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Abstract— This paper has proposed a design concept of a
spherical actuator including a ball-shaped rotor with a full
circle of permanent-magnet (PM) poles and a spherical-shell-
like stator with two layers of circumferential air-core coils. One
key feature of this design is parametrization of the PM pole,
which benefits the design optimization of the spherical actuator
greatly. According to the magnetic field model, the variation of
flux density with respect to PM-pole parameters can be revealed.
Therefore, these parameters can be appropriately chosen to
achieve a high magnetic flux density. Another advantage of
this design is the singularity-free, which is verified within the
workspace with torque model and condition numbers.

Index Terms— Spherical actuator, Magnetic field model, De-
sign optimization

I. INTRODUCTION

The rapid advances in robotics and automatic manufac-
turing have brought about the demand of multi-degree-of-
freedom (DOF) actuators to replace the conventional spher-
ical motion mechanisms which are composed of several
single-axis actuators. One of the effective options is the
spherical actuator which can achieve a 2/3-DOF rotational
motion in only one joint. This type of actuators have the
virtues of compactness, uniform motion and nonsingularity
etc. Williams and Laithwaite et al. have done some pioneer
work on the spherical induction motor [1] [2]. Its magnetic
field and torque were analyzed by Davey et al [3]. This
induction motion can only achieve 2-DOF spherical motion.
As an improvement, a 3-DOF induction spherical motor was
conceptualized by Vachtsevanos et al [4]. However, owing
to the complexity in mechanical and winding design, it is
difficult to produce prototype. Lee et al. [5] have developed
a variable-reluctance spherical motor, which has a compact
size as well as a desirable working range. A nonlinear toque
model relates the current inputs and the torque output, which
is not favored by real-time control [6]. PM spherical actuators
which can achieve either 2-DOF motion or 3-DOF motion
are developed by Wang et al [7] [8]. The rotor completely
consists of magnetized rare earth materials (NdFeB), i.e. the
rotor pole’s dimension has been fixed. This configuration
increases not only the inertia moment of the rotor due to
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the high density of rare earth material (7.5g/mm3) but also
the system cost.

Generally speaking, electromagnetic motors offer advan-
tages such as fast response, high torque and moderate voltage
operation, etc. In addition, as an optional force/torque gener-
ating element of electromagnetic motors, PM has the virtue
of no excitation losses because there is no electrical energy
absorbed by the field excitation system [9]. For these reasons,
a PM spherical actuator based on the electromagnetic princi-
ple [10] [11] is proposed in this research. More importantly,
the rotor pole is parameterized, which contributes to the
design optimization of this actuator. In our previous study
[12], based on the parameterized poles, the magnetic field
model and the torque model have been derived. The objective
of this paper is to determine appropriate values of these
parameters according to the theoretical models and analyze
the nonsingularity of this spherical actuator.

In following sections, the working principle of this spheri-
cal actuator is introduced and the models of both the magnetic
field and the torque are reviewed. According to the magnetic
field model, the design optimization of PM & coil poles
is considered. Based on the design optimization, a research
prototype has been developed. After that, by taking advantage
of the torque model, nonsingularity property of this spherical
actuator design is verified.

II. WORKING PRINCIPLE & THEORETICAL
MODELS OF THE PM SPHERICAL ACTUATOR

A. Working Principle

The working principle of this spherical actuator is illus-
trated in Fig. 1. This spherical actuator consists of a ball-
shaped rotor with a full circle of PM poles and a spherical-
shell-like stator with two layers of circumferential air-core
coils. The rare earth PMs can generate high flux density
within the actuator, and the air-core coils may simplify
the torque model in a linear fashion. With a pair of coils
activated in two longitudinal directions, the rotor creates
tilting motions in two orthogonal directions as shown in Fig.
1(a) and (b). By energizing the rest of the circumferential
coils, the rotor can spin about its axis. Therefore, through
varying the input currents of the coils, the actuator can
produce any desirable 3-DOF rotational motion within the
workspace.
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Fig. 1. 3-DOF motion of spherical actuator

B. Magnetic Field Model

Figure 2(a) illustrates the alternately magnetized PM poles
along the equator of the rotor. Note that air slots exist in
between PM poles, which generalizes the study of poles
pattern. Figure 2(b) shows the structure of a single PM
pole clearly, i.e. the approximate dihedral cone enclosed by
ABCD and abcd. The dihedral cone can be defined by
four parameters: latitudinal angle α, longitudinal angle β,
rotor radius Rr and rotor core radius Rb. (The core can be
used for the assembly of the spherical bearing.) The rotor
space under study is divided into three regions. The air space
outside the rotor is called Region I . The volume enclosed
by ABCD and abcd, the PM pole (filled with rare earth
material), is called Region II . The inner core enveloped
by abcdO filled with ferromagnetic materials such as soft
iron is called Region III . Only the radial component of the
flux density is able to generate a torque with respect to the
rotor center [12]. By using the Laplace’s equation and the
boundary conditions among these three regions, this radial
component is formulated as

