
For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Design and Analysis of
Approximate Compressors for Multiplication

A. Momeni, J. Han, Member, P.Montuschi, Senior Member and F. Lombardi, Fellow
Abstract—Inexact (or approximate) computing is an attractive

paradigm for digital processing at nanometric scales. Inexact
computing is particularly interesting for computer arithmetic
designs. This paper deals with the analysis and design of two new
approximate 4-2 compressors for utilization in a multiplier.
These designs rely on different features of compression, such that
imprecision in computation (as measured by the error rate and
the so-called normalized error distance) can meet with respect to
circuit-based figures of merit of a design (number of transistors,
delay and power consumption). Four different schemes for
utilizing the proposed approximate compressors are proposed
and analyzed for a Dadda multiplier. Extensive simulation results
are provided and an application of the approximate multipliers
to image processing is presented. The results show that the
proposed designs accomplish significant reductions in power
dissipation, delay and transistor count compared to an exact
design; moreover, two of the proposed multiplier designs provide
excellent capabilities for image multiplication with respect to
average normalized error distance and peak signal-to-noise ratio
(more than 50dB for the considered image examples).

Index Terms—Compressor, Dadda Multiplier, Inexact
Computing, Approximate Circuits

I. INTRODUCTION
OST computer arithmetic applications are
implemented using digital logic circuits, thus
operating with a high degree of reliability and

precision. However, many applications such as in multimedia
and image processing can tolerate errors and imprecision in
computation and still produce meaningful and useful results.
Accurate and precise models and algorithms are not always
suitable or efficient for use in these applications. The
paradigm of inexact computation relies on relaxing fully
precise and completely deterministic building modules when
for example, designing energy-efficient systems. This allows
imprecise computation to redirect the existing design process
of digital circuits and systems by taking advantage of a
decrease in complexity and cost with possibly a potential
increase in performance and power efficiency. Approximate
(or inexact) computing relies on using this property to design
simplified, yet approximate circuits operating at higher
performance and/or lower power consumption compared with
precise (exact) logic circuits [1].

A Momeni and F. Lombardi are with the Department of Electrical and
Computer Engineering, Northeastern University, Boston, MA 02115, USA;
{lombardi@ece.neu.edu, momeni.a@husky.neu.edu}. J. Han is with the
Department of Electrical and Computer Engineering, University of Alberta,
Edmonton, Canada; {jhan8@ualberta.ca}, P. Montuschi is withthe
Department of Control and Computer Engineering, Politecnico di Torino,
Turin, Italy;{paolo.montuschi@polito.it)

 Addition and multiplication are widely used operations in
computer arithmetic; for addition full-adder cells have been
extensively analyzed for approximate computing [2-4]. [1] has
compared these adders and proposed several new metrics for
evaluating approximate and probabilistic adders with respect
to unified figures of merit for design assessment for inexact
computing applications. For each input to a circuit, the error
distance (ED) is defined as the arithmetic distance between an
erroneous output and the correct one [1]. The mean error
distance (MED) and normalized error distance (NED) are
proposed by considering the averaging effect of multiple
inputs and the normalization of multiple-bit adders. The NED
is nearly invariant with the size of an implementation and is
therefore useful in the reliability assessment of a specific
design. The tradeoff between precision and power has also
been quantitatively evaluated in [1].
 However, the design of approximate multipliers has
received less attention. Multiplication can be thought as the
repeated sum of partial products; however, the straightforward
application of approximate adders when designing an
approximate multiplier is not viable, because it would be very
inefficient in terms of precision, hardware complexity and
other performance metrics. Several approximate multipliers
have been proposed in the literature [4] [5] [6] [7]. Most of
these designs use a truncated multiplication method; they
estimate the least significant columns of the partial products as
a constant. In [4], an imprecise array multiplier is used for
neural network applications by omitting some of the least
significant bits in the partial products (and thus removing
some adders in the array). A truncated multiplier with a
correction constant is proposed in [5]. For an n×n multiplier,
this design calculates the sum of the n+k most significant
columns of the partial products and truncates the other n-k
columns. The n+k bit result is then rounded to n bits. The
reduction error (i.e. the error generated by truncating then-k
least significant bits) and rounding error (i.e. the error
generated by rounding the result to n bits) are found in the
next step. The correction constant (n+k bits) is selected to be
as close as possible to the estimated value of the sum of these
errors to reduce the error distance.

A truncated multiplier with constant correction has the
maximum error if the partial products in the n-k least
significant columns are all ones or all zeros. A variable
correction truncated multiplier has been proposed in [6].This
method changes the correction term based on column n-k-1. If
all partial products in columnn-k-1 are one, then the correction
term is increased. Similarly, if all partial products in this
column are zero, the correction term is decreased.

In [7], a simplified (and thus inaccurate) 2x2 multiplier
block is proposed for building larger multiplier arrays. In the
design of a fast multiplier, compressors have been widely used

M

Page 1 of 13 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

[8-10] to speed up the partial product reduction tree and
decrease power dissipation. Optimized designs of 4-2 exact
compressors have been proposed in [8, 11 - 16]. [17] [18] have
also considered compression for approximate multiplication.
In [17], an approximate signed multiplier has been proposed
for use in arithmetic data value speculation (AVDS);
multiplication is performed using the Baugh-Wooley
algorithm. However, no new design is proposed for the
compressors for the inexact computation. Designs of
approximate compressors have been proposed in [18];
however, these designs do not target multiplication. It should
be noted that the approach of [7] improves over [17] [18] by
utilizing a simplified multiplier block that is amenable to
approximate multiplication.

