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Abstract

I have developed a multithreaded implementation of breadth-first search (BFS) of a sparse

graph using the Cilk++ extensions to C++. My PBFS program on a single processor runs as

quickly as a standard C++ breadth-first search implementation. PBFS achieves high work-

efficiency by using a novel implementation of a multiset data structure, called a “bag,” in

place of the FIFO queue usually employed in serial breadth-first search algorithms. For

a variety of benchmark input graphs whose diameters are significantly smaller than the

number of vertices — a condition met by many real-world graphs — PBFS demonstrates

good speedup with the number of processing cores.

Since PBFS employs a nonconstant-time “reducer” — a “hyperobject” feature of

Cilk++ — the work inherent in a PBFS execution depends nondeterministically on how

the underlying work-stealing scheduler load-balances the computation. I provide a general

method for analyzing nondeterministic programs that use reducers. PBFS also is nondeter-

ministic in that it contains benign races which affect its performance but not its correctness.

Fixing these races with mutual-exclusion locks slows down PBFS empirically, but it makes

the algorithm amenable to analysis. In particular, I show that for a graph G = (V,E) with

diameter D and bounded out-degree, this data-race-free version of PBFS algorithm runs in

time O((V +E)/P+D lg3(V/D)) on P processors, which means that it attains near-perfect

linear speedup if P ≪ (V +E)/D lg3(V/D).
Some parts of this thesis represent joint work with Professor Charles E. Leiserson.

Thesis Supervisor: Charles E. Leiserson

Title: Professor
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Chapter 1

Introduction

Algorithms to search a graph in a breadth-first manner have been studied for over 50 years.

The first breadth-first search (BFS) algorithm was discovered by Moore [27] while studying

the problem of finding paths through mazes. Lee [23] independently discovered the same

algorithm in the context of routing wires on circuit boards. A variety of parallel BFS algo-

rithms have since been explored [3,10,22,26,33,34]. Some of these parallel algorithms are

work efficient, meaning that the total number of operations performed is the same to within

a constant factor as that of a comparable serial algorithm. That constant factor, which we

call the work efficiency, can be important in practice, but few if any papers actually mea-

sure work efficiency. In this thesis, we shall see a parallel BFS algorithm, called PBFS,

whose performance scales linearly with the number of processors and for which the work

efficiency is nearly 1, as measured by comparing its performance on benchmark graphs to

the classical FIFO-queue algorithm [11, Section 22.2].

Given a graph G = (V,E) with vertex set V = V (G) and edge set E = E(G), the BFS

problem is to compute for each vertex v ∈ V the distance v.dist that v lies from a distin-

guished source vertex v0 ∈V . We measure distance as the minimum number of edges on a

path from v0 to v in G. For simplicity in the statement of results, we shall assume that G is

connected and undirected, although the algorithms we shall explore apply equally as well

to unconnected graphs, digraphs, and multigraphs.

Figure 1-1 gives a variant of the classical serial algorithm [11, Section 22.2] for com-

puting BFS, which uses a FIFO queue as an auxiliary data structure. The FIFO can be

11



SERIAL-BFS(G,v0)

1 for each vertex u ∈V (G)−{v0}
2 u.dist = ∞

3 v0.dist = 0

4 Q = {v0}
5 while Q 6= /0

6 u = DEQUEUE(Q)
7 for each v ∈V (G) such that (u,v) ∈ E(G)
8 if v.dist == ∞

9 v.dist = u.dist+1

10 ENQUEUE(Q,v)

Figure 1-1: A standard serial breadth-first search algorithm operating on a graph G with source

vertex v0 ∈V (G). The algorithm employs a FIFO queue Q as an auxiliary data structure to compute

for each v ∈V (G) its distance v.dist from v0.

implemented as a simple array with two pointers to the head and tail of the items in the

queue. Enqueueing an item consists of incrementing the tail pointer and storing the item

into the array at the pointer location. Dequeueing consists of removing the item referenced

by the head pointer and incrementing the head pointer. Since these two operations take only

Θ(1) time, the running time of SERIAL-BFS is Θ(V +E). Moreover, the constants hidden

by the asymptotic notation are small due to the extreme simplicity of the FIFO operations.

Although efficient, the FIFO queue Q is a major hindrance to parallelization of BFS.

Parallelizing BFS while leaving the FIFO queue intact yields minimal parallelism for

sparse graphs — those for which |E| ≈ |V |. The reason is that if each ENQUEUE operation

must be serialized, the span1 of the computation — the longest serial chain of executed in-

structions in the computation — must have length Ω(V ). Thus, a work-efficient algorithm

— one that uses no more work than a comparable serial algorithm — can have parallelism

— the ratio of work to span — at most O((V +E)/V ) = O(1) if |E|= O(V ).2

Replacing the FIFO queue with another data structure in order to parallelize BFS may

compromise work efficiency, however, because FIFO’s are so simple and fast. We have

devised a multiset data structure called a bag, however, which supports insertion essentially

1Sometimes called critical-path length or computational depth.
2For convenience, we omit the notation for set cardinality within asymptotic notation.

12



as fast as a FIFO, even when constant factors are considered. In addition, bags can be split

and unioned efficiently.

I have implemented a parallel BFS algorithm in Cilk++ [21, 24]. The PBFS algorithm,

which employs bags instead of a FIFO, uses the “reducer hyperobject” [15] feature of

Cilk++. My implementation of PBFS runs comparably on a single processor to a good

serial implementation of BFS. For a variety of benchmark graphs whose diameters are

significantly smaller than the number of vertices — a common occurrence in practice —

PBFS demonstrates high levels of parallelism and generally good speedup with the number

of processing cores.

Figure 1-2 shows the typical speedup obtained for PBFS on a large benchmark graph,

in this case, for a sparse matrix called Cage15 arising from DNA electrophoresis [32]. This

graph has |V | = 5,154,859 vertices, |E| = 99,199,551 edges, and a diameter of D = 50.

The code was run on an Intel Core i7 machine with eight 2.53 GHz processing cores, 12 GB

of RAM, and two 8 MB L3-caches, each shared among 4 cores. As can be seen from the

figure, although PBFS scales well initially, it attains a speedup of only about 5 on 8 cores,

even though the parallelism in this graph is nearly 700. The figure graphs the impact

of artificially increasing the computational intensity — the ratio of the number of CPU

operations to the number of memory operations, suggesting that this low speedup is due to

limitations of the memory system, rather than to the inherent parallelism in the algorithm.

PBFS is a nondeterministic program for two reasons. First, because the program em-

ploys a bag reducer which operates in nonconstant time, the asymptotic amount of work can

vary from run to run depending upon how Cilk++’s work-stealing scheduler load-balances

the computation. Second, for efficient implementation, PBFS contains a benign race condi-

tion, which can cause additional work to be generated nondeterministically. My theoretical

analysis of PBFS bounds the additional work due to the bag reducer when the race condi-

tion is resolved using mutual-exclusion locks. Theoretically, on a graph G with vertex set

V =V (G), edge set E = E(G), diameter D, and bounded out-degree, this “locking” version

of PBFS performs BFS in O((V +E)/P+D lg3(V/D)) time on P processors and exhibits

effective parallelism Ω((V +E)/D lg3(V/D)), which is considerable when D ≪V , even if

the graph is sparse. Our method of analysis is general and can be applied to other programs

13
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Figure 1-2: The performance of PBFS for the Cage15 graph showing speedup curves for serial

BFS, PBFS, and a variant of PBFS where the computational intensity has been artificially enhanced

and the speedup normalized.

that employ reducers. This thesis leaves it as an open question how to analyze the extra

work when the race condition is left unresolved.

The remainder of this paper is divided as follows. First, we shall examine the basic

PBFS algorithm and analyze it empirically. Chapter 2 provides background on dynamic

multithreading. Chapter 3 descirbed the basic PBFS algorithm, and Chapter 4 describes

the implementation of the bag data structure. Chapter 5 presents our empirical studies.

Second, we shall create a theoretical framework for analyzing programs with non-

constant time reducers, and apply this framework to analyze PBFS. Chapter 6 provides

background on the theory of dynamic multithreading. Chapter 7 gives a formal model for

reducer behavior, and Chapter 8 develops a theory for analyzing programs that use reduc-

ers. Chapter 9 emplys this theory to analyze the theoretical performance of PBFS.

Finally, Chapter 10 concludes with a discussion of thread-local storage as an alternative

to reducers.
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Chapter 2

Background on dynamic multithreading

This chapter overviews the key attributes of dynamic multithreading. The PBFS software

is implemented in Cilk++ [15, 21, 24], which is a linguistic extension to C++ [30], but

most of the vagaries of C++ are unnecessary for understanding the issues. Thus, I describe

Cilk-like pseudocode, as is exemplified in [11, Ch. 27], which the reader should find more

straightforward than real code to understand and which can be translated easily to Cilk++.

In this chapter we shall review the pseudocode keywords for creating fork-join parallel

programs. We shall also see the basic intuition behind the reducer hyperobject.

Multithreaded pseudocode

The linguistic model for multithreaded pseudocode in [11, Ch. 27] follows MIT Cilk [16,

31] and Cilk++ [21, 24]. It augments ordinary serial pseudocode with three keywords —

spawn, sync, and parallel — of which spawn and sync are the more basic.

Parallel work is created when the keyword spawn precedes the invocation of a func-

tion. The semantics of spawning differ from a C or C++ function call only in that the parent

continuation — the code that immediately follows the spawn — may execute in parallel

with the spawned child, instead of waiting for the child to complete, as is normally done for

a function call. A function cannot safely use the values returned by its children until it exe-

cutes a sync statement, which suspends the function until all of its spawned children return.

Every function syncs implicitly before it returns, precluding orphaning. Together, spawn
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and sync allow programs containing fork-join parallelism to be expressed succinctly. The

scheduler in the runtime system takes the responsibility of scheduling the spawned func-

tions on the individual processor cores of the multicore computer and synchronizing their

returns according to the fork-join logic provided by the spawn and sync keywords.

Loops can be parallelized by preceding an ordinary for with the keyword parallel,

which indicates that all iterations of the loop may operate in parallel. Parallel loops do not

require additional runtime support, but can be implemented by parallel divide-and-conquer

recursion using spawn and sync.

Cilk++ provides a novel linguistic construct, called a reducer hyperobject [15], which

allows concurrent updates to a shared variable or data structure to occur simultaneously

without contention. A reducer is defined in terms of a binary associative REDUCE oper-

ator, such as sum, list concatenation, logical AND, etc. Updates to the hyperobject are

accumulated in local views, which the Cilk++ runtime system combines automatically with

“up-calls” to REDUCE when subcomputations join. As we shall see in Chapter 3, PBFS

uses a reducer called a “bag,” which implements an unordered set and supports fast union-

ing as its REDUCE operator.

Figure 2-1 illustrates the basic idea of a reducer. The example involves a series of

additive updates to a variable x. When the code in Figure 2-1(a) is executed serially, the

resulting value is x = 16. Figure 2-1(b) shows the same series of updates split between

two “views” x and x′ of the variable. These two views may be evaluated independently

in parallel with an additional step to reduce the results at the end, as shown in Figure 2-

1(b). As long as the values for the views x and x′ are not inspected in the middle of the

computation, the associativity of addition guarantees that the final result is deterministically

x= 16. This series of updates could be split anywhere else along the way and yield the same

final result, as demonstrated in Figure 2-1(c), where the computation is split across three

views x, x′, and x′′. To encapsulate nondeterminism in this way, each of the views must be

reduced with an associative REDUCE operator (addition for this example) and intermediate

views must be initialized to the identity for REDUCE (0 for this example).

Cilk++’s reducer mechanism supports this kind of decomposition of update sequences

automatically without requiring the programmer to manually create various views. When

16



1 x = 10

2 x++
3 x += 3

4 x += −2

5 x += 6

6 x−−
7 x += 4

8 x += 3

9 x++
10 x += −9

1 x = 10

2 x++
3 x += 3

4 x += −2

5 x += 6

x′ = 0

6 x′−−
7 x′ += 4

8 x′ += 3

9 x′++
10 x′ += −9

x += x′

1 x = 10

2 x++
3 x += 3

x′ = 0

4 x′ += −2

5 x′ += 6

6 x′−−
x′′ = 0

7 x′′ += 4

8 x′′ += 3

9 x′′++
10 x′′ += −9

x += x′

x += x′′

(a) (b) (c)

Figure 2-1: The intuition behind reducers. (a) A series of additive updates performed on a vari-

able x. (b) The same series of additive updates split between two “views” x and x′. The two update

sequences can execute in parallel and are combined at the end. (c) Another valid splitting of these

updates among the views x, x′, and x′′.

a function spawns, the spawned child inherits the parent’s view of the hyperobject. If the

child returns before the continuation executes, the child can return the view and the chain

of updates can continue. If the continuation begins executing before the child returns,

however, the continuation receives a new view initialized to the identity for the associative

REDUCE operator. Sometime at or before the sync that joins the spawned child with its

parent, the two views are combined with REDUCE. If REDUCE is indeed associative, the

result is the same as if all the updates had occurred serially. Indeed, if the program is run on

one processor, the entire computation updates only a single view without ever invoking the

REDUCE operator, in which case the behavior is virtually identical to a serial execution that

uses an ordinary object instead of a hyperobject. We shall formalize reducers in Chapter 7.
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Chapter 3

The PBFS algorithm

PBFS uses layer synchronization [3, 34] to parallelize breadth-first search of an input

graph G. Let v0 ∈V (G) be the source vertex, and define layer d to be the set Vd ⊆V (G) of

vertices at distance d from v0. Thus, we have V0 = {v0}. Each iteration processes layer d

by checking all the neighbors of vertices in Vd for those that should be added to Vd+1.