BIr =
15µ0M0cd4

8π

√
35

2
r−6 sin4 θ(a cos 4φ − b sin 4φ), (1)

where µ0 is the permeability of free space with the value of
4π × 10−7H/m; θ, φ and r form the spherical coordinates
affixed on the rotor frame as shown in Fig. 2(a); M0 is the
magnitude of the residual magnetization vector M0 (A/m)
which is related to the remanence Brem (T) by M0 =
Brem/µ0; and

d4 = d⊥4 /d�4 , (2)

d⊥4 = R6
r +

9µIIrcR
6
bR

9
r

4(µIIIr−µIIrc)R9
b−(4µIIIr+5µIIrc)R9

r

,

d�4 = 5(µIIrc − 1) +

9µIIrc(4µIIIr + 5µIIrc)R
9
r

4(µIIIr − µIIrc)R9
b − (4µIIIr + 5µIIrc)R9

r

,

Rr (mm) is the rotor radius; Rb (mm) is the radius of Region
III; the dimensionless quantity, µIIrc is the relative recoil
permeability of the rare-earth material; µIIIr is the relative
permeability of Region III; a, b and c can be calculated by

Fig. 2. Arrangement of the rotor poles

following integral functions

a + bi=

∫ 2π

0

(−1)(p−1)cos(φ − α

2
− π

4
(p − 1))e−imφdφ, (3)

p = 1, 2, 3, ..., 8,

c=

∫ π

0

√
2n + 1

4π

(n − m)!

(n + m)!
Pm

n (cos θ) sin2 θdθ, (4)

Pm
n (cos θ) are associated Legendre functions [13]. To sim-

plify the computation, only the fundamental terms, i.e. n = 4
and m = ±4 are considered in the derivation of the magnetic
field. Note that these integrals are only valid within the range
of

π

4
(p − 1) < φ <

π

4
(p − 1) + α, p = 1, 2, ...8,

π

2
− β

2
< θ <

π

2
+

β

2
.

For the rest non-magnetized regions in the rotor, the integral
functions are equal to zero.

C. Torque Model

To develop a servo system for the position and speed
control of the spherical actuator, torque modeling of the
actuator is necessary. According to the Lorentz force law
[14], the orientation-dependant torque model of this spherical
actuator that relates the torque output to the current input is
derived [12]. The torque occurring between the ith coil and
the magnetic field of the rotor is

Ti =

⎡
⎣ Txi

Tyi

Tzi

⎤
⎦=Tc

⎡
⎣ fx(θi, φi)

fy(θi, φi)
fz(θi, φi)

⎤
⎦ Ji =Tcf(θi, φi)Ji, (5)

where

Tc =

√
35

2

15µ0M0cd4

16π
(R−2

0 − R−2
1 ),

R0 (mm), R1 (mm) are distances from the rotor center to the
top and bottom surfaces of the coil respectively as shown in
Fig. 3; Ji (A/mm2) is the current density passing thought the
ith coil; fx(θi, φi), fy(θi, φi) and fz(θi, φi) are trigonometric
functions related to the orientation of the coil axis in the rotor
frame which is specified by θi and φi. Consider the spherical
actuator with a full set of coils. N torque equations similar
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Fig. 3. Torque formulation (sectional view)

to Eqn. (5) can be obtained. Merging these torque equations
into a matrix form yields

T = Tc

[
fx(θ1, φ1) fx(θ2, φ2) · · · fx(θN , φN )
fy(θ1, φ1) fy(θ2, φ2) · · · fy(θN , φN )
fz(θ1, φ1) fz(θ2, φ2) · · · fz(θN , φN )

]⎡⎢⎢⎣
J1

J2

...
JN

⎤
⎥⎥⎦ , (6)

where
[

J1 J2 · · · JN

]T
is a vector of the currents

passing through Coil 1, Coil 2, · · ·, Coil N . For brevity, let
Q be the torque matrix, Eqn. (6) is then

T = TcQ
[

J1 J2 · · · JN

]T
. (7)

III. DESIGN OF PM & COIL POLES

High flux density in Region I contributes to high torque of
the spherical actuator. Therefore, the purpose of the PM pole
design is to achieve high flux density based on the magnetic
field model. On the other hand, excessive mass of PM poles
which does not increase the flux density evidently should be
avoided. Design of the coil pole aims at more turns of wires
to achieve a high torque.