Initially in this paper, two novel approximate 4-2
compressors are proposed and analyzed. It is shown that these
simplified compressors have better delay and power
consumption than the optimized (exact) 4-2 compressor
designs found in the technical literature [8]. These
approximate compressors are then used in the restoration
module of a Dadda multiplier; four different schemes are
proposed for inexact multiplication. Extensive simulation
results are provided at circuit-level for figures of merit, such
as delay, transistor count, power dissipation, error rate and
normalized error distance under CMOS feature sizes of 32, 22
and 16 nm. The application of these multipliers to image
processing is then presented. The results of two examples of
multiplication of two images are reported; these results show
that the third and fourth approximate multipliers yield an
output product image that has a very high quality and
resemblance to the image generated by an exact multiplier, i.e.
excellent values for the average NED and the Peak Signal-to-
Noise Ratio (PSNR) are found (for the PSNR more than
50db). The analysis and simulation results show that the
proposed approximate designs for both the compressor and the
multiplier are viable candidates for inexact computing.

This paper is organized as follows. Section 2 is a review of
existing schemes for (exact) compressors. The two new
designs of an approximate 4-2 compressor are presented in
Section 3.Multiplication and four different approximate
multipliers are proposed in Section 4. Simulation results for
the approximate compressors and multipliers are provided in
Section 5. The application of the proposed approximate
multipliers to image processing is presented in Section 6.
Section 7 concludes the manuscript.

II. EXACT COMPRESSORS
The main goal of either multi-operand carry-save addition

or parallel multiplication is to reduce n numbers to two
numbers; therefore, n-2 compressors (or n-2 counters) have
been widely used in computer arithmetic. An-2 compressor
(Figure 1) is usually a slice of a circuit that reduces n numbers
to two numbers when properly replicated. In slice i of the
circuit, the n-2 compressor receives n bits in position i and one
or more carry bits from the positions to the right, such as i – 1
or i – 2. It produces two output bits in positions i and i + 1 and
one or more carry bits into the higher positions, such as i + 1

or c n hown in
Fig th e

i + 2.For the orrect operatio of the circuit s
ure 1, e following inequality must be satisfi d

 … 3 2 4 8 … (1)

Figure 1.Schematic diagram of n-2 compressors in a multi operand addition

circuit [13]

Where denotes the number of carry bits from slice ito
slice i+ j.

A widely used structure for compression is the 4-2
compressor; a 4-2 compressor (Figure 2) can be implemented
with a carry bit between adjacent slices (1 1). The carry bit
from the position to the right is denoted as cin while the carry
bit into the higher position is denoted as cout. The two output
bits in positions i and i + 1are also referred to as the sum and
carry respectively.

Figure2.4-2 compressor

The following equations give the outputs of the 4-2

r, e e truth table. compresso whil Tabl 1 shows its

1 2 3 4 (2)
1 2 3 1 2 1 (3)

1 2 3 4 1 2 3 4 4 (4)

The common implementation of a 4-2 compressor is
accomplished by utilizing two full-adder (FA) cells (Figure 3)
[8]. Different designs have been proposed in the literature for
4-2 compressor [8, 11-16].
Figure 4 shows the optimized design of an exact4-2
compressor based on the so-called XOR-XNOR gates [8]; a
XOR-XNOR gate simultaneously generates the XOR and
XNOR output signals. The design of [8] consists of three
XOR-XNOR (denoted by XOR*) gates, one XOR and two 2-1
MUXes. The critical path of this design has a delay of 3Δ,
where Δ is the unitary delay through any gate in the design.

Page 2 of 13Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Figure 3. Implementation of 4-2 Compressor

TABLE I

TRUTH TABLE OF 4-2 COMPRESSOR
cin X4 X3 X2 X1 cout carry sum
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1
0 0 0 1 1 1 0 0
0 0 1 0 0 0 0 1
0 0 1 0 1 1 0 0
0 0 1 1 0 1 0 0
0 0 1 1 1 1 0 1
0 1 0 0 0 0 0 1
0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0
0 1 0 1 1 1 0 1
0 1 1 0 0 0 1 0
0 1 1 0 1 1 0 1
0 1 1 1 0 1 0 1
0 1 1 1 1 1 1 0
1 0 0 0 0 0 0 1
1 0 0 0 1 0 1 0
1 0 0 1 0 0 1 0
1 0 0 1 1 1 0 1
1 0 1 0 0 0 1 0
1 0 1 0 1 1 0 1
1 0 1 1 0 1 0 1
1 0 1 1 1 1 1 0
1 1 0 0 0 0 1 0
1 1 0 0 1 0 1 1
1 1 0 1 0 0 1 1
1 1 0 1 1 1 1 0
1 1 1 0 0 0 1 1
1 1 1 0 1 1 1 0
1 1 1 1 0 1 1 0
1 1 1 1 1 1 1 1

III. PROPOSED APPROXIMATE COMPRESSORS
In this section, two designs of an approximate compressor

are proposed. Intuitively to design an approximate 4-2
compressor, it is possible to substitute the exact full-adder
cells in Figure3 by an approximate full-adder cell (such as the
first design proposed in [2]). However, this is not very
efficient, because it produces at least 17 incorrect results out
of 32 possible outputs, i.e. the error rate of this inexact
compressor is more than 53% (where the error rate is given
by the ratio of the number of erroneous outputs over the total
number of outputs). Two different designs are proposed next
to reduce the error rate; these designs offer significant

performance improvement compared to an exact compressor
with respect to delay, number of transistors and power
consumption.

