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Abstract. This paper concerns the characteristics of a novel quasi-zero stiffness (QZS) isolator 

developed by parallelly combining a slotted conical disk spring with a vertical linear spring. The 

static characteristics of the slotted conical disk spring as well as the QZS isolator are presented. 

The configurative parameters are optimized to achieve a wide displacement range around the 

equilibrium position for which the stiffness has a low value and changes slightly. The overload 

and underload conditions are taken into account, resulting in a Helmoholtz-Duffing equation. The 

primary resonance response of the nonlinear system composed by a loaded mass and the QZS 

isolator are determined by employing the Harmonic Balance Method (HBM) and confirmed with 

the results of numerical simulation. The frequency response curves (FRCs) are obtained for both 

force and displacement excitations. The force transmissibility, the absolute displacement and 

acceleration transmissibility are defined and investigated. The study shows that the overloaded or 

underloaded system can exhibit linear stiffness, softening stiffness, softening-hardening stiffness 

and hardening stiffness with the increasing excitation amplitude. The response and the resonance 

frequency of the system are affected by the excitation amplitude and the offset displacement to 

the position at which the dynamic stiffness is zero. To enlarge the isolation frequency range and 

improve the isolation performance, the loaded mass and the excitation amplitude should be 

suitably controlled. 

Keywords: quasi-zero stiffness (QZS), isolator, optimization, overload, frequency response curve 

(FRC), transmissibility. 

1. Introduction 

Low-frequency vibrations are more than often thought to induce harmful effects affecting the 

health of drivers and reducing the accuracy of high-precision machinery. In the ideal case of a 

mass supported by a linear stiffness on a rigid foundation, the vibration attenuation is only 

obtained for the excitation frequency is greater than √2 times the natural frequency of the passive 

linear isolator. It is evident that a smaller stiffness results in a border frequency band of isolation 

but leads to a larger static displacement of the supported mass as well [1]. In recent years, passive 

nonlinear vibration isolators, owning a high static stiffness resulting in a small static displacement 

and a low dynamic stiffness resulting in a wide frequency range of isolation, have drawn 

increasing attention since it can overcome the disadvantage. By choosing the appropriate system 

parameters of nonlinear isolators, a quasi-zero stiffness (QZS) isolator possessing zero dynamic 

stiffness at equilibrium position can be realized [2]. 

QZS isolators are mainly achieved by parallelly combining a negative stiffness structure with 

a positive stiffness structure. Ibrahim [3] reviewed the recent advances in passive nonlinear 

isolators with good ultra-low frequency isolation performance in detail. The comprehensive book 

by Alabuzev [4] et al. covered the fundamental theory and many prototypes of vibration protecting 
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systems characterized with QZS. Platus [5] combined positive and negative stiffness with two 

compressed bars hinged at the center. Zhang et al. [6] added a beam under axial force to a positive 

stiffness spring. Carrella et al. [2] proposed a High-Static-Low-Dynamic stiffness (HSLDS) 

isolator with a vertical linear spring in parallel with two oblique linear springs. Le and Ahn [7] 

studied a vibration isolator for vehicle seat exposed to low frequency excitation theoretically and 

experimentally, in which the negative stiffness structure is configured by a horizontal spring in 

series with a bar. Liu et al. [8] investigated the characteristics of a QZS isolator using Euler 

buckled beam as negative stiffness corrector. 

In this paper, a new QZS isolator including a vertical linear spring and a slotted conical disk 

spring is presented as shown in Fig. 1. The reason for taking a slotted conical disk spring as the 

negative structure is that it can supply a certain restoring force at the flatten state and produce 

axial nonlinear restoring force, which enables the isolator to support greater load and achieve the 

QZS property at the equilibrium position. 

Most studies of QZS isolators assume that the system keep balance at the equilibrium where 

the dynamic stiffness equals zero. However, the overload or underload condition is more common 

in practical engineering, which motivates this paper to some extent. The aim of this paper is to 

investigate the characteristics of the QZS isolator and the influence of overload or underload on 

the isolation performance of the QZS isolator. 

 
Fig. 1. Prototype model of the proposed QZS isolator 

2. Static characteristics of the QZS isolator 

2.1. The slotted conical disk spring 

Consider a slotted conical disk spring loaded axially as shown in Fig. 2. It can be divided into 

a coned disk segment and a number of lever arm segments. The solution for the straight slotted 

disk spring is fully stated by Schremmer based on the theory of Almen and Laszlo [9]. Note that 

the total displacement �  includes the rigid displacement ��  and bending displacement �� . The 

formulations between the axial applied force �� and the displacement are given by: 

�� = �1 − �� �
�� ���� �1 + �ℎ� − ��� � �ℎ� − ��2��� ��1 − ��� � �1 − ���� �, (1a)

�� = �(�� − �)
(1 − ��)��2��
�� , (1b)

� = ��1 − ��� �1 − ��� �� � �� + ��, (1c)

where � is the Young’s modulus of the slotted conical disk spring, � is the Poisson’s ratio and the 

other parameters are presented in Fig. 2. While the constants �� and � are defined as: 
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�� = 23 " # ���$� ln # ���$
'# ���$ − 1(� ,  (2a)

� = 3(1 − �� ��⁄ )
 *12 − 2 ���� + ������� �32 − ln �����+. (2b)

The width ratio of slot tip �� to slot datum �� which is used to express the slot profile of a 

slotted conical disk spring does not significantly affect the nonlinear force-displacement [10]. 