A. Determination of α

Inspection of Eqn. (1) shows that the magnetic flux density
is affected by the constants a, b and c, which in turn are
determined by α and β according to Eqns. (3) and (4).
To facilitate the following investigation, Eqn. (1) can be
reorganized as

BIr =
15µ0M0cd4

8π

√
35

2
(a2 + b2)r−6 sin4 θ cos(4φ + φ0),(8)

where φ0 is determined by cos φ0 = a√
a2+b2

and sin φ0 =
b√

a2+b2
. According to Eqn. (8), α affects the magnitude of

the flux density through the term of
√

a2 + b2. This property
gives a means to choose a suitable α so that a reasonable
magnetic flux density can be obtained. Through computation,
the curve relating

√
a2 + b2 to α is presented in Fig. 4(a). It

can be seen that although
√

a2 + b2 increases continuously
within the range of 0 < α < 45◦, the augmentation is
neglectable after α = 40◦. Therefore, α = 40◦ is determined
for the PM poles. This value offers additional benefits. (1)
The remaining 5◦ angle provides space to design a fixture in
the rotor frame for holding PM poles. (2) The mass/moment
of inertia of the rotor is reduced considerably.

Asides from the magnitude of the flux density, α can also
be used to analyze the positions where the flux density arrives
at a maximum value. According to Eqn. (8), the magnitude of
BIr takes the maximum value, when sin θ = 1 and cos(4φ+
φ0) = ±1, i.e. when θ = π/2 and

φ =
k

4
π − φ0

4
, k = 0, 1, 2, ..., 7. (9)

Clearly, the condition of θ = π/2 indicates that the max-
imum flux density must be along the equator of the rotor.
Subsequently, the attention is restricted to the condition of
φ = kπ/4 − φ0/4. The discussion begins with the special
case of k = 0. It can be verified that a is a positive value
whereas b is a negative one. In order to meet the requirement
of cos φ0 = a√

a2+b2
> 0 and sin φ0 = b√

a2+b2
< 0, the phase

of φ0 has to be in the fourth quarter. In other words, −φ0 lies
in the first quarter, or 0 < −φ0/4 < π/8. Therefore, given
a value of a + bi that can be calculated from α according
to Eqn. (3), the angle of −φ0/4 can be uniquely determined
in the first quarter. In short, a mapping between α and φ0

can be found. Because φ = −φ0/4 is one position having
maximum flux density, the mapping between α and −φ0/4
is considered. The relationship between −φ0/4 and α can be
illustrated in Fig. 4(b). It is easy to find out that −φ0/4 is
always half of α, i.e. −φ0/4 = α/2. In physics, this result
indicates that one of the maximum value of BIr (k = 0) is at
the position of φ = α/2 or the center of PM-pole 1. Similarly,
for k = 1, 2, ..., 7, the relation φ = kπ/4 + α/2 holds. All
these positions locate at the center lines of PM poles in φ
direction. Consider both θ = π/2 and φ = kπ/4 + α/2. It
can be seen that all of the maximum flux density are at the
center points on top surfaces of eight PM poles.

B. Determination of β

According to Eqn. (4), the constant c is specified by
the angle β of the PM pole through the integral range
π/2 − β/2 < θ < π/2 + β/2. From Eqn. (1), it can be
seen that large c leads to high BIr. Hence, an appropriate
value of β may result in high flux density BIr. As a matter
of convenience, let β1 = β/2, where β1 varies from 0 to 90◦.
By using Eqn. (4), the relation between β1 and the constant
c is plotted in Fig. 5. Inspection shows that after the point of
β1 = 35◦, c does not increase critically. Therefore, β1 = 35◦,
i.e. β = 70◦ is chosen for the design of PM pole.
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C. Effect of Rr

According to Eqn. (1), the flux density is proportional
to the constant d4 which in turn is related to the Rr by
Eqn. (2). In order to simplify the study, let Rb = 0. Figure
6(a) illustrates the relationship between Rr and d4 explicitly.
Approximately, the value of d4 increases exponentially with
respect to Rr. Therefore, large size of the rotor is theo-
retically preferred to create a high flux density. Obviously,
huge size of the rotor is not feasible in practice. Due to the
structural constraint in the spherical actuator, the rotor size
is chosen as 46.5mm in our case.