Figure4. Optimized 4-2 compressor of [8]

A. Design 1
As shown in Table I, the carry output in an exact

compressor has the same value of the input cin in 24 out of 32
states. Therefore, an approximate design must consider this
feature. In Design 1, the carry is simplified to cin by changing

o e other 8 outputs. the value f th

 (5)

Since the Carry output has the higher weight of a binary bit,
an erroneous value of this signal will produce a difference
value of two in the output. For example, if the input pattern is
“01001” (row 10 of Table II), the correct output is “010” that
is equal to 2. By simplifying the carry output to cin, the
approximate compressor will generate the “000” pattern at the
output (i.e. a value of 0). This substantial difference may not
be acceptable; however, it can be compensated or reduced by
simplifying the cout and sum signals. In particular, the
simplification of sum to a value of 0 (second half of Table II)
reduces the difference between the approximate and the exact
outputs as well as the complexity of its design. Also, the
presence of some errors in the sum signal will results in a
reductions of the delay of producing the approximate sum and
the overall delay of the design (because it is on the critical
path).

1 2 3 4 (6)

In the last step, the change of the value of cout in some

states, may reduce the error distance provided by approximate
carry and sum and also more simplification in the proposed
design.

1 2 3 4 (7)

Page 3 of 13 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Although the above mentioned simplifications of carry and

sum increase the error rate in the proposed approximate
compressor, its design complexity and therefore the power
consumption are considerably decreased. This can be realized
by comparing (2)-(4) and (5)-(7).Table II shows the truth table
of the first proposed approximate compressor. It also shows
the difference between the inexact output of the proposed
approximate compressor and the output of the exact
compressor. As shown in Table II, the proposed design has 12
incorrect outputs out of 32 outputs (thus yielding an error rate
of 37.5%). This is less than the error rate using the best
approximate full-adder cell of [2].

TABLE II

TRUTH TABLE OF THE FIRSTAPPROXIMATE 4-2 COMPRESSOR
cin X4 X3 X2 X1 cout’ carry’ sum' Difference
0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 1 -1
0 0 1 0 0 0 0 1 0
0 0 1 0 1 1 0 0 0
0 0 1 1 0 1 0 0 0
0 0 1 1 1 1 0 1 0
0 1 0 0 0 0 0 1 0
0 1 0 0 1 1 0 0 0
0 1 0 1 0 1 0 0 0
0 1 0 1 1 1 0 1 0
0 1 1 0 0 0 0 1 -1
0 1 1 0 1 1 0 1 0
0 1 1 1 0 1 0 1 0
0 1 1 1 1 1 0 1 -1
1 0 0 0 0 0 1 0 1
1 0 0 0 1 0 1 0 0
1 0 0 1 0 0 1 0 0
1 0 0 1 1 0 1 0 -1
1 0 1 0 0 0 1 0 0
1 0 1 0 1 1 1 0 1
1 0 1 1 0 1 1 0 1
1 0 1 1 1 1 1 0 0
1 1 0 0 0 0 1 0 0
1 1 0 0 1 1 1 0 1
1 1 0 1 0 1 1 0 1
1 1 0 1 1 1 1 0 0
1 1 1 0 0 0 1 0 -1
1 1 1 0 1 1 1 0 0
1 1 1 1 0 1 1 0 0
1 1 1 1 1 1 1 0 -1

(5)-(7) are the logic expressions for the outputs of the first

design of the approximate 4-2 compressor proposed in this
manuscript.

The gate level structure of the first proposed design (Figure
6) shows that the critical path of this compressor has still a
delay of 3Δ, so it is the same as for the exact compressor of
Figure 5. However, the propagation delay through the gates of
this design is lower than the one for the exact compressor. For
example, the propagation delay in the XOR* gate that
generates both the XOR and XNOR signals in [8], is higher
than the delay through a XNOR gate of the proposed design.
Therefore, the critical path delay in the proposed design is
lower than in the exact design and moreover, the total number
of gates in the proposed design is significantly less than that in
the optimized exact compressor of [8].

B. Design 2
A second design of an approximate compressor is proposed

to further increase performance as well as reducing the error
rate. Since the carry and cout outputs have the same weight,
the proposed equations for the approximate carry and cout in
the previous part can be interchanged. In this new design,
carry uses the right hand side of (7) and cout is always equal to
cin; since cin is zero in the first stage, cout and cin will be zero in
all stages. So, cin and cout can be ignored in the hardware
design. Figure 7shows the block diagram of this approximate

p ons below describe its outputs. 4-2 com ressor and the expressi

1 2 3 4 (8)
1 2 3 4 (9)

Figure 6. Gate level implementation of Design 1

Figure7. Approximate 4-2 compressor, Design 2

Note that (9) is the same as (7) and (8) is the same as (6) for

cin= 0. Figure 8 shows the gate level implementation of the
second proposed design. The delay of the critical path of this
approximate design is 2Δ, so it is 1Δ less than the previous
designs; moreover, a further reduction in the number of gates
is accomplished.

Figure 8. Gate level implementation of Design 2

Table III shows the truth table of the second approximate

design for a 4-2 compressor; this Table also shows the
difference between the exact decimal value of the addition of
the inputs and the decimal value of the outputs produced by
the approximate compressor. For example when all inputs are

Page 4 of 13Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

1, the decimal value of the addition of the inputs is 4.
However, the approximate compressor produces a 1 for the
carry and sum. The decimal value of the outputs in this case is
3; Table II shows that the difference is -1.

TABLE III
TRUTH TABLE OF SECOND PROPOSED 4-2 COMPRESSOR

X4 X3 X2 X1 carry’ sum' difference
0 0 0 0 0 1 1
0 0 0 1 0 1 0
0 0 1 0 0 1 0
0 0 1 1 0 1 -1
0 1 0 0 0 1 0
0 1 0 1 1 0 0
0 1 1 0 1 0 0
0 1 1 1 1 1 0
1 0 0 0 0 1 0
1 0 0 1 1 0 0
1 0 1 0 1 0 0
1 0 1 1 1 1 0
1 1 0 0 0 1 -1
1 1 0 1 1 1 0
1 1 1 0 1 1 0
1 1 1 1 1 1 -1

This design has therefore 4 incorrect outputs out of 16

outputs, so its error rate is now reduced to 25%. This is a very
positive feature, because it shows that on a probabilistic basis,
the imprecision of the proposed design is smaller than the
other available schemes.

