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Design and Analysis of 
Approximate Compressors for Multiplication 

A. Momeni, J. Han, Member, P.Montuschi, Senior Member and F. Lombardi, Fellow 
Abstract—Inexact (or approximate) computing is an attractive 

paradigm for digital processing at nanometric scales. Inexact 
computing is particularly interesting for computer arithmetic 
designs. This paper deals with the analysis and design of two new 
approximate 4-2 compressors for utilization in a multiplier. 
These designs rely on different features of compression, such that 
imprecision in computation (as measured by the error rate and 
the so-called normalized error distance) can meet with respect to 
circuit-based figures of merit of a design (number of transistors, 
delay and power consumption). Four different schemes for 
utilizing the proposed approximate compressors are proposed 
and analyzed for a Dadda multiplier. Extensive simulation results 
are provided and an application of the approximate multipliers 
to image processing is presented. The results show that the 
proposed designs accomplish significant reductions in power 
dissipation, delay and transistor count compared to an exact 
design; moreover, two of the proposed multiplier designs provide 
excellent capabilities for image multiplication with respect to 
average normalized error distance and peak signal-to-noise ratio 
(more than 50dB for the considered image examples).  
 

Index Terms—Compressor, Dadda Multiplier, Inexact 
Computing, Approximate Circuits 

I. INTRODUCTION 
OST computer arithmetic applications are 
implemented using digital logic circuits, thus 
operating with a high degree of reliability and 

precision. However, many applications such as in multimedia 
and image processing can tolerate errors and imprecision in 
computation and still produce meaningful and useful results. 
Accurate and precise models and algorithms are not always 
suitable or efficient for use in these applications. The 
paradigm of inexact computation relies on relaxing fully 
precise and completely deterministic building modules when 
for example, designing energy-efficient systems. This allows 
imprecise computation to redirect the existing design process 
of digital circuits and systems by taking advantage of a 
decrease in complexity and cost with possibly a potential 
increase in performance and power efficiency. Approximate 
(or inexact) computing relies on using this property to design 
simplified, yet approximate circuits operating at higher 
performance and/or lower power consumption compared with 
precise (exact) logic circuits [1].  
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 Addition and multiplication are widely used operations in 
computer arithmetic; for addition full-adder cells have been 
extensively analyzed for approximate computing [2-4]. [1] has 
compared these adders and proposed several new metrics for 
evaluating approximate and probabilistic adders with respect 
to unified figures of merit for design assessment for inexact 
computing applications. For each input to a circuit, the error 
distance (ED) is defined as the arithmetic distance between an 
erroneous output and the correct one [1]. The mean error 
distance (MED) and normalized error distance (NED) are 
proposed by considering the averaging effect of multiple 
inputs and the normalization of multiple-bit adders. The NED 
is nearly invariant with the size of an implementation and is 
therefore useful in the reliability assessment of a specific 
design. The tradeoff between precision and power has also 
been quantitatively evaluated in [1]. 
 However, the design of approximate multipliers has 
received less attention. Multiplication can be thought as the 
repeated sum of partial products; however, the straightforward 
application of approximate adders when designing an 
approximate multiplier is not viable, because it would be very 
inefficient in terms of precision, hardware complexity and 
other performance metrics. Several approximate multipliers 
have been proposed in the literature [4] [5] [6] [7]. Most of 
these designs use a truncated multiplication method; they 
estimate the least significant columns of the partial products as 
a constant. In [4], an imprecise array multiplier is used for 
neural network applications by omitting some of the least 
significant bits in the partial products (and thus removing 
some adders in the array). A truncated multiplier with a 
correction constant is proposed in [5]. For an n×n multiplier, 
this design calculates the sum of the n+k most significant 
columns of the partial products and truncates the other n-k 
columns. The n+k bit result is then rounded to n bits. The 
reduction error (i.e. the error generated by truncating then-k 
least significant bits) and rounding error (i.e. the error 
generated by rounding the result to n bits) are found in the 
next step. The correction constant (n+k bits) is selected to be 
as close as possible to the estimated value of the sum of these 
errors to reduce the error distance.  

A truncated multiplier with constant correction has the 
maximum error if the partial products in the n-k least 
significant columns are all ones or all zeros. A variable 
correction truncated multiplier has been proposed in [6].This 
method changes the correction term based on column n-k-1. If 
all partial products in columnn-k-1 are one, then the correction 
term is increased. Similarly, if all partial products in this 
column are zero, the correction term is decreased. 

In [7], a simplified (and thus inaccurate) 2x2 multiplier 
block is proposed for building larger multiplier arrays.  In the 
design of a fast multiplier, compressors have been widely used 
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[8-10] to speed up the partial product reduction tree and 
decrease power dissipation. Optimized designs of 4-2 exact 
compressors have been proposed in [8, 11 - 16]. [17] [18] have 
also considered compression for approximate multiplication. 
In [17], an approximate signed multiplier has been proposed 
for use in arithmetic data value speculation (AVDS); 
multiplication is performed using the Baugh-Wooley 
algorithm. However, no new design is proposed for the 
compressors for the inexact computation. Designs of 
approximate compressors have been proposed in [18]; 
however, these designs do not target multiplication. It should 
be noted that the approach of [7] improves over [17] [18] by 
utilizing a simplified multiplier block that is amenable to 
approximate multiplication. 

