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Abstract: This research work establishes a relationship between STATCOM and DFIG wind turbines
in a transmission network for coordinated operation during grid disturbances. A change in wind
gust also produces a variable output nonlinearly, thereby making the system unstable. Assuring bus
voltage and proper balance of load angle in all the connected generating stations becomes challenging.
Therefore, increasing voltage security at all the lines and further enhancing system stability leads to
the placement of STATCOM at the proper location in the transmission line. Appropriate coordinated
control of STATCOM and DFIG can lead to adequate power flow in the system. This research includes
a multi-objective optimization problem for properly tuning the PI- controller. The voltage at the
controlled bus, low-frequency oscillating waveforms, and real power available at the bus under
pre-fault and post-fault conditions are identified as objective function parameters. To avoid the
overgrowth of error inside the search space due to lack of normalization, this method uses the
RMSProp algorithm for proper convergence in the state vector. The coordinated control action has
been investigated in the different shunt fault conditions. Again, to enhance the system stability, low
voltage ride-through capability has been thoroughly verified using Matlab software.

Keywords: DFIG; STATCOM; deep learning; RMSProp; FPA; ANFIS

1. Introduction

As time goes by, there has been an increase in load demand, and generation capacity
has also increased. In recent years, renewable energy sources like hydro, solar, wind,
geothermal, and tidal, which can generate energy, have been getting immense amounts of
attention. Wind power generation now has several benefits. They are cheap in the long run
and are environmentally friendly. Therefore, wind power generation is being incorporated
at a fast pace into power systems all around the world. The DFIG-based wind turbines can
be installed at a lower cost than conventional wind turbines. It holds a certain amount of
efficiency when transferring energy at a different wind speed, with the advantage of having
a converter that has a small capacity. DFIG-based wind turbines are used in many wind
farms because they have active and reactive power control and variable speed constant
frequency operating characteristics [1,2].

One drawback of the DFIG-based wind turbines is that they show technical challenges,
which ask us to consider the stability of the turbine voltage regulation and the power
quality issues. Still, the positioning of the wind turbine farms has many economic and
environmental advantages. However, the wind speed and strength keep changing in nature
frequently, and these changes cause wind power generation trouble. Therefore, this leads
to grid outages, which includes a constraint that the wind speed and strength should be
5 to 15 RPM. Beyond these parameters, it may cause severe issues with generation; another
challenge added to adjusting the energy supply to the demand [3,4].
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In traditional power plants, the requirement for reactive power control is a grid code.
As for wind farms, voltage control is needed to maintain effective reactive power control.
Wind farms should be connected to the grid during fluctuations in wind forms and the grid
exchange reactive powers. The grid will inject and take out the reactive power depending
on the power generation and the grid’s demand. The TSO determines the quantity and the
exchange rate. The active power regulation highlights the differences between active power
and actual output power and must be kept following the grid code’s voltage and frequency
diagram under the TSO criteria. Then, the control can be set. In grid code, various ways
are given for power and frequency characteristics [5,6].

If reactive power absorption correction is successful on long transmission lines, it
can increase the steady-state stability, improve the natural characteristics of transmission
lines, give active power to load, and give sufficient control over the timing of the voltage
curve. Reactive power compensation equipment gives immense compensation, helping
to improve system stability. This equipment includes static reactive power compensators,
bypass capacitors, and STATCOMS. The complexity increases as we connect DIFG-based
wind power and STATCOM-connected grid operation [7]. The change of wind speed is
on and off and is not constant at all. Due to these uncontrollable changes in the wind
speed, there are fluctuations in the active and reactive power. A combination of a fact
device, mostly STATCOM, and a DFIG is used to solve this issue. STATCOMS has different
applications for controlling power, including reactive power. It helps to lower the changes
and fluctuations of energy.

Here, we studied if there was an increase in transient stability in wind power genera-
tion by a DFIG with the applications of STATCOM. In simple words, STATCOMS can be
said to be a device that is fast-acting from the facts family, which should be connected to
a system in a shunt for compensation, capable of providing and getting reactive power
from the grid [8,9]. The output of a STATCOM device can be changed to control the specific
power system performance measures. According to Shaigan M. et al., there is an increase in
static voltage stability using STATCOM, and an examination of whether improving stability
in active and reactive losses is also done. Shaigan M. et al. have also accurately proved that
the devices could enhance static stability and be applied in primary and load systems. The
dynamics of the system have less effect on the stability of the voltage; therefore, the static
technique can be applied to examine the possibilities of getting a balance at a point limited
by the system’s specific boundaries [10,11].

FACT devices have higher installation costs. Therefore, it is not economically feasible
to provide all the buses. As a result, the power system requires an ideal STATCOM
placement. As mentioned earlier in this paragraph, system performance is less dependent
on dynamic performance. Therefore, a robust static investigation of network steady-state
may lead to better solutions. The most challenging aspect of determining the proper
placement of a STSTCOM is often calculating the non-linear and complex energy flow
equations. Various optimization strategies have been described in the literature to solve the
equations [12]. This includes optimal power flow (OPF), heuristic optimization methods,
continuous power flow, loss prediction sensitivity analysis, effective cost analysis, and
probabilistic algorithms. Genetic algorithms (GA), particle swarm optimization (PSO),
evolutionary search, and harmonic search are some subcategories.

The authors in [13,14] proposed a STATCOM-DFIG connection, establishing coor-
dination between the wind turbine and their STATCOM. In another article, the authors
mentioned heuristic dynamic programming that establishes a bi-directional relationship
between the wind turbine and STATCOM based on the voltage drop across the link. Tarevi
et al., using a GA-based optimization approach, gave the SVC a discrete-time domain to
distribute the load. Distributor feeder unbalanced loading usually serves two purposes.
Firstly, the velocity of the unbalanced load varies over time and is distributed among the
feeders. Within seven days, the imbalance between actual feeder samples was investigated
using pre-developed software, and the proposed algorithm was tested on a 27-bath test sys-
tem. They calculated total active power compensation. This result shows that the algorithm
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has accurately optimized the location, size, and design of FACTS devices. Preethi et al.
proposed using various FACTS devices to improve grid voltage stability. This work uses the
classical Newton–Raphson method for load flow analysis under various load conditions.
Finally, the authors in [15] proposed an AI-GA-based congestion management solution
that integrates FACTS devices into deregulated power systems. There are two types of
methods to ease congestion. Firstly, we need a better location due to the high cost of FACTS
equipment. Since the objective function is non-linear, GA techniques are required [15]. The
main reason for using the PSO method is to create computer models that simulate social
behavior, which are also very successful in system optimization. This phenomenon is used
to find optimal solutions to various mathematical optimization problems. PSO can be used
to solve a variety of real-world optimization challenges. PSO can also be reliable and easy.