IV. MULTIPLICATION
In this section, the impact of using the proposed

compressors for multiplication is investigated. A fast (exact)
multiplier is usually composed of three parts (or modules) [8].
• Partial product generation.
• A Carry Save Adder (CSA) tree to reduce the partial

products’ matrix to an addition of only two operands
• A Carry Propagation Adder (CPA) for the final

computation of the binary result.
In the design of a multiplier, the second module plays a

pivotal role in terms of delay, power consumption and circuit
complexity. Compressors have been widely used [9, 10] to
speed up the CSA tree and decrease its power dissipation, so
to achieve fast and low-power operation. The use of
approximate compressors in the CSA tree of a multiplier
results in an approximate multiplier.

A 8×8 unsigned Dadda tree multiplier is considered to
assess the impact of using the proposed compressors in
approximate multipliers. The proposed multiplier uses in the
first part AND gates to generate all partial products. In the
second part, the approximate compressors proposed in the
previous section are utilized in the CSA tree to reduce the
partial products. The last part is an exact CPA to compute the
final binary result. Figure 9(a) shows the reduction circuitry of
an exact multiplier for n=8. In this figure, the reduction part
uses half-adders, full-adders and 4-2 compressors; each partial
product bit is represented by a dot. In the first stage, 2 half-
adders, 2 full-adders and 8 compressors are utilized to reduce

the partial products into at most four rows. In the second or
final stage, 1 half-adder, 1 full-adder and 10 compressors are
used to compute the two final rows of partial products.
Therefore, two stages of reduction and 3 half-adders, 3 full-
adders and 18 compressors are needed in the reduction
circuitry of an 8×8Dadda multiplier.

In this paper, four cases are considered for designing an
approximate multiplier.

Figure 9. Reduction circuitry of an 8×8Dadda multiplier, (a) using Design
1 compressors, (b) using Design 2 compressors

• In the first case (Multiplier 1), Design 1 is used for all 4-2

compressors in Figure 9(a).
• In the second case (Multiplier 2), Design 2 is used for the

4-2 compressors. Since Design 2 does not have cin and
cout, the reduction circuitry of this multiplier requires a
lower number of compressors (Figure 9(b)). Multiplier 2
uses 6 half-adders, 1 full-adder and 17 compressors.

• In the third case (Multiplier 3), Design 1 is used for the
compressors in then-1 least significant columns. The other
n most significant columns in the reduction circuitry use
exact 4-2 compressors.

Page 5 of 13 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

• In the fourth case (Multiplier 4), Design 2 and exact 4-2
compressors are used in then-1 least significant columns
and then most significant columns in the reduction
circuitry respectively.

The objectives of the first two approximate designs are to
reduce the delay and power consumption compared with an
exact multiplier; however, a high error distance is expected.
The next two approximate multipliers (i.e. Multipliers 3 and 4)
are proposed to decrease the error distance. The delay in these
designs is determined by the exact compressors that are in the
critical path; therefore, there is no improvement in delay for
these approximate designs compared with an exact multiplier.
However, it is expected that the utilization of approximate
compressors in the least significant columns will decrease the
power consumption and transistor count (as measure of circuit
complexity). While the first two proposed multipliers have
better performance in terms of delay and power consumption,
the error distances in the third and fourth designs are expected
to be significantly lower.

V. SIMULATION RESULTS
 In this section, he designs of the two approximate
compressors (Section III) and the four approximate multipliers
(Section IV) are simulated using HSPICE. Predictive
Technology Models (PTMs) at different CMOS feature sizes
(32 nm, 22 nm and 16 nm) are utilized in the HSPICE
simulation.

A. Approximate Compressors
The two approximate compressors of this paper and the best

low-power exact compressor of [8] (implemented by using
XOR-XNOR gates) are simulated at a 1 GHz frequency; a fan-
out of 4 is utilized in all simulations. The simulation results of
the delay, power consumption and power-delay product (PDP)
are given in Table IV by using the PTMs at 32 nm, 22 nm and
16 nm.

TABLE IV

SIMULATION RESULTS (@32 NM)
Design Delay(ps) Power(μW) PDP(aJ)

@32 nm
Exact Design [8] 60.36 2.98 180

Design 1 58.32 1.27 74
Design 2 44.35 1.14 50

@22 nm
Exact Design [8] 55.82 1.50 84

Design 1 56.79 0.62 35
Design 2 41.69 0.58 24

@16 nm
Exact Design [8] 47.59 0.95 45

Design 1 37.16 0.39 14
Design 2 24.44 0.36 9

As expected, the second proposed design (Design 2) has the

best delay, power consumption and PDP; these improvements
are irrespective of feature size. This approximate design is
62% faster than the exact compressor at 16 nm CMOS
technology and 44% faster on average for the three feature
sizes considered. Moreover on average, Design 2 is also 35%
faster than Design 1. The two proposed approximate designs

achieve significant improvement in terms of power
consumption; on average at different feature sizes, the power
consumption of Design 1 is 57% less than the exact
compressor, while Design 2 has a power consumption that is
60% less than the exact design of [8].