PBFS implements layers using an unordered-set data structure, called a bag, which

provides the following operations:

• bag = BAG-CREATE(): Create a new empty bag.

• BAG-INSERT(bag,x): Insert element x into bag.

• BAG-UNION(bag1,bag2): Move all the elements from bag2 to bag1, and destroy

bag2.

• bag2 = BAG-SPLIT(bag1): Remove half (to within some constant amount GRAIN-

SIZE of granularity) of the elements from bag1, and put them into a new bag bag2.

As Chapter 4 shows, BAG-CREATE operates in O(1) time, and BAG-INSERT operates in

O(1) amortized time. Both BAG-UNION and BAG-SPLIT operate in O(lgn) time on bags

with n elements.

Let us walk through the pseudocode for PBFS, which is shown in Figure 3-1. For the

moment, ignore the revert and reducer keywords in lines 8 and 9.

After initialization, PBFS begins the while loop in line 7 which iteratively calls the aux-

iliary function PROCESS-LAYER to process layer d = 0,1, . . . ,D, where D is the diameter

of the input graph G. To process Vd = in-bag, PROCESS-LAYER uses parallel divide-and-

19



PBFS(G,v0)

1 parallel for each vertex v ∈V (G)−{v0}
2 v.dist = ∞

3 v0.dist = 0

4 d = 0

5 V0 = BAG-CREATE()
6 BAG-INSERT(V0,v0)
7 while ¬BAG-IS-EMPTY(Vd)
8 Vd+1 = new reducer BAG-CREATE()
9 PROCESS-LAYER(revert Vd ,Vd+1,d)

10 d = d +1

PROCESS-LAYER(in-bag,out-bag,d)

11 if BAG-SIZE(in-bag)< GRAINSIZE

12 for each u ∈ in-bag

13 parallel for each v ∈ Adj[u]
14 if v.dist == ∞

15 v.dist = d +1 // benign race

16 BAG-INSERT(out-bag,v)
17 return

18 new-bag = BAG-SPLIT(in-bag)
19 spawn PROCESS-LAYER(new-bag,out-bag,d)
20 PROCESS-LAYER(in-bag,out-bag,d)
21 sync

Figure 3-1: The PBFS algorithm operating on a graph G with source vertex v0 ∈V (G). PBFS uses

the recursive parallel subroutine PROCESS-LAYER to process each layer. It contains a benign race

in line 15.

conquer, producing Vd+1 = out-bag. For the recursive case, line 18 splits in-bag, removing

half its elements and placing them in new-bag. The two halves are processed recursively in

parallel in lines 19–20.

This recursive decomposition continues until in-bag has fewer than GRAINSIZE ele-

ments, as tested for in line 11. Each vertex u in in-bag is extracted in line 12, and line 13

examines each of its edges (u,v) in parallel. If v has not yet been visited — v.dist is infinite

(line 14) — then line 15 sets v.dist = d + 1 and line 16 inserts v into the level-(d + 1)

bag. As an implementation detail, the destructive nature of the BAG-SPLIT routine makes

it particularly convenient to maintain only two bags at a time, ignoring additional views set

20



15.1 if TRY-LOCK(v)
15.2 if v.dist == ∞

15.3 v.dist = d +1

15.4 BAG-INSERT(out-bag,v)
15.5 RELEASE-LOCK(v)

Figure 3-2: Modification to the PBFS algorithm to resolve the benign race.

up by the runtime system.

This description skirts over two subtleties that require discussion, both involving races.

First, the update of v.dist in line 15 creates a race, since two vertices u and u′ may

both be examining vertex v at the same time. They both check whether v.dist is infinite

in line 14, discover that it is, and both proceed to update v.dist. Fortunately, this race is

benign, meaning that it does not affect the correctness of the algorithm. Both u and u′ set

v.dist to the same value, and hence no inconsistency arises from both updating the location

at the same time. They both go on to insert v into bag Vd+1 = out-bag in line 16, which

could induce another race. Putting that issue aside for the moment, notice that inserting

multiple copies of v into Vd+1 does not affect correctness, only performance for the extra

work it will take when processing layer d+1, because v will be encountered multiple times.

As we shall see in Chapter 5, the amount of extra work is small, because the race is rarely

actualized.

Second, a race in line 16 occurs due to parallel insertions of vertices into Vd+1 =

out-bag. We employ the reducer functionality to avoid the race by making Vd+1 a bag

reducer, where BAG-UNION is the associative operation required by the reducer mecha-

nism. The identity for BAG-UNION — an empty bag — is created by BAG-CREATE. In

the common case, line 16 simply inserts v into the local view, which, as we shall see in

Chapter 4, is as efficient as pushing v onto a FIFO, as is done by serial BFS.

Unfortunately, we are not able to analyze PBFS due to unstructured nondeterminism

created by the benign race, but we can analyze a version where the race is resolved using

a mutual-exclusion lock. The locking version involves replacing lines 15 and 16 with the

code in Figure 3-2. In the code, the call TRY-LOCK(v) in line 15.1 attempts to acquire a

21



lock on the vertex v. If it is successful, we proceed to execute lines 15.2–15.5. Otherwise,

we can abandon the attempt, because we know that some other processor has succeeded,

which then sets v.dist = d+1 regardless. Thus, there is no contention on v’s lock, because

no processor ever waits for another, and processing an edge (u,v) always takes constant

time. The apparently redundant lines 14 and 15.2 avoid the overhead of lock acquisition

when v.dist has already been set.
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Chapter 4

The bag data structure

This chapter describes the bag data structure for implementing a dynamic unordered set.

We first examine an auxiliary data structure called a “pennant.” We then see how bags

can be implemented using pennants, and we provide algorithms for BAG-CREATE, BAG-

INSERT, BAG-UNION, and BAG-SPLIT. Finally, we consider some optimizations of this

structure that PBFS employs.

Pennants

A pennant is a tree of 2k nodes, where k is a nonnegative integer. Each node x in this tree

contains two pointers x. left and x.right to its children. The root of the tree has only a left

child, which is a complete binary tree of the remaining elements.

Two pennants x and y of size 2k can be combined to form a pennant of size 2k+1 in O(1)

time using the PENNANT-UNION function described in Figure 4-1, which is illustrated in

Figure 4-2.

The function PENNANT-SPLIT, whose pseudocode is given in Figure 4-3, performs

the inverse operation of PENNANT-UNION in O(1) time. The PENNANT-SPLIT function

assumes that the input pennant x contains at least 2 elements. After this function, each of

the pennants x and y contain half of the elements.

23



PENNANT-UNION(x,y)

1 y.right = x. left

2 x. left = y

3 return x

Figure 4-1: Pseudocode for PENNANT-UNION

Figure 4-2: Two pennants, each of size 2k, can be unioned in constant time to form a pennant of

size 2k+1.

PENNANT-SPLIT(x)

1 y = x. left

2 x. left = y.right

3 y.right = NULL

4 return y

Figure 4-3: Pseudocode for PENNANT-SPLIT.

Bags

A bag is a collection of pennants, no two of which have the same size. PBFS represents a

bag S using a fixed-size array S[0 . .r], called the backbone, where 2r+1 exceeds the max-

imum number of elements ever stored in a bag. Each entry S[k] in the backbone contains

either a null pointer or a pointer to a pennant of size 2k. Figure 4-4 illustrates a bag con-

taining 23 elements. The function BAG-CREATE allocates space for a fixed-size backbone

of null pointers, which takes Θ(r) time. This bound can be improved to O(1) by keeping

track of the largest nonempty index in the backbone.

The BAG-INSERT function employs an algorithm similar to that of incrementing a bi-

nary counter. To implement BAG-INSERT, we first package the given element as a pennant

x of size 1. We then insert x into bag S using the method shown in Figure 4-5.
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Figure 4-4: A bag with 23 = 0101112 elements.

BAG-INSERT(S,x)

1 k = 0

2 while S[k] 6= NULL

3 x = PENNANT-UNION(S[k],x)
4 S[k++] = NULL

5 S[k] = x

Figure 4-5: Pseudocode for BAG-INSERT. This function assumes the input pennant x has unit size.

The analysis of BAG-INSERT mirrors the analysis for incrementing a binary

counter [11, Ch. 17]. Since every PENNANT-UNION operation takes constant time, BAG-

INSERT takes O(1) amortized time and O(lgn) worst-case time to insert into a bag of n

elements.

The BAG-UNION function uses an algorithm similar to ripple-carry addition of two

binary counters. To implement BAG-UNION, we first examine the process of unioning

three pennants into two pennants, which operates like a full adder. Given three pennants x,

y, and z, where each either has size 2k or is empty, we can merge them to produce a pair

of pennants (s,c), where s has size 2k or is empty, and c has size 2k+1 or is empty. The

table in Figure 4-6 details the full-adder function FA(x,y,z) in which (s,c) is computed

from (x,y,z). Using this full-adder function, BAG-UNION can be implemented as shown in

Figure 4-7.

Because every PENNANT-UNION operation takes constant time, computing the value of

FA(x,y,z) also takes constant time. To compute all entries in the backbone of the resulting
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x y z s c

0 0 0 NULL NULL

1 0 0 x NULL

0 1 0 y NULL

0 0 1 z NULL

1 1 0 NULL PENNANT-UNION(x,y)
1 0 1 NULL PENNANT-UNION(x,z)
0 1 1 NULL PENNANT-UNION(y,z)
1 1 1 x PENNANT-UNION(y,z)

Figure 4-6: Table detailing the function FA(x,y,z). This function takes three input pennants x, y,

and z, each of which either has size 2k or is empty, and merges them to produce a pair of pennants

(s,c), where s has size 2k or is empty, and c has size 2k+1 or is empty. A 0 in the left-hand-side of

the table designates an empty pennant, while a 1 designates a pennant with size 2k.

BAG-UNION(S1,S2)

1 y = NULL // The “carry” bit.

2 for k = 0 to r

3 (S1[k],y) = FA(S1[k],S2[k],y)

Figure 4-7: Pseudocode for BAG-UNION. This function uses the function FA(x,y,z) detailed in

Figure 4-6 as a subroutine.

bag takes Θ(r) time. This algorithm can be improved to Θ(lgn), where n is the number of

elements in the smaller of the two bags, by maintaining the largest nonempty index of the

backbone of each bag and unioning the bag with the smaller such index into the one with

the larger.

The BAG-SPLIT function is shown in Figure 4-8. This function operates like an arith-

metic right shift to divide the elements in one bag evenly between two bags.

Because PENNANT-SPLIT takes constant time, each loop iteration in BAG-SPLIT takes

constant time. Consequently, the asymptotic runtime of BAG-SPLIT is O(r). This algo-

rithm can be improved to Θ(lgn), where n is the number of elements in the input bag, by

maintaining the largest nonempty index of the backbone of each bag and iterating only up

to this index.
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BAG-SPLIT(S1)

1 S2 = BAG-CREATE()
2 y = S1[0]
3 S1[0] = NULL

4 for k = 1 to r

5 if S1[k] 6= NULL

6 S2[k−1] = PENNANT-SPLIT(S1[k])
7 S1[k−1] = S1[k]
8 S1[k] = NULL

9 if y 6= NULL

10 BAG-INSERT(S1,y)
11 return S2

Figure 4-8: Pseudocode for BAG-SPLIT.

Optimization

To improve the constant in the performance of BAG-INSERT, we made some simple but

important modifications to pennants and bags, which do not affect the asymptotic behavior

of the algorithm. First, in addition to its two pointers, every pennant node in the bag stores a

constant-size array of GRAINSIZE elements, all of which are guaranteed to be valid, rather

than just a single element. My PBFS software implementation the value GRAINSIZE =

128. Second, in addition to the backbone, the bag itself maintains an additional pennant

node of size GRAINSIZE called the hopper, which it fills gradually. The impact of these

modifications on the bag operations is as follows.

First, BAG-CREATE must allocate additional space for the hopper. This overhead is

small and is done only once per bag.