Thus, simplified formula defining the slot profile with respect to the constant slot number  , is 

introduced as follows: 

�� = "�2 ,   �� = "��2 . (3)

Based on Eqs. (1) and (3), one can get the relationship between the total displacement � and 

the rigid displacement ��: 

� = ��1 − ��� �1 − ��� �� � ��
+ �(�� − �)
"��

���� ��1 − ��� � �1 − ���� � �� �1 + �ℎ� − ��� � �ℎ� − ��2���. (4)

When the coned disk segment of the slotted conical disk spring is in a horizontal line which 

means �� = ℎ, the total displacement and the restoring force is (�-, ��-). It is worthy of note that 

the force-displacement curve is symmetric about the point as �� changes in the range [0, 2ℎ], i.e. �  changes in the range [0, 2�- ]. It is convenient to define the following non-dimensional 

parameters: 

�. = ��, (5a)

�.� = ��� , (5b)

�/� = ��� , (5c)

�. = ��, (5d)

ℎ0 = ℎ�, (5e)

�̂ = ��, (5f)

�0� = ����� (1 − ��)⁄ , (5g)

Γ = ���̂ 1 − �/�1 − �. , (5h)

3 = 1 − �.1 − �/�, (5i)

4 = ���" (�/� − �.)
�/��̂� 1 − �/�1 − �. . (5j)
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Let 56 = �.� − ℎ0, i.e. 76 = �. − �.-. By substituting the two equations and Eq. (5) given above 

into Eqs. (1a) and (4), the non-dimensional restoring force and the non-dimensional total 

displacement can be derived: 

�0� = Γ *12 56
 + 8�̂� − ℎ0�2 9 56 + �̂�ℎ0+, (6a)

76 = 356 + 4 *12 56
 + 8�̂� − ℎ0�2 9 56+, (6b)

where �0� is the non-dimensional force, 56 is the non-dimensional displacement of the coned disk 

segment, and 76 is the non-dimensional displacement of the slotted conical disk spring. In addition, �.- can be derived as �.- = (3 + 4�̂�)ℎ0 . 

By differentiating Eq. (6a, b) with respect to the non-dimensional displacement 56 separately, 

the non-dimensional stiffness of the slotted conical disk spring is obtained as: 

:0� = Γ #32 56� + �̂� − 12 ℎ0�$3 + 4 #32 56� + �̂� − 12 ℎ0�$. (7)

 
Fig. 2. The slotted conical disk spring under axial force 

Considering the parameters Γ > 0, 3 > 0 and 4 > 0, it can be found obviously that the 

stiffness is symmetric about 56 = 0 and gets the minimum value at this position as 56 changes in 

the range [−ℎ0, ℎ0], i.e. 76 changes in the range [−�.-, �.-]. Meanwhile, the slotted conical disk spring 

possesses continuous negative stiffness region when the parameters meet the condition  ℎ0 ∈ (√2�̂, ?2(�̂� + 3 4⁄ )). 

2.2. Design and optimization of the QZS isolator  

The schematic of the QZS isolator with a vertical linear spring and a viscous damper in parallel 

with a slotted conical disk spring acting as the negative stiffness structure is shown in Fig. 3. Here, 

the weight of the isolated mass is ignored and the stiffness of the linear spring is :@. As displayed 

in Fig. 3(a), the mass moves a certain total displacement � from the initial position by the force �. 

The restoring force can be expressed by: 
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� = :@� + ��= :@ A��1 − ��� �1 − ��� �� � ��
+ �(�� − �)
"��

���� �1 − ��� � �1 − ���� �� �1 + �ℎ� − ��� � �ℎ� − ��2���B
+ �1 − �� �
�� ���� �1 + �ℎ� − ��� � �ℎ� − ��2��� ��1 − ��� � �1 − ���� �. 

(8)

By introducing the non-dimensional restoring force �0 = � :@�⁄ , and transforming the initial 

point to the symmetric point of the isolator following the procedure in Section 2.1. Then the 

non-dimensional restoring force can be obtained as: 

�0 = 3C56 + ℎ0D + (4 + EΓ) *12 56
 + 8�̂� − ℎ0�2 9 56 + �̂�ℎ0+, (9)

where E = �� :@(1 − ��)⁄  is defined as the stiffness ratio between the slotted conical disk spring 

and the linear spring, and the other parameters have the same meaning with that in Eq. (3). 