Initially in this paper, two novel approximate 4-2 
compressors are proposed and analyzed. It is shown that these 
simplified compressors have better delay and power 
consumption than the optimized (exact) 4-2 compressor 
designs found in the technical literature [8]. These 
approximate compressors are then used in the restoration 
module of a Dadda multiplier; four different schemes are 
proposed for inexact multiplication. Extensive simulation 
results are provided at circuit-level for figures of merit, such 
as delay, transistor count, power dissipation, error rate and 
normalized error distance under CMOS feature sizes of 32, 22 
and 16 nm. The application of these multipliers to image 
processing is then presented. The results of two examples of 
multiplication of two images are reported; these results show 
that the third and fourth approximate multipliers yield an 
output product image that has a very high quality and 
resemblance to the image generated by an exact multiplier, i.e. 
excellent values for the average NED and the Peak Signal-to-
Noise Ratio (PSNR) are found (for the PSNR more than 
50db). The analysis and simulation results show that the 
proposed approximate designs for both the compressor and the 
multiplier are viable candidates for inexact computing. 

This paper is organized as follows. Section 2 is a review of 
existing schemes for (exact) compressors. The two new 
designs of an approximate 4-2 compressor are presented in 
Section 3.Multiplication and four different approximate 
multipliers are proposed in Section 4. Simulation results for 
the approximate compressors and multipliers are provided in 
Section 5. The application of the proposed approximate 
multipliers to image processing is presented in Section 6. 
Section 7 concludes the manuscript. 

II. EXACT COMPRESSORS 
The main goal of either multi-operand carry-save addition 

or parallel multiplication is to reduce n numbers to two 
numbers; therefore, n-2 compressors (or n-2 counters) have 
been widely used in computer arithmetic. An-2 compressor 
(Figure 1) is usually a slice of a circuit that reduces n numbers 
to two numbers when properly replicated. In slice i of the 
circuit, the n-2 compressor receives n bits in position i and one 
or more carry bits from the positions to the right, such as i – 1 
or i – 2. It produces two output bits in positions i and i + 1 and 
one or more carry bits into the higher positions, such as i + 1 

or c n hown in 
Fig  th  e

i + 2.For the orrect operatio  of the circuit s
ure 1, e following inequality must be satisfi d 

 …   3 2 4 8  …  (1) 
 

 
Figure 1.Schematic diagram of n-2 compressors in a multi operand addition 

circuit [13] 
 

Where  denotes the number of carry bits from slice ito 
slice i+ j.  

A widely used structure for compression is the 4-2 
compressor; a 4-2 compressor (Figure 2) can be implemented 
with a carry bit between adjacent slices ( 1 1). The carry bit 
from the position to the right is denoted as cin while the carry 
bit into the higher position is denoted as cout. The two output 
bits in positions i and i + 1are also referred to as the sum and 
carry respectively. 

 
Figure2.4-2 compressor 

 
The following equations give the outputs of the 4-2 

r, e e truth table. compresso whil  Tabl 1 shows its 
 

1 2 3 4          (2) 
1 2 3 1 2 1        (3) 

1 2 3 4 1 2 3 4 4 (4) 

The common implementation of a 4-2 compressor is 
accomplished by utilizing two full-adder (FA) cells (Figure 3) 
[8]. Different designs have been proposed in the literature for 
4-2 compressor [8, 11-16]. 
Figure 4 shows the optimized design of an exact4-2 
compressor based on the so-called XOR-XNOR gates [8]; a 
XOR-XNOR gate simultaneously generates the XOR and 
XNOR output signals. The design of [8] consists of three 
XOR-XNOR (denoted by XOR*) gates, one XOR and two 2-1 
MUXes. The critical path of this design has a delay of 3Δ, 
where Δ is the unitary delay through any gate in the design. 
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Figure 3.  Implementation of 4-2 Compressor 

 
TABLE I 

TRUTH TABLE OF 4-2 COMPRESSOR 
cin X4 X3 X2 X1 cout carry sum 
0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 1 
0 0 0 1 0 0 0 1 
0 0 0 1 1 1 0 0 
0 0 1 0 0 0 0 1 
0 0 1 0 1 1 0 0 
0 0 1 1 0 1 0 0 
0 0 1 1 1 1 0 1 
0 1 0 0 0 0 0 1 
0 1 0 0 1 0 1 0 
0 1 0 1 0 0 1 0 
0 1 0 1 1 1 0 1 
0 1 1 0 0 0 1 0 
0 1 1 0 1 1 0 1 
0 1 1 1 0 1 0 1 
0 1 1 1 1 1 1 0 
1 0 0 0 0 0 0 1 
1 0 0 0 1 0 1 0 
1 0 0 1 0 0 1 0 
1 0 0 1 1 1 0 1 
1 0 1 0 0 0 1 0 
1 0 1 0 1 1 0 1 
1 0 1 1 0 1 0 1 
1 0 1 1 1 1 1 0 
1 1 0 0 0 0 1 0 
1 1 0 0 1 0 1 1 
1 1 0 1 0 0 1 1 
1 1 0 1 1 1 1 0 
1 1 1 0 0 0 1 1 
1 1 1 0 1 1 1 0 
1 1 1 1 0 1 1 0 
1 1 1 1 1 1 1 1 