Second, BAG-INSERT first attempts to insert the element into the hopper. If the hopper

is full, then it inserts the hopper into the backbone of the data structure and allocates a new

hopper into which it inserts the element. This optimization does not change the asymp-

totic runtime analysis of BAG-INSERT, but the code runs much faster. In the common case,

BAG-INSERT simply inserts the element into the hopper with code nearly identical to insert-

ing an element into a FIFO. Only once in every GRAINSIZE insertions does a BAG-INSERT

trigger the insertion of the now full hopper into the backbone of the data structure.
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Third, when unioning two bags S1 and S2, BAG-UNION first determines which bag

has the less full hopper. Assuming that it is S1, the modified implementation copies the

elements of S1’s hopper into S2’s hopper until it is full or S1’s hopper runs out of elements.

If it runs out of elements in S1 to copy, BAG-UNION proceeds to merge the two bags

as usual and uses S2’s hopper as the hopper for the resulting bag. If it fills S2’s hopper,

however, line 1 of BAG-UNION sets y to S2’s hopper, and S1’s hopper, now containing

fewer elements, forms the hopper for the resulting bag. Afterward, BAG-UNION proceeds

as usual.

Finally, rather than storing S1[0] into y in line 2 of BAG-SPLIT for later insertion, BAG-

SPLIT sets the hopper of S2 to be the pennant node in S1[0] before proceeding as usual.
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Chapter 5

Implementation

I implemented optimized versions of both the PBFS algorithm in Cilk++ and a FIFO-

based serial BFS algorithm in C++. This chapter compares their performance on a suite of

benchmark graphs. Figure 5-1 summarizes the results.

Implementation and Testing

My implementation of PBFS differs from the abstract algorithm in some notable ways.

First, this implementation of PBFS does not use locks to resolve the benign races described

in Chapter 3. Second, this implementation of PBFS does not use the BAG-SPLIT routine

described in Chapter 4. Instead, this implementation uses a “lop” operation to traverse

the bag. It repeatedly divides the bag into two approximately equal halves by lopping

off the most significant pennant from the bag. After each lop, the removed pennant is

traversed using a standard parallel tree walk. Third, this implementation assumes that all

vertices have bounded out-degree, and indeed most of the vertices in our benchmark graphs

have relatively small degree. Finally, this implementation of PBFS sets GRAINSIZE = 128,

which seems to perform well in practice. The FIFO-based serial BFS uses an array and two

pointers to implement the FIFO queue in the simplest way possible. This array was sized

to the number of vertices in the input graph.

These implementations were tested on eight benchmark graphs, as shown in Figure 5-1.

Kkt_power, Cage14, Cage15, Freescale1, Wikipedia (as of February 6, 2007), and Nlp-
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kkt160 are all from the University of Florida sparse-matrix collection [12]. Grid3D200 is

a 7-point finite difference mesh generated using the Matlab Mesh Partitioning and Graph

Separator Toolbox [17]. The RMat23 matrix [25], which models scale-free graphs, was

generated by using repeated Kronecker products [2]. Parameters A = 0.7, B =C = D = 0.1

for RMat23 were chosen in order to generate skewed matrices. These implementations

store these graphs in a compressed-sparse-rows (CSR) format in main memory.

Results

I ran these tests on an Intel Core i7 quad-core machine with a total of eight 2.53-GHz

processing cores (hyperthreading disabled), 12 GB of DRAM, two 8-MB L3-caches each

shared between 4 cores, and private L2- and L1-caches with 256 KB and 32 KB, respec-

tively. Figure 5-1 presents the performance of PBFS on eight different benchmark graphs.

(The parallelism was computed using the Cilkview tool [19] and does not take into account

effects from reducers.) As can be seen in Figure 5-1, PBFS performs well on these bench-

mark graphs. For five of the eight benchmark graphs, PBFS is as fast or faster than serial

BFS. Moreover, on the remaining three benchmarks, PBFS is at most 15% slower than

serial BFS.

Figure 5-1 shows that PBFS runs faster than a FIFO-based serial BFS on several

benchmark graphs. This performance advantage may be due to how PBFS uses memory.

Whereas the serial BFS performs a single linear scan through an array as it processes its

queue, PBFS is constantly allocating and deallocating fixed-size chunks of memory for the

bag. Because these chunks do not change in size from allocation to allocation, the memory

manager incurs little work to perform these allocations. Perhaps more importantly, PBFS

can reuse previously allocated chunks frequently, making it more cache-friendly. This im-

provement due to memory reuse is also apparent in some serial BFS implementations that

use two queues instead of one.

Although PBFS generally performs well on these benchmarks, I explored why it was

only attaining a speedup of 5 or 6 on 8 processor cores. Inadequate parallelism is not the

answer, as most of the benchmarks have parallelism over 100. My studies indicate that the
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Name

Spy Plot

|V | Work SERIAL-BFS T1

Description |E| Span PBFS T1

D Parallelism PBFS T1/T8

Kkt_power 2.05M 241M 0.511

Optimal power flow, 12.76M 2.3M 0.360

nonlinear opt. 31 104.09 6.102

Freescale1 3.43M 349M 0.285

Circuit simulation 17.1M 2.3M 0.319

128 153.06 5.145

Cage14 1.51M 390M 0.267

DNA electrophoresis 27.1M 1.6M 0.283

43 246.35 5.442

Wikipedia 2.4M 606M 0.918

Links between 41.9M 3.4M 0.738

Wikipedia pages 460 179.02 6.833

Grid3D200 8M 1,009M 1.469

3D 7-point 55.8M 12.7M 1.098

finite-diff mesh 598 79.27 4.902

RMat23 2.3M 1,049M 1.107

Scale-free 77.9M 11.3M 0.924

graph model 8 93.22 6.794

Cage15 5.15M 1,410M 1.099

DNA electrophoresis 99.2M 2.1M 1.163

50 675.22 5.486

Nlpkkt160 8.35M 3,060M 1.286

Nonlinear optimization 225.4M 9.2M 1.463

163 331.57 6.096

Figure 5-1: Performance results for breadth-first search. The vertex and edge counts listed cor-

respond to the number of vertices and edges evaluated by SERIAL-BFS. The work and span are

measured in instructions. All runtimes are measured in seconds.
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multicore processor’s memory system may be hurting performance in two ways.

First, the memory bandwidth of the system seems to limit performance for several of

these graphs. For Wikipedia and Cage14, when we run 8 independent instances of PBFS

serially on the 8 processing cores of our machine simultaneously, the total runtime is at least

20% worse than the expected 8T1. This experiment suggests that the system’s available

memory bandwidth limits the performance of the parallel execution of PBFS.

Second, for several of these graphs, it appears that contention from true and false shar-

ing on the distance array constrains the speedups. Placing each location in the distance

array on a different cache line tends to increase the speedups somewhat, although it slows

down overall performance due to the loss of spatial locality. I attempted to modify PBFS to

mitigate contention by randomly permuting or rotating each adjacency list. Although these

approaches improve speedups, they slow down overall performance due to loss of locality.

Thus, despite its somewhat lower relative speedup numbers, the unadulterated PBFS seems

to yield the best overall performance.

PBFS obtains good performance despite the benign race which induces redundant work.

On none of these benchmarks does PBFS examine more than 1% of the vertices and edges

redundantly. Using a mutex lock on each vertex to resolve the benign race costs a substan-

tial overhead in performance, typically slowing down PBFS by more than a factor of 2.

Yuxiong He [20], formerly of Cilk Arts and Intel Corporation, used PBFS to parallelize

the Murphi model-checking tool [13]. Murphi is a popular tool for verifying finite-state

machines and is widely used in cache-coherence algorithms and protocol design, link-level

protocol design, executable memory-model analysis, and analysis of cryptographic and

security-related protocols. As can be seen in Figure 5-2, a parallel Murphi using PBFS

scales well, even outperforming a version based on parallel depth-first search and attaining

the relatively large speedup of 15.5 times on 16 cores.
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Figure 5-2: Multicore Murphi application speedup on a 16-core AMD processor [20]. Even though

the DFS implementation uses a parallel depth-first search for which Cilk++ is particularly well

suited, the BFS implementation, which uses the PBFS library, outperforms it.
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Chapter 6

The dag model of computation

This chapter overviews the theoretical model of multithreaded computation. We shall see

how a multithreaded program execution can be modeled theoretically as a dag using the

framework of Blumofe and Leiserson [7], and we shall make some assumptions about the

runtime environment. We shall derive a “user dag” from the dag model of computation to

facilitate measuring the performance of a program with no reducers. We shall also define

deterministic and nondeterministic computations. Chapter 7 describes how to extend this

model to account for reducer hyperobjects.

The dag model

We adopt the dag model for multithreading similar to the one introduced by Blumofe and

Leiserson [7]. This model was designed to model the execution of a multithreaded program

with spawns and syncs. Although we incorporate instructions executed to manage reducers

in this model, this model does not accurately represent the effect of reducers on the running

time of the computation. We extend this model in Chapter 7 to account for the cost of

dealing with reducers.

The dag model views the executed computation resulting from the running of a multi-

threaded program1 as a dag (directed acyclic graph) A, where the vertex set V (A) consists

of strands — sequences of serially executed instructions containing no parallel control —

1When I refer to the running of a program, you should generally assume that I mean “on a given input.”
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and the edge set E(A) represents dependencies between strands. Specifically, V (A) con-

tains all strands of two different types:

• User strands arising from the execution of code explicitly invoked by the program-

mer. We denote the set of strands of this type with Vυ.

• Runtime strands arising from the execution of code run implicitly by the runtime

system to create and reduce views of a reducer. We shall denote these runtime strands

as Vι ∪Vρ in Chapter 7, which discusses these strands in more detail.

The edge set E(A) contains edges representing two types of dependencies: parallel-control

dependencies and scheduling dependencies.

The parallel-control dependencies2 E(A), denoted Eχ, represent the dependencies that

are described by spawn and sync statements in the code of the multithreaded program.

A strand that has 2 outgoing control dependencies is a spawn strand, and a strand that

resumes the caller after a spawn is called a continuation strand. A strand with at least 2

incoming control dependencies is a sync strand. We assume that no continuation strand is

also a sync strand. We do not represent any control dependencies on runtime strands.

The scheduling dependencies in E(A), denoted Eσ, may be understood in terms of a

schedule for A. A schedule of a computation A on a P-processor computer is a mapping

C : V (A)→{0,1, . . . ,P−1}×N where, for each strand u ∈V (A), if C(u) = (wu, tu) then

worker wu begins executing u at time step tu. A scheduler creates a schedule for A’s execu-

tion such that all scheduling dependencies are obeyed, where, for two strands u,v ∈V (A),

a scheduling dependency (u,v) ∈ Eσ from u to v exists if v cannot legally execute before

u has completed execution. For simplicity, we only consider a minimal set of scheduling

dependencies, meaning that if (u,v) ∈ Eσ, then there does not exist a strand w ∈V (A) such

that (u,w) ∈ Eσ and (w,v) ∈ Eσ. This set Eσ of scheduling dependencies is included in the

edge set E(A). If a strand u depends on every strand in a set {v1,v2, . . . ,vk} ⊆ V (A), we

say that the last strand in {v1,v2, . . . ,vk} to finish executing enables u.

We will often want to examine precedence relations between strands in V (A) with re-

spect to only one edge set. We therefore define two precedence operators, ≻χ and ≻σ as

2We shall also refer to these dependencies simply as control dependencies.
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Figure 6-1: A dag representation of a multithreaded execution. Each vertex represents a strand.

Straight edges represent parallel-control dependencies between strands, while curved edges repre-

sent scheduling dependencies between strands. For visual simplicity, only scheduling dependencies

that differ from parallel-control dependencies are shown. Vertices with no number depict strands

executed implicitly by the runtime system to manage reducers.

follows. For two strands u,v ∈V (A), we have u ≻χ v in A if u precedes v in A according to

only the edges in Eχ. Similarly, we have u ≻σ v in A if u precedes v in A according to only

the edges in Eσ.

Although the scheduling dependencies are more restrictive than the parallel-control de-

pendencies, they are related to the parallel-control dependencies by the following invariant:

Invariant 1. For two strands u,v ∈V (A), we have u ≻χ v → u ≻σ v.

For two strands u,v ∈ V (A), we have u ≻χ v → v �χ u, and we have u ≻σ v → v �σ u.

Together with Invariant 1, these implications guarantee that A is indeed a dag.

Figure 6-1 illustrates such a dag, which can be viewed as a parallel program “trace,” in

that it involves executed instructions as opposed to source instructions. A strand can be as

small as a single instruction, or it can represent a longer computation. We shall assume that

strands respect function boundaries, meaning that calling or spawning a function terminates

a strand, as does returning from a function. Thus, each strand belongs to exactly one

function instantiation.

Generally, we shall dice a chain of serially executed instructions into strands in a man-

ner that is convenient for the computation we are modeling. The length of a strand is the

time it takes for a processor to execute all its instructions. For simplicity, we shall assume
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Figure 6-2: A user dag representation of a multithreaded computation without reducers. Each

vertex represents a strand, and edges represent parallel-control dependencies between strands.

that programs execute on an ideal parallel computer, where each instruction takes unit time

to execute, there is ample memory bandwidth, there are no cache effects, etc.