Table V compares these designs in terms of number of
transistors, as a measure of circuit complexity. The exact
compressor [8] uses 10 transistors to implement each XOR*
gate, 6 transistors to implement the XOR gate and 8 transistors
to implement each MUX gate [8]; therefore, the exact
compressor utilizes 52 transistors. A 50% improvement in
circuit complexity is accomplished by Design 2, as reflected
by the lower number of transistors. This is expected because
the second approximate design has no cin and cout with only 4
inputs and 2 outputs (the exact compressor has 5 inputs and 3
outputs).

TABLE V

COMPARISON OF NUMBER OF TRANSISTORS
Design Number of transistors

Exact Design [8] 52
Design 1 28
Design 2 26

B. Approximate Multipliers
The four proposed approximate multipliers are simulated for

n=8. The delay, power consumption and number of transistors
are investigated for these approximate designs as well as the
exact multiplier. A comparison of the error distance (as
measure of reliability [1]) of the proposed multipliers with
other approximate multipliers is also pursued.

• Delay

The delay of the reduction circuitry (second module) of a
Dadda multiplier is dependent on the number of reduction
stages and the delay of each stage. In Multipliers 1 and 2, the
approximate compressors are used in all columns; therefore,
the delay of the stages is equal to the delay of the approximate
compressors. However, in Multipliers 3 and 4, the delay of the
stages is equal to the delay of the exact compressors. So, the
use of these approximate compressors in the n/2 LSBs cause
no improvement in terms of delay compared to an exact
multiplier. The delay improvement in the reduction circuitry
of each multiplier (at 32 nm CMOS technology) compared to
an exact adder is shown in Table VI.

TABLE VI

DELAY IMPROVEMENT IN REDUCTION CIRCUITRY
Design Improvement (%)

Multiplier 1 3.38
Multiplier 2 26.52
Multiplier 3 0
Multiplier 4 0

• Power Consumption

The power consumption of each multiplier is determined by
the number and type of compressors used. Multipliers 1 and 2
use only approximate compressors so they have power
consumption lower than Multipliers 3 and 4. Table VII shows

Page 6 of 13Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

the power consumption improvement of each multiplier at 32
nm feature size with respect to an exact adder; this confirms
that an approximate multiplier in the reduction circuitry will
result in a considerable power saving.

TABLE VII

POWER CONSUMPTION IMPROVEMENT IN REDUCTION CIRCUITRY
Design Improvement (%)

Multiplier 1 52.49
Multiplier 2 58.58
Multiplier 3 17.50
Multiplier 4 26.15

• Transistor Count

The transistor count is used in this paper as metric of circuit
complexity. The first two approximate multipliers have a
lower transistor count compared with Multipliers 3 and 4.
Table VIII shows the transistor count improvement of the
reduction circuitry of each multiplier compared to an exact
adder.

TABLE VIII

TRANSISTOR COUNT IMPROVEMENT IN REDUCTION CIRCUITRY
Design Improvement (%)

Multiplier 1 42.11
Multiplier 2 48.15
Multiplier 3 14.03
Multiplier 4 22.42

• Error Distance

Four additional approximate multipliers are simulated to
compare the error distance. The multiplier (Multiplier 5)
proposed in [7] is simulated for n=8. The truncated multiplier
with constant correction [5] (Multiplier 6) and the truncated
multiplier with variable correction [6] (Multiplier 7) are also
simulated for n=8 and k=1. A further approximate multiplier
(Multiplier 8) is simulated to investigate the impact of using
the proposed approximate compressors compared with other
approximate compressors. This 8×8 Dadda multiplier uses 4-2
compressors made of two approximate full-adders (Figure 3).
The first full-adder design proposed in [2] is used in this
approximate multiplier. Table IX summarizes the eight
approximate multipliers assessed in this manuscript, i.e. the
four proposed designs and the other four approximate
multipliers together with their salient features.

TABLE IX

APPROXIMATE MULTIPLIERS AND THEIR FEATURES
Design Feature

Multiplier 1 Design 1 in all columns
Multiplier 2 Design 2 in all columns
Multiplier 3 Design 1 in LSBs and exact compressor in MSBs
Multiplier 4 Design 2 in LSBs and exact compressor in MSBs
Multiplier 5 [7] Approximate 2x2 multiplier blocks
Multiplier 6 [5] Truncated multiplier with constant correction
Multiplier 7 [6] Truncated multiplier with variable correction
Multiplier 8 Compressors made of approximate FAs [2]

The normalized error distance (NED) is used to compare

these approximate multipliers. In [1], the NED is defined as
the average error distance over all inputs, normalized by the
maximum possible error. In this paper the NED is defined for

each input. Therefore the average NED is equivalent to the
NED defined in [1]. The maximum high (low) NED is also
defined as the largest absolute value of NED for the case in
which the erroneous result is more (less) than the exact result.
Table X shows the average NED, the maximum high and low
NEDs and the number of correct results (or outputs) of
approximate multipliers for n=8. The number of correct
outputs out of the total outputs represents the probability of
correctness for each design. Based on Table X, the probability
of correctness in Multiplier 1 is 0.16% (103 out of 65025)
while the probability of correctness in Multiplier 4 is 14.3%
(9320 out of 65025). Since the proposed approximate
compressors produce erroneous results for all-zero input
patterns (row 1 in Tables II and III), the proposed approximate
multipliers will generate an erroneous result if at least one of
the inputs is zero. However, in these cases (511 cases for n=8)
the multiplier can produce correct result by adding a circuit for
detecting the zero-valued inputs. Therefore, the zero-valued
input patterns are not considered further in the simulation to
investigate the proposed multipliers for a fair comparison.