 
 

III. PROPOSED APPROXIMATE COMPRESSORS 
In this section, two designs of an approximate compressor 

are proposed. Intuitively to design an approximate 4-2 
compressor, it is possible to substitute the exact full-adder 
cells in Figure3 by an approximate full-adder cell (such as the 
first design proposed in [2]). However, this is not very 
efficient, because it produces at least 17 incorrect results out 
of 32 possible outputs, i.e. the error rate of this inexact 
compressor is more than 53% (where the error rate is given 
by the ratio of the number of erroneous outputs over the total 
number of outputs). Two different designs are proposed next 
to reduce the error rate; these designs offer significant 

performance improvement compared to an exact compressor 
with respect to delay, number of transistors and power 
consumption. 

 
 

 
Figure4. Optimized 4-2 compressor of [8] 

A. Design 1 
As shown in Table I, the carry output in an exact 

compressor has the same value of the input cin in 24 out of 32 
states. Therefore, an approximate design must consider this 
feature. In Design 1, the carry is simplified to cin by changing 

o e other 8 outputs. the value f th
 

                 (5) 
 

Since the Carry output has the higher weight of a binary bit, 
an erroneous value of this signal will produce a difference 
value of two in the output. For example, if the input pattern is 
“01001” (row 10 of Table II), the correct output is “010” that 
is equal to 2. By simplifying the carry output to cin, the 
approximate compressor will generate the “000” pattern at the 
output (i.e. a value of 0). This substantial difference may not 
be acceptable; however, it can be compensated or reduced by 
simplifying the cout and sum signals. In particular, the 
simplification of sum to a value of 0 (second half of Table II) 
reduces the difference between the approximate and the exact 
outputs as well as the complexity of its design. Also, the 
presence of some errors in the sum signal will results in a 
reductions of the delay of producing the approximate sum and 
the overall delay of the design (because it is on the critical 
path). 

 
1 2 3 4         (6) 

 
In the last step, the change of the value of cout in some 

states, may reduce the error distance provided by approximate 
carry and sum and also more simplification in the proposed 
design. 

 
1 2   3 4              (7) 
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Although the above mentioned simplifications of carry and 

sum increase the error rate in the proposed approximate 
compressor, its design complexity and therefore the power 
consumption are considerably decreased. This can be realized 
by comparing (2)-(4) and (5)-(7).Table II shows the truth table 
of the first proposed approximate compressor. It also shows 
the difference between the inexact output of the proposed 
approximate compressor and the output of the exact 
compressor. As shown in Table II, the proposed design has 12 
incorrect outputs out of 32 outputs (thus yielding an error rate 
of 37.5%). This is less than the error rate using the best 
approximate full-adder cell of [2]. 

 
TABLE II 

TRUTH TABLE OF THE FIRSTAPPROXIMATE 4-2 COMPRESSOR 
cin X4 X3 X2 X1 cout’ carry’ sum' Difference 
0 0 0 0 0 0 0 1 1 
0 0 0 0 1 0 0 1 0 
0 0 0 1 0 0 0 1 0 
0 0 0 1 1 0 0 1 -1 
0 0 1 0 0 0 0 1 0 
0 0 1 0 1 1 0 0 0 
0 0 1 1 0 1 0 0 0 
0 0 1 1 1 1 0 1 0 
0 1 0 0 0 0 0 1 0 
0 1 0 0 1 1 0 0 0 
0 1 0 1 0 1 0 0 0 
0 1 0 1 1 1 0 1 0 
0 1 1 0 0 0 0 1 -1 
0 1 1 0 1 1 0 1 0 
0 1 1 1 0 1 0 1 0 
0 1 1 1 1 1 0 1 -1 
1 0 0 0 0 0 1 0 1 
1 0 0 0 1 0 1 0 0 
1 0 0 1 0 0 1 0 0 
1 0 0 1 1 0 1 0 -1 
1 0 1 0 0 0 1 0 0 
1 0 1 0 1 1 1 0 1 
1 0 1 1 0 1 1 0 1 
1 0 1 1 1 1 1 0 0 
1 1 0 0 0 0 1 0 0 
1 1 0 0 1 1 1 0 1 
1 1 0 1 0 1 1 0 1 
1 1 0 1 1 1 1 0 0 
1 1 1 0 0 0 1 0 -1 
1 1 1 0 1 1 1 0 0 
1 1 1 1 0 1 1 0 0 
1 1 1 1 1 1 1 0 -1 

 
(5)-(7) are the logic expressions for the outputs of the first 

design of the approximate 4-2 compressor proposed in this 
manuscript. 