Differentiating Eqs. (9) and (6b) with respect to the non-dimensional displacement 56 separately, 

one can get the non-dimensional stiffness of the isolator: 

:0 = 1 + EΓ �32 56� + �̂� − ℎ0�2 �
3 + 4 �32 56� + �̂� − ℎ0�2 �, (10)

where :0 = : :@⁄  is the non-dimensional stiffness. 

 
a) 

 
b) 

 
c) 

Fig. 3. Schematic representation of the QZS isolator. a) System balance at the position at which the 

dynamic stiffness is zero; b) overloaded system balance at a lower position;  

c) underloaded system balance at a higher position 

In operation, it is prospected that the isolator can reach the static equilibrium at the state the 

coned disk segment of the slotted conical disk spring is horizontal after loaded with a mass, in 

which 56 = 56- = 0, i.e. 76 = 76- = 0, and the stiffness of the isolator has a minimum value. Then 

setting the stiffness of the isolator to be zero at the equilibrium position provides that: 

EFGH = 3Γ(ℎ0� 2⁄ − �̂�) − 4Γ . (11)

In addition to the isolator possessing the QZS property, it is desirable for it to own a wide 

range of non-dimensional total displacement I0  from the equilibrium position for which the 

non-dimensional stiffness has a low value as well as changes slightly. By substituting  76 = 76- ± I0 = ±I0  and 56 = 56- ± K̂ = ±K̂ into Eqs. (6b) and (10) separately, these displacements 

are found to satisfy: 
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I0 = 3K̂ + 4 *12 K̂
 + 8�̂� − ℎ0�2 9 K̂+, (12a)

K̂ = L23 (:0 − 1)3 + MC1 − :0D4 + EΓN �ℎ0�2 − �̂��(1 − :0)4 + EΓ . (12b)

In this paper, the 50CrVA is used to be the material of the slotted conical disk spring, which 

has the following material properties: Young’s modulus � = 206 GPa, Poisson’s ratio � = 0.3 

and the ultimate stress O = 1275 MPa. The configurative parameters �/�, �., �̂ and ℎ0  are chosen 

from the set �/� ∈ [0.6, 0.9] , �. ∈ [0.1, 0.5] , �̂ ∈ [0.01, 0.1]  and ℎ0 ∈ (√2�̂, ?2(�̂� + 3 4⁄ )) 

according to the practical engineering conditions [11]. Note that the stiffness ratio E calculated 

using Eq. (11) should be positive and the non-dimensional stiffness :0  should not be negative. The 

optimization criteria includes the condition that the largest displacement is achieved at which the 

stiffness of the isolator is equal to that of the linear spring, i.e. :0 = 1, and the requirement that the 

non-dimensional stiffness changes slightly with the tolerance of Δ:0 = 0.0025 for Δ76 = 0.01 in 

the region around the equilibrium position. In addition, the maximum stress of the slotted conical 

disk spring with the configurative parameters given above occurs at the lower outer edge and 

should not be larger than the ultimate stress [9]. 

The results of the optimization are �/� = 0.83 , �. = 0.1 , �̂ = 0.01 and ℎ0 = 0.022 . The 

relationship between the non-dimensional stiffness :0  and the non-dimensional displacement 76 for 

the optimal parameters (Case 1) and other parameters satisfying the optimization criteria listed in 

Table 1 can be plotted in Fig. 4. The circles shown in Fig. 4 denote the maximum range I0  given 

by Eq. (12) calculated at :0 = 1. It can be seen obviously that the optimized isolator possesses a 

very small stiffness in the region around the equilibrium position and a smaller stiffness for a 

larger displacement from the static equilibrium position. 

 
Fig. 4. Non-dimensional stiffness characteristics of the isolator for different parameters:  

‘red line’ Case 1; ‘blue line’ Case2; ‘brown line’ Case 3; ‘green line’ Case 4 

Table 1.The configurative parameters of the QZS isolator 

Case �/� �.  �̂ ℎ0 

1 0.83 0.1 0.01 0.022 

2 0.83 0.1 0.02 0.031 

3 0.7 0.18 0.01 0.031 

4 0.61 0.25 0.01 0.036 

3. Dynamic characteristics of the QZS isolator 

3.1. Approximation of the restoring force 

The restoring force of the isolator �0 with respect to the total displacement 76 could be derived 

by Eqs. (6) and (9), which is very complicated and can be expanded to the third order Taylor series 

at the zero stiffness position 76 = 76- = 0. The approximate restoring force is given by: 
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�0 = Q + R76
, (13)

where Q = [3 + (4 + EΓ)�̂�]ℎ0  and R = (EΓ + 4)S 2(EΓ3)
.⁄  The exact restoring force 

expressed by Eqs. (6) and (9) and the approximate restoring force expressed by Eq. (13) are plotted 

in Fig. 5 both for the optimal parameters obtained in Section 2.2. Note that the error of the 

approximation depends on the non-dimensional displacement and less than 5 percent within the 

region |76| ≤ 0.06. 

