unanalysed
chunks of input, and allow for their correction. This facility has been
provided by adding a supplementary phase to the lexer, allowing any
phonemic string. Thus, when the system is unable to recognize a seg-
ment zi in utterance s at offset ki, this unanalysed segment is displayed
in grey along with a spade sign. This spade sign triggers as callback an-
other CGI routine called ‘user-aid’, initiating an interaction loop with
the user.

10Note however that our lexicon is ‘generative’ to a certain extent: most par-
ticiples (kṛdantas) are systematically generated from root entries, and compounds
are analysed, and thus do not need to be explicitly listed in the lexicon.

[169]

Pawan Goyal, Gérard Huet

For the ‘ill-analysed’ chunks, since there is at least a partial solu-
tion, no explicit link is provided to the ‘user-aid’ CGI. Instead, if the
user decides that the analysis presented by the system is not correct
for some particular chunk, clicking on the chunk will provide access
to the ‘user-aid’ CGI for the given chunk. This routine provides the
following options:
Edit and resubmit the sentence. If the user has entered a wrong
sentence s (for instance due to misspelling), this option allows the
user to edit the sentence s and submit it to the system for re-analysis.
Edit and resubmit the chunk. This option allows the user to edit
only the wrong chunk in s and does not disturb the rest of the sen-
tence. The user can edit the chunk and the system will show the anal-
ysis corresponding to the modified chunk, keeping the segmentation
solution of the other chunks intact.
Show partial solution without this chunk. This option appears
only when there are at least two chunks in the sentence. This op-
tion allows the user to see the partial solution without using that
chunk.
Select among possible lemmatizations. This module tries to guess
the possible lemmatizations (analyses) of a segment from the ‘Un-
known’ phase. This module is developed using finite state methods
and will be discussed in Section 9.1 below.
Enter your own lemmatization. If users feel that none of the sug-
gested lemmatizations are correct, this option allows them to enter
the lemmatizations of their choice. This module will be discussed in
Section 9.2 below.

9.1 Experimental Stemmer
We have implemented an experimental stemmer, in order to attempt
semi-automatic lexicon acquisition, at least for substantive stems. This
is a very difficult problem, in the presence of retroflexion rules by in-
ternal morphology. This progressive assimilation of the retroflex ar-
ticulatory feature operates on a non-bounded left context of the rule
application, and thus cannot be directly modelled as an invertible reg-
ular transduction. Fortunately, retroflexion rules do not cross word
boundaries, and thus do not pollute external sandhi.

The experimental module for guessing the possible lemmatiza-
tions for an ‘unanalysed’ chunk is built using the suffix segmentation

[170]

Lean interface for Sanskrit corpus annotation

rules, learnt from the database of inflected forms, available with the
Heritage lexicon. To give an example of the rules learnt, consider the
following entry in the database of inflected noun forms:

rāmas nom.sg.m. [rāma] ‘Rama, name of a person’
The entry has three different parts, the inflected form rāmas, the

stem corresponding to this form rāma and the morphological informa-
tion of this inflected entry ‘nom.sg.m.’. This entry is used to learn the
following rule:

x .a
nom.sg.m.−−−−−→ x .as (1)

where x .a denotes any phonetic string ending in the phoneme ‘a’. Sim-
ilarly, for the entry,

takṣan loc.sg.m. [takṣṇi] ‘carpenter’
The rule learnt would be

x .an
loc.sg.m.−−−−−→ x .ṇi (2)

Note that, in both these cases, the context (right context, or ending)
is chosen based on the following criteria:

• The context should not be empty. This condition was used so that
the rule would not cause an over-generation. Thus we will not
learn the rule x .ϕ

nom.sg.m.−−−−−→ x .s in the first case where ϕ denotes a
null context.

• The minimum possible context should be used to describe the
rule. This condition was used to avoid the segmenter failing be-
cause of having too long a context. Thus we will not learn the rule
x .ma

nom.sg.m.−−−−−→ x .mas in the first case, because then it would not
allow us to recognize that the word mohanas is a declined form of
the stem mohana ‘Mohana, name of a person’ because the context
nas would not match the one used in the rule (mas).
Now, since the database also contains very special rules, which

might be applicable to only a few stems, a simple probabilistic model
is used to filter these rules. The first filter is based on the frequency
count of a certain rule, that is, howmany times this rule is encountered
while declining the nominal forms in the lexicon. Rule 1, above, is used
5079 times, while rule 2 is used only 13 times.