The gate level structure of the first proposed design (Figure 
6) shows that the critical path of this compressor has still a 
delay of 3Δ, so it is the same as for the exact compressor of 
Figure 5. However, the propagation delay through the gates of 
this design is lower than the one for the exact compressor. For 
example, the propagation delay in the XOR* gate that 
generates both the XOR and XNOR signals in [8], is higher 
than the delay through a XNOR gate of the proposed design. 
Therefore, the critical path delay in the proposed design is 
lower than in the exact design and moreover, the total number 
of gates in the proposed design is significantly less than that in 
the optimized exact compressor of [8]. 

B. Design 2 
A second design of an approximate compressor is proposed 

to further increase performance as well as reducing the error 
rate. Since the carry and cout  outputs have the same weight, 
the proposed equations for the approximate carry and cout in 
the previous part can be interchanged. In this new design, 
carry uses the right hand side of (7) and cout is always equal to 
cin; since cin is zero in the first stage, cout and cin will be zero in 
all stages. So, cin and cout can be ignored in the hardware 
design. Figure 7shows the block diagram of this approximate 

p ons below describe its outputs. 4-2 com ressor and the expressi
 

1 2 3 4            (8) 
1 2   3 4             (9) 

 

 
Figure 6. Gate level implementation of Design 1 

 

 
Figure7. Approximate 4-2 compressor, Design 2 

 
Note that (9) is the same as (7) and (8) is the same as (6) for 

cin= 0. Figure 8 shows the gate level implementation of the 
second proposed design. The delay of the critical path of this 
approximate design is 2Δ, so it is 1Δ less than the previous 
designs; moreover, a further reduction in the number of gates 
is accomplished. 

 
Figure 8. Gate level implementation of Design 2 

 
Table III shows the truth table of the second approximate 

design for a 4-2 compressor; this Table also shows the 
difference between the exact decimal value of the addition of 
the inputs and the decimal value of the outputs produced by 
the approximate compressor. For example when all inputs are 
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1, the decimal value of the addition of the inputs is 4. 
However, the approximate compressor produces a 1 for the 
carry and sum. The decimal value of the outputs in this case is 
3; Table II shows that the difference is -1. 

 
 

TABLE III 
TRUTH TABLE OF SECOND PROPOSED 4-2 COMPRESSOR 

X4 X3 X2 X1 carry’ sum' difference 
0 0 0 0 0 1 1 
0 0 0 1 0 1 0 
0 0 1 0 0 1 0 
0 0 1 1 0 1 -1 
0 1 0 0 0 1 0 
0 1 0 1 1 0 0 
0 1 1 0 1 0 0 
0 1 1 1 1 1 0 
1 0 0 0 0 1 0 
1 0 0 1 1 0 0 
1 0 1 0 1 0 0 
1 0 1 1 1 1 0 
1 1 0 0 0 1 -1 
1 1 0 1 1 1 0 
1 1 1 0 1 1 0 
1 1 1 1 1 1 -1 

 
This design has therefore 4 incorrect outputs out of 16 

outputs, so its error rate is now reduced to 25%. This is a very 
positive feature, because it shows that on a probabilistic basis, 
the imprecision of the proposed design is smaller than the 
other available schemes.  

IV. MULTIPLICATION 
In this section, the impact of using the proposed 

compressors for multiplication is investigated. A fast (exact) 
multiplier is usually composed of three parts (or modules) [8].  
• Partial product generation. 
• A Carry Save Adder (CSA) tree to reduce the partial 

products’ matrix to an addition of only two operands 
• A Carry Propagation Adder (CPA) for the final 

computation of the binary result.  
In the design of a multiplier, the second module plays a 

pivotal role in terms of delay, power consumption and circuit 
complexity. Compressors have been widely used [9, 10] to 
speed up the CSA tree and decrease its power dissipation, so 
to achieve fast and low-power operation. The use of 
approximate compressors in the CSA tree of a multiplier 
results in an approximate multiplier. 

A 8×8 unsigned Dadda tree multiplier is considered to 
assess the impact of using the proposed compressors in 
approximate multipliers. The proposed multiplier uses in the 
first part AND gates to generate all partial products. In the 
second part, the approximate compressors proposed in the 
previous section are utilized in the CSA tree to reduce the 
partial products. The last part is an exact CPA to compute the 
final binary result. Figure 9(a) shows the reduction circuitry of 
an exact multiplier for n=8. In this figure, the reduction part 
uses half-adders, full-adders and 4-2 compressors; each partial 
product bit is represented by a dot. In the first stage, 2 half-
adders, 2 full-adders and 8 compressors are utilized to reduce 

the partial products into at most four rows. In the second or 
final stage, 1 half-adder, 1 full-adder and 10 compressors are 
used to compute the two final rows of partial products. 
Therefore, two stages of reduction and 3 half-adders, 3 full-
adders and 18 compressors are needed in the reduction 
circuitry of an 8×8Dadda multiplier. 