TABLEX
NED FOR N = 8

Design
Average

NED
Max High

NED

Max Low
NED

correct outputs
(out of 65025)

Multiplier 1 0.6065×10-1 0.1593 0.1375 103
Multiplier 2 0.5352×10-1 0.1278 0.1329 458
Multiplier 3 0.9199×10-3 0.3199×10-2 0.2707×10-2 5888
Multiplier 4 0.7827×10-3 0.1845×10-2 0.3076×10-2 9320

Multiplier 5 [7] 0.1400×10-1 0 0.2222 34400
Multiplier 6 [5] 0.1609×10-2 0.3937×10-2 0.9858×10-2 0
Multiplier 7 [6] 0.1146×10-2 0.3060×10-2 0.4045×10-2 769

Multiplier 8 0.1049 0.2263 0.1207 8

Based on Table X, Multiplier 4 has the lowest average NED
among all approximate multipliers. The average NED of
Multiplier 4 is 18 times better than Multiplier 5, 2 times better
than Multiplier 6 and 1.5 times better than Multiplier 7.
Multiplier 5 has the highest number of correct outputs. It has
also the lowest maximum high NED. As the approximate
output is always less than the exact output, the maximum high
NED is 0 for this design; however, it has the worst maximum
low NED among all considered designs.

A plot of the NED distribution is also generated (Figure 10)
to compare the performance of the approximate multipliers.
The range of the product in a 8×8 multiplier is between 0 and
65025 (unsigned values). All possible outputs are categorized
in 127 intervals; in the first interval the output is between 0
and 512, in the second interval the output is between 513 and
1024 and so on. In the last interval the output is between
64513 and 65025. The average NED of each interval is then
computed for the approximate multiplier. Figures 10a and 10b
show that for Multipliers 1 and 2, the average NED increases
only at very large or very small product values, i.e. these
approximate multiplier incur on average in a small error in
output compared to the exact calculation.

VI. APPLICATION: IMAGE PROCESSING
In this section the application of the proposed approximate

Page 7 of 13 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

multipliers to image processing is illustrated. A multiplier is
used to multiply two images on a pixel by pixel basis, thus
blending the two images into a single output image.

Figure10.Average NED distribution in 8×8 approximate multipliers. (a)
Multiplier 1, (b) Multiplier 2, (c) Multiplier 3, (d) Multiplier 4

Figure 11 shows two examples: both input images and the
resulting output image are provided. A program has been
developed in C# .net and simulated in Microsoft Visual Studio
2010 using the 8 approximate multipliers at n=8. Figures 12
and 13 show the outputs for the two examples.

The average NED and the Peak Signal-to-Noise Ratio
(PSNR) that is based on the Mean Squared Error (MSE) are
computed to assess the quality of the output image and
compare it with the output image generated by an exact
multiplier. The equations for the MSE and PSNR are given in
(10) and (11); in (10), m and p are the image dimensions and
I(i,j) and K(i,j) are the exact and obtained values of each pixel
respectively. In (11), MAXI represents the maximum value of
each pixel.

MSE ∑ ∑

PSNR 10
MSE

, , (10)

 (11)

Figure11. Image multiplication (a) example 1, (b) example 2 (both using an

exact multiplier)

Figure12. Image multiplication results for example 1, (a) Multiplier 1, (b)

Multiplier 2, (c) Multiplier 3, (d) Multiplier 4, (e) Multiplier 5, (f) Multiplier
6, (g) Multiplier 7, (h) Multiplier 8.

Page 8 of 13Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Figure13. Image multiplication results for example2, (a) Multiplier 1, (b)

Multiplier 2, (c) Multiplier 3, (d) Multiplier 4, (e) Multiplier 5, (f) Multiplier
6, (g) Multiplier 7, (h) Multiplier 8

TABLE XI

PSNR AND AVERAGE NED FOR FIRST EXAMPLE
Design PSNR (dB) Average NED(×10-2)
Multiplier 1 25.3 4.4

Multiplier 2 26.3 3.7
Multiplier 3 53.9 0.10
Multiplier 4 53.2 0.12

Multiplier 5 [7] 26.3 2.3
Multiplier 6 [5] 48.3 0.28
Multiplier 7 [6] 52.3 0.15
Multiplier 8 21.2 7.6

TABLE XII

PSNR AND AVERAGE NED FOR SECOND EXAMPLE
Design PSNR (dB) Average NED(×10-2)
Multiplier 1 25.1 4.5

Multiplier 2 25.8 4.1
Multiplier 3 54.2 0.096
Multiplier 4 54.9 0.083
Multiplier 5 [7] 35.7 0.72
Multiplier 6 [5] 52.4 0.14
Multiplier 7 [6] 53.5 0.11
Multiplier 8 18.7 10.4

Tables XI and XII show that the PSNRs of the output

images generated by Multipliers 3 and 4, are nearly 50 dB, a
value that is acceptable for most applications. Consistently,
Multiplier 1 has the worst PSNR among 4 proposed designs.
As discussed previously, the proposed approximate multipliers
have a higher error distance for very large and very small
input values in the product operands. Therefore the pixels that
have high RGB (Red-Green-Blue) model values (such as of a
white color) or small RGB model values (such as those of a
black color), show a larger inaccuracy than other pixels due to
the approximate nature of the compressors. However, the error
distance of Multipliers3 and 4 still remains very low.

VII. CONCLUSION
Inexact computing is an emerging paradigm for

computation at nanoscale. Computer arithmetic offers
significant operational advantages for inexact computing; an
extensive literature exists on approximate adders. However,
this paper has initially focused on compression as used in a
multiplier; to the best knowledge of the authors, no work has
been reported on this topic.

This paper has presented the novel designs of two
approximate 4-2 compressors. These approximate

compressors are utilized in the reduction module of four
approximate multipliers. The approximate compressors show a
significant reduction in transistor count, power consumption
and delay compared with an exact design.
• In terms of transistor count, the first design has a 46%

improvement, while the second design has a 50%
improvement.