D. Optimum Value of Rb

As long as parameters α, β and Rr are determined, the
size of the PM pole is varied by Rb only as shown in Fig. 2.
The larger is the value of Rb, the smaller is the size of PM
pole. The relationship between Rb and 1/d4 reflected in Eqn.
(2) can be plotted in Fig. 6(b). It can be seen that large size of
PM pole, or small value of Rb produces higher magnetic flux
density. However, when Rb shrinks to a certain value, such as
23mm indicated in Fig. 6(b), there is no evident increase of
the flux density. This fact justifies the assumption of Rb = 0
when evaluating the effect of Rr in last subsection. As a
result, Rb = 23mm is taken as the inner radius of the PM
pole. This value allows a hollow space in the rotor core,
which provides the assembling space for a spherical bearing
as well as diminishes the inertia moment of the rotor.

Thus far, all dimensions of the PM pole have been de-
termined, i.e. α = 40◦, β = 70◦, Rr = 46.5mm and
Rb = 23mm.

E. Coil Structure

The other critical element to generate a torque of the
spherical actuator is air-core coils. The design of the coil
is relatively straightforward. According to Lorentz force
law, in order to achieve high torque which is favored by
system performance, large number of winding turns are the
purpose of coil design. Two types of coil structures have been
proposed as shown in Fig. 7. Compared with the straight coil,
the number of winding turns of the trapezoid-shaped coil can
rise more than 50%. As a tradeoff, it is a challenge to wind
and tauten the coil. Special fixtures and winding approach
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for this type of coils are investigated in order to replace the
current straight coil.

IV. NONSINGULARITY OF THE WORKSPACE

Singularities here are defined as certain orientations of the
rotor where no motion or no torque can be generated with
respect to the rotor center even though large currents are
supplied. These singularities have to be strictly avoided in
the design because they may cause severe malfunctions. In a
mathematical sense, nonsingularity can be stated as for any
T in Eqn. (6), there is at least one solution of [J1J2...JN ]T ,
which implies that the matrix Q in Eqn. (7) must have a full
rank. Having known that the matrix Q is specified by the
orientation angles of coils in the rotor frame, θi and φi, Q
can also be determined by the rotor orientation in the stator
frame. In other words, corresponding to each rotor orientation
in the stator frame, a series of θi, φi and thus the matrix
Q can be uniquely determined. Consequently, evaluating the
nonsingularity attribute for every orientation of the rotor in
the workspace suffices to justify the nonsingularity of this
spherical actuator.

A straightforward way to verify the nonsingularity is to
compute the rank of Q for every possible set of θi, φi, where
i = 1, 2, 3, ..., N . If all ranks are equal to 3, i.e. Q is always a
full rank matrix, the spherical actuator is totally singularity-
free. Otherwise, singularities exist within the workspace.
Although the straightforward way is clear and simple, it does
not reveal how close the system includes singularity points.
Therefore, another method based on the condition number of
Q is proposed to satisfy this requirement.
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A. Mathematical Background

Before verifying the nonsingulariy property of the spheri-
cal actuator, fundamental concept pertaining to the condition
number [15] is briefly reviewed. The condition number for
square/non-square matrices is computed from the character-
istic roots or singular values of the matrix by

cond(Q) =
largest singular value

smallest singular value
.

Ideally, when cond(Q) = 1, the system possesses a good
condition. When cond(Q) � 1, normally greater than 20,
the system is ill-defined or nearly singular [16].

B. Representation of the Rotor Orientation

The workspace of the spherical actuator is shown in Fig.
8(a). Imagine that a series of PM poles are mounted along the
equator of the rotor, whereas the coils on the stator point to
the rotor center with the their axes. Additionally, the coils
are symmetrically arranged with respect to the equatorial
plane, with a angle θs between one pair of neighboring coils
residing in different layers. It can be seen that the rotor can
create a non-constrained spinning motion about its own z-
axis, Zr, wherever the rotor axis orients. However, when the
rotor inclines to the position where one PM’s axis is collinear
with that of the coil, it cannot incline further in the same
direction, i.e. the rotor reaches its boundary of the workspace.
Based on this observation, it is conclude that Zr axis of the
rotor can only move within a cone-shaped workspace with a
cone angle θs as shown in Fig. 8(a).

Next consider how an orientation of the rotor can be
achieved. Let the initial orientation be the position where
the rotor frame (Xr, Yr, Zr) coincides with the stator frame
(Xs, Ys, Zs) (Fig. 8(b)). In order to arrive at an arbitrary final
orientation within the workspace, three sequential rotations
have to take place. (1) The rotor rotates about the Zr axis by
an angle of φr, ranging from 0◦ to 360◦. (2) About the Yr

axis after the first rotation, the second rotation of θr occurs,
ranging from 0 to θs/2. This rotation along with the first one
determine the direction of the rotor axis in the stator frame.
(3) The spinning motion happens about the Zr axis again by
an angle of ϑr, ranging from 0 to 360◦. Through these three
rotations, any orientation of the rotor within the workspace

can be achieved. Correspondingly, the three rotation matrices
Rz(φr), Ry(θr) and Rz(ϑr) can be obtained [17].