In this paper, four cases are considered for designing an 
approximate multiplier. 

 
 

Figure 9. Reduction circuitry of an 8×8Dadda multiplier, (a) using Design 
1 compressors, (b) using Design 2 compressors 

 
• In the first case (Multiplier 1), Design 1 is used for all 4-2 

compressors in Figure 9(a).  
• In the second case (Multiplier 2), Design 2 is used for the 

4-2 compressors. Since Design 2 does not have cin and 
cout, the reduction circuitry of this multiplier requires a 
lower number of compressors (Figure 9(b)). Multiplier 2 
uses 6 half-adders, 1 full-adder and 17 compressors.  

• In the third case (Multiplier 3), Design 1 is used for the 
compressors in then-1 least significant columns. The other 
n most significant columns in the reduction circuitry use 
exact 4-2 compressors. 
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• In the fourth case (Multiplier 4), Design 2 and exact 4-2 
compressors are used in then-1 least significant columns 
and then most significant columns in the reduction 
circuitry respectively. 

The objectives of the first two approximate designs are to 
reduce the delay and power consumption compared with an 
exact multiplier; however, a high error distance is expected. 
The next two approximate multipliers (i.e. Multipliers 3 and 4) 
are proposed to decrease the error distance. The delay in these 
designs is determined by the exact compressors that are in the 
critical path; therefore, there is no improvement in delay for 
these approximate designs compared with an exact multiplier. 
However, it is expected that the utilization of approximate 
compressors in the least significant columns will decrease the 
power consumption and transistor count (as measure of circuit 
complexity). While the first two proposed multipliers have 
better performance in terms of delay and power consumption, 
the error distances in the third and fourth designs are expected 
to be significantly lower. 

V. SIMULATION RESULTS 
 In this section, he designs of the two approximate 
compressors (Section III) and the four approximate multipliers 
(Section IV) are simulated using HSPICE. Predictive 
Technology Models (PTMs) at different CMOS feature sizes 
(32 nm, 22 nm and 16 nm) are utilized in the HSPICE 
simulation. 

A. Approximate Compressors 
The two approximate compressors of this paper and the best 

low-power exact compressor of [8] (implemented by using 
XOR-XNOR gates) are simulated at a 1 GHz frequency; a fan-
out of 4 is utilized in all simulations. The simulation results of 
the delay, power consumption and power-delay product (PDP) 
are given in Table IV by using the PTMs at 32 nm, 22 nm and 
16 nm. 

 
TABLE IV 

SIMULATION RESULTS (@32 NM) 
Design Delay(ps) Power(μW) PDP(aJ) 

@32 nm 
Exact Design [8] 60.36 2.98 180 

Design 1 58.32 1.27 74 
Design 2 44.35  1.14 50 

@22 nm 
Exact Design [8] 55.82 1.50 84 

Design 1 56.79 0.62 35 
Design 2 41.69 0.58 24 

@16 nm 
Exact Design [8] 47.59 0.95 45 

Design 1 37.16 0.39 14 
Design 2 24.44 0.36 9 

 
As expected, the second proposed design (Design 2) has the 

best delay, power consumption and PDP; these improvements 
are irrespective of feature size. This approximate design is 
62% faster than the exact compressor at 16 nm CMOS 
technology and 44% faster on average for the three feature 
sizes considered. Moreover on average, Design 2 is also 35% 
faster than Design 1. The two proposed approximate designs 

achieve significant improvement in terms of power 
consumption; on average at different feature sizes, the power 
consumption of Design 1 is 57% less than the exact 
compressor, while Design 2 has a power consumption that is 
60% less than the exact design of [8]. 

Table V compares these designs in terms of number of 
transistors, as a measure of circuit complexity. The exact 
compressor [8] uses 10 transistors to implement each XOR* 
gate, 6 transistors to implement the XOR gate and 8 transistors 
to implement each MUX gate [8]; therefore, the exact 
compressor utilizes 52 transistors. A 50% improvement in 
circuit complexity is accomplished by Design 2, as reflected 
by the lower number of transistors. This is expected because 
the second approximate design has no cin and cout with only 4 
inputs and 2 outputs (the exact compressor has 5 inputs and 3 
outputs).  

 
TABLE V 

COMPARISON OF NUMBER OF TRANSISTORS 
Design Number of transistors 

Exact Design [8] 52 
Design 1 28 
Design 2 26 

 

B. Approximate Multipliers 
The four proposed approximate multipliers are simulated for 

n=8. The delay, power consumption and number of transistors 
are investigated for these approximate designs as well as the 
exact multiplier. A comparison of the error distance (as 
measure of reliability [1]) of the proposed multipliers with 
other approximate multipliers is also pursued. 