For convenience we derive two distinct dags from a computation A.

First, to simplify the task of bounding the performance of a computation A with no

reducers, we derive a user dag User(A) from A by setting V (User(A)) = Vυ and setting

E(User(A)) = Eχ. Figure 6-2 shows an example user dag for a computation containing no

reducers. The convenience of the user dag is motivated by the following two facts about

the performance of A. First, Blumofe and Leiserson prove in [7] that the performance of A

may be bounded by only on the control dependencies in E(A). Second, since A does not

contain reducers, then we have V (A) =Vυ.

The second we derive is called a scheduling dag Sched(A). We derive Sched(A) from

a computation A by setting V (Sched(A)) = V (A) and setting E(Sched(A)) = Eσ. We shall

use the scheduling dag in Chapter 8 in order to construct a “delay-sequence” argument on

computations that use reducers.

Determinacy

We say that a dynamic multithreaded program is deterministic (on a given input) if every

memory location is updated with the same sequence of values in every execution. Other-

wise, the program is nondeterministic. A deterministic program always behaves the same,

no matter how the program is scheduled. Two different memory locations may be updated

in different orders, but each location always sees the same sequence of updates. Whereas a

38



nondeterministic program may produce different dags, i.e., behave differently, a determin-

istic program always produces the same dag.

Work and span

The dag model admits two natural measures of performance which can be used to provide

important bounds [6,8,14,18] on performance and speedup. The work of a dag A, denoted

by Work(A), is the sum of the lengths of all of the strands in V (A). For a computation that

does not contain reducers, this equals the sum of the lengths of all strands in V (User(A)).

For example, consider the user dag of a reducer-free computation modeled in Figure 6-2.

Assuming for simplicity that it takes unit time to execute a strand, the work for the example

dag in Figure 6-2 is 19. The span3 of A, denoted by Span(A), is the length of the longest

path of control dependencies in A. For computations that do not contain reducers, this is

simply the longest path in User(A). Assuming unit-time strands, the span of the dag in

Figure 6-2 is 10, which is realized by the path 〈1,2,3,6,7,8,10,11,18,19〉. Work/span

analysis is outlined in tutorial fashion in [11, Ch. 27] and [24].

Suppose that a program produces a dag A in time TP(A) when run on P processors

of an ideal parallel computer. We have the following two lower bounds on the execution

time TP(A):

Tp(A) ≥ Work(A)/P , (6.1)

TP(A) ≥ Span(A) . (6.2)

Inequality (6.1), which is called the Work Law, holds in this simple performance model,

because each processor executes at most 1 instruction per unit time, and hence P processors

can execute at most P instructions per unit time. Inequality (6.2), called the Span Law,

holds because no execution that respects the partial order of the dag according to parallel-

control dependencies can execute faster than the longest serial chain of instructions.

We define the speedup of a program as T1(A)/TP(A) — how much faster the P-

processor execution is than the serial execution. Since all executions of a deterministic

3The literature also uses the terms depth [4] and critical-path length [5].
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program produce the same dag A, we have that T1(A)=Work(A), and T∞(A)=Span(A) (as-

suming no overhead for scheduling). Rewriting the Work Law, we obtain T1(A)/TP(A)≤P,

which is to say that the speedup on P processors can be at most P. If the application obtains

speedup P, which is the best we can do in our model, we say that the application exhibits

linear speedup. If the application obtains speedup greater than P (which cannot happen in

our model due to the Work Law, but can happen in models that incorporate caching and

other processor effects), we say that the application exhibits superlinear speedup.

The parallelism of the dag is defined as Work(A)/Span(A). For a deterministic compu-

tation, the parallelism is therefore T1(A)/T∞(A). The parallelism represents the maximum

possible speedup on any number of processors, which follows from the Span Law, because

T1(A)/TP(A) ≤ T1(A)/Span(A) = Work(A)/Span(A). For example, the parallelism of the

dag in Figure 6-2 is 19/10 = 1.9, which means that any advantage gained by executing

it with more than 2 processors is marginal, since the additional processors will surely be

starved for work.

For a program that does not involve reducers, the dag model presented is sufficient for

measuring the work and span of the computation. This model, however, does not repre-

sent any control dependencies involving runtime strands, although they do contribute to

the span. In Chapter 7 we extend this model of computation to represent control depen-

dencies involving runtime strands to portray their contribution to the work and span of a

computation.

Scheduling

A randomized “work-stealing” scheduler [1, 7], such as is provided by MIT Cilk and

Cilk++, operates as follows. When the runtime system starts up, it allocates as many

operating-system threads, called workers, as there are processors (although the programmer

can override this default decision). Each worker’s stack operates like a deque, or double-

ended queue. When a subroutine is spawned, the subroutine’s activation frame containing

its local variables is pushed onto the bottom of the deque. When it returns, the frame is

popped off the bottom. Thus, in the common case, the parallel code operates just like serial
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code and imposes little overhead. When a worker runs out of work, however, it becomes

a thief and “steals” the top frame from another victim worker’s deque. In general, the

worker operates on the bottom of the deque, and thieves steal from the top. This strategy

has the great advantage that all communication and synchronization is incurred only when

a worker runs out of work. If an application exhibits sufficient parallelism, stealing is in-

frequent, and thus the cost of bookkeeping, communication, and synchronization to effect

a steal is negligible.

Work-stealing achieves good expected running time based on the work and span. In

particular, if A is the executed dag on P processors, the expected execution time TP(A) can

be bounded as

TP(A)≤ Work(A)/P+O(Span(A)) , (6.3)

where we omit the notation for expectation for simplicity. This bound, which is proved

in [7], assumes an ideal computer, but it includes scheduling overhead. For a determin-

istic computation, if the parallelism exceeds the number P of processors sufficiently, In-

equality (6.3) guarantees near-linear speedup. Specifically, if P ≪ Work(A)/Span(A), then

Span(A) ≪ Work(A)/P, and hence Inequality (6.3) yields TP(A) ≈ Work(A)/P, and the

speedup is T1(A)/TP(A)≈ P.

For a nondeterministic computation such as PBFS, however, the work of a P-processor

execution may not readily be related to the serial running time. Thus, obtaining bounds on

speedup can be more challenging. As Chapter 9 shows, however, PBFS achieves

TP(A)≤ Work(User(A))/P+O(τ2 ·Span(User(A))) , (6.4)

where User(A) is the user dag of A, τ is an upper bound on the time it takes to perform

a REDUCE, which may be a function of the input size, and the work and span of User(A)

are the sum of the lengths of the strands in V (User(A)) and the length of the longest path

in User(A) respectively. (We shall formalize these concepts for computations with reduc-

ers in Chapters 7 and 8.) For nondeterministic computations satisfying Inequality (6.4),

we define the effective parallelism as Work(User(A))/(τ2 ·Span(User(A))). Just as with

parallelism for deterministic computations, if the effective parallelism exceeds the number
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P of processors by a sufficient margin, the P-processor execution is guaranteed to attain

near-linear speedup over the serial execution.

Another relevant measure is the number of steals that occur during a computation. As is

shown in [7], the expected number of steals incurred for a dag A produced by a P-processor

execution is O(P ·Span(A)). This bound is important, since the number of REDUCE oper-

ations needed to combine reducer views is bounded by the number of steals.
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Chapter 7

Reducers

This chapter reviews the definition of reducer hyperobjects from Frigo et al. [15] and ex-

tends the dag model to incorporate them. We first formalize the semantic definition of a

reducer. We then examine how Cilk implements reducers, and we propose a modified lock-

ing protocol for managing views of a reducer within the runtime system. We shall clarify

the notion of a user dag for a computation with reducers, and we shall define “performance

dags,” which include the strands that the runtime system implicitly invokes. Finally, we

shall consider the inaccuracies in the performance dag representation of reducer operations,

and we shall define a way to track the views of a reducer through a scheduling dag.

A reducer is defined in terms of an algebraic monoid: a triple (T,⊗,e), where T is a set

and ⊗ is an associative binary operation over T with identity e. From an object-oriented

programming perspective, the set T is a base type which provides a member function RE-

DUCE implementing the binary operator ⊗ and a member function CREATE-IDENTITY that

constructs an identity element of type T . The base type T also provides one or more UP-

DATE functions, which modify an object of type T . In the case of bags, the REDUCE func-

tion is BAG-UNION, the CREATE-IDENTITY function is BAG-CREATE, and the UPDATE

function is BAG-INSERT. As a practical matter, the REDUCE function need not actually

be associative, although in that case, the programmer typically has some idea of “logical”

associativity. Such is the case, for example, with bags. If we have three bags B1, B2, and

B3, we do not care whether the bag data structures for (B1 ∪B2)∪B3 and B1 ∪ (B2 ∪B3)

are identical, only that they contain the same elements.
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In order to analyze programs that use reducers with nonconstant-time REDUCE oper-

ations, we must address the non-trivial task of representing operations on reducers within

our model of computation. In particular, although the dag model of computation presented

in Chapter 6 represents the CREATE-IDENTITY and REDUCE operations that the runtime

system performs implicitly, it does not model any parallel-control dependencies on these

strands, and therefore it fails to model the effect of these operations on the work and span.

Since the runtime system performs CREATE-IDENTITY and REDUCE operations nondeter-

ministically during the computation, how they affect the work and span of the computation

is not straightforward.

We shall address this problem as follows. First, we shall examine how the runtime sys-

tem implements and manages reducers. We shall then clarify the definition of a user dag

for computations with reducers and show how to augment this user dag to get a “perfor-

mance dag” containing the implicit operations on reducers where we would like to charge

for them. The model of reducers in the performance dag does not faithfully represent where

these reducer operations are performed in the schedule, however, and in order to prove that

the performance dag is sufficient for accounting for reducers, we need to examine a faithful

representation of reducer operations. We shall therefore show how to account for reducer

operations in the scheduling dag, and we shall use the scheduling-dag representation in

Chapter 8 to prove that the performance dag suffices to account for operations on reducers.

Implementation of reducers

To model and prove performance bounds on multithreaded computations with nonconstant-

time reducers, we must first understand how the runtime system implements reducers. We

also provide an alternative locking protocol to that proposed by Frigo et al. [15] for the

runtime system to manage reducers, which guarantees that locks are held for constant time

regardless of the runtime of any REDUCE operation.

First, we examine how the runtime system handles spawns and steals, as described

in [15]. Every time a Cilk function is stolen, the runtime system creates a new frame.1

Although frames are created and destroyed dynamically during a program execution, the

1When we refer to frames in this paper, we specifically mean the “full” frames described in [15].
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ones that exist always form a rooted tree. Each frame F provides storage for temporary

values and local variables, as well as metadata for the function, including the following:

• a pointer F. lp to F’s left sibling, or if F is the first child, to F’s parent;

• a pointer F.c to F’s first child;

• a pointer F.r to F’s right sibling.

These pointers form a left-child right-sibling representation of the part of this tree that is

distributed among processors, which is known as the steal tree.

To handle reducers, each worker in the runtime system uses a hash table called a hy-

permap to map reducers into its local views. To allow for lock-free access to the hypermap

of a frame F while siblings and children of the frame are terminating, F stores three hy-

permaps, denoted F.hu, F.hr, and F.hc. The F.hu hypermap is used to look up reducers

for the user’s program, while the F.hr and F.hc hypermaps store the accumulated values of

F’s terminated right siblings and terminated children, respectively.

When a frame is initially created, its hypermaps are empty. If a worker using a frame F

executes an UPDATE operation on a reducer h, the worker tries to obtain h’s current view

from the F.hu hypermap. If h’s view is empty, the worker performs a CREATE-IDENTITY

operation to create an identity view of h in F.hu.

When a worker returns from a spawn, first it must perform up to two REDUCE oper-

ations to reduce its hypermaps into its neighboring frames, and then it must eliminate its

current frame. To perform these REDUCE operations and elimination without races, the

worker grabs locks on its neighboring frames. The algorithm by Frigo et al. [15] uses an

intricate protocol to avoid long waits on locks, but the analysis of its performance assumes

that each REDUCE takes only constant time.