PSO is also valuable in various energy-related industries. In an advanced method for
optimizing particle swarms. Ravi et al. proposed their improved PSO method for designing
FACTS devices to reduce power system losses and improve voltage distribution. That
algorithm selects SVCs and STATCOMs for their optimal location and size within the
power system. In the STATCOM block of today’s infrastructure, advanced PSO technology
provides optimal settings, ideal site size, and control settings. An IEEE 30 bus test system
was used as an example to demonstrate this concept. Calculations show the reliability of
the power grid and the efficiency of this concept. Calculations also show that the reliability
of the power grid and the efficiency of this technology have improved. They proposed a
PSO program to improve voltage stability after faults in the most critical lines of the power
system by optimizing SVC placement and re-sizing [16].

This new method of evaluating the severity of the line disturbances takes into account
improved reactive power generation. The author [17] presented a PSO method for determin-
ing the optimal position and size of SVC to minimize transmission loss considering the cost
function. Their SVC was chosen as the compensating device in this process. Pilot studies
highly suggested their SVC placement. The performance of this method was tested using
the IEEE 26 bus test system. Another PSO-based approach minimizes transmission loss
considering voltage distribution and cost function. SVC was selected as the compensating
driver and was developed as a source for computer iterations compiled on the system bus.
The researcher [18] presented their PSO technique for determining the optimal location of
the FACTS device while reducing its installation cost and increasing system load capacity.
The thermal limits of the bath were considered a limitation to obtaining an appropriate
placement. This method used SVC, TCSC, and UPFC.

An altered simulation measure-up was recommended [19–21] as an explanation to the
transmission line congestion issue. Concerning placing the facts devices on an appropriate
bus and determining the size of the fact’s devices, the suggested technique was evaluated.
To reduce the load on the power supply, this appeal used a controlled series capacitor
synchronized by a thyristor and a static variable compensator. Further, the suggested
approach can review the power system’s economic limitations and the amount of reactive
power intake into account [22–24]. Related to single-objective optimization, multi-objective
optimization issues can be characterized as priority-based discernment that lets users take
any method of action based on its acceptability from an economic perspective [25,26].
In contrast to random iteration, the normalized algorithm proposed can yield superior
outcomes because it avoids local minima.

The STATCOM shunt compensator is mostly used in this article to optimize the voltage
profile and power transfer accuracy. It optimizes the overall system transient, dynamic,
and voltage regulation stability [27]. A multi-objective optimization issue regarding the
vital role of reactive power between a wind farm and STATCOM is the main goal of this
research [28,29]. The converter’s lower operating capabilities determine the capability to
withstand voltage swings. Capacity utilization may be maximized with lower voltage
fluctuations [30–33]. The variation in voltage variations could be characterized as a multi-
objective function as an outcome. The second main objective presented in this approach is
to analyze network properties in post-fault conditions using the transient severity index.
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Reactive power, the starting state variable, impacts this vertical function [34]. Influential
decision-makers organize reactive power management between STATCOM and wind
power plants, utilizing adaptive neuro-fuzzy inference algorithms [35,36].

Through the external controller interface and by utilizing the voltage output and
reactive power, STATCOM and the wind farm can be operated. Multi-criteria optimization
issues are generated by stochastic methods and are analyzed by an adaptive neuro-fuzzy
inference system. This model combines doubly-fed induction generators and STATCOM,
while doubly-fed motors are a common characteristic of wind farms [37]. It is crucial to
remember that the suggested control approach applies to all models of wind turbines, not
just DFIGs. However, the station can be modified by a static compensator VAR [38,39].

2. Problem Identification and Modelling of DFIG-STATCOM

The power output of the wind turbine can be characterized by the function of three
inputs, such as wind velocity, wind gust, power generator, and transmission and distri-
bution. Again, the power quality can also be evaluated in terms of voltage sag, well, and
harmonics [40]. Generally, the wind generator introduces power quality disturbance into
the distribution network. One of the simple methods of running a wind generating system
is to use the induction generator connected directly to the grid system. The induction
generator has inherent advantages of cost effectiveness and robustness. This requires
reactive power for magnetization of induction motor in order to inject real power into the
grid. This requires a regulated voltage control system to control the production of active
power at the converter terminal [41,42].

During normal steady-state operating conditions, the slip and speed fluctuations of an
induction generator are minimal. The reactive power absorbed by the machine is minimal
under this scenario but increasing the load and power will likewise increase the motor’s slip
and reactive power consumption. The equations for stator voltage and flux can therefore
be written as follows {

Vs = RsLs +
d∅s

dt
∅s = Ls Is + Lm Ir

(1)

Additionally, the equations rotor side voltage and fluxes can be written as{
Vr = Rr Ir +

d∅r
dt − jωm∅r

∅r = Lr Ir + Lm Is
(2)

From the above two equations, the rotor and stator voltage become{
Vr = Rr Ir + sjωsLσr + sjωsLm(Ir + Is)
Vs = Rs Is + jωsLσr Is + jωsLm(Ir + Is)

(3)

In the above equation ‘s’ represents the slip of the system. From the above equation
number (3), the active power of stator and rotor becomes{

Ps =
3
2 Re(Vs.Is) =

3
2 Rs(Is)

2 + 3
2 ωsLmRs(j(Ir.Is))

QS = 3
2 Re(Vr.Ir) =

3
2 Rr(Ir)