 
• Delay 

The delay of the reduction circuitry (second module) of a 
Dadda multiplier is dependent on the number of reduction 
stages and the delay of each stage. In Multipliers 1 and 2, the 
approximate compressors are used in all columns; therefore, 
the delay of the stages is equal to the delay of the approximate 
compressors. However, in Multipliers 3 and 4, the delay of the 
stages is equal to the delay of the exact compressors. So, the 
use of these approximate compressors in the n/2 LSBs cause 
no improvement in terms of delay compared to an exact 
multiplier. The delay improvement in the reduction circuitry 
of each multiplier (at 32 nm CMOS technology) compared to 
an exact adder is shown in Table VI. 

 
TABLE VI 

DELAY IMPROVEMENT IN REDUCTION CIRCUITRY 
Design Improvement (%) 

Multiplier 1 3.38 
Multiplier 2 26.52 
Multiplier 3 0 
Multiplier 4 0 

 
• Power Consumption 

The power consumption of each multiplier is determined by 
the number and type of compressors used. Multipliers 1 and 2 
use only approximate compressors so they have power 
consumption lower than Multipliers 3 and 4. Table VII shows 
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the power consumption improvement of each multiplier at 32 
nm feature size with respect to an exact adder; this confirms 
that an approximate multiplier in the reduction circuitry will 
result in a considerable power saving. 

 
TABLE VII 

POWER CONSUMPTION IMPROVEMENT IN REDUCTION CIRCUITRY 
Design Improvement (%) 

Multiplier 1 52.49 
Multiplier 2 58.58 
Multiplier 3 17.50 
Multiplier 4 26.15 

 
• Transistor Count 

The transistor count is used in this paper as metric of circuit 
complexity. The first two approximate multipliers have a 
lower transistor count compared with Multipliers 3 and 4. 
Table VIII shows the transistor count improvement of the 
reduction circuitry of each multiplier compared to an exact 
adder. 

 
TABLE VIII 

TRANSISTOR COUNT IMPROVEMENT IN REDUCTION CIRCUITRY 
Design Improvement (%) 

Multiplier 1 42.11 
Multiplier 2 48.15 
Multiplier 3 14.03 
Multiplier 4 22.42 

 
• Error Distance 

Four additional approximate multipliers are simulated to 
compare the error distance. The multiplier (Multiplier 5) 
proposed in [7] is simulated for n=8. The truncated multiplier 
with constant correction [5] (Multiplier 6) and the truncated 
multiplier with variable correction [6] (Multiplier 7) are also 
simulated for n=8 and k=1. A further approximate multiplier 
(Multiplier 8) is simulated to investigate the impact of using 
the proposed approximate compressors compared with other 
approximate compressors. This 8×8 Dadda multiplier uses 4-2 
compressors made of two approximate full-adders (Figure 3). 
The first full-adder design proposed in [2] is used in this 
approximate multiplier. Table IX summarizes the eight 
approximate multipliers assessed in this manuscript, i.e. the 
four proposed designs and the other four approximate 
multipliers together with their salient features. 

 
TABLE IX 

APPROXIMATE MULTIPLIERS AND THEIR FEATURES 
Design Feature 

Multiplier 1 Design 1 in all columns 
Multiplier 2 Design 2 in all columns 
Multiplier 3 Design 1 in LSBs and exact compressor in MSBs  
Multiplier 4 Design 2 in LSBs and exact compressor in MSBs  
Multiplier 5 [7] Approximate 2x2 multiplier blocks 
Multiplier 6 [5] Truncated multiplier with constant correction 
Multiplier 7 [6] Truncated multiplier with variable correction 
Multiplier 8 Compressors made of approximate FAs [2] 

 
The normalized error distance (NED) is used to compare 

these approximate multipliers. In [1], the NED is defined as 
the average error distance over all inputs, normalized by the 
maximum possible error. In this paper the NED is defined for 

each input. Therefore the average NED is equivalent to the 
NED defined in [1]. The maximum high (low) NED is also 
defined as the largest absolute value of NED for the case in 
which the erroneous result is more (less) than the exact result. 
Table X shows the average NED, the maximum high and low 
NEDs and the number of correct results (or outputs) of 
approximate multipliers for n=8. The number of correct 
outputs out of the total outputs represents the probability of 
correctness for each design. Based on Table X, the probability 
of correctness in Multiplier 1 is 0.16% (103 out of 65025) 
while the probability of correctness in Multiplier 4 is 14.3% 
(9320 out of 65025). Since the proposed approximate 
compressors produce erroneous results for all-zero input 
patterns (row 1 in Tables II and III), the proposed approximate 
multipliers will generate an erroneous result if at least one of 
the inputs is zero. However, in these cases (511 cases for n=8) 
the multiplier can produce correct result by adding a circuit for 
detecting the zero-valued inputs. Therefore, the zero-valued 
input patterns are not considered further in the simulation to 
investigate the proposed multipliers for a fair comparison. 
 