To support nonconstant-time REDUCE functions, we modify the locking protocol. To

eliminate a frame F , the worker first reduces F.hu ⊗= F.hr. Second, the worker reduces

F. lp.hc ⊗= F.hu or F. lp.hr ⊗= F.hu, depending on whether F is a first child.

Workers eliminating F. lp and F.r might race with the elimination of F . To resolve

these races, Frigo et al. describe how to acquire an “abstract lock” between F and these

neighbors, where an abstract lock is a pair of locks that correspond to an edge in the steal

tree. We use these abstract locks to eliminate a frame F according to the locking protocol
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1 while TRUE

2 Acquire the abstract locks for edges (F,F. lp) and (F,F.r) in an order

chosen uniformly at random
3 if F is a first child

4 L = F. lp.hc

5 else L = F. lp.hr

6 R = F.hr

7 if L == /0 and R == /0

8 if F is a first child

9 F. lp.hc = F.hu

10 else F. lp.hr = F.hu

11 Eliminate F

12 break

13 R′ = R; L′ = L

14 R = /0; L = /0

15 Release the abstract locks

16 for each reducer h ∈ R′

17 if h ∈ F.hu

18 F.hu(h) ⊗= R′(h)
19 else F.hu(h) = R′(h)
20 for each reducer h ∈ L′

21 if h ∈ F.hu

22 F.hu(h) = L′(h)⊗F.hu(h)
23 else F.hu(h) = L′(h)
24

Figure 7-1: A modified locking protocol for eliminating a frame F containing reducers with

nonconstant-time REDUCE operations. This locking protocol guarantees that locks are held for

O(1) time, regardless of the running time of any REDUCE operation.

shown in Figure 7-1.

Modeling reducers

To specify the nondeterministic behavior encapsulated by reducers precisely, consider a

computation A of a multithreaded program, where V (A) be the set of executed strands.

We assume that the implicitly invoked functions for a reducer — REDUCE and CREATE-

IDENTITY — execute only serial code. We model each execution of one of these functions

as a single strand containing the instructions of the function. If an UPDATE causes the run-

time system to invoke CREATE-IDENTITY implicitly, the serial code arising from UPDATE
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is broken into two strands sandwiching the point where CREATE-IDENTITY is invoked.

We can partition V (A) into three classes of strands:

• Vυ: User strands arising from the execution of code explicitly invoked by the pro-

grammer, including calls to UPDATE.

• Vι: Init strands arising from the execution of CREATE-IDENTITY when invoked

implicitly by the runtime system, which occur when the user program attempts to

update a reducer, but a local view has not yet been created.

• Vρ: Reduce strands arising from the execution of REDUCE, which occur implicitly

when the runtime system combines views.

Notice that Vι ∪Vρ is the set of runtime strands in V (A), as Chapter 6 mentions.

Since, from the programmer’s perspective, the runtime strands are invoked “invisibly”

by the runtime system, his or her understanding of the program generally relies only on

the user strands. We therefore maintain the definition of the user dag exactly as it was in

Chapter 6. For a computation A, we set V (User(A)) = Vυ, and we set E(User(A)) = Eχ.

If A involves reducers, then the user dag omits all runtime strands in A. For example, the

user dag associated with the computation in Figure 6-1 looks exactly like the dag shown in

Figure 6-2. The work of User(A) is the sum of the lengths of the strands in V (User(A)),

and the span of User(A) is the length of the longest path through User(A).

To track the views of a reducer h in the user dag, let h(v) denote the view of h seen by

a strand v ∈V (User(A)). The runtime system maintains the following invariants:

Invariant 2. If u ∈ V (User(A)) has out-degree 1 and (u,v) ∈ E(User(A)), then h(v) =

h(u).

Invariant 3. Suppose that u ∈ V (User(A)) is a spawn strand with outgoing edges

(u,v),(u,w) ∈ E(User(A)), where v ∈ V (User(A)) is the first strand of the spawned

subroutine and w ∈ V (User(A)) is the continuation in the parent. Then, we have

h(v) = h(u) and

h(w) =







h(u) if w was not stolen;

new view otherwise.
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Invariant 4. If v∈V (User(A)) is a sync strand, then h(v)= h(u), where u is the first strand

of v’s function.

When a new view h(w) is created, as is inferred by Invariant 3, we say that the old view

h(u) dominates h(w), which we denote by h(u)> h(w). For a set H of views, we say that

two views h1,h2 ∈ H, where h1 > h2, are adjacent if there does not exist h3 ∈ H such that

h1 > h3 > h2. We can define the dominates function dom{h1,h2, . . . ,hk} to be the view

hi ∈ {h1,h2, . . . ,hk} such that for all j ∈ {1,2, . . . ,k}, if j 6= i then hi > h j.

A useful property of sync strands is that the views of strands entering a sync strand

v ∈ V (User(A)) are totally ordered by the dominates relation. That is, if k strands each

have an edge in E(User(A)) to the same sync strand v ∈ V (User(A)), then the strands can

be numbered u1,u2, . . . ,uk ∈V (User(A)) such that h(u1)≥ h(u2)≥ ·· · ≥ h(uk). Moreover,

we have h(u1) = h(v) = h(u), where u is the first strand of v’s function. These properties

can be proved inductively, noting that the views of the first and last strands of a function

must be identical, because a function implicitly syncs before it returns. The runtime system

always reduces adjacent pairs of views in this ordering, destroying the dominated view in

the pair.

If a computation A does not involve any runtime strands, the “delay-sequence” argu-

ment in [7] can be applied to User(A) to bound the P-processor execution time: TP(A) ≤

Work(User(A))/P+O(Span(User(A))). Chapter 8 applies a similar delay-sequence argu-

ment to computations containing runtime strands. To do so, we augment User(A) with the

runtime strands to produce a performance dag Perf(A) for the computation A, where

• V (Perf(A)) =V (A) =Vυ ∪Vι ∪Vρ,

• E(Perf(A)) = Eυ ∪Eι ∪Eρ,

where the edge sets Eι and Eρ are constructed as follows.

The edges in Eι are created in pairs. For each init strand v ∈ Vι, we include (u,v) and

(v,w) in Eι, where u,w ∈Vυ are the two strands comprising the instructions of the UPDATE

whose execution caused the invocation of the CREATE-IDENTITY corresponding to v.

The edges in Eρ are created in groups corresponding to the set of REDUCE functions

that must execute before a given sync. Suppose that v ∈ Vυ is a sync strand, that k strands
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u1,u2, . . . ,uk ∈Vυ join at v, and that k′ < k reduce strands r1,r2, . . . ,rk′ ∈Vρ execute before

the sync. Consider the set U = {u1,u2, . . . ,uk}, and let h(U) = {h(u1),h(u2), . . . ,h(uk)} be

the set of k′+1 views that must be reduced. Construct a reduce tree as follows:

1 while |h(U)| ≥ 2

2 Let r ∈ {r1,r2, . . . ,rk′} be the reduce strand that reduces a “minimal”

pair h j,h j+1 ∈ h(U) of adjacent strands, meaning that if a distinct r′ ∈

{r1,r2, . . . ,rk′} reduces adjacent strands hi,hi+1 ∈ h(U), we have hi > h j

3 Let Ur =
{

u ∈U : h(u) = h j or h(u) = h j+1

}

4 Include in Eρ the edges in the set {(u,r) : u ∈Ur}

5 U =U −Ur ∪{r}

6 Include in Eρ the edges in the set {(r,v) : r ∈U}

Since the reduce trees and init strands only add more dependencies between strands in

the user dag User(A) that are already in series, the performance dag Perf(A) is indeed a

dag. The work of Perf(A) is the sum of the lengths of all the strands in Perf(A). Since we

shall consider all the edges in E(Perf(A)) to be control dependencies, the span of Perf(A)

is the length of the longest path in Perf(A). Chapter 8 proves that we can use the longest

path in Perf(A) to bound the running time of a computation A that contains reducers.

The edges in a performance dag reflect the guarantees that the runtime system makes

on when runtime strands occur relative to user strands in a schedule of the computation.

Consequently, for a computation A involving reducers, we have two invariants that relate

User(A) and Perf(A) to Sched(A), which are similar to Invariant 1.

Invariant 5. If a user strand u ∈ User(V ) precedes a strand v ∈ V (A) in User(A), then u

precedes v in Sched(A).

Invariant 6. If a strand u ∈ V (A) precedes a sync strand v ∈ V (A) in Perf(A), then u pre-

cedes v in Sched(A).

Faithfully representing REDUCE operations

Although the performance dag is useful for bounding the work and span of computations

with reducers, it does not faithfully model when reduce strands occur within the computa-
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Figure 7-2: A dag representation of a computation with a REDUCE operation executed opportunis-

tically. The set of strands and the set of straight edges represent the performance dag of the com-

putation. In particular, the numbered, dark-colored vertices represent user and init strands within

the computation, and each dark-colored vertex labeled with “. . . ” represents a sequence of user

and init strands. The gray vertices labeled R1 and R2 represent reduce operations where they are

placed in the performance dag. The lighter-gray vertex labeled R2 and connected via curved arrows

represents the position of R2 as dictated by scheduling dependencies only.

tion, as illustrated in Figure 7-2. Suppose that we are executing the illustrated computation,

which involves a reducer h, and suppose that we have some time step when worker w1 is

executing strand 7, worker w2 is executing strand 13, and worker w3 is executing the con-

tinuation after strand 8. Furthermore, suppose that the view of h at strand 7 is nonempty,

and the view at strand 13 is nonempty. If w1 completes execution on strand 7 before w2

completes strand 15, then once w2 completes strand 15 the runtime system may opportunis-

tically execute the reduce strand R2, even though execution has not yet reached the sync

strand 21. The performance dag represents the reduce operation R2 as shown in Figure 7-2

when only parallel-control dependencies are considered, even though R2 was scheduled to

execute before then.

We can formalize this phenomenon in terms of the operations of the runtime system.

Suppose that during the execution of a parallel computation with a reducer h, there is

some point when three workers w1, w2, and w3 are operating on frames F1, F2, and F3,

respectively, such that F1 is F2’s child, which syncs with F2 at strand u, and F2 is F3’s

child, which syncs with F3 at strand v preceding u. In Figure 7-2, w1 executing strand 7

syncs at sync strand u = 21, which follows the sync strand v = 20 where w2 executing

strand 13 syncs. We label the view of h in each hypermap such that h1 = F1.hu(h), h2 =

F2.hu(h), and h3 = F3.hu(h), and we assert that h1 and h2 are nonempty. Suppose that

w1 completes its computation quickly relative to w2 as when, in Figure 7-2, w1 completes

strand 7 before w2 completes strand 15. When w1 returns from its spawn, it eliminates F1,
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setting F2.hc = h1. When w2 subsequently returns from a spawn to the sync strand v, it

must attempt to eliminate F2 and executes a REDUCE(h1,h2), though the execution has not

yet reached u. The performance dag, however, represents the REDUCE(h1,h2) strand in the

reduce tree preceding u, although this reduce strand actually occurred before v. It is worth

noting that a REDUCE operation may happen early only if the runtime system performs

some sequence of operations like these, where a frame with a view h1 of h is eliminated

before its neighboring frame with view h2 and h1 > h2.

Chapter 8 proves that the performance of a computation A can nevertheless be bounded

in terms of Perf(A). We shall prove this claim using a delay-sequence argument [28], but

in order to construct a delay sequence for this argument, we must first consider a faithful

representation of the runtime strands that occur. To prove this claim we first examine how

to track the views of a reducer through the scheduling dependencies Sched(E) in E(A).

To track the views of a reducer h through Sched(E) ∈ E(A) for computation A

with schedule C, let η(v) denote the view of h seen by a strand v ∈ V (A) as dictated

by Sched(E). For simplicity we assume that every reduce strand u ∈ Vρ performing an

operation REDUCE(η(v1),η(v2)) only has scheduling dependencies on strands v1 and v2.

We shall assign views of h to the strands of A by replaying A’s execution according to S

and using the following assignment rules.

Rule 1. If u ∈V (A) enables v ∈V (A), where v /∈ R(V ), v is not a sync strand, and u is not

a spawn strand, then η(v) = η(u).

Rule 2. Suppose that u ∈V (A) is a spawn strand, v ∈V (A) is the first strand of subroutine

spawned by u, and w ∈V (A) is the continuation after u. Then set η(v) = η(u) and

η(w) =







η(u) if w was not stolen;

new view otherwise.

Rule 3. Each reduce strand u ∈ R(V ) depends on two strands v1,v2 ∈ V (A) in order to

execute REDUCE(η(v1),η(v2)). When a reduce strand u ∈ R(V ) is enabled, set

η(u) = dom{η(v1),η(v2)}, and destroy the dominated view.
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Rule 4. If u ∈V (A) is a sync strand that depends on strands v1,v2, . . . ,vk ∈V (A), then set

η(u) = dom{η(v1),η(v2), . . . ,η(vk)}, and destroy all other views entering u.

From Rule 2 we infer a dominates relation between η views, which parallels the dominates

relations between h views in the user dag due to Invariant 3. When a new view η(w) is

created, as is inferred by Rule 2, we say that the old view η(u) dominates η(w), which we

denote by η(u) > η(w). For a set H of views, we say that two views η1,η2 ∈ H, where

η1 > η2, are adjacent if there does not exist η3 ∈ H such that η1 > η3 > η2. We define the

dominates function dom{η1,η2, . . . ,ηk} to be the view ηi ∈ {η1,η2, . . . ,ηk} such that for

all j ∈ {1,2, . . . ,k}, if j 6= i, then ηi > η j.