2 + 3
2 sωsLmRs(j(Is.Ir))

(4)

Further three phase line voltage can be written as
Vag = IaRa + L dIa

dt + Vf a

Vbg = IbRb + L dIb
dt + Vf b

Vcg = IcRc + L Ic
dt + Vf c

(5)

From Equation (5), deriving the d-q component{
Vd = IdR + L dId

dt − LωIq + Vf d

Vq = IqR + L dIq
dt + LωId + Vf d

(6)
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From the above equation, three different contradicting features can be pointed out:
correction factor, decoupling item, and voltage compensation. In this article, voltage
compensation factor is used in the form of a STATCOM [43]. The equation for reference
current control loop becomes 

I∗d =
P∗Vf d+Q∗Vf d

V2
f d+V2

f q

I∗q =
P∗Vf q−Q∗Vf d

V2
f d+V2

f q

(7)

For getting unity power factor, I∗q = 0 and therefore

θ = tanh
Vβ

Vα
(8)

Power converter voltage i.e., STATCOM voltage, is proportional to DC voltage,
and therefore {

Vd = mVdc cos(θ)
Vq = mVdc sin(θ)

(9)

Hence, using Equations (6), (8), and (9), the power balance equation becomes{
P = 3

2
(
Vd Id + Vq Iq

)
idc =

3
2 m
(
id cos(θ)− iq sin(θ)

) (10)

3. Problem Formulation and Solution Methodology

In the stated research area, the coordinated control among DFIG and STATCOM
requires optimization of PI-controller parameters such as proportional gain (Kp) and integral
gain (Ki) in response to the transient disturbance in the power system network [44]. The
active control of power flow between these two units requires time-dependent boundary
condition with PDE constraints for optimization. The time-dependent PDE constraints can
be addressed by the Navier–Stokes system by converting the first order system into the
Karush–Kuhn–Tucker (KKT) system. Let us consider the single input and single output
(SISO) system, as shown in Figure 1b.

The transfer function for Figure 1b becomes

G(s) =
N(s)
D(s)

(11)

And

C(s) = Kp +
Ki
s

=
Kps + Ki

s
(12)

By combining (11) and (12) and solving the characteristics equation, the proportional
and integral constant can be written as

Kp =
ω2D0

(
−ω2)N0

(
−ω2)+ De

(
−ω2)Ne

(
−ω2)

−
(
ω2N2

0 (−ω2)
)
+ N2

e ((−ω2))
(13)

And that of

KI =
ω2De

(
−ω2)N0

(
−ω2)−ω2D0

(
−ω2)Ne

(
−ω2)

−
(
ω2N2

0 (−ω2)
)
+ N2

e ((−ω2))
(14)

The optimized value for Kp and Ki, as shown in Equations (13) and (14), can be derived
by using the Navier–Stokes equation, such that the

Cost towards optimization
Cost towards Iteration

≤ K (15)
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In Equation (15), K represents the performance evaluator. The system becomes moder-
ate for K > 0, which implies that the optimization is convergable [45]. Based on the facts
derived from Equation (5), let us consider the optimization for optimal control of active
power as the objective, as stated under Section 2 in Equation (10).

J(P, idc) :=
1
2
‖p− z‖2

L2(Q) +
β

2
‖idc‖2

L2(Q) +
σ

2
‖p(t)− z(t)‖2

L2(Ω) → min! (16)

s.t.
p(t)− v.∆idc + p(t)∆p(t) +∇pd = f (idc)∀Qreactive

−∇p = 0 ∀Qreactive

P(0,
.

∆p) = p0∀Ωimpedance
p = g(p)∀Ttime−space

(17)

Here Ωimpedance ⊂ Rd, denotes the open bounded impedance. Ωimpedance has to be
decided based on the filter parameter for the STATCOM. Qreactive shows the time boundary
value of reactive constraints. idc is the control value as a function of direct and quadrature
current and is the target variable for optimization. Based on KKT condition, the necessary
condition for Equation (17) can be written as

Pt − v.∆idc + p∆p +∇pd = f (idc)∀Qreactive
−∇p = 0 ∀Qreactive

P
.

= g(p) ∀ Timpedance

p(0,
.

∆p) = p0∀Ωimpedance

(18)

Or 
−λt − v∆λ− p∆p + (∇p)tλ +∇ζ = p− z ∀Qreactive

−∇p = 0 ∀Qreactive
λ = 0 ∀Ttime−space

λ(t) = Γ(p(t)− z(t)) ∀Ωimpedance
idc =

−1
α λ ∀Qreactive

(19)

The primal and dual equation can be derived from Equations (18) and (19) as follows
Pt − v.∆idc + p(t)∆p(t) +∇pd = −1

β λ

−∇p = 0
p
(

0,
.

∆p
)
= g(p0)

(20)

Or −λt − v.∆idc − p∇λ + (∇p)tλ +∇ζ = p− z
−∇.λ = 0

λ(t) = Γ(y(t)− z(t))
(21)

Equations (20) and (21) represent the primal and dual equation. The time discretized
equation, as derived from Equation (20), can be written as

Pk+1−Pk
∆t −V∆idc(k) + Pk+1∆Pk+1 +∇pd(k+1) =

−1
β λk+1

−∇.Pk+1 = 0
P0 = P0

(22)

In Equation (22) the initial solution may not be conversable, so by applying the Navier–
Stokes equation, Equation (22) can be reduced to{ 1

∆t P0 − v∆idc0 + P0∆P0 +∇.Pd0 = 1
∆t P0 −V∆idc0 + P0∆p0

−∇.P0 = 0
(23)
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With reference to Equation (23), it is understood that the learning rate becomes slower
because of unbounded solutions. Let f be a function on the space diagram P, where R

⋃
{+∞} [46]. Let us consider the optimization problem to be

m = inf{ f (po)|po∈P (24)

From Equation (24), let the optimal solution be ‘S’. According to Buttazo and Tomarelli
model, the conditions which satisfy Equation (24) can be derived as based on the following
assumption, such as {