The next filter is based on the conditional probability of a stem
and morphological analysis being associated with a given suffix. Thus,
a rule is selected only if the probability of the stem and morphologi-

[171]

Pawan Goyal, Gérard Huet

cal analysis given the suffix is greater than the threshold. For rules 1
and 2 discussed above, these probability values were found to be 0.96
and 0.05 respectively. For rule 2, this probability was low because,
given the ending ṇi, the stem ending in n with the same morphology
is more likely (probability of 0.63). An example of one such entry in
the database is: dīrghasūtrin loc.sg.m. [dīrghasūtriṇi] ‘spinning a long
yarn, procastinating’.

Thus, two different thresholds are used, frequency count and
probability. The criteria for selecting these thresholds involved a
trade-off. A low value for these thresholds would allow too many un-
necessary solutions for a given segment. A very high threshold, on the
other hand, might not be able to provide the desired solution. Thus,
these values were tuned on a corpus,11 resulting in optimal values of
3 for frequency and 0.02 for probability.

Once these rules were learnt from the database, they were fed
into a finite-state transducer, which could then be used to guess all
the possible stems along with the morphological analysis for a previ-
ously unanalysed form. All the possible lemmatizations produced by
the transducer are displayed to the user. The interaction loop for lex-
icon acquisition is discussed in the next section.

9.2 Lexicon acquisition
For a segment in the ‘Unknown’ phase, various lemmatizations are pro-
posed by the transducer. They are presented to the user accompanied
by radio buttons. These radio buttons allow the user to select among
the various suggested lemmatizations. It should be noted that one of
the objectives of this module is to acquire the stems that appear in
the corpus but are not available in the Heritage lexicon. To assist the
user, we search for each suggested stem in the Monier-Williams (MW)
dictionary, which is one of the most complete lexicons for Sanskrit.
If a stem appears in the MW, the stem is displayed with a hyperlink
to the online MW dictionary, and the radio button corresponding to
this entry is preset. This is based on the intuition that, among all the
possible choices, any choice that is already present in a more complete
lexicon is more likely to be correct, and will, in any case, be verified

11We collected examples of unanalysed segments from the Bhagavad Gītā text.
These examples were used to tune the thresholds.

[172]

Lean interface for Sanskrit corpus annotation

by the user. If the user selects any of these suggestions, the base entry
and gender information are saved in a ‘cache’ database.

If the users cannot find the desired solution among the suggested
lemmatizations, they are allowed to enter their own lemmatization.
A text area is provided for the user to enter the stem, with various
select boxes, to be completed with morphological information, such
as gender, case and number. Once the user submits this information,
the base entry and gender information is saved in the ‘cache’ database.

To illustrate this procedure, we input the following sentence from
Pañcatantra into the Sanskrit reader: ye punar ātmīyāḥ śṛgālā āsan te
sarve ’py ardhacandraṃ dattvā niḥsāritāḥ. ‘But to all the jackals, his
own kindred, he administered a cuffing, and drove them away.’

Figure 11 shows the aligned segments as returned by the system.
The system does not present any analysis for the segment ātmīyāḥ (his
own kindred), which is displayed in grey, along with a spade sign.

Once the annotator clicks on the spade sign, it opens the ‘user-aid’
CGI routine. Various options presented to the annotator by this routine
are shown in Figure 12. In this particular case, the segment ātmīyāḥ is
a valid segment, which remains unanalysed because the stem ātmīya
is not present in the lexicon. Thus, we will focus on the option ‘Se-
lect among possible lemmatizations’. The annotator is presented with
various possible analyses but the specific analysis with the stem āt-
mīya present in MW has been shown with a hyperlink. The annotator
can select the radio button corresponding to the first analysis in the

Figure 11: The partial segmentations for the sentence ye punar ātmīyāḥ śṛgālā āsan
te sarve ’py ardhacandraṃ dattvā niḥsāritāḥ with the segment ātmīyāḥ remaining
unanalysed

[173]

Pawan Goyal, Gérard Huet

Figure 12:
Options provided
to the annotator

for the
unanalysed

chunk ātmīyāḥ

Figure 13:
Revised interface
for the annotator

with ātmīyāḥ
analysed as

chosen, using the
options shown
in Figure 12

[174]

Lean interface for Sanskrit corpus annotation

second row (nom. pl. m. [ātmīya]) and click on the button ‘Submit
Morphology’.