We must show that the η views entering a sync strand v∈V (A) are totally ordered by the

dominates relation, and thus Rule 4 assigns a well-defined label to each sync strand. Note

that η views propagate through Sched(A) by traversing edges in Sched(E). Consequently,

for a sync strand u to see a view η created by a strand v, there must exist a path in Sched(A)

from u to v along which η is never destroyed. The runtime system maintains the invariant

that all threads that sync at a sync strand u in the scheduling dag were spawned along

a single subpath terminating at u. Consequently, all of the views entering a given sync

strand u must have been created and not destroyed along a single path ending at u. Since

the dominance relation on η views implies that any views created and not destroyed along

any path are totally ordered, the result of dom{η(v1),η(v2), . . . ,η(vk)} in Rule 4 is well-

defined.

Although the scheduling dag represents REDUCE operations faithfully, the nondeter-

minism of REDUCE operations makes analyzing the scheduling dag directly impractical.

Our goal is to use the performance dag to account for the cost of operations on reducers. In

Chapter 8 we shall use the accounting of reducer operations in the scheduling dag to prove

that the performance dag is sufficient for analyzing programs with reducers.
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Chapter 8

Analysis of programs with

nonconstant-time reducers

This chapter provides a framework for analyzing programs that contain reducers whose

REDUCE functions execute in more than constant time. We use an accounting argument

to bound the expected running time of a computation A with performance dag Perf(A).

We then bound the work and span of Perf(A) in terms of the work and span of the user

dag User(A) and the worst-case running time τ of any REDUCE or CREATE-IDENTITY

operation. We combine these bounds to prove that the expected running time of A is

TP(A)≤ Work(User(A))/P+O(τ2 ·Span(User(A))).

For simplicity, we assume that computation A makes use of at most a single reducer.

The following proofs can be extended to handle many reducers within a computation.

Bounding the running time of a computation using its performance dag

We begin by bounding the time to execute a multithreaded computation A containing

nonconstant-time reducers with a work-stealing scheduler in terms of its performance

dag Perf(A). The proof follows those of Blumofe and Leiserson [7] and Frigo et al. [15],

with some salient differences. As in [7], we use a delay-sequence argument, as presented

by Ranade [28], but we base it on the performance dag.

To analyze the running time of a work-stealing scheduler executing a multithreaded
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computation, we use an accounting argument. Represent a unit of computation performed

by a processor during a time step with a dollar. At each step, each processor spends its

dollar by placing it into some bucket, depending on the type of task that processor performs

at the step. If the execution takes time TP, then at the end the total number of dollars in all

the buckets is PTP. Consequently, if we sum up all of the dollars in all of the buckets and

divide by P, we obtain the running time.

We consider four different types of tasks a processor may perform at a step. If a pro-

cessor executes an instruction at the step, then it places its dollar into the WORK bucket.

If a processor initiates a steal attempt at the step, then it places its dollar into the STEAL

bucket. If a processor waits for its steal request to be satisfied at the step, then it places its

dollar into the WAIT-STEAL bucket. Finally, if a processor waits to acquire a lock on a data

structure in the runtime system at the step, then it places its dollar into the WAIT-LOCK

bucket.

First, we bound the total number of dollars in the WORK bucket.

Lemma 1 The execution of a multithreaded computation A with work Work(Perf(A)) by a

random work-stealing scheduler on a computer with P processors terminates with exactly

Work(Perf(A)) dollars in the WORK bucket.

PROOF. A processor places a dollar in the WORK bucket only when it executes an instruc-

tion. Since there are exactly Work(Perf(A)) instructions in the computation, the execution

ends with exactly Work(Perf(A)) dollars in the WORK bucket.

Next, we bound the total dollars in the STEAL bucket using a delay-sequence argument,

as presented by Ranade [28]. The idea of the argument is to construct a “delay sequence”

with the scheduling dag Sched(A), and then to use the performance dag Perf(A) to bound

the length of that delay sequence and, consequently, the expected number of dollars in the

STEAL bucket. In other words, we first construct a delay sequence using Sched(A), then

we show how to translate that delay sequence into a delay sequence in Perf(A), and finally

we analyze the delay sequence in Perf(A).

We begin this argument by identifying a “delaying path” — a path of “critical strands”

through an augmented scheduling dag Sched′(A). This augmented scheduling dag repre-
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sents both the scheduling dependencies and the “deque dependencies” on V (A). To con-

struct a delay sequence, we divide the set of steal attempts that occur during A’s execution

into rounds, and associate each round with some strand on the delaying path. Next, we

bound the probability that a strand remains critical across many steal attempts. We then

bound the total length of the delay sequence by mapping this delay sequence to a path of

strands in an augmented version of the performance dag that accounts for deque dependen-

cies. We conclude that any delay sequence is unlikely to occur, and the execution of A is

unlikely to suffer a large number of steal attempts.

We assume without loss of generality that every strand represents a single instruction.

When we refer to an init or reduce strand, we mean the sequence of single-instruction

strands that perform a particular CREATE-IDENTITY or REDUCE operation. We also as-

sume for simplicity that every instruction takes a single time step to execute.

A round of steal attempts is a set of at least 3P but fewer than 4P consecutive steal

attempts such that if a steal attempt that is initiated at time step t occurs in a particular

round, then all other steal attempts initiated at time step t occur in the same round. We can

partition all of the steal attempts that occur during an execution as follows. The first round

contains all steal attempts initiated at time steps 1,2, . . . , t1, where t1 is the first time step

such that at least 3P steal attempts were initiated at or before t1. For i > 1 we say that the

ith round of steals begins at time step ti−1 + 1 and ends at time step ti, where at least 3P

consecutive steal attempts were initiated between time step ti−1 +1 and time step ti. Each

round necessarily contains at least 3P consecutive steal attempts, and because fewer than P

steal attempts can be initiated at a single time step, each round contains fewer than 4P steal

attempts, and each round takes at least 4 steps.

The criticality of a strand v ∈ V (A) is defined in terms of scheduling dependencies

and deque dependencies. A deque dependency exists from a strand u to a strand v if v is

the first child strand after a spawn strand w and u is the continuation strand after w. We

augment Sched(A) to form a new dag Sched′(A) that reflects both the scheduling and deque

dependencies between strands. Formally, the augmented scheduling dag Sched′(A) has the

same vertex set as V (Sched(A)) and all of the edges in E(Sched(A)) plus an edge (u,v) for

every pair of strands u,v ∈V (A) such that a deque dependency exists from u to v — u is a

55



continuation after a spawn strand w and v is the first child strand after w. Since we assumed

in Chapter 6 that no continuation strand is also a sync strand, the augmented scheduling

dag is indeed a dag. We assume for simplicity that for any spawn strand w, neither the first

spawned child of w nor the continuation after w is a reduce strand.

A strand u ∈ V (A) is critical at time step t if it is unexecuted at time step t and all

immediate predecessor strands v ∈ {v1,v2, . . . ,vk} of u in Sched′(A) have been executed. If

a strand u is critical, then u must be enabled since all of u’s scheduling dependencies have

been executed.

We use the augmented scheduling dag Sched′(A) to create a delay sequence. A de-

lay sequence of a computation A with schedule C is a triple (p,R,Π) consisting of the

following.

• A delaying path p = 〈u1,u2, . . . ,uL〉 — a maximal path through Sched′(A), meaning

a path through the strands of A such that u1 is the first strand in Sched′(A), uL is

the last strand in Sched′(A), and for each i = 1,2, . . . ,L−1, strand ui+1 follows ui if

(ui,ui+1) ∈ E(Sched′(A));

• A positive number R of steal-attempt rounds; and

• A partition Π = (π1,π
′
1,π2,π

′
2, . . . ,πL,π

′
L) of the R steal-attempt rounds such that

|π′
i| ∈ {0,1} for i = 1,2, . . . ,L.

For each i = 1,2, . . . ,L, we define πi, the ith group of steal-attempt rounds, to be the

|πi| consecutive rounds that begin after the rith round, where ri =
i−1
∑

j=1

∣

∣π j ∪π′
j

∣

∣. Because Π

is a partition of the R steal-attempt rounds and |πi| ∈ {0,1} for i = 1,2, . . . ,L, we have

L
∑

i=1

|πi| ≥ R−L , (8.1)

We say that a given round of steal attempts occurs while strand v is critical if all of the

steal attempts that comprise the round are initiated at time steps when v is critical. In other

words, v must be critical throughout the entire round. A delay sequence occurs during the

execution of A if, for each i = 1,2, . . . ,L, strand ui is critical throughout all rounds in πi.

The following lemma shows that if at least R rounds take place during an execution,
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then some delay sequence (p,R,Π) must occur. In particular, if we look at any execution in

which at least R rounds occur, then we can identify a path p = 〈u1,u2, . . . ,uL〉 in Sched′(A)

and a partition Π = (π1,π
′
1,π2,π

′
2, . . . ,πL,π

′
L) of the first R steal-attempt rounds such that

for each i = 1,2, . . . ,L, all of the rounds in πi occur while ui is critical. Each π′
i contains

at most one round, which is the round that began when ui was critical and ended after ui

began executing. Such a round cannot be part of any group because no instruction is critical

throughout.

Lemma 2 Consider the execution of a multithreaded computation A by a work-stealing

scheduler on an ideal parallel computer with P processors. If at least 4PR steal attempts

occur during A’s execution, then some delay sequence (p,R,Π) must occur.

PROOF. For a given execution of A in which at least 4PR steal attempts occur, we construct

a delay sequence (p,R,Π) and show that it occurs. Because at least 4PR steal attempts

occur, there must be at least R rounds of steal attempts.

We construct a delaying path in the augmented scheduling dag Sched′(A) as follows.

Let C be the schedule generated by the execution of A. Starting with the last strand v1 in

C and the trivial path p′ = 〈v1〉, we find the immediate predecessor v2 of v1 in Sched′(A)

with the latest completion time in C, and prepend v2 to p′ to obtain p′ = 〈v2,v1〉. On each

subsequent iteration i > 1, from strand vi with associated path p′ = 〈vi,vi−1, . . . ,v2,v1〉, we

find the immediate predecessor vi+1 of vi in Sched′(A) with the latest completion time in C

and prepend vi+1 to p′ to obtain p′ = 〈vi+1,vi,vi−1, . . . ,v2,v1〉.

In the event of a tie between the latest completion times of strands preceding a reduce

strand or a sync strand, we impose two special-case rules on this process of constructing a

delaying path. First, if the predecessors w1 and w2 of a reduce strand u — which have views

η(w1) > η(w2) of the reducer h — have the same completion time, then we choose the

immediate predecessor of u in the delaying path to be w2. Similarly, if the k predecessors

w1,w2, . . . ,wk of a sync strand u with reducer views η(w1)> η(w2)> · · ·> η(wk) all have

the same completion time, then we choose the immediate predecessor of u in the delaying

path to be wk. These rules for constructing a delaying path preclude a sequence of strands

that enables an early reduce operation or return from a spawn from appearing on a delaying
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path, which makes intuitive sense since such a sequence executing a little bit later should

not delay the computation as a whole.

After L iterations, this path has been extended to vL, the first strand executed in C. At

this point the delaying path is p = 〈u1,u2, . . . ,uL〉, where and ui = vL−i+1 for i = 1,2, . . . ,L.

One can verify that at every time step of the execution, one of the ui is critical.

Next, we construct the partition Π = (π1,π
′
1,π2,π

′
2, . . . ,πL,π

′
L) of the R steal-attempt

rounds. To construct Π we walk through the partitions and the rounds of steal attempts in

parallel in order by increasing index, and we place each round of steal attempts in exactly

one partition πi or π′
i for some i. Formally, for each i = 1,2, . . . ,R in order, first we let πi

equal the set of rounds that occur while ui is critical. Next, if the (ri + |πi|)th round begins

after ui has executed, then π′
i = /0; otherwise this round begins while ui is critical and ends

after ui has executed, and thus π′
i is the set containing only the (ri + |πi|)th round. Finally,

we repeat on πi+1.

We conclude this proof by verifying that the delay sequence (p,R,Π) as constructed is

a delay sequence that occurs during A’s execution. By construction, p is a maximal path

through the strands of A that obeys scheduling and deque dependencies. Since each of the

R rounds is placed in exactly one of the πi ∈ Π or π′
i ∈Π by construction, Π is a partition of

the R steal-attempt rounds. Moreover, for i = 1,2, . . . ,L, at most one round can begin while

strand ui is critical and end after ui is executed, and thus we have |π′
i| ∈ {0,1}. Therefore,

(p,R,Π) is a delay sequence. Finally, by construction the rounds in πi all occur while

strand ui is critical for i = 1,2, . . . ,L. Consequently, the delay sequence (p,R,Π) occurs.

We now show that a critical instruction is unlikely to remain critical across a modest

number of rounds.