 
Fig. 5. Non-dimensional force-displacement of the QZS isolator:  

‘red line’ exact expression; ‘blue line’ approximate expression 

3.2. Dynamic modeling and solution 

As shown in Fig. 3(a), the QZS isolator will keep balance at the equilibrium position  76 = 76- = 0  when loaded with an appropriate mass, at which the dynamic stiffness is zero. 

Considering the practical applications, it is more possible that the isolator will balance at 76 = +76V 

for overload or 76 = −76V for underload as shown in Fig. 3(b) and 3(c) separately, owning an offset 

displacement 76V. The static equilibrium equation of the QZS isolator can be derived as: :@�(Q ± R76V
) = WX. (14)

The non-dimensional force-displacement and stiffness characteristics of the isolator for 

overload and underload can be plotted in Fig. 6. It is evident that the equilibrium position for 

overload and underload will moves from the original position denoted by ‘o’ to a new position 

denoted by ‘*’ and ‘+’ separately, and the non-dimensional stiffness will not be zero at the new 

equilibrium position. The influence of overload and underload on the isolation performance of the 

isolator cannot be ignored. Go back to Fig. (3), the mass W can represent a machine excited by 

the harmonic force � = Y-cos(]�),  or an equipment isolated from the base excitation   = ^-cos(]�). By applying the Newton’s second law of motion, one can get the dynamic 

equations of the system separately for the force and displacement excitations given above: W7_ + `7a + :@�[Q + R(76 ± 76V)
] − WX = Y-cos(]�), (15a)Wb_ + `ba + :@�[Q + R(b6 ± 76V)
] − WX = W]�^-cos(]�), (15b)

where b = 7 −   is the relative displacement between the mass and the base, b6 = b �⁄  is the 

non-dimensional relative displacement. Introducing the non-dimensional parameters as follows: 

]� = c:@W ,   d = ]��,   Ω = ]]� ,   f = `2W]� ,   Y.- = Y-W]��� ,   ^̂- = ^-� , 
and combing Eq. (14), Eqs. (15a) and (15b) can be rewritten separately as below: 

76 gg + 2f76 g + 3R76V�76 ± 3R76V76� + R76
 = Y.-cos(Ωd), (16a)b6 gg + 2fb6 g + 3R76V�b6 ± 3R76Vb6� + Rb6
 = Ω�^̂-cos(Ωd). (16b)
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Eq. (16) can be expressed by a uniform equation for simplicity: h6gg + 2fh6g + i�h6 ± i�h6� + Rh6
 = jkcos(Ωd), (17)

where i� = 3R76V�, i� = 3R76V, k is the amplitude of the harmonic excitation, and j = 1 for the 

force excitation; j = Ω�  for the displacement excitation. By applying the transformation  l̂ = h6 ± i� (3R)⁄ = h6 ± 76V 
 
into Eq. (17) [12], one can get a Duffing equation under asymmetric 

excitation: l̂gg + 2fl̂g + Rl̂
 = ±i + jkcos(Ωd), (18)

where the constant term i = R76V
. Using the Harmonic Balance Method (HBM), the approximate 

solution corresponding to the steady-state response in the region of the primary resonance is 

assumed to be: l̂ = mV + m�cos(Ωd + n). (19)

 
Fig. 6. Non-dimensional force-displacement and stiffness characteristics of the overloaded or  

underloaded system. ‘*’ Equilibrium position of the overloaded system shown in Fig. 3(b);  

‘+’ equilibrium position of the underloaded system shown in Fig. 3(c) 

Substituting Eq. (19) into Eq. (18), equating constant terms, and the coefficients of the terms 

containing sin(Ωd) and cos(Ωd) separately to zero, the steady-state response can be expressed by 

the constant term mV, the amplitude of the harmonic term m� and the phase n as: 

RmV
 + 32 RmVm�� = ±i, (20a)

−Ω�m� + 3RmV�m� + 34 Rm�
 = jkcos(n), (20b)−2fΩm� = jksin(n). (20c)

Combing Eqs. (20a), (20b) and (20c) gives the implicit equation for the amplitude of the 

constant term mV: 25R
mVr − 20R�Ω�mVt − 15R�imVu + 4RΩ�(Ω� + 4f�)mVv + 16RiΩ�mVS+3R(2j�k� − 3i�)mV
 − 4iΩ�(Ω� + 4f�)mV� + 4i�Ω�mV − i
 = 0.  (21)

The implicit equations for the peak amplitude of the constant term for the force and 

displacement excitation, i.e. mxyz and mVy{, can be derived separately from Eq. (21): 

−20R
f�mVyzr + 8R�fSmVyzt + 36R�if�mVyzu − 3R�k�mVyzv − 16RifSmVyzS− 12Ri�f�mVyz
 + 3Rik�mVyz� + 8i�fSmVyz − 4i
f� = 0, (22a)
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(−75RSk� − 80R
f�)mVy{r + 32R�fSmVy{t + (45R
ik� + 144R�if�)mVy{u− 64RifSmVy{S + (27R�i�k� − 48Ri�f�)mVy{
 + 32i�fSmVy{ + (3Ri
k�− 16i
f�) = 0. (22b)