This information provided by the annotator is stored in the ‘cache’
database. The morphological generator is used to generate all the
forms corresponding to the stems stored in this database. This cache
database augments the lexicon L, and thus enables the system to
recognize a segment that was previously unanalysed or ill-analysed.
Figure 13 shows the revised interface that is presented to the annota-
tor, with the segment ātmīya analysed as chosen. Now the annotator
can complete the tagging by going through the normal process, as al-
ready described in detail.

It is to be noted that, once this stem is processed to augment the
lexicon L, the system can recognize all other inflected forms corre-
sponding to this base stem as well.12 This feature is particularly use-
ful for annotators working on a specific corpus, since an unanalysed
stem is likely to appear in that corpus again, possibly as a different
utterance in another morphological context. The information about
the selected stem and gender is stored in a local file on the annota-
tor’s workstation, which may be passed on to the lexicon manager for
lexicon acquisition.

9.3 Evaluating the experimental stemmer
To evaluate the experimental stemmer, we used the 53 nominal forms
that were not recognized by the system. These 53 words were passed
to the ‘user-aid’ CGI routine. Among the suggestions provided by the
system, we selected the particular lemma that corresponds to the stem
in the Monier-Williams dictionary, which would have given that nom-
inal form. Onmanual verification, we found that, in 52 out of 53 cases,
the lemma matched the one provided by the annotators. This confirms
that this experimental stemmer can be used very effectively by the an-
notators to deal with words that are unknown to the system.

12All the paradigms for generating the nominal and verbal forms are already
available in the system. Thus, given a new nominal stem as input, the system can
generate all its inflected forms, which are added to the database. At the time of
analysis, all these forms are therefore recognizable.

[175]

Pawan Goyal, Gérard Huet

10 conclusion

We have presented a new interface for interactive segmentation-cum-
tagging of Sanskrit sentences. This technology is not limited to San-
skrit. It can be adapted for interactive feedback, with a segmenter,
tagger or parser, where sentences are presented as a finite collection
of sequences of annotated word forms (lemmas). It may also operate
at the generative morphology level, where words are presented as a
combination of morphemes.

This interface enables a human annotator to visualise a sentence
as a sequence of words, readable in one compact hypertext page. Word
forms are vertically aligned with the original input. This allows the
sharing of lemmas, and avoids cluttering the visual display with re-
dundant information. Segments at a given offset are sorted by length,
in decreasing order, which permits easy selection, with a heuristic of
maximum overlap of segments with the input sentence. This heuristic,
which tends to minimize the number of segments, is very often cor-
rect. Small word forms or morphemes, which agglutinate by chance
into larger chunks of the input, get relegated as noise to the bottom of
the display screen.

Fast recomputation of solutions respecting selection or rejection
of a given segment achieves an exponential convergence rate. Even
for long sentences admitting billions of solutions, the effect of these
selections is instantaneous. Selection mistakes may be fixed rapidly
using the undo facility. Morphological information is hidden in order
not to clutter the screen, since appropriate use of colours for lexical
categories usually facilitates the right decision. In case of doubt, the
annotator may click on any puzzling segment and instantly obtain its
full lemmatization, including lexicon access, if required, to check the
meaning.

The main concept behind the data structure containing the dis-
play information is dynamic programming, i.e. sharing a tree structure
as a directed acyclic graph, a standard technique in tabulated parsers.
The originality of our approach is that the tree structure is not the for-
est of parse trees, but the union of all possible segmentation solutions,
from which sandhi justification has been erased. This representation
allows exponential savings, both in space (the displayed graph) and
in time (the number of disambiguation operations).

[176]

Lean interface for Sanskrit corpus annotation

The main ideas of this interface have been reused to summa-
rize all possible dependencies between word forms in the dependency
parser developed at the Sanskrit Studies Department of the University
of Hyderabad.13 This parser may be accessed as a second pass of our
segmenter, leading to a smooth combination of the two processes –
the user switches seamlessly between tagging and parsing (Huet and
Kulkarni 2014). When to call the parser is actually an interesting trade-
off. If we call it too early, it will just choke under the enormous number
of possible taggings. On the other hand, if we use our manual inter-
face until we have produced a single set of tags, we lose many of the
benefits of automation, since the dependency analysis would discard
many inconsistent word combinations.

We have presented a novel technique for lexicon acquisition dur-
ing corpus tagging by annotators, which makes our interface robust
to lexicon incompleteness, but also to corpus mistakes and to non-
standard enunciations (non-Paninian forms, Prakrit,14 onomatopoeia,
foreign words, etc.). The current module is developed only for nom-
inal forms and needs to be extended to handle verbal forms as well.
Another limitation of this module is that the system would only be
able to guess a stem if the unanalysed chunk contains only one word.
Handling cases where the unanalysed chunk contains more than one
word is the next logical goal for our project.