Lemma 3 Consider the execution of a multithreaded computation A by a work-stealing

scheduler on an ideal parallel computer with P ≥ 2 processors. For any strand u and any

number r ≥ 2 of steal-attempt rounds, the probability that any particular set of r rounds

occur while the strand u is critical is at most the probability that only 0 or 1 of the steal

attempts initiated in the first r−1 of these rounds chose u’s worker, which is at most e−2r+3.
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PROOF.

Let C be the schedule generated by the execution of A. If u is a user strand, then

Blumofe and Leiserson prove this claim in [7, Lemma 11]. Thus, suppose that u is a

runtime strand, and let C(u) = (wu, tu). In this case, because runtime strands are executed

opportunistically by the scheduler, u was never placed on wu’s deque. Instead, wu begins

executing u at the time step after u is enabled. Since at most P−1 steal attempts can occur

during a single time step, and a round of steal attempts consists of at least 3P steal attempts,

less than 1 round of steal attempts can occur while u is critical. Therefore, u is not critical

throughout any rounds of steal attempts, and thus the probability bound in [7, Lemma 11]

holds.

To complete the delay-sequence argument, we show how translate a delay sequence

in Sched′(A) into a delay sequence in an augmented version of Perf(A). Much like the

augmented scheduling dag, the augmented performance dag Perf′(A) is the performance

dag Perf(A) augmented with additional edges to represent deque dependencies. For every

set of instructions u,v,w ∈ Perf(V ) such that u is a spawn stand, v is the first strand in

the spawned child of u, and w is the continuation strand after u, the deque edge (w,v) is

included in Perf′(A). Since we assumed in Chapter 6 that no continuation strand is also

a sync strand, the augmented dag is indeed a dag. Moreover, we have Span(Perf′(A)) ≤

2 ·Span(Perf(A)).

We now prove that for a computation A and any delay sequence (p,R,Π) in Sched′(A),

a corresponding delay sequence in Perf′(A) exists containing all of the strands in p.

Lemma 4 Consider the execution of a multithreaded computation A by a work-stealing

scheduler on an ideal P-processor parallel computer. For any delay sequence (p,R,Π) in

Sched′(A), a corresponding delay sequence exists in Perf′(A). Moreover, the length L of

the delay sequence satisfies L ≤ Span(Perf′(A))≤ 2 ·Span(Perf(A)).

PROOF. We consider the same set of R steal-attempt rounds in the delay sequence in the

augmented performance dag, as well as the same partition of those rounds and association

of each round of steal-attempts to some strand in p. Our goal is to find a delaying path q
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in Perf′(A) such that p ⊆ q. To do so, we treat the user strands, init strands, and reduce

strands in p separately. We assume that no steal-attempt rounds occur during strands v ∈ q

for v /∈ p.

First, consider all user strands u ∈ p. The insertion of runtime strands to create Perf(A)

from User(A) does not change the partial order on user strands in Perf(A), and by Invari-

ant 5 the partial order of strands in User(A) is maintained in Sched(A). Moreover, by

construction of p, a user strand u is never the immediate predecessor of a sync strand v

in p unless u is v’s immediate predecessor in User(A). Finally, each deque dependency in

Sched′(A) is represented with a deque edge in Perf′(A). Therefore, for any two user strands

u,v ∈ p such that u ≻ v in p, there must exist a path from u to v in Perf′(A). By structural

induction, for all strands u ∈Vυ, we have u ∈ p → u ∈ q.

Second, consider the init strands v ∈ p. Every init strand is inserted into Perf(A) be-

tween the user strands u,w∈Vυ that comprise the instructions in UPDATE whose execution

invoked the CREATE-IDENTITY operation corresponding to v. These inserted edges there-

fore enforce the scheduling dependencies on each init strand v. Consequently, for any two

nonreduce strands u,v ∈ p such that u ≻ v, there must exist a path from u to v in Perf′(A).

By structural induction, for all strands u ∈Vυ ∪Vι we have u ∈ p → u ∈ q.

Third, we must account for the reduce strands in p. We start by stating some invariants

on reduce operations performed on a reducer h.

Invariant 7. For a reduce strand v ∈ p to execute, all strands u ∈ V (Perf(A)) with view

h(u) = h(v) such that u ≻ v must have already completed execution. The edge set

E(Sched(A)) maintains this constraint.

Invariant 8. Suppose that a strand u with reducer view h(u) exists on some path p′ in

Sched(A) or Perf(A) that reaches the last strand in A, and suppose that the view h(u)

is eventually destroyed at strand v. Then we have v ∈ p′.

Invariant 9. Suppose that a strand v ∈ Vρ has the immediate predecessors u1 and u2 in

Sched(A), and suppose that v has the immediate predecessors u′1 and u′2 in Perf(A).

By Invariant 7 and because reduces occur eagerly, one of the immediate predecessors

of v in Sched(A) must be v’s immediate predecessor in Perf(A). Without loss of
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generality, assume u1 = u′1. If and only if u2 6= u′2, then u2 is a reduce strand that

executed early with respect to its dependencies in Perf(A). In particular, u2 reduces

h(v) with a view that dominates h(v) immediately after u′2 executes and immediately

before v reduces h(v) with view h(u′2) where h(v) > h(u′2). Consequently, we have

h(u2) 6= h(v) and h(u2) 6= h(u′2).

Moreover, recall that we assume that no reduce strand is involved in a deque dependency.

Consequently, the predecessor of a reduce strand in p can only be the destination of a deque

edge.

Suppose that A involves a reducer h, and suppose that p contains some reduce strand

v that reduces two performance-dag views hi and h j, where hi > h j. Consider v’s imme-

diate predecessor u in p, which has the performance-dag view h(u). We have three cases

concerning the relation of view h(u) to hi and h j.

Case h(u) = hi: By Invariants 7 and 9, the strand u must be v’s immediate predecessor in

Perf′(A). Therefore, v is u’s immediate successor in q, and we have u ∈ q → v ∈ q.

Case h(u) = h j: Since v destroys h j, it follows that v destroys the view h(u). By Invari-

ant 8, v is on every path in Perf(A) from u to the last strand in A. Deque dependencies

only add continuation strands to a path in Perf(A) from u to the last strand in A that

is otherwise realizable in Perf(A). Therefore, we have u ∈ q → v ∈ q.

Case h(u) 6= h j and h(u) 6= hi: By Invariant 9, strand u is a reduce strand that executed

early. In particular, u executed immediately before v and immediately after strand u′,

where u′ is v’s immediate predecessor in Perf′(A). By construction, u′ must be u’s

immediate predecessor in p, and we have u ∈ q → u′ ∈ q → v ∈ q.

By structural induction, for every strand v ∈Vρ, we have v ∈ p → v ∈ q.

For any delaying path p in Sched′(A), there exists a maximal path in Perf′(A) containing

all strands in p. Consequently, the length of the delaying path L ≤ Span(Perf′(A)).

We now complete the delay-sequence argument and bound the total dollars in the

STEAL bucket.
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Lemma 5 Consider the execution of a multithreaded computation A by a work-stealing

scheduler on an ideal parallel computer with P processors. For any ε > 0, with probability

1− ε, the execution terminates with at most O(P(Span(Perf(A))+ lg(1/ε))) dollars in the

STEAL bucket, and the expected number of dollars in this bucket is O(P ·Span(Perf(A))).

PROOF. From Lemma 2, we know that if at least 4PR steal attempts occur, then some

delay sequence (p,R,Π) must occur. Consider a particular delay sequence (p,R,Π) having

p = 〈u1,u2, . . . ,uL〉 and Π = (π1,π
′
1,π2,π

′
2, . . . ,πL,π

′
L). From Lemma 4 we know that L ≤

2 ·Span(Perf(A)). We compute the probability that (p,R,Π) occurs.

Such a sequence occurs if, for i = 1,2, . . . ,L, each strand ui is critical throughout all

rounds in πi. Form Lemma 3, we know that the probability that all |πi| rounds in πi occur

while a given strand ui is critical is at most the probability that only 0 or 1 of the steal

attempts initiated in the first |πi| − 1 of these rounds chose ui’s worker, which is at most

e−2|πi|+3 for |πi| ≥ 2. For |πi|< 2 we use 1 as an upper bound on this probability. Moreover,

since the work stealing scheduler chooses all targets of work-steal attempts independently,

we can bound the probability of the delay sequence (p,R,Π) occurring as follows:

Pr{(p,R,Π) occurs}=
∏

1≤i≤L

Pr{the rounds in πi occur while ui is critical}

≤
∏

1≤i≤L; |πi|≥2

e−2|πi|+3

≤ exp



−2





∑

1≤i≤L; |πi|≥2

|πi|



+3L





= exp



−2





∑

1≤i≤L

|πi|−
∑

1≤i≤L; |πi|<2

|πi|



+3L





≤ e−2((R−L)−L)+3L

= e−2R+7L ,

where the last inequality follows from Inequality (8.1).

To bound the probability of some delay sequence (p,R,Π) occurring, we need to count

the number of such delay sequences and multiply by the probability that a particular de-
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lay sequence occurs. From Lemma 4, every delay sequence in the execution of A has a

corresponding sequence in Perf′(A) that contains all strands in p. Since the maximum

out-degree of any strand in Perf′(A) is 2, there are at most 22·Span(Perf(A)) distinct maximal

paths in Perf′(A). Therefore, there are at most 22·Span(Perf(A)) distinct choices for a delaying

path p. There are at most
(

2L+R
R

)

≤
(

4·Span(Perf(A))+R
R

)

ways to choose Π, since Π partitions

R into 2 · Span(Perf(A)) pieces. As we have just shown, a given delay sequence has at

most an e−2R+14·Span(Perf(A)) chance of occurring. Multiplying these three factors together

bounds the probability than any delay sequence (p,R,Π) occurs by

22·Span(Perf(A))

(

4 ·Span(Perf(A))+R

R

)

e−2R+14·Span(Perf(A)) ,

which is at most ε for R= c ·Span(Perf(A))+ lg(1/ε), where c is a sufficiently large positive

constant. Thus the probability that at least 4PR = Θ(P(Span(Perf(A))+ lg(1/ε))) steal

attempts occur is at most ε. The expectation bound follows since the tail of the distribution

decreases exponentially.

Next, we bound the number of dollars in the WAIT-STEAL bucket.

Lemma 6 Consider the execution of any multithreaded computation A on an ideal parallel

computer with P processors using a work-stealing scheduler. For any ε > 0, with proba-

bility at least 1− ε, the number of dollars in the WAIT-STEAL bucket is at most a constant

times the number of dollars in the STEAL bucket plus O(P lgP+P lg(1/ε)), and the ex-

pected number of dollars in the WAIT-STEAL bucket is at most the number in the STEAL

bucket.

PROOF. The proof of this lemma follows from the proof given by Blumofe and Leiserson

in [7, Lemma 6].

The next lemma analyzes the work required to perform all eliminations using the lock-

ing protocol in Figure 7-1.

Lemma 7 Consider the execution of a multithreaded computation A on an ideal parallel

computer with P processors using a work-stealing scheduler. If M is the number of success-

ful steals during the execution of A, then the expected number of dollars in the WAIT-LOCK
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bucket is O(M), and with probability at least 1− ε, at most O(M+ lgP+ lg(1/ε)) dollars

end up in the WAIT-LOCK bucket.

PROOF.

We apply the analysis of the locking protocol presented in [15] to the locking protocol

presented in Figure 7-1. Since lines 3–15 in Figure 7-1 all require O(1) work, each abstract

lock is held for a constant amount of time. Since only two workers can compete for any

given abstract lock simultaneously, and assuming linear waiting on locks [9], the total

amount of time workers spend waiting for workers holding two abstract locks is at most

proportional the number M of successful steals. Consequently, we only need to analyze the

time workers that are holding only one abstract lock spend waiting for their second abstract

lock.

Consider the eliminations attempts performed by a given worker w, and assume that w

performed m elimination attempts and hence 2m abstract lock acquisitions. Consider the

steal tree at the time of the ith abstract lock acquisition by w, when w is trying to eliminate

frame F . Each worker x that is trying to eliminate some other frame Fx 6= F in the steal tree

at the same time creates an arrow across Fx oriented in the direction from the first edge x

abstractly locks to the second. These arrows create directed paths in the tree that represent

chains of dependencies on a given abstract lock, and the delay for w’s ith lock acquisition

can be at most the length of such a directed path starting at the edge that w is abstractly

locking. Since the orientation of lock acquisition along this path is fixed, and each pair of

acquisitions is correctly oriented with probability 1/2, the waiting time for F acquiring one

of its locks can be bounded by a geometric distribution:

Pr{w waits for ≥ k elimination attempts} ≤ 2−k−1 .

We compute a bound on the total time ∆ for all 2m abstract lock acquisitions

by worker w. First, we must prove that the ith abstract lock acquisition by some

worker w is independent of the time for the jth abstract lock acquisition for i < j.