TABLEX 
NED FOR N = 8 

Design 
Average 

NED
Max High 

NED 

Max Low 
NED

correct outputs 
(out of 65025) 

Multiplier 1 0.6065×10-1 0.1593 0.1375 103 
Multiplier 2 0.5352×10-1 0.1278 0.1329 458 
Multiplier 3 0.9199×10-3 0.3199×10-2 0.2707×10-2 5888 
Multiplier 4 0.7827×10-3 0.1845×10-2 0.3076×10-2 9320 

Multiplier 5 [7] 0.1400×10-1 0 0.2222 34400 
Multiplier 6 [5] 0.1609×10-2 0.3937×10-2 0.9858×10-2 0 
Multiplier 7 [6] 0.1146×10-2 0.3060×10-2 0.4045×10-2 769 

Multiplier 8 0.1049 0.2263 0.1207 8 
 

Based on Table X, Multiplier 4 has the lowest average NED 
among all approximate multipliers. The average NED of 
Multiplier 4 is 18 times better than Multiplier 5, 2 times better 
than Multiplier 6 and 1.5 times better than Multiplier 7. 
Multiplier 5 has the highest number of correct outputs. It has 
also the lowest maximum high NED. As the approximate 
output is always less than the exact output, the maximum high 
NED is 0 for this design; however, it has the worst maximum 
low NED among all considered designs. 

A plot of the NED distribution is also generated (Figure 10) 
to compare the performance of the approximate multipliers. 
The range of the product in a 8×8 multiplier is between 0 and 
65025 (unsigned values). All possible outputs are categorized 
in 127 intervals; in the first interval the output is between 0 
and 512, in the second interval the output is between 513 and 
1024 and so on. In the last interval the output is between 
64513 and 65025. The average NED of each interval is then 
computed for the approximate multiplier. Figures 10a and 10b 
show that for Multipliers 1 and 2, the average NED increases 
only at very large or very small product values, i.e. these 
approximate multiplier incur on average in a small error in 
output compared to the exact calculation.  

VI. APPLICATION: IMAGE PROCESSING 
In this section the application of the proposed approximate 
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multipliers to image processing is illustrated. A multiplier is 
used to multiply two images on a pixel by pixel basis, thus 
blending the two images into a single output image. 

 
Figure10.Average NED distribution in 8×8 approximate multipliers. (a) 
Multiplier 1, (b) Multiplier 2, (c) Multiplier 3, (d) Multiplier 4 

 
Figure 11 shows two examples: both input images and the 
resulting output image are provided. A program has been 
developed in C# .net and simulated in Microsoft Visual Studio 
2010 using the 8 approximate multipliers at n=8. Figures 12 
and 13 show the outputs for the two examples. 

The average NED and the Peak Signal-to-Noise Ratio 
(PSNR) that is based on the Mean Squared Error (MSE) are 
computed to assess the quality of the output image and 
compare it with the output image generated by an exact 
multiplier. The equations for the MSE and PSNR are given in 
(10) and (11); in (10), m and p are the image dimensions and 
I(i,j) and K(i,j) are the exact and obtained values of each pixel 
respectively. In (11), MAXI represents the maximum value of 
each pixel.  

 
MSE ∑ ∑

PSNR 10
MSE

, ,                         (10) 

                                                (11) 
 
 

 
Figure11. Image multiplication (a) example 1, (b) example 2 (both using an 

exact multiplier) 
 

 
Figure12. Image multiplication results for example 1, (a) Multiplier 1, (b) 

Multiplier 2, (c) Multiplier 3, (d) Multiplier 4, (e) Multiplier 5, (f) Multiplier 
6, (g) Multiplier 7, (h) Multiplier 8. 
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Figure13. Image multiplication results for example2, (a) Multiplier 1, (b) 

Multiplier 2, (c) Multiplier 3, (d) Multiplier 4, (e) Multiplier 5, (f) Multiplier 
6, (g) Multiplier 7, (h) Multiplier 8 

 
TABLE XI 

PSNR AND AVERAGE NED FOR FIRST EXAMPLE 
Design PSNR (dB) Average NED(×10-2) 
Multiplier 1 25.3 4.4 

Multiplier 2 26.3 3.7 
Multiplier 3 53.9 0.10 
Multiplier 4 53.2 0.12 

Multiplier 5 [7] 26.3 2.3 
Multiplier 6 [5] 48.3 0.28 
Multiplier 7 [6] 52.3 0.15 
Multiplier 8 21.2 7.6 

 
TABLE XII 

PSNR AND AVERAGE NED FOR SECOND EXAMPLE 
Design PSNR (dB) Average NED(×10-2) 
Multiplier 1 25.1 4.5 

Multiplier 2 25.8 4.1 
Multiplier 3 54.2 0.096 
Multiplier 4 54.9 0.083 
Multiplier 5 [7] 35.7 0.72 
Multiplier 6 [5] 52.4 0.14 
Multiplier 7 [6] 53.5 0.11 
Multiplier 8 18.7 10.4 

 
Tables XI and XII show that the PSNRs of the output 

images generated by Multipliers 3 and 4, are nearly 50 dB, a 
value that is acceptable for most applications. Consistently, 
Multiplier 1 has the worst PSNR among 4 proposed designs. 
As discussed previously, the proposed approximate multipliers 
have a higher error distance for very large and very small 
input values in the product operands. Therefore the pixels that 
have high RGB (Red-Green-Blue) model values (such as of a 
white color) or small RGB model values (such as those of a 
black color), show a larger inaccuracy than other pixels due to 
the approximate nature of the compressors. However, the error 
distance of Multipliers3 and 4 still remains very low. 