H0 f∞(p) ≥ 0, ∀ p ∈ P
H1 f∞(p) ≤ −1, ∀ |p0| → +∞

(25)

And p0

‖p0‖
→ p ∈ bV, f∞(v) = 0 (26)

Then a surface exists [Dn, ζn ∈ o] for large value of n. If it satisfies all the con-
straints at (25), then optimal set S is nonempty and H0 and H1 are satisfied. If f be-
comes coercive then solution H0 and H1 are also coercive. Therefore, the adagrade in
deep-learning is required to solve coercive. However, it is a non-convex optimization,
and the technique is not suitable from a convergence point of view. In order to avoid
the overgrowth of g(P0) variable in the vector space, and due to lack of normalization,
it is proposed to use “RMSProp” into the convergence algorithm with the state vector
g(P0) = g(P0)t−1 + gP2

0 . Note that from a RMSProp optimization point of view, H0 and H1

must be converted into state space domain such as
.

m1 and
.

m2, with optimization function
such as f(id,iq,Vdc) =

.
m1x +

.
m2 y. Here, x and y represent P0 and V, respectively.

4. Bench Marking Model

The suggested method for DFIG-STATCOM coordinated control has been verified
for the inner and outer fault zone. The ANFIS controller is used to regulate the DFIG-
STATCOM coordination in Figure 2. To produce separate control action on the rotor and
grid sides, two types of converters, converter on the rotor side (RSC) and converter on the
grid side (GSC), were coupled back to back. In the current model, however, PI current
controller based on an ANFIS has been implemented, with Vdc serving as a reference
and regulated voltage reference quantities to rotor and grid side converters are Vr and
Vgc, respectively, allowing these two converters to operate in a coordinated way indirectly.
Wind side turbine gives DC quantity of reference, and other reference quantities such as
frequency and voltage are supplied using PLL from the grid side converter.

The STATCOM consists of a DC supply governed by voltage and current reference
parameters obtained from GSC. To demonstrate the controller’s sturdiness, the model was
compared to two distinct methodologies, as given below:

• Case-I: ANFIS tuned PI controller for achieving coordinated control of DFIG-STATCOM.
• Case-II: FPA tuned Gaussian PI Controller

4.1. Case-I

The input parameters for an ANFIS controller need to be set to change proportionately
as per the process needs. At the start, choose two inputs to the controller that denote the
output state (given by the object output). The output of PI controller is set as a target for the
process of production and for the final stage of the neural network training and replicating
model. Triangular membership functions are used as parameters. The in-feed and result
variables of the controller are constructed using the five membership functions of NL, ZE,
PL, NS, and PS. They are used as language variables. During training, these parameters
are trained at intervals of 10 epoch. The fundamental PI controller, which is ANFIS-based
for the suggested system, is shown in Figure 3. Standard PI controller is used here to
process the parameters Id and Iq. This output of the controller is given to the first layer,
and it converts this to a crisp variable. Five membership functions (MFs) are employed in
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the current model. Taking reference from MF, the back propagation technique was used
to estimate various types of two weights (w1 and w2). The normalization property was
utilized to turn the same into a second level of crisp variable. It is then converted back to
initial physical variable at the end of layer 5 using addition operations.
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It is clear from the curve fitting application that the rule followed by all program agents
is linear dependency. The rules of the Takagi–Sugeno fuzzy interference system, which
is ANFIS based, were used to establish this. For this reason, to develop the rules in this
paper, it has been used. ANFIS output is normally a linear mixture of input variables with
some constant variables. Weight functions are commonly used to these linear combination
variables. ANFIS controlled structures typically produce a sum average of input which
is a flat weighted, turned into output as their final output. Sometimes, when the number
of rules in a fuzzification process increases in the number of membership functions and
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input, the system becomes more complicated and difficult to manage the variables within
the limit. Sugeno-style methods (also known as Takagi–Sugeno) have inputs fuzzy and
outputs crisp. The process is extremely effective when it comes to adaptive optimization,
making it ideal for solving control problems. The following is a basic ANFIS structure with
(z) as one output and x and y as two inputs, which can be written as follows:

Takagi–Sugeno fuzzy system follows the Rule table, and it is If and Then rules.
Rule-1 = If xx is X1 and yy is Y1 then function f1 = A1xx + b1xx + r1
Rule-2 = If xx is X2 and yy is Y2 then f2 = A2xx + b2xx + r2
For Layer 1
For each nodal point I in the present layer, the square node point functional parameter

will be
O1, i = µX, i(xx) values for i here as (1, 2)
O1, i = µY, i(yy) values for i here as (1, 2)
For node I input here is denoted by X or layer-1 is mention here and linguistic informa-

tional weighted variable are expressed by “X” and “Y” exist at that node. Like membership
values of triangular or Gaussian, here also two types of Linguistic variables can be used.
Variables assigned to Layer-1 are named as premise parameters. Here, xx and yy represent
the x set of input X and y represents the y set of input Y.

Layer 2
π is the node value for set Layer 2. Again, the output of Layer 2 is the product of all

incomers.
O1, i = µA, i(xx) X µB, i(xx) here values of i as (1, 2). Strength rules of fuzzy logic can

be seen from the fixed layer number 2 output.
Layer 3
For layer 3, the node level is N. It is expressed as ratio of fuzzy rules strength to the

addition of strength of fuzzy rule tables.
O3, i = wi = wi

(w1+w2) for values of i as (1, 2)
The output of layer 3 indicates the normalized solution of fuzzy rules.
Layer 4
This layer is stated as adaptive fuzzy node. The nodal function for layer 4 is shown as
Oq, i = wifi = wi (p1xx + qiyy + ri)
Layer 5
Layer 5 output shows the summation of the average of linearly time-dependent input

variable. For this layer number 5, the equation for the crisp output can be written as
Oc, i = Σwifi
Again, the above discussion shows that the ANFIS (adaptive neural fuzzy inference

system) is identical to the fuzzy system-based type Takagi–Sugeno in all cases.
Calculating the difference between projected and actual output can be used to assess

the ANFIS controller’s efficiency. The kind of loss function employed in this article is sparse
categorical cross entropy. In terms of its probability distribution, the layer output may be
expressed as

h(p) = −logP (∑ωif i) (27)

Equation (27) can be expressed as follows, which shows the entropy for h(p).