To prove this independence result, we argue that for two workers w and v, we have

Pr
{

v delays w j | v delays wi

}

= Pr
{

v delays w j | v does not delay wi

}

=Pr
{

v delays w j

}

,
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where wi and w j are w’s ith and jth lock acquisitions, respectively.

We consider each of these cases separately. First, suppose that worker v delays acqui-

sition wi. After wi, worker v has succeeded in acquiring and releasing its abstract locks,

and all lock acquisitions in the directed path from w’s lock acquisition to v’s have also

succeeded. For v to delay acquisition w j, a new directed path of dependencies from w

to v must occur. Each edge in that path is oriented correctly with a 1/2 probability, re-

gardless of any previous interaction between v and w. Similarly, suppose that v does not

delay wi. For v to delay w j, a chain of dependencies must form from one of w’s ab-

stract locks to one of v’s abstract locks after wi completes. Forming such a dependency

chain requires every edge in the chain to be correctly oriented, which occurs with a 1/2

probability per edge regardless of the fact that v did not delay wi. Therefore, we have

Pr
{

v delays w j | v delays wi

}

= Pr
{

v delays w j | v does not delay wi

}

=Pr
{

v delays w j

}

.

For all workers v 6= w, the probability that v delays acquisition w j is independent of

whether v delays acquisition wi. Consequently, every lock acquisition by some worker is

independent of all previous acquisitions. Thus, the probability that the 2m acquisitions take

time longer than ∆ elimination attempts is at most

(

∆

2m

)

2−∆ ≤

(

e∆

2m

)2m

2−∆

≤ ε′/P

by choosing ∆ = c(m+ lg(1/ε′)), where c is a sufficiently large positive constant.

Next, we bound the number of elimination attempts that occur. Since each successful

steal creates a frame in the steal tree that must be eliminated, the number of elimination

attempts is at least as large as the number M of successful steals. Each elimination of

a frame may force two other frames to repeat this protocol. Therefore, each elimination

increases the number of elimination attempts by at most 2. Thus, the total number of

elimination attempts is no more than 3M.

Since there are at most P workers, the total number of dollars in the WAIT-LOCK bucket

is O(M+ lgP+ lg(1/ε)) with probability at least 1− ε (letting ε = ε′/P). The expectation
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bound follows directly.

We combine these bounds on the dollars within each bucket to find the expected running

time of a Cilk-like computation A.

Lemma 8 Consider the execution of a multithreaded computation A on an ideal parallel

computer with P processors using a work-stealing scheduler. The expected running time of

A is TP(A)≤ Work(Perf(A))/P+O(Span(Perf(A))), and for any ε > 0, with probability at

least 1− ε, the execution time on P processors is Work(Perf(A))/P+O(Span(Perf(A))+

lgP+ lg(1/ε)).

PROOF. From Lemma 5 the number successful steal attempts is O(P · Span(Perf(A)))

in expectation, and O(P(Span(Perf(A)) + lg(1/ε))) with probability at least 1 − ε.

From Lemma 7, the expected number of dollars in the WAIT-LOCK bucket is O(P ·

Span(Perf(A))). Summing over the expected number of dollars in the remaining buck-

ets from Lemmas 1 and 6 and dividing by P, the expected running time of A is TP(A) ≤

Work(Perf(A))/P+O(Span(Perf(A))), and with probability at least 1− ε the execution

time on P processors is Work(Perf(A))/P+O(Span(Perf(A))+ lgP+ lg(1/ε)).

Relating the performance dag to the user dag

The following two lemmas bound the work and span of the performance dag in terms of

the span of the user dag.

Lemma 9 Consider a multithreaded computation A, and let τ be the worst-case cost

of any CREATE-IDENTITY or REDUCE operation for the given input. Then, we have

Span(Perf(A)) = O(τ ·Span(User(A))).

PROOF. Each successful steal in the execution of A may force one CREATE-IDENTITY.

Each CREATE-IDENTITY creates a nonempty view that must later be reduced using a RE-

DUCE operation. Therefore, at most one REDUCE operation may occur per successful

steal, and at most one reduce strand may occur in the performance dag for each steal. Each
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spawn in User(A) provides an opportunity for a steal to occur. Consequently, each spawn

operation in A may increase the size of the dag by 2τ in the worst case.

Consider a critical path in Perf(A), and let pU be the corresponding path in User(A).

Suppose that k steals occur along pU . The length of that corresponding path in Perf(A) is

at most 2kτ+ |pU | ≤ 2τ ·Span(User(A))+ |pU | ≤ 3τ ·Span(User(A)). Therefore, we have

Span(Perf(A)) = O(τ ·Span(User(A))).

Lemma 10 Consider a multithreaded computation A, and let τ be the worst-case cost

of any CREATE-IDENTITY or REDUCE operation for the given input. Then, we have

Work(Perf(A)) = Work(User(A))+O(τ2P ·Span(User(A))) in expectation, and with prob-

ability at least 1− ε for any ε > 0 we have Work(Perf(A)) = Work(User(A))+O(τP(τ ·

Span(User(A))+ lgP+ lg(1/ε))).

PROOF. The work in Perf(A) is the work in User(A) plus the work represented in the

runtime strands. The total work in reduce strands equals the total work to join stolen

strands, which is at most the work of each REDUCE operation times twice the number

of elimination attempts. By Lemma 7, this value is O(τP ·Span(A)) in expectation, and

O(τP(Span(Perf(A))+ lgP+ lg(1/ε))) with probability 1− ε. Similarly, each steal may

create one init strand, and by Lemma 5 the total work in init strands is O(τP ·Span(A)) in

expectation, and O(τP(Span(Perf(A))+ lg(1/ε))) with probability at least 1− ε. Thus,

we have Work(Perf(A)) = Work(User(A)) + O(τP · Span(Perf(A))) in expectation, and

Work(Perf(A)) = Work(User(A))+O(τP(Span(Perf(A))+ lgP+ lg(1/ε))) with probabil-

ity at least 1− ε. Applying Lemma 9 yields the lemma.

We now prove Inequality (6.4), which bounds the running time of a computation whose

nondeterminism arises from reducers.

Theorem 11 Consider the execution of a computation A on an ideal parallel computer

with P processors using a work-stealing scheduler. Let User(A) be the user dag of A. The

total expected running time of A is TP(A) ≤ Work(User(A))/P+O(τ2 · Span(User(A))),

and for any ε > 0, with probability at least 1− ε, the execution time on P processors is

Work(User(A))/P+O(τ2 ·Span(User(A))+ τ lgP+ τ lg(1/ε)).

PROOF. The proof of this theorem follows from Lemmas 8, 9, and 10.

67



68



Chapter 9

Analysis of PBFS

This chapter applies the results of Chapter 8 to bound the expected running time of the

locking version of PBFS. For an input graph G = (V,E) with diameter D and and bounded

out-degree, we shall bound the work of PBFS’s user dag with O(V + E), and we shall

bound the span of PBFS’s user dag with O(D lg(V/D)). Using O(lg(V/D)) as the bound

on the worst-case running time of any REDUCE or CREATE-IDENTITY in PBFS, we obtain

TP(PBFS)≤ O(V +E)/P+O(D lg3(V/D)) to be the expected running time of PBFS.

First, we bound the work and span of the user dag for PBFS.

Lemma 12 Suppose that the locking version of PBFS is run on a connected graph G =

(V,E) with diameter D. The total work in PBFS’s user dag is O(V +E), and the total span

of PBFS’s user dag is O(D lg(V/D)+D lg∆), where ∆ is the maximum out-degree of any

vertex in V .

PROOF. In each layer, PBFS evaluates every vertex v in that layer exactly once, and

PBFS checks every vertex u in v’s adjacency list exactly once. In the locking version of

PBFS, each u is assigned its distance exactly once and added to the bag for the next layer

exactly once. Since this holds for all layers of G, the total work for this portion of PBFS is

O(V +E).

PBFS performs additional work to create a bag for each layer and to repeatedly split the

layer into GRAINSIZE pieces. If D is the number of layers in G, then the total work PBFS

spends in calls to BAG-CREATE is O(D lgV ). The analysis for the work PBFS performs to
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subdivide a layer follows the analysis for building a binary heap [11, Ch. 6]. Therefore, the

total time PBFS spends in calls to BAG-SPLIT is O(V ).

The total time PBFS spends executing BAG-INSERT depends on the parallel execution

of PBFS. Since a steal resets the contents of a bag for subsequent update operations, the

maximum running time of BAG-INSERT depends on the steals that occur. Each steal can

only decrease the work of a subsequent BAG-INSERT, and therefore the amortized running

time of O(1) for each BAG-INSERT still applies. Because BAG-INSERT is called once per

vertex, PBFS spends O(V ) work total executing BAG-INSERT, and the total work of PBFS

is O(V +E).

The sequence of splits performed in each layer cause the vertices of the layer to be

processed at the leaves of a balanced binary tree of height O(lgVd), where Vd is the set

of vertices in the dth layer. Since the series of syncs that PBFS performs mirror this split

tree, the divide-and-conquer computation to visit the vertices in a layer and then combine

the results has span O(lgVd). Each leaf of this tree processes at most a constant number of

vertices and looks at the outgoing edges of those vertices in a similar divide-and-conquer

fashion. This divide-and-conquer evaluation results in a computation at each leaf with

span O(lg∆). Each edge evaluated performs some constant-time work and may trigger a

call to BAG-INSERT, whose worst-case running time would be O(lgVd+1). Consequently,

the span of PBFS for processing the dth layer is O(lgVd + lgVd+1 + lg∆). Summing this

quantity over all layers in G, the maximum span for PBFS is O(D lg(V/D)+D lg∆).

We now bound the expected running time of PBFS.

Theorem 13 Consider the parallel execution of PBFS on a connected graph G = (V,E)

with diameter D running on a parallel computer with P processors using a work-stealing

scheduler. The expected running time of the locking version of PBFS is TP(PBFS)≤O(V +

E)/P+O(D lg2(V/D)(lg(V/D)+ lg∆)), where ∆ is the maximum out-degree of any vertex

in V . If we have ∆ = O(1), then the expected running time of PBFS is TP(PBFS)≤ O(V +

E)/P+O(D lg3(V/D)).

PROOF. To maximize the cost of all CREATE-IDENTITY and REDUCE operations in

PBFS, the worst-case cost of each of these operations must be O(lg(V/D)). Apply-
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ing Theorem 11 with τ = O(lg(V/D)), Work(PBFS) = O(V +E), and Span(PBFS) =

O(D lg(V/D) + D lg∆), we get TP(PBFS) ≤ O(V + E)/P + O(D lg2(V/D)(lg(V/D) +

lg∆)). If we have ∆ = O(1), this formula simplifies to TP(PBFS) ≤ O(V + E)/P +

O(D lg3(V/D)).
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Chapter 10

Conclusion

We conclude with a discussion of thread-local storage. Thread-local storage [29], or TLS,

presents an alternative to bag reducers for implementing the layer sets in a parallel breadth-

first search. The bag reducer allows PBFS to write the vertices of a layer in a single data

structure in parallel and later efficiently traverse them in parallel. As an alternative to bags,

each of the P workers could store the vertices it encounters into a vector within its own

TLS, thereby avoiding races. The set of elements in the P vectors could then be walked

in parallel using divide-and-conquer. Such a structure appears simple to implement and

practically efficient, since it avoids merging sets.

Despite the simplicity of the TLS solution, reducer-based solutions exhibit some ad-

vantages over TLS solutions. First, reducers provide a processor-oblivious alternative to

TLS, enhancing portability and simplifying reasoning of how performance scales. Second,

reducers allow a function to be instantiated multiple times in parallel without interference.

To support simultaneous running of functions that use TLS, the programmer must manu-

ally ensure that the TLS regions used by the functions are disjoint. Third, reducers require

only a monoid — associativity and an identity — to ensure correctness, whereas TLS also

requires commutativity. The correctness of some applications, including BFS, is not com-

promised by allowing commutative updates to its shared data structure. Without commu-

tativity, an application cannot easily use TLS, whereas reducers seem to be good whether

commutativity is allowed or not. Finally, whereas TLS makes the nondeterminism visible

to the programmer, reducers encapsulate nondeterminism. In particular, reducers hide the

73



particular nondeterministic manner in which associativity is resolved, thereby allowing the

programmer to assume specific semantic guarantees at well-defined points in the compu-

tation. This encapsulation of nondeterminism simplifies the task of reasoning about the

program’s correctness compared to a TLS solution.

Nondeterminism can wreak havoc on the ability to reason about programs, to test their

correctness, and to ascertain their performance, but it also can provide opportunities for ad-

ditional parallelism. Well-structured linguistic support for encapsulating nondeterminism

may allow parallel programmers to enjoy the benefits of nondeterminism without suffering

unduly from the inevitable complications that nondeterminism engenders. Reducers pro-

vide an effective way to encapsulate nondeterminism. I view it as an open question whether

a semantics exists for TLS that would encapsulate nondeterminism while providing a po-

tentially more efficient implementation in situations where commutativity is allowed.
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