Our interface has been tested successfully by the Sanskrit Library
team15 for the annotation of a variety of classical Sanskrit texts (Scharf
et al. 2015).

appendix: complexity analysis

The convergence of the selection via the interface is very fast. Since the
method is dichotomic, it converges on average in log(N) steps, where
N is the total number of segmentation solutions. Indeed, when the in-
put may be split as s = s1 ·s2, with s1 and s2 independently segmentable,
with respectively n1 and n2 segmentations, presented with displays of
sizes respectively d1 and d2, the global display has a size of d1+ d2 for

13http://sanskrit.uohyd.ac.in/scl/
14By the term ‘Prakrit’, we mean Middle Indo-Aryan languages such as Pāli.
15http://sanskritlibrary.org/

[177]

http://sanskrit.uohyd.ac.in/scl/
http://sanskritlibrary.org/

Pawan Goyal, Gérard Huet

a total of n1× n2 segmentations. This interface thus gives an exponen-
tial improvement over the recursive dove-tailing of the segmentation
process. In any case, the number of selections will be smaller than the
number of words of the intended segmentation, i.e. of the order of
the length of the sentence divided by the average length of a word. In
practice, convergence is very fast.
Theorem. Let S be the set of segmentation analyses of some utter-
ance s of length n. |S | is of asymptotic order O(Cn), whereas |D(S)|
is of asymptotic order O(n).
Proof. This theorem depends on the lexicon being used and can have,
at best, an average complexity analysis. Let m be the length of an av-
erage segment of an utterance s. For our analysis, we will also assume
that each segment in a valid solution has length ≥ 2.

Consider s of length n. We will try to find an upper bound on
the number of segmentation solutions for this utterance. Let us con-
sider the ith phoneme of this utterance. A valid solution can have
this phoneme participating in a segment of length 2, 3, . . . up to m.
Analysing further, a segment of length 2 can start at 2 possible offsets,
i−1 or i. Similarly, a segment of length 3 can start at 3 possible offsets,
and so on. In general, let of j denote the number of offsets at which a
segment of length j may start for the ith phoneme. Then, of j ≤ j for
j ∈ {2,3, . . . , m}. Every such offset k for a segment of length j defines
a set with aligned segments (k, zl) such that |zl | = j. Thus, for the ith

phoneme, an upper bound on the number Nssi
of possible sets is:

Nssi
≤ of2 + of3 + · · ·+ ofm
≤ 2+ 3+ · · ·+m

<
m(m+ 1)

2
(3)

For each of these Nssi
sets, the possible number of segments depends

on the sandhi rules R. For any segment in such a set, permutations
are possible only at the first and last phonemes because of the sandhi
rules applied at the junction. Let leftw denote the number of possible
v’s, such that u|v→ w ∈ R for an arbitrary u. Similarly, let rightw denote
the number of possible u’s, such that u|v → w ∈ R for an arbitrary v.
Now let maxleft be the maximum of all such leftw and maxright be
the maximum of all such rightw. Thus, such a set can contain at most
|ssi | = (maxleft×maxright) segments. Then, the maximum number of

[178]

Lean interface for Sanskrit corpus annotation

segments Ni that the ith phoneme can participate in is:

Ni ≤ |ssi | · Nssi
(4)

Now that we have the maximum number of possible segments for the
phoneme at position i, we can use this to obtain an upper bound on
the number of segments |S | for the utterance s. We will use the fact
that the set |S | will be a subset of all the possible segments in which
phonemes at various positions can participate. Thus

|S | ≤ N1 × N2 × · · · × Nn

= (|ssi |)n · Nssi

n

=
�

C · m(m+ 1)
2

�n
(5)

Similarly, an upper bound on the number of segments in the tab-
ulated display is the sum of all possible segments at various positions.
Thus

|D(S)| ≤ N1 + N2 + · · ·+ Nn

=
�

C · m(m+ 1)
2

�
· n (6)

Hence, it follows from Equations 5 and 6 that |S | is of asymptotic
order O(Cn) at worst, whereas |D(S)| is of asymptotic order O(n).