Then the excitation frequency ratios that corresponding to the maximum responses can be 

expressed by: 

ΩVyz� = 5R�mVyzu − 4Rf�mVyzS − 4RimVyz
 + 4if�mVyz − i�2RmVyzS − 2imVyz , (23a)

ΩVy{� = 5R�mVy{u − 4Rf�mVy{S − 4RimVy{
 + 4if�mVy{ − i�2RmVy{S + 3Rk�mVy{� − 2imVy{ . (23b)

The amplitude m�, the peak amplitude m�yz and m�y{ of the harmonic term for the force and 

displacement excitation can be calculated separately from Eq. (20a). Eqs. (21), (22) and (23) are 

valid for the overloaded system balance at the position 76 = +76V. The solution for the response of 

the underloaded system balance at another position 76 = −76V can be obtained by transforming 76V 

to −76V in Eq. (21). According to the investigation of Kovacic et al. [13], it was found that the 

system excited by the asymmetric force may have a maximum number of one, three of five 

steady-state responses and multiple jumps for different combinations of excitation amplitudes. 

For the system balance at the equilibrium position 76 = 76- = 0 after loaded with an appropriate 

mass, the steady-state solutions of the system for both the force and displacement excitation can 

be derived by following the procedure above and setting 76V = 0. The dynamic equation is: h6gg + 2fh6g + Rh6
 = jkcos(Ωd). (24)

The implicit amplitude frequency equation is: 916 R�m�u − 32 RΩ�m�S + Ω�(Ω� + 4f�)m�� − j�k� = 0. (25)

For the two types of excitation, the peak amplitude of the response m�yz and m�y{, and the 

excitation frequency ratios corresponding to the maximum responses can be obtained as follows: 

m�yz = c2f
 + ?4fu + 3Rk�3Rf , (26a)

m�y{ = 8f�?48Rf� − 9R�k�, (26b)

Ω�yz = c?4fu + 3Rk� − 6f
4f , (27a)

Ω�y{ = L 92 Rk�fu − 12f�
12fu − 454 Rk�fS + 278 R�kSf� − 81256 R
ku. (27b)

The single degree of freedom (SDOF) system without the slotted conical disk spring can be 

regarded as the equivalent linear system (ELS). The dynamic equation for the ELS is: h6gg + 2fh6g + h6 = jkcos(Ωd). (28)
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The amplitude of the steady-state response for Eq. (28) can be derived as: 

m� = jk?(1 
 Ω��� � �2fΩ��	.	 (29)

The optimal parameters �/� � 0.83 , �. � 0.1 , �̂ � 0.01 , �0 � 0.022  and the damping ratio  

f � 0.03 are chosen to conduct the following investigation. Based on Descartes’ Rule of Signs 

[14] and the analysis above, the ways in which the maximum number of the steady-state values of 

mV  and m�  depend on the offset displacement 76V  and the excitation amplitude k  are shown in 

Fig. 7.  

 
Fig. 7. The maximum number of the steady-state amplitudes: one, three or five, as a function of the 

non-dimensional offset displacement 76V and non-dimensional excitation amplitude k 

As shown in Fig. 7, there are a maximum number of one, three and five steady-state values for 

both force excitation and displacement excitation. For the force excitation, the FRCs with a 

maximum number of one, three and five steady-state values corresponding to 76V � 1.7×10
-2,  

k � 1×10
-4; 76V � 1.7×10

-2, k � 8×10
-4 ; 76V � 2.7×10

-2, k � 1.2×10
-3 respectively, and for the 

displacement excitation, the FRCs with a maximum number of one, three and five steady-state 

values corresponding to 76V � 1.7×10
-2

,  k � 1×10
-3

;  76V � 1.7×10
-2

,  k � 4.8×10
-3

; 

	76V � 2.7×10
-2, respectively are shown in Fig. 8 to illustrate these cases. In Fig. 8, the approximate 

solutions obtained by HBM are compared with the exact solutions obtained by numerical 

simulation. By using the MATLAB ode45 function and calculating the first harmonic from the 

Fourier series coefficients of the steady-state response, the exact solutions are obtained as shown 

in Fig. 8 with the symbol ‘*’. It can be obviously seen that both the constant term and the first 

harmonic term of the response are predicted reasonably well in the frequency range using the 

HBM. 