(p) = −∑ωP (∑ωif i)logP (∑ωif i) (28)

A negative sign in Equation (28) indicates that positive or zero results always occur.
If for the output layer the probability distribution is 1, then Equation (14) gives

zero output. Similarly, from Equation (27), it is clear that if there is single output, h(p)
will be minimum.

Optimized well-trained FIS file must be created for the fuzzy logic controller used
in ANFIS, and ANFIS requires accurate data. As a result, the data must be obtained with
the largest possible error [23]. Before processing FIS files, data verification is required.
With this, data from the PI controller are checked. To achieve the best results, the variable
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Id and Iq are derived from the PI controller’s input and output. Figure 3 depicts the PI
controller’s inputs and outputs, which are given to the data inspector for error detection.
Under error analysis, the error between output, input, and output of the neural network
is displayed in Figure 4.
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Figure 4. Training of data using neural network for sample 1, (a) plant input (Idin), (b) reference plant
output (Idout,ref ), (c) controller from actual output to ref. output, (d) ANFIS plant output (Idout,act).

The error displayed transient behavior owing to load variations after nearly 30 s.
0.012 to 0.012 is the usual range for error during 30 s, excluding for the transition state.
For the algorithm of Levenberg–Marquardt, the overall throughput is 3.92 × 106, with
1.04 × 105 value for slope.

The neural network arrangement for training is shown in Figure 3. With a least error
of 0.01, it is clear that during training conditions, the program is effective. For training set
ID 1, the gradient remains 0.00048193 in epoch 7, as seen in Figure 5. Figure 5 depicts the
regression analysis for R = 0.99977 and for R = 0.99874, respectively.
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Figure 5. Validation of data using neural network for sample 1, (a) actual plant input (Idin,act),
(b) actual plant output (Idout,act), (c) controller from actual output to ref. output, (d) ANFIS plant ref.
output (Idout,ref ).

Iq is simulated in the same way as Id is. By means of PI controllers, data are acquired,
and from these data sample 2 was collected. To calculate the errors, the input and output of
PI controllers are placed into the data validation area, as shown in Figure 6. Additionally,
output side error and neural network output side error are shown in Figure 6. The error
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exhibits transients firstly at 4.85 s and then 30 s later due to changes in load and wind speed.
Furthermore, the usual range for this is 0.01–0.015. After this, no transition state is seen by
4.85 s and 30 s.
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Figure 6. NN regression analysis for sample 1, (a) training of ref. and actual with R = 0.99977,
(b) validation of ref. and actual with R = 0.99874.

The ANFIS controller provided for coordinated control action using DFIG and STAT-
COM uses two-layer architecture for direct and quadrature axis control axis. In order to
train the model, the input error between the actual direct axis current and reference direct
axis current has been given as input to train the model with Kp and Ki, which are the
weighted constraint to the nodes of the model. Overall, 75% of the data were used to train
the model and 25% of the data were used to test the model under different constraints. Data
training with neural network structure is shown in Figure 7. The least error of training is
equal to 0.01 under training conditions, as seen above. Figure 8 depicts the neural network’s
training state as gradient and mu. As shown in Figure 8, sample 2 of Iq for the training
supports the gradient 1.2044 × 105. This is of epoch 200. Values of R for regression used
were R = 0.99983 and R = 0.99972, respectively.
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output (Idout), (c) controller from actual output to ref. output, (d) ANFIS plant output (Idout,t).
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Figure 8. Validation of data using neural network for sample 2, (a) actual plant input (Idin,t),
(b) actual plant output (Idout,act), (c) controller from actual output to ref. output, (d) ANFIS plant ref.
output (Idout,ref ).

The method used is the gradient descent to gather samples from the controllers’ output
and input to further reduce the error. The trial is considered to be on samples 3 and 4. To
detect the errors, the input and output data of PI controller for IDs were provided to the
data validator, as shown Figure 9 shows the NN regression analysis for sample 2, where
Figure 9a is training of ref. and actual with R = 0.99983, and Figure 9b represents the
validation of ref. and actual with R = 0.99972. The training data set for sample 3 is shown
at Figure 10. Similarly, Figure 11 Shows the validation of data using neural network for
sample 3. The error indicates transient behavior after around 30 s due to load variations,
and it also demonstrates that the error range is normally 0.001 to 0.001, excluding transient
I which is up to 30 s.
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Figure 10. Training of data using neural network for sample 3, (a) plant input (Idin), (b) reference
plant output (Idout,ref ), (c) controller from actual output to ref. output, (d) ANFIS plant output
(Idout,act).
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The best four samples, similar to sample 2, have been examined, and the same will be
used for the SA-PI controller in Section 5 [45,46].

The NN regression analysis for sample 3, has been presented at Figure 12. Here the
training and testing has been done for 0.999 and 0.998 respectively. Again for sample 4 the
training and validation is shown at Figures 13 and 14 respectively. Figure 15 represents
the NN regression analysis for sample 4 with training and validation value of 0.996 and
0.997 respectively.
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Figure 12. NN regression analysis for sample 3, (a) training of ref. and actual with R = 0.99977,
(b) validation of ref. and actual with R = 0.99874.
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Figure 13. Training of data using neural network for sample 4, (a) plant input (Idin), (b) reference
plant output (Idout), (c) controller from actual output to ref. output, (d) ANFIS plant output (Idout,t).
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4.2. Case-II

The procedure starts with two-step results. These are two parallel FPA (flower pollina-
tion algorithm) solutions that will be built into the main algorithm to determine the 5-fold
cross authentication and best higher parameter estimate. The following are some of the
crucial steps in the procedure:

1. Set the value of time t = 0 and start the FPA (flower pollination algorithm) and parallel
algorithm.

2. Between the two data sets of data, evaluate similarity and the pollen distance.
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3. In pollen space, evaluate the flatness in FPA from the range 0.3 to 0.99.
4. With reference to decision variables, check for global and local optimization.
5. Set the outcome to stopping criterion once Gbest is attained.
6. For the training and for testing sets, make two databases.
7. If the best possible solution is not receiving, change the Gaussian surface.