C. Computation of Condition Number

1) Initial Values of θi and φi: Because the relative
positions of coil’s axes in the rotor frame at the starting
orientation are known, it is easy to obtain the initial values
of θi, φi, i.e. θi0 = π/2 − θs/2, φi0 = π/4(i − 1) for
Coil i = 1, 2, ..., 12, which form the top layer of the coils,
and θi0 = π/2 + θs/2, φi0 = π/4(i − 13) for Coil i =
13, 14, ..., 24, which compose the bottom layer of the coils.
The subscript 0 represents the initial value of the ith coil.

2) Unit Vector on the Coil Axis: Take a unit vector along
the axis of the first coil. The coordinates of the end point
of this vector in the rotor frame can be calculated as p10 =
[sin θ10 cos φ10, sin θ10 sin φ10, cos θ10]

T .
3) Final Position of the Point: By using the three conse-

quential rotations introduced previously, the final coordinates
of the point p10 in the rotor frame can be obtained via
following formula

p1 = [p1x, p1y, p1z]
T = [Rz(φr)Ry(θr)Rz(ϑr)]

T p10.

4) Computation of θ1 and φ1: According to the final
position p1 relative to the rotor frame, θ1 and φ1 can be
obtained in terms of p1x, p1y and p1z as following

θ1 = arccos(
p1z√

p2
1x + p2

1y + p2
1z

) = arccos(p1z), (10)

φ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arccos(
p1x√

p2
1x + p2

1y

), p1y ≥ 0,

− arccos(
p1x√

p2
1x + p2

1y

), p1y < 0.
(11)

Note that because of the mechanical restrictions in the
spherical actuator, p2

1x + p2
1y �= 0.

5) Condition Number for One Orientation: Similarly, the
steps of 2, 3 and 4 repeat for the remaining coils. Thus a
complete set of θi and φi are obtained. Substituting all these
values into Eqn. (6), the matrix Q can be eventually obtained.
Subsequently, the condition number of Q corresponding to
current rotor orientation is calculated.

6) Condition Numbers for all Orientations: Following the
same process, calculation of the condition numbers is carried
out for all attainable rotor orientations by varying φr, θr and
ϑr in their respective ranges. If it turns out that all condition
numbers are less than 20, then this spherical actuator is
singularity-free. Otherwise, singularity points may exist in
the workspace.

D. Visualization of the Result

Through computation of the condition number of Q within
the workspace, it is found out that the minimum value of the
condition number is 4.877, whereas the maximum value is
5.145. Both are far smaller than 20. Therefore this design of
the spherical actuator is not only singularity-free but also far
from the singularity positions.

The variation of the condition numbers can be presented
visually for easy understanding. By fixing φr at certain
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values such as 0◦, 15◦, 30◦, 45◦, etc, three variables, θr, ϑr

and condition number, denoted as Nc, form a Cartesian
coordinate. The variation of Nc is represented visually with
a surface in this Cartesian coordinate. One example is shown
in Fig. 9. Without loss of generality, only φr = 0◦ ∼ 45◦

is considered due to the symmetric arrangement of the PM
poles about the shaft.

V. PROTOTYPE DEVELOPMENT

TABLE I

STRUCTURE SPECIFICATIONS OF SPHERICAL ACTUATOR

Inner / outer stator radius 95 / 112.5 (mm)
Rotor radius 46.5 (mm)
Number of rotor poles (PM) 8
Number of stator poles (coil) 24 / 2 layers
Maximum tilting angle ±11◦

Maximal torque 6 (Nm)

Based on the above analysis, a research prototype of
the actuator has been developed as shown in Fig. 10. The
specification is listed in Table I. The large size of stator is
to facilitate the experimental research. For real product, the

size can be reduced. This configuration allows more coils be
incorporated into the stator so that the maximum tilting angle
can be increased up to ±45◦ and the resolution can also be
improved. By using this prototype, experiments on magnetic
field and torque variation can be carried out.

VI. CONCLUSION

The design concept of a PM spherical actuator with para-
meterized structure has been proposed. This parametrization
offers the opportunity for design optimization. In addition,
one effective method based on the condition number is
taken to verify the singularity-free property of this design.
Finally, according to the optimized dimensions, a prototype
is developed for future experimental works.
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