 
Fig. 8. FRCs of the constant term mV and harmonic term m� for the optimal parameters and f � 0.03.  

a) For the force excitation: ‘black line’ 76V � 1.7×10
-2

, k � 1×10
-4

; ‘red line’ 76V � 1.7×10
-2

, k � 8×10
-4

; 

‘blue line’ 76V � 2.7×10
-2

, k � 1.2×10
-3

; b) For the displacement excitation: ‘black line’ 76V � 1.7×10
-2

, 

k � 1×10
-3

; ‘red line’ 76V � 1.7×10
-2

, k � 4.8�10-3; ‘blue line’ 76V � 2.7×10
-2

, k � 4.8×10
-3

; ‘green 

dashed line’ unstable solution, ‘o’ peak amplitude and ‘*’ numerical solution 
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4. Effects of the offset displacement and excitation amplitude on the QZS isolator 

To investigate the influence of the offset displacement 76V and excitation amplitude k on the 

FRCs and the transmissibility, the increasing values of the excitation amplitude k are chosen to 

be 1×10-4, 3×10-4, 8×10-4, 1.2×10-3 and 8×10-3 when the value of the offset displacement 76V is 

fixed to be 1.7×10-2 or 2.7×10-2 separately for the system excited by the harmonic force. And then 

the increasing values of the excitation amplitude k are chosen to be 1×10-3, 3×10-3, 4.8×10-3, 

7×10-3 and 5×10-2 when the value of the offset displacement 76V is also fixed to be 1.7×10-2 or 

2.7×10-2 separately for the system excited by the harmonic displacement. For the illumination 

convenience in the following sections, the system not being or being balance at the position at 

which the dynamic stiffness of the system is zero, i. e. the offset displacement 76V > 0 or 76V � 0, 

are called system I and system II separately. 

4.1. Effects on the FRCs for the force excitation and displacement excitation 

As shown in Fig. 9 and Fig. 10, the FRCs of system I and II are plotted separately for the both 

types of excitation, and that of the ELS is also plotted on the same figure for comparison. Note 

that the same values of the excitation amplitude k and the damping ratio f are chosen in the ELS. 

 
a) k = 1×10

-4
 

 
b) k = 3×10

-4
 

 
c) k = 8×10

-4
 

 
d) k = 1.2×10

-3
 

 
e) k = 8×10

-3
 

Fig. 9. FRCs of system I, system II and their ELS for force excitations with different offset  

displacements and excitation amplitudes. ‘red line’system I with 76V = 1.7×10
-2

,‘blue line’  

system I with 76V = 2.7×10
-2

, ‘black line’ system II, ‘magenta line’ ELS, ‘green dotted  

line’ unstable solutions, ‘o’ peak amplitude of response 

By observing Fig. 9, for system I, a decrease in the offset displacement 76V yields a decrease in 

both the amplitude of the constant term mV and the resonance frequency, and an increase in the 

peak amplitude of the harmonic term m� 
when the excitation amplitude is fixed. Note that the 

constant term mV disappears in system II. With the increase of the excitation amplitude, the FRCs 

of the ELS is shifted upwards in the whole frequency region and the peak amplitudes always occur 

at Ω = 1. For system I, the amplitude of the harmonic term m� is also increases. But the effect of 
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the excitation amplitude on the constant term mV is only obvious around the resonance frequency, 

and larger excitation amplitude results in smaller peak amplitude of the constant term mV. For the 

frequency far away from the resonance frequency, the amplitude of the constant term mV does not 

change much and will approach to the value of the offset displacement 76V. It is also worthy of note 

that the resonance frequency of system I decreases at first, increases later, and finally becomes 

larger than that of the ELS with the increasing excitation amplitude. For system II, larger 

excitation amplitude yields both larger amplitude of the response and the resonance frequency. 

The excitation amplitude also effects the stiffness characteristics of system I and II obviously. 

Both system I and II approach to be a linear system if the excitation amplitude is small. When the 

excitation amplitude increases, system II always exhibits the hardening stiffness. However, with 

the increasing excitation amplitude, system I exhibits the softening stiffness, and then enters a 

region with the softening stiffness at first and the hardening stiffness later on. If the excitation 

amplitude keeps increasing, system I will only exhibit the hardening stiffness. 

 
a) k � 1×10

-3
 

 
b) k � 3×10

-3
 

 
c) k � 4.8×10

-3
 

 
d) k � 7×10

-3
 

 
e) k � 5×10

-2
 

Fig. 10. FRCs of system I, system II and their ELS for displacement excitations with different  

offset displacements and excitation amplitudes. ‘red line’ system I with 76V � 1.7×10
-2

, ‘blue line’  

system I with 76V � 2.7×10
-2

, ‘black line’ system II, ‘magenta line’ ELS, ‘green dotted line’  

unstable solutions, ‘o’ peak amplitude of response 

In addition, another conclusion about the three systems can be drawn. For the same excitation 

amplitude, the amplitude of the harmonic term m� in system II is larger than that in system I and 

the amplitude of the harmonic term m� in system I is larger than that in ELS at lower frequencies; 

but when the excitation frequency is around the resonance frequency of the ELS, the amplitude of 

the harmonic term m� in system II becomes smaller than that in system I and the amplitude of the 

harmonic term m� in system I becomes smaller than that in ELS; and at higher frequencies the 

amplitudes of the harmonic term m� in the three systems are almost the same. 