references
Kenneth R. Beesley and Lauri Karttunen (2003), Finite-state morphology:
Xerox tools and techniques, CSLI Publications, The University of Chicago Press.
Sylvie Billot and Bernard Lang (1989), The structure of shared forests in
ambiguous parsing, in Proceedings of the 27th annual meeting on Association for
Computational Linguistics, ACL ’89, pp. 143–151, Association for Computational
Linguistics, Stroudsburg, PA, USA, doi:10.3115/981623.981641.
Keh-Jiann Chen and Shing-Huan Liu (1992), Word identification for Mandarin
Chinese sentences, in Proceedings of the 14th conference on Computational
linguistics-Volume 1, pp. 101–107, Association for Computational Linguistics.
Jay Earley (1983), An efficient context-free parsing algorithm (reprint),
Communications of the ACM - Special 25th Anniversary Issue, 26(1):57–61.

[179]

Pawan Goyal, Gérard Huet

Pawan Goyal, Vipul Arora, and Laxmidhar Behera (2009), Analysis of
Sanskrit text: Parsing and semantic relations, in Gérard Huet, Amba
Kulkarni, and Peter Scharf, editors, Sanskrit Computational Linguistics 1 & 2,
pp. 200–218, Springer-Verlag LNAI 5402.
Pawan Goyal and Gérard Huet (2013), Completeness analysis of a Sanskrit
reader, in Malhar Kulkarni, editor, Recent Researches in Sanskrit Computational
Linguistics (Proceedings, 5th International Symposium on Sanskrit Computational
Linguistics), pp. 130–171, D.K. Printworld.
Pawan Goyal, Gérard Huet, Amba Kulkarni, Peter Scharf, and Ralph
Bunker (2012), A distributed platform for Sanskrit processing, in COLING,
pp. 1011–1028.
Oliver Hellwig (2009), SanskritTagger, a stochastic lexical and POS tagger for
Sanskrit, in Gérard Huet, Amba Kulkarni, and Peter Scharf, editors, Sanskrit
Computational Linguistics 1 & 2, pp. 266–277, Springer-Verlag LNAI 5402.
Gérard Huet (2005), A functional toolkit for morphological and phonological
processing, application to a Sanskrit tagger, Journal of Functional Programming,
15,4:573–614, http://yquem.inria.fr/~huet/PUBLIC/tagger.pdf.
Gérard Huet (2006), Lexicon-directed segmentation and tagging of Sanskrit, in
Bertil Tikkanen and Heinrich Hettrich, editors, Themes and Tasks in Old and
Middle Indo-Aryan Linguistics, pp. 307–325, Motilal Banarsidass.
Gérard Huet (2007), Shallow syntax analysis in Sanskrit guided by semantic
nets constraints, in Proceedings of the 2006 International Workshop on Research
Issues in Digital Libraries, pp. 6:1–6:10, ACM, New York, NY, USA,
doi:http://doi.acm.org/10.1145/1364742.1364750,
http://yquem.inria.fr/~huet/PUBLIC/IWRIDL.pdf.
Gérard Huet (2009), Formal structure of Sanskrit text: Requirements analysis
for a mechanical Sanskrit processor, in Gérard Huet, Amba Kulkarni, and
Peter Scharf, editors, Sanskrit Computational Linguistics. First and Second
International Symposia Rocquencourt, France, October 29-31, 2007 Providence, RI,
USA, May 15-17, 2008, pp. 162–199, Springer.
Gérard Huet and Pawan Goyal (2013), Design of a lean interface for Sanskrit
corpus annotation, in Proceedings of ICON 2013, the 10th International
Conference on NLP, pp. 177–186.
Gérard Huet and Amba Kulkarni (2014), Sanskrit linguistics web services, in
COLING (Demo), pp. 48–51.
Gérard Huet, Amba Kulkarni, and Peter Scharf, editors (2009), Sanskrit
computational linguistics 1 & 2, Springer-Verlag LNAI 5402.
Gérard Huet and Benoît Razet (2015), Computing with relational machines,
Mathematical Structures in Computer Science, FirstView:1–20, ISSN 1469-8072,
doi:10.1017/S0960129515000390,
http://journals.cambridge.org/article_S0960129515000390.