The investigation of multiple FPA (flower pollination algorithms) Gaussian models to
enhance the parameter of controller is shown in Tables 1 and 2. With the FPA optimization,
stratified analysis was performed, although the best result was reported here for 0.95 band
width (GBW). We looked at different forms of Gaussian surfaces for analysis. Table 2 shows
that for sigma 0.8, the three Gaussian surfaces have identical RMSE, value of response time,
and RF attributes to the GBW = 0.95.

Table 1. Different Gaussian model analysis with GBW = 0.95.

Sigma Type of Gaussian Surface RMSE Response Time RF

0.8
Squared Exponential 1.7723 3.77 9.4

Matern 5/2 GPR 1.7179 3.72 17.7
Exponential GPR 1.4233 3.52 6.43

0.9
Squared Exponential 1.581 3.08 9.3

Matern 5/2 GPR 1.647 3.17 11.4
Exponential GPR 1.292 3.10 4.77

0.94
Squared Exponential 1.782 3.7 9.45

Matern 5/2 GPR 1.8798 3.2 9.3
Exponential GPR 1.5653 3.2 7.13

Table 2. Analysis of different Gaussian models with GBW = 0.96.

Sigma Type of Gaussian Surface RMSE Response Time RF

0.8
Squared Exponential 1.7723 3.77 9.4

Matern 5/2 GPR 1.9179 3.72 17.7
Exponential GPR 1.4233 3.57 6.43

0.9
Squared Exponential 1.717 3.324 9.267

Matern 5/2 GPR 1.129 3.213 11.217
Exponential GPR 1.328 2.96 4.8

0.94
Squared Exponential 1.782 3.78 9.45

Matern 5/2 GPR 1.8208 3.205 9.092
Exponential GPR 1.4865 3.224 7.248

5. Result Analysis

In the problem formulation section, it has been discussed that the mathematical model
satisfies the secondary condition of the rotor side controller and that of the STATCOM
controller. Therefore, RMSProp-PI Controller was used to design the coordinated control
between dfig and STATCOM. As the proposed problem is nonconvex, therefore, LSTM-
enabled RMSProp-PI was designed using the Matlab Simulink model as per Appendix A,
where the optimality has been derived by Python programming for different boundary
value conditions. The model also tested various feasibility and safety concerns associated
with the different types of faults, such as line 2 ground fault, line to line to ground fault,
and triple line to ground fault.

Before starting the analysis for different types of faults, it was required to define the
RMSProp and LSTM boundary conditions for different types of uncertainties, the response
time, and the fault clearance time in the memory of LSTM. The classical approach for tuning
the experimental parameter setup can be analyzed for different values of static boundary
value conditions; however, this method will not solve the problem during non-convex
optimization. In order to solve the problem using RMSProp and LSTM, the following
conditions have been assumed before the modeling using Matlab Simulink. Each function
has to be differentiable from the curve over the curve and produce a boundary gradient such
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that the corresponding stochastic gradient is bounded. The simulation design parameter is
shown in Table 3.

Table 3. Simulation design parameter.

Sl. No. Parameters Rating

1 Grid Voltage 400 V, 50 Hz
2 Line Parameters 1 ohm, 1 mH
3 Coupling Inductor 3 mH, 0.5 ohm
4 DC Bus Capacitor 1.34 mH
5 Vdc, Ref. Voltage 700 V
6 Sampling Time 2 × 10−6 s
7 Switching Frequency 15 kHz

5.1. Case-1: Single Line to Ground Fault

The IEEE 5 bus system has been considered to validate the performance of DFIG and
STATCOM under the single line-to-ground fault condition and their coordinated control
action to mitigate the transient disturbances by providing enough reactive power to the
transmission line. As per the detailed engineering calculation, a fault at 3.2 km away from a
wind turbine has been identified as the place for a single line to ground fault. The minimum
fault duration is 0.2 s, and the maximum fault duration is three cycles. The objective is
to identify the fault within two cycles and to take corrective measures to rectify the fault
within one cycle.

Figure 16 shows the mathematical model and 3D view of the line-to-ground fault
situation in the IEEE 5 bus system. The Matlab Simulink-based 3D model represents the
hyperplane of the PI controller transfer function. Here, three different curves have been
shown as part of the three situations that occur during the fault condition, such as transfer
function hyperplane after one cycle as represented by Figure 16a, and after two cycles
and three cycles, it is shown in Figure 16b,c, respectively. It is clearly understood that
during the fast instant of the fault cycle, the upper boundary is −2, and that of the lower
boundary is −4. Similarly, during the second cycle of observation, it is noticed that the
upper boundary has increased to 0.00, and that of the lower boundary is at −0.5. The same
boundary becomes more constrained for the triple line to ground fault condition.

Figure 16 represents Mathematical model and 3D view of the line-to-ground fault
situation for three different cycle of observation. The Figure 17 represents the matplotlib
heat function of the optimization window. Here, X-axis represents the proportional gain,
and the Y-axis represents integral gain. As stated earlier, optimization has to be carried
out to control reactive power flow between the STATCOM and the transmission line. In
the figure, that is the optimization using RMSProp converges at 0, and that of the integral
controller has a maximum value of 0.42 to track the line to ground fault during transient
disturbances. The operation above can be achieved by making the integral controller
dynamic oscillate between 0.36 and 0.42. Again, from the heat map, it is also understood
that the system is stable in tracking the fault under a predefined contour configuration.
Similarly, Figure 17b,c represent the optimization window for the second and third cycles.
During the second cycle, a slight deviation in the proportional gain has been noticed, and
this is probably due to the line-to-ground fault having a lower impedance.
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Figure 18 shows the cost optimization for RMSProp with PI controller interms of
error analysis and reward. Table 4 represents a comparative analysis between without
(Situation 1) and with (Situation 2) coordinated control of different techniques for DFIG and
STATCOM. In a IEEE –5 bus system, a detailed comparative analysis between ANFIS-PI,
GA-PI, and RMSProp-PI has been carried out. The analysis of real power and reactive power
exchange between the STATCOM and the line at various distances from the STATCOM
position has been presented. As observed with RMSProp, the system can deliver more
power under power compensation mode without and with the coordinated control system.
It is also observed that a sharp increase in 3% power delivery capability from without to
with a coordinated system for RMSProp. A detailed comparative analysis of the different
PI controllers in terms of step response is presented in Table 5.
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Table 4. Comparative analysis between without and with coordinated control of different techniques
for DFIG and STATCOM under line-ground fault.