Fig. 10 is for the displacement excitation, of which the vertical coordinate represents the 

relative displacement. Unlike the FRCs for the force excitation, the amplitudes of the harmonic 

term m� in system I, II and the ELS will approach to the excitation amplitude with the increasing 

excitation frequency. The amplitude of the harmonic term m� in system II reaches the excitation 

amplitude at the lower frequency than that in system I, and the amplitude of the harmonic term m� 
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in system I reaches the excitation amplitude at the lower frequency than that in ELS. When the 

excitation amplitude is relatively large, unbounded responses will occur for both system I and II 

which is not observed in Fig. 9. 

4.2. Definition of the transmissibilities 

Force transmissibility for the force excitation and absolute displacement transmissibility for 

the displacement excitation are the key indexes to evaluate the vibration isolation performance of 

a vibration isolator [15]. According to the study of Ravindra and Mallik [12], it is concluded that 

the nonlinear system with asymmetric restoring force may not perform satisfactorily for the 

displacement excitation by using the absolute displacement transmissibility to evaluate the 

isolation performance. Therefore, the absolute acceleration transmissibility for the displacement 

excitation is also introduced to evaluate the isolation performance for the displacement excitation. 

4.2.1. Force transmissibility 

The force transmissibility is defined as the ratio of the amplitude of the non-dimensional 

dynamic force transmitted to the base, to the amplitude of the non-dimensional excitation force. 

It is given by: 

�z �
�0�
k
, (30)

where �0� = ��0�-� + �0�{� , �0�- is the non-dimensional elastic force and �0�{ is the non-dimensional 

damping force. 

For system I, the solution of Eq. (17) can be expressed by [16]: h6 = mVg + m�cos(Ωd + n), (31)

where the constant term mVg = mV ∓ 76V. 

The non-dimensional elastic force is: 

�0�- = i�h6 ± i�h6� + Rh6
. (32)

By substituting Eq. (31) into Eq. (32), one can get the implicit expression of the 

non-dimensional elastic force: 

�0�- = �0�V + �0��cos(Ωd + n), (33)

where: 

�0�V = i�mVg + i�mVg� + i�m��2 + RmVg
 + 32 RmVg m��, 
�0�� = i�m� + 2i�mVg m� + 34 Rm�
 + 3RmVg�m�. 

Only considering the dynamic force here, then the force transmissibility of system I can be 

expressed by: 

�z� = ��0��� + (2fΩm�)�k . (34)
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For system II, the force transmissibility is determined by [2]: 

�z�� �
?�Rm�


�� � �2fΩm�)�k . (35)

Using Eq. (29), the force transmissibility of ELS can be derived as: 

�z� = c 1 + (2fΩ)�(1 − Ω�)� + (2fΩ)�. (36)

4.2.2. Absolute displacement and acceleration transmissibility 

The absolute displacement transmissibility is defined as the ratio between the amplitude of the 

non-dimensional absolute displacement and amplitude of the non-dimensional excitation 

displacement. It is given by: 

�{ = hVk . (37)

For system I, one can get the expression of the absolute displacement of the mass by employing 

Eq. (18): h6 = l̂ ∓ 76V + ^̂ = mV ∓ 76V + m�cos(Ωd + n) + kcos(Ωd). (38)

The absolute displacement transmissibility can be defined as: 

�{� = |mV ∓ 76V| + ?m�� + k� + 2m�kcos(n)k . (39)

Then the absolute acceleration transmissibility of system II can be derived as: 

���� = |h_ || _̂| = |h6gg||^̂gg| = |b6 gg + ^̂gg||^̂gg| = |l̂gg + ^̂gg||^̂gg| = ?m�� + k� + 2m�kcos(n)k , (40)

where cos(n) in Eqs. (39) and (40) can be obtained by Eq. (20b). 

For system II, the absolute displacement and acceleration transmissibility have the same 

expression as: 

�{�� = ����� = ?m�� + k� + 2m�kcos(n)k , (41)

noting that the cos(n) in Eq. (41) should be obtained by setting mV = 0 in Eq. (20b). 

For the ELS, the absolute displacement and acceleration transmissibility are also the same with 

the force transmissibility and given by: 

�{� = ���� = c 1 + (2fΩ)�(1 − Ω�)� + (2fΩ)�. (42)
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4.3. Effects on the tranmissibilities 

The force transmissibility is plotted in Fig. 11. The absolute displacement and acceleration 

transmissibility are plotted in Fig. 12. All the transmissibility results are plotted in dB, i.e. as 

20log
10
�z, 20log

10
�{ and 20log

10
���. As shown in Fig. 11 and Fig. 12, both system I and II will 

exhibit superior or inferior isolation performance to the ELS depending on the excitation 

frequency range and the excitation amplitude. 

 
a) k � 1×10

-4
 

 
b) k � 3×10

-4
 

 
c) k � 8×10

-4
 

 
d) k � 1.2×10

-3
 

 
e) k � 8×10

-3
 

Fig. 11. Force transmissibility of system I, system II and their ELS for displacement excitations with 

different offset displacements and excitation amplitudes. ‘red line’ system I with 76V � 1.7×10
-2