[180]

http://yquem.inria.fr/~huet/PUBLIC/tagger.pdf
http://yquem.inria.fr/~huet/PUBLIC/IWRIDL.pdf
http://journals.cambridge.org/article_S0960129515000390

Lean interface for Sanskrit corpus annotation

Girish Nath Jha, editor (2010), Sanskrit computational linguistics 4,
Springer-Verlag LNAI 6465.
Ronald M. Kaplan and Martin Kay (1994), Regular models of phonological
rule systems, Computational Linguistics, 20,3:331–378.
Amba Kulkarni and Gérard Huet, editors (2009), Sanskrit computational
linguistics 3, Springer-Verlag LNAI 5406.
Amba Kulkarni, Sheetal Pokar, and Devanand Shukl (2010), Designing a
constraint based parser for Sanskrit, in Girish N. Jha, editor, Proceedings of the
4th International Sanskrit Computational Linguistics Symposium, pp. 70–90,
Springer-Verlag LNAI 6465.
Amba Kulkarni and K. V. Ramakrishnamacharyulu (2013), Parsing
Sanskrit texts: Some relation specific issues, in Malhar Kulkarni, editor,
Proceedings of the 5th International Sanskrit Computational Linguistics Symposium,
pp. 191–212, D. K. Printworld(P) Ltd.
Amba Kulkarni and Devanand Shukl (2009), Sanskrit morphological
analyser: Some issues, Indian Linguistics, 70(1-4):169–177.
Anil Kumar, Vipul Mittal, and Amba Kulkarni (2010), Sanskrit compound
processor, in Girish N. Jha, editor, Proceedings of the 4th International Sanskrit
Computational Linguistics Symposium, pp. 57–69, Springer-Verlag LNAI 6465.
Monier Monier-Williams, Ernst Leumann, and Carl Cappeller (1899), A
Sanskrit-English Dictionary: Etymological And philologically arranged with special
reference to cognate Indo-European languages, Oxford, The Clarendon Press,
http://www.sanskrit-lexicon.uni-koeln.de/scans/csldoc/
dictionaries/mw.html.
Emmanuel Roche and Yves Schabes (1997), Finite-State Language Processing,
MIT Press.
Alexander M. Rush, David Sontag, Michael Collins, and Tommi Jaakkola
(2010), On dual decomposition and linear programming relaxations for natural
language processing, in Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pp. 1–11, Association for Computational
Linguistics.
Peter Scharf, Anuja Ajotikar, Sampada Savardekar, and Pawan Goyal
(2015), Distinctive features of poetic syntax preliminary results, Sanskrit syntax,
pp. 305–324.
Peter Scharf and Malcolm Hyman (2009), Linguistic issues in encoding
Sanskrit, Motilal Banarsidass.
Andreas Stolcke (1995), An efficient probabilistic context-free parsing
algorithm that computes prefix probabilities, Computational Linguistics,
21(2):165–201.

[181]

http://www.sanskrit-lexicon.uni-koeln.de/scans/csldoc/dictionaries/mw.html
http://www.sanskrit-lexicon.uni-koeln.de/scans/csldoc/dictionaries/mw.html

Pawan Goyal, Gérard Huet

Weiwei Sun (2010), Word-based and character-based word segmentation
models: Comparison and combination, in Proceedings of the 23rd International
Conference on Computational Linguistics: Posters, pp. 1211–1219, Association for
Computational Linguistics.
Xu Sun, Yaozhong Zhang, Takuya Matsuzaki, Yoshimasa Tsuruoka, and
Jun’ichi Tsujii (2009), A discriminative latent variable Chinese segmenter with
hybrid word/character information, in Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pp. 56–64, Association for
Computational Linguistics.
Masaru Tomita (1985), Efficient parsing for natural language: A fast algorithm for
practical systems, The Springer International Series in Engineering and
Computer Science - Volume 8, Springer.
Huihsin Tseng (2005), A conditional random field word segmenter, in Fourth
SIGHAN Workshop on Chinese Language Processing.
Mengqiu Wang, Rob Voigt, and Christopher D. Manning (2014), Two knives
cut better than one: Chinese word segmentation with dual decomposition, in
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (ACL 2014), Baltimore, MD.
Yue Zhang and Stephen Clark (2007), Chinese segmentation with a
word-based perceptron algorithm, in Annual Meeting of the Association for
Computational Linguistics, volume 45, p. 840.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[182]

http://creativecommons.org/licenses/by/3.0/

	Generalities on Sanskrit linguistics
	Related Work
	Segmentation analysis for Sanskrit Text
	Aligned segmentations
	A graphical interface
	Graphical rendering of the Display
	Lexical categories and tagging
	Dealing with lemmatized segments
	Rationale for using the cross signs
	Justifying Fact 3
	Robustness

	Evaluation
	Partial segmentation, error recovery, lexical acquisition
	Experimental Stemmer
	Lexicon acquisition
	Evaluating the experimental stemmer

	Conclusion