• In terms of power consumption, the first design has a 57%
improvement and the second design has a 60%
improvement on average for CMOS implementation at
feature sizes of 32, 22 and 16 nm.

• In terms of delay, the second design has a 44%
improvement compared to the exact compressor and 35%
improvement compared to the first design on average at
different CMOS feature sizes of 32, 22 and 16 nm.

Four different approximate schemes have been proposed in
this paper to investigate the performance of the approximate
compressors for the aforementioned metrics for inexact
multiplication. The approximate compressors have been
utilized in the reduction module of a Dadda multiplier. The
following conclusions can be drawn from the simulation
results presented in this manuscript.
• The first and second proposed multipliers show a

significant improvement in terms of power consumption
and transistor count compared to an exact multiplier.

• The first and second multipliers have larger average
NEDs (and thus, larger PSNRs), while the second
multiplier that uses the second proposed approximate
compressor for all bits, has the best delay.

• With relatively modest reductions in transistor count and
power consumption, the third and fourth proposed
multipliers have very low average NED values, thus
presenting the best tradeoff for energy with accuracy.

Moreover, the application of these approximate multipliers
to image processing has confirmed that two of the proposed
designs achieve a PSNR of nearly 50dB in the output
generated by multiplying two input images, thus viable for
most applications.

Table XIII compares the four proposed approximate design
with four other approximate designs found in the technical
literature by ranking them under various metrics. Multiplier 4
is overall the best design with respect to all figures of merit for
approximate multiplication as well as the two PSNR
examples. Multiplier 5 has the best performance in terms of
Max High NED and number of correct outputs; however, its
rather poor performance for the other figures of merit causes
its ranking to be in the middle once the PSNR examples are
considered. Multiplier 3 is the second best design among the
schemes considered in this manuscript. It offers overall good
performance in most metrics of Table XIII. Current and future
research addresses the tradeoffs of the different figures of
merit in the proposed designs to establish conditions by which
combined metrics can be attained. Moreover, physical designs
of the approximate multipliers are being pursued to further
confirm the analysis presented in this paper.

In conclusion, this paper has shown that by an appropriate
design of an approximate compressor, multipliers can be
designed for inexact computing; these multipliers offer
significant advantages in terms of both circuit-level and error

Page 9 of 13 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

figures of merit. Although not discussed and beyond the scope
of this manuscript, the proposed designs may also be useful in
other arithmetic circuits for applications in which inexact
computing can be used. The provision of an error indicator (as
required for other applications) is a topic of current
investigation.

TABLE XIII

RANKING OF APPROXIMATE MULTIPLIERS
Design Average NED Max High NED Max Low NED Correct Outputs PSNR example 1 PSNR example 2
Multiplier 1 7 7 7 6 7 7
Multiplier 2 6 6 6 5 5 6
Multiplier 3 2 4 1 3 1 2
Multiplier 4 1 2 2 2 2 1
Multiplier 5 [7] 5 1 8 1 5 5
Multiplier 6 [5] 4 5 4 8 4 4
Multiplier 7 [6] 3 3 3 4 3 3
Multiplier 8 8 8 5 7 8 8

[17] D. Kelly, B. Phillips, S. Al-Sarawi, "Approximate signed binary integer
multipliers for arithmetic data value speculation", in Proc. of the
conference on design and architectures for signal and image processing,
2009.

REFERENCES
[1] J. Liang, J. Han, F. Lombardi, “New Metrics for the Reliability of

Approximate and Probabilistic Adders,” IEEE Transactions on
Computers,vol. 63, no. 9, pp. 1760 - 1771, 2013.

[18] J. Ma, K. Man, T. Krilavicius, S. Guan, and T. Jeong, “Implementation
of High Performance Multipliers Based on Approximate Compressor
Design” in international Conference on Electrical and Control
Technologies (ECT), 2011.

Fabrizio Lombardi (M’81–SM’02-F’09)
graduated in 1977 from the University of
Essex (UK) with a B.Sc. (Hons.) in
Electronic Engineering. In 1977 he joined the
Microwave Research Unit at University
College London, where he received the
Master in Microwaves and Modern Optics
(1978), the Diploma in Microwave
Engineering (1978) and the Ph.D. from the
University of London (1982).He is currently
the holder of the International Test

Conference (ITC) Endowed Chair Professorship at Northeastern
University, Boston. During 2007-2010 Dr. Lombardi was the Editor-In-
Chief of the IEEE Transactions on Computers. He is also an Associate
Editor of the IEEE Transactions on Nanotechnology and the inaugural
Editor-in-Chief of the IEEE Transactions on Emerging Topics in
Computing. He currently serves as an elected Member of the Board of
Governors of the IEEE Computer Society. His research interests are bio-
inspired and nano manufacturing/computing, VLSI design, testing, and
fault/defect tolerance of digital systems. He has extensively published in
these areas and coauthored/edited seven books.

[2] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, K. Roy,
“IMPACT: IMPrecise adders for low-power approximate computing,”
Low Power Electronics and Design (ISLPED) 2011 International
Symposium on. 1-3 Aug. 2011.

[3] S. Cheemalavagu, P. Korkmaz, K.V. Palem, B.E.S. Akgul, and L.N.
Chakrapani, “A probabilistic CMOS switch and its realization by
exploiting noise,” in Proc. IFIP-VLSI SoC, Perth, Western Australia,
Oct. 2005.

[4] H.R. Mahdiani, A. Ahmadi, S.M. Fakhraie, C. Lucas, “Bio-Inspired
Imprecise Computational Blocks for Efficient VLSI Implementation of
Soft-Computing Applications,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 57, no. 4, pp. 850-862, April 2010.