Bus No. 1–2 1–4 2–3 3–5 4–5

STATCOM Distance from Tr. Line 1.45 2.07 3.41 4.22 4.67

P Q P Q P Q P Q P Q

Without Coordinated
Control

Between DFIG and
STATCOM

ANFIS + PI 0.015 0.044 0.058 0.061 0.449 0.150 0.022 0.024 0.029 0.031

FPA + PI 0.014 0.041 0.054 0.057 0.42 0.14 0.021 0.022 0.027 0.029

RMSProp + PI 0.016 0.047 0.062 0.066 0.483 0.161 0.024 0.025 0.031 0.033

With Coordinated Control
Between DFIG and

STATCOM

ANFIS + PI 0.015 0.044 0.058 0.062 0.454 0.151 0.023 0.024 0.029 0.031

FPA + PI 0.016 0.048 0.063 0.066 0.485 0.162 0.024 0.026 0.031 0.033

RMSProp + PI 0.017 0.051 0.067 0.071 0.522 0.174 0.026 0.027 0.033 0.036

Table 5. Comparative analysis of the different PI controllers in terms of step response.

System Type Parameters Proportional
Gain

Integral
Gain Rise Time Peak Time Settling

Time
Max over

Shoot

Situation 1

ANFIS + PI 0.32 0.57 0.88 0.97 1.2 11.24

FPA + PI 0.29 0.57 0.83 0.99 1.4 11.007

RMSProp + PI 0.36 0.70 1.02 1.20 1.66 13.48

Situation 2

ANFIS + PI 0.38 0.68 1.05 1.15 1.43 13.38

FPA + PI 0.35 0.68 0.99 1.18 1.67 13.10

RMSProp + PI 0.43 0.83 1.21 1.43 1.98 16.04

Figure 19 represents the step response of the RMSProp-PI controller supported by
LSTM. It is observed that the estimated system response initially behaves transiently up
to one second, and after that, the system becomes undammed against the original system
performance under damping in nature after one second. This shows that the proposed
controller is more robust in tracking the fault and initiating corrective measures to rectify
the system as soon as possible. Similarly, Figure 20 represents the DC voltage reference
of STATCOM where, due to control action, the system shows minor disturbances at one
second and 1.5 s, respectively. Similarly, the real and reactive power exchange at the point
of STATCOM and GSC is shown in Figure 21. Similarly Figure 22 represents Initial transient
real power between STATCOM and line.

Sustainability 2022, 14, x FOR PEER REVIEW 22 of 34 
 

 
Figure 19. Step response of RMSProp + PI controller supported by LSTM. 

 
Figure 20. DC reference voltage of STATCOM. 

 
Figure 21. (a) Real power at the pcc of STATCOM and GSC under SLG. (b) Reactive power at the 
pcc of STATCOM and GSC under SLG. 

Figure 19. Step response of RMSProp + PI controller supported by LSTM.



Sustainability 2022, 14, 15105 22 of 35

Sustainability 2022, 14, x FOR PEER REVIEW 22 of 34 
 

 
Figure 19. Step response of RMSProp + PI controller supported by LSTM. 

 
Figure 20. DC reference voltage of STATCOM. 

 
Figure 21. (a) Real power at the pcc of STATCOM and GSC under SLG. (b) Reactive power at the 
pcc of STATCOM and GSC under SLG. 

Figure 20. DC reference voltage of STATCOM.

Sustainability 2022, 14, x FOR PEER REVIEW 22 of 34 
 

 
Figure 19. Step response of RMSProp + PI controller supported by LSTM. 

 
Figure 20. DC reference voltage of STATCOM. 

 
Figure 21. (a) Real power at the pcc of STATCOM and GSC under SLG. (b) Reactive power at the 
pcc of STATCOM and GSC under SLG. 
Figure 21. (a) Real power at the pcc of STATCOM and GSC under SLG. (b) Reactive power at the pcc
of STATCOM and GSC under SLG.

Sustainability 2022, 14, x FOR PEER REVIEW 23 of 34 
 

 
Figure 22. Initial transient real power between STATCOM and line. 

5.2. Case-2: Line-Line to Ground Fault 
The occurrence of the double line to ground fault is about 66% as compared to the 

single line to ground fault. This requires a robust Pi controller to achieve the coordinated 
control action between the DFIG and that of STATCOM. Two different types of stability 
analysis, such as minor signal disturbance and significant signal disturbance, have been 
investigated with two different tolerance levels. The mathematical model and the 3D view 
of the line-to-ground fault situation are shown in Figure 23. 

 
(a) 

 
(b) 

 
(c) 

Figure 22. Initial transient real power between STATCOM and line.



Sustainability 2022, 14, 15105 23 of 35

5.2. Case-2: Line-Line to Ground Fault

The occurrence of the double line to ground fault is about 66% as compared to the
single line to ground fault. This requires a robust Pi controller to achieve the coordinated
control action between the DFIG and that of STATCOM. Two different types of stability
analysis, such as minor signal disturbance and significant signal disturbance, have been
investigated with two different tolerance levels. The mathematical model and the 3D view
of the line-to-ground fault situation are shown in Figure 23.
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Figure 23. Mathematical model and 3D view of the line-line-to-ground fault situation. (a) First cycle
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observation of voltage waveform.