VII. CONCLUSION 
Inexact computing is an emerging paradigm for 

computation at nanoscale. Computer arithmetic offers 
significant operational advantages for inexact computing; an 
extensive literature exists on approximate adders. However, 
this paper has initially focused on compression as used in a 
multiplier; to the best knowledge of the authors, no work has 
been reported on this topic. 

This paper has presented the novel designs of two 
approximate 4-2 compressors. These approximate 

compressors are utilized in the reduction module of four 
approximate multipliers. The approximate compressors show a 
significant reduction in transistor count, power consumption 
and delay compared with an exact design. 
• In terms of transistor count, the first design has a 46% 

improvement, while the second design has a 50% 
improvement. 

• In terms of power consumption, the first design has a 57% 
improvement and the second design has a 60% 
improvement on average for CMOS implementation at 
feature sizes of 32, 22 and 16 nm. 

• In terms of delay, the second design has a 44% 
improvement compared to the exact compressor and 35% 
improvement compared to the first design on average at 
different CMOS feature sizes of 32, 22 and 16 nm. 

Four different approximate schemes have been proposed in 
this paper to investigate the performance of the approximate 
compressors for the aforementioned metrics for inexact 
multiplication. The approximate compressors have been 
utilized in the reduction module of a Dadda multiplier. The 
following conclusions can be drawn from the simulation 
results presented in this manuscript. 
• The first and second proposed multipliers show a 

significant improvement in terms of power consumption 
and transistor count compared to an exact multiplier. 

• The first and second multipliers have larger average 
NEDs (and thus, larger PSNRs), while the second 
multiplier that uses the second proposed approximate 
compressor for all bits, has the best delay. 

• With relatively modest reductions in transistor count and 
power consumption, the third and fourth proposed 
multipliers have very low average NED values, thus 
presenting the best tradeoff for energy with accuracy. 

Moreover, the application of these approximate multipliers 
to image processing has confirmed that two of the proposed 
designs achieve a PSNR of nearly 50dB in the output 
generated by multiplying two input images, thus viable for 
most applications.  

Table XIII compares the four proposed approximate design 
with four other approximate designs found in the technical 
literature by ranking them under various metrics. Multiplier 4 
is overall the best design with respect to all figures of merit for 
approximate multiplication as well as the two PSNR 
examples. Multiplier 5 has the best performance in terms of 
Max High NED and number of correct outputs; however, its 
rather poor performance for the other figures of merit causes 
its ranking to be in the middle once the PSNR examples are 
considered. Multiplier 3 is the second best design among the 
schemes considered in this manuscript. It offers overall good 
performance in most metrics of Table XIII. Current and future 
research addresses the tradeoffs of the different figures of 
merit in the proposed designs to establish conditions by which 
combined metrics can be attained. Moreover, physical designs 
of the approximate multipliers are being pursued to further 
confirm the analysis presented in this paper.   

In conclusion, this paper has shown that by an appropriate 
design of an approximate compressor, multipliers can be 
designed for inexact computing; these multipliers offer 
significant advantages in terms of both circuit-level and error 
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figures of merit. Although not discussed and beyond the scope 
of this manuscript, the proposed designs may also be useful in 
other arithmetic circuits for applications in which inexact 
computing can be used. The provision of an error indicator (as 
required for other applications) is a topic of current 
investigation. 

 
 
 
 
 
 

 
TABLE XIII 

RANKING OF APPROXIMATE MULTIPLIERS 
Design Average NED Max High NED Max Low NED Correct Outputs PSNR example 1 PSNR example 2 
Multiplier 1 7 7 7 6 7 7 
Multiplier 2 6 6 6 5 5 6 
Multiplier 3 2 4 1 3 1 2 
Multiplier 4 1 2 2 2 2 1 
Multiplier 5 [7] 5 1 8 1 5 5 
Multiplier 6 [5] 4 5 4 8 4 4 
Multiplier 7 [6] 3 3 3 4 3 3 
Multiplier 8 8 8 5 7 8 8 

[17] D. Kelly, B. Phillips, S. Al-Sarawi, "Approximate signed binary integer 
multipliers for arithmetic data value speculation", in Proc. of the 
conference on design and architectures for signal and image processing, 
2009. 
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