[5] M. J. Schulte and E. E. Swartzlander, Jr., “Truncated multiplication with
correction constant,” VLSI Signal Processing VI, pp. 388–396, 1993.

[6] E. J. King and E. E. Swartzlander, Jr., “Data dependent truncated
scheme for parallel multiplication,” in Proceedings of the Thirty First
Asilomar Conference on Signals, Circuits and Systems, pp. 1178–1182,
1998.

[7] P. Kulkarni, P. Gupta, and MD Ercegovac, “Trading accuracy for power
in a multiplier architecture”, Journal of Low Power Electronics, vol. 7,
no. 4, pp. 490--501, 2011.

[8] C. Chang, J. Gu, M. Zhang, “Ultra Low-Voltage Low- Power CMOS 4-
2 and 5-2 Compressors for Fast Arithmetic Circuits,” IEEE Transactions
on Circuits & Systems, Vol. 51, No. 10, pp. 1985-1997, Oct. 2004.

[9] D. Radhakrishnan and A. P. Preethy, “Low-power CMOS pass logic 4-2
compressor for high-speed multiplication,” in Proc. 43rd IEEE Midwest
Symp. Circuits Syst., vol. 3, 2000, pp. 1296–1298.

Jie Han (S’02–M’05) received the B.Sc.
degree in electronic engineering from
Tsinghua University, Beijing, China, in 1999
and the Ph.D. degree from Delft University
of Technology, The Netherlands, in 2004.
He is currently an assistant professor in the
Department of Electrical and Computer
Engineering at the University of Alberta,
Edmonton, AB, Canada. His research
interests include reliability and fault
tolerance, nanoelectronic circuits and
systems, novel computational models for

nanoscale and biological applications.Dr. Han was nominated for the
2006 Christiaan Huygens Prize of Science by the Royal Dutch Academy
of Science (KoninklijkeNederlandseAkademie van Wetenschappen
(KNAW) Christiaan Huygens Wetenschapsprijs). His work was
recognized by the 125th anniversary issue of Science, for developing
theory of fault-tolerant nanocircuits. He served as a Technical Program
Chair and a General Chair in IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) 2012
and 2013, respectively. He has also served as a Technical Program
Committee Member in several other international symposia and
conferences.

[10] Z. Wang, G. A. Jullien, and W. C. Miller, “A new design technique for
column compression multipliers,” IEEE Trans. Comput., vol. 44, pp.
962–970, Aug. 1995.

[11] J. Gu, C. H. Chang, “Ultra Low-voltage, low-power 4-2 compressor for
high speed multiplications,” in Proc. 36th IEEE Int. Symp. Circuits
Systems, Bangkok, Thailand, May 2003.

[12] M. Margala and N. G. Durdle, “Low-power low-voltage 4-2
compressors for VLSI applications,” in Proc. IEEE Alessandro Volta
Memorial Workshop Low-Power Design, 1999, pp. 84–90.

[13] B. Parhami, “Computer Arithmetic: Algorithms and Hardware Designs,”
2nd edition, Oxford University Press, New York, 2010.

[14] K. Prasad and K. K. Parhi, “Low-power 4-2 and 5-2 compressors,” in
Proc. of the 35th Asilomar Conf. on Signals, Systems and Computers,
vol. 1, 2001, pp. 129–133.

[15] Ercegovac, Miloš D., and Tomas Lang. Digital arithmetic. Elsevier,
2003.

[16] Baran, Dursun, Mustafa Aktan, and Vojin G. Oklobdzija. "Energy
efficient implementation of parallel CMOS multipliers with improved
compressors."Proc. of the 16th ACM/IEEE international symposium on
Low power electronics and design. ACM, 2010.

Page 10 of 13Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://scholar.google.com/citations?user=vbayZ6gAAAAJ&hl=en&oi=sra

For Peer Review
 O

nly

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Paolo Montuschi is a Professor of
Computer Engineering at Politecnico
di Torino and Deputy Chair of the
Control and Computer Engineering
Department. Previously, he served as
Chair of Department from 2003 to
2011, and as Chair or Member of
several Boards. He is currently
serving as Associate Editor-in-Chief
of the IEEE Transactions on
Computers, as well as member of the

steering committee of the IEEE Transactions on Emerging Topics in
Computing and of the Advisory Board of Computing Now. He is also
serving in the Board of Governors of the IEEE Computer Society, as
Chair of the Magazine Operations Committee of the Computer Society
and member of the Publications Board, Audit and Digital Library
Operations Committees. Previously, he served as chair of the Electronic
Products and Services and the Digital Library Operations Committees,
member of Electronic Products and Services Committee, Member-at-
Large of the Computer Society’s Publications Board, and Member of
Conference Publications Operations Committee. He served as guest and
associate editor of the IEEE Transactions on Computers from 2000 to
2004 and from 2009 to 2012, and co-chair, program and steering
committee member of several conferences. His current main research
interests and scientific achievements are in computer arithmetic,
architectures, graphics, and new publication frameworks for “augmented
reading” and scientific knowledge dissemination. Within the Computer
Society he is actively involved in opening the door to new publication
frameworks geared towards e-reading and mobile devices. He is a
Computer Society Golden Core Member, and an IEEE Senior Member.
Montuschi obtained a PhD in computer engineering in 1989, and since
2000 he has been full Professor.

Amir Momeni received the BS degree in
computer engineering from Sharif University of
Technology, and the MS degree in computer
engineering from Shahid Beheshti University,
Iran. He is currently working toward the PhD
degree in computer engineering at Northeastern
University. His research interests include VLSI,
EDA, parallel computing, and heterogeneous
systems. He is a student member of the IEEE.

Page 11 of 13 Transactions on Computers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