,  

‘blue line’ system I with 76V � 2.7×10
-2

, ‘black line’ system II, ‘magenta line’ ELS,  

‘green dotted line’ unstable solutions, ‘o’ peak amplitude of transmissibility 

By observing Fig. 11, for system I, a decrease in the offset displacement 76V yields a decrease 

in both the peak amplitude of the force transmissibility and the resonance frequency, and the 

transmissibility curve approaches to the transmissibility curve of system II. If the force excitation 

amplitude is relatively large, the peak amplitude of the force transmissibility and the resonance 

frequency in system II are larger than that in system I. However, system II will present better 

isolation performance compared with system I when the excitation frequency exceeds the 

resonance frequency. For system II, larger excitation amplitude results in both larger peak 

amplitude of the force transmissibility and the resonance frequency. By combing the 

characteristics of the stiffness and resonance frequency for different excitation amplitudes in 

Section 4.2, it is found that the peak amplitude of the force transmissibility of system I decreases 

at first, increases later, and finally becomes larger than that of the ELS with the increasing 

excitation amplitude. For the same excitation amplitude, the force transmissibility of system II is 

larger than that of system I and the force transmissibility of system I is larger than that of the ELS 

at lower frequencies; but when the excitation frequency is around the resonance frequency of the 

ELS, the force transmissibility of system II becomes smaller than that of system I and the force 

transmissibility of system I becomes smaller than that of ELS; and at higher frequencies the force 

transmissibility of the three systems are almost the same. 

Different from the force transmissibility for the force excitation, both system I and II have 

unbounded absolute displacement and acceleration transmissibility as shown in Fig. 12. For 

system I, the absolute acceleration transmissibility is always better than the absolute displacement 
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transmissibility. For the same excitation amplitude, the interactive characteristics of both the 

absolute displacement and acceleration transmissibility among system I, II and their ELS are same 

with that of the force transmissibility when the excitation frequency is lower or around the 

resonance frequency of the ELS. However, at higher frequencies the absolute acceleration 

transmissibility of the three systems are almost the same while the absolute displacement 

transmissibility of system I is larger than that of system II and the ELS. And the absolute 

displacement transmissibility of system I increases with the increasing excitation amplitude at 

higher excitation frequencies. 

 
a) k � 1×10

-3
 

 
b) k � 3×10

-3
 

 
c) k � 4.8×10

-3
 

 
d) k � 7×10

-3
 

 
e) k � 5×10

-2
 

Fig. 12. Absolute displacement and acceleration transmissibility of system I, system II and their ELS for 

offset displacements with different equilibrium positions and excitation amplitudes. ‘red line’ absolute 

displacement transmissibility of system I with 76V � 1.7×10
-2

, ‘cyan line’ absolute acceleration 

transmissibility of system I with 76V � 1.7×10
-2

, ‘blue line’ absolute displacement transmissibility  

of system II with 76V � 2.7×10
-2

, ‘brown line’ absolute acceleration transmissibility of system II  

with 76V � 2.7×10
-2

, ‘black line’ system II, ‘magenta line’ ELS, ‘green dotted line’ unstable  

solutions, ‘o’ peak amplitude of transmissibility 

5. Conclusions 

In this paper, a QZS isolator fabricated by adding a slotted conical disk spring in parallel with 

a vertical linear spring is presented. Firstly, the geometrical configuration for designing the unique 

feature of quasi-zero stiffness is described and the corresponding mathematical modeling is 

formulated. The configurative parameters are optimized to achieve a wide range of the 

displacement from the equilibrium position for which the stiffness has a low value and changes 

slightly. 

Secondly, the system of an offset equilibrium position for overloaded or underloaded, and the 

system of an equilibrium position in which the dynamic stiffness is zero for loaded with an 

appropriate mass are studied. The primary resonance response for the force excitation and 

displacement excitation is separately derived by employing the HBM and confirmed by the results 

of numerical simulation. The ways in which the maximum number of the steady-state values 

depends on the offset displacement and the amplitude of the two types of excitation are also 

separately reported. 
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Thirdly, the frequency response curves of the two kinds of system for the two types of 

excitation have been plotted. The frequency response curves of their equivalent linear system are 

plotted in the same figure for comparison. The overloaded system can exhibits purely softening, 

mixed softening-hardening and purely hardening with the increasing excitation amplitude. It can 

be summarized that both larger offset displacement and excitation amplitude result in a higher 

resonance frequency. 

Finally, the force transmissibility, the absolute displacement and acceleration transmissibility 

are chosen to evaluate the isolation for the two kinds of systems and compared with their 

equivalent linear system. It can be concluded that adding the slotted conical disk spring acting as 

the negative structure to a linear spring is a feasible way to achieve the wider isolation frequency 

region and smaller transmissibility. Additionally, an effective way to achieve better isolation 

performance is applying the QZS isolator in the conditions that the mass differs less with its load 

capability and the excitation amplitude is not too large. 
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