The Matlab Simulink-based 3D model represents the hyperplane of the PI controller
transfer function. Here, three different curves have been shown as part of the three
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situations that occur during the fault condition, such as transfer function hyperplane after
one cycle as represented by Figure 23a, and after two cycles and three cycles, it is shown in
Figure 23b,c respectively. It is clearly understood that during the fast instant of the fault
cycle, the upper boundary is 10.01, and that of the lower boundary is 7.61. Similarly, during
the second cycle of observation, it is noticed that the upper boundary has decreased to 8.24,
and that of the lower boundary is at 2.5 with a left-hand side slope of 1.17. Again, in the
third cycle of observation, it is noticed that the upper boundary has reduced to 7.5, and
that of the lower boundary is at 1.91 with a left-hand side slope of 1.03.

Figure 24 represents the matplotlib heat function of the optimization window. In the
figure, it is clear that that is the optimization using RMSProp converges at 0, and that of
the integral controller has a maximum value of 0.44 to track the line-line to ground fault
during transient disturbances. The operation above can be achieved by making the integral
controller dynamic oscillate between 0.39 and 0.44. Again, from the heat map, it is also
understood that the system is approaching towards unstable while tracking the fault under
a predefined contour configuration from the second cycle onwards. Similarly Figure 25.
Shows the cost function optimization for RMSProp + PI.
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waveform. (b) Second cycle observation of voltage waveform. (c) Third cycle observation of voltage
waveform under line-line-ground fault.
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Table 6 represents a comparative analysis between without (Situation 1) and with
(Situation 2) coordinated control of different techniques for DFIG and STATCOM. As
observed with RMSProp, the system can deliver more power under power compensation
mode without and with the coordinated control system. It was also observed that, due to
the line-line-ground fault, a decrease in the power delivery of 23.2% occurs from without to
with a coordinated system for RMSProp. A detailed comparative analysis of the different
PI controllers in terms of step response has been presented in Table 7.

Table 6. Comparative analysis between without and with coordinated control of different techniques
for DFIG and STATCOM under line-line-ground fault.

Bus No. 1–2 1–4 2–3 3–5 4–5

STATCOM Distance from Tr. Line 1.45 2.07 3.41 4.22 4.67

P Q P Q P Q P Q P Q

Without Coordinated
Control

Between DFIG and
STATCOM

ANFIS + PI 0.012 0.035 0.046 0.048 0.355 0.119 0.017 0.019 0.023 0.024

FPA + PI 0.011 0.032 0.043 0.045 0.332 0.111 0.017 0.017 0.021 0.023

RMSProp + PI 0.013 0.037 0.049 0.052 0.382 0.127 0.019 0.020 0.024 0.026

With Coordinated Control
Between DFIG and

STATCOM

ANFIS + PI 0.012 0.035 0.046 0.049 0.359 0.119 0.018 0.019 0.023 0.024

FPA + PI 0.013 0.038 0.050 0.052 0.383 0.128 0.019 0.021 0.024 0.026

RMSProp + PI 0.013 0.040 0.053 0.056 0.412 0.137 0.021 0.021 0.026 0.028

Table 7. Comparative analysis of the different PI controllers in terms of step response under line-line-
ground fault condition.

System Type Parameters Proportional
Gain

Integral
Gain Rise Time Peak Time Settling

Time
Max over

Shoot

Situation 1

ANFIS + PI 0.37 0.67 1.03 1.13 1.40 13.15

FPA + PI 0.34 0.67 0.97 1.16 1.64 12.88

RMSProp + PI 0.42 0.82 1.19 1.40 1.94 15.77

Situation 2

ANFIS + PI 0.41 0.73 1.12 1.23 1.53 14.32

FPA + PI 0.37 0.73 1.06 1.26 1.79 14.02

RMSProp + PI 0.46 0.89 1.29 1.53 2.12 17.16



Sustainability 2022, 14, 15105 26 of 35

Figure 26 represents the step response of the RMSProp-PI controller supported by
LSTM. It was observed that the estimated system response has no initial transient up to
one second, and after that, the system became under-damped against the original system
performance. Similarly, Figure 27 represents the DC voltage reference of STATCOM, where,
due to control action, the system shows major disturbances during the initial stage and at
one second and 1.5 s, respectively. Similarly, the real and reactive power exchange at the
point of STATCOM and GSC is shown in Figure 28.
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5.3. Case-3: Line-Line-Line to Ground Fault

The occurrence of the triple line to ground fault is about 41% compared to the single
line to ground fault and 48%. The mathematical model and 3D view of the line-to-ground
fault situation is shown in Figure 29.

It is clearly understood from Figure 29 that during the fast instant of the fault cycle,
the upper boundary is 11.81, and that of the lower boundary is −0.62. Similarly, during
the second cycle of observation, it was noticed that the upper boundary increased to
15.37 with a left-hand side slope and that of the lower boundary was at −1.81 with a
left-hand side slope of 4.36. Again, in the third cycle of observation, it was noticed that
the upper boundary has reduced to 5.62, and that of the lower boundary was −0.97 with
a left-hand side slope of −8.57. This shows that the system behaves more transient in its
disturbances at the zero crossing point and the severity of the fault.

Figure 30 represents the matplotlib heat function of the optimization window. The op-
eration above can be achieved by making the integral controller dynamic oscillate between
−0.12 and 0.38. Again, from the heat map, it is also understood that system is approaching
towards being unstable while tracking the fault under a predefined contour configura-
tion from the second cycle onwards. Figure 31 shows the cost function optimization for
RMSProp + PI.

Table 8 represents a comparative analysis between without (Situation 1) and with
(Situation 2) coordinated control of different techniques for DFIG and STATCOM under
triple line to ground fault. It was observed that, due to triple line-ground fault, a decrease in
power delivery of 37.66% occurs from without to with a coordinated system for RMSProp.
A detailed comparative analysis of the different PI controllers, in terms of step response, is
presented in Table 9.
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Table 8. Comparative analysis between without and with coordinated control of different techniques
for DFIG and STATCOM under triple-line-ground fault.

Bus No. 1–2 1–4 2–3 3–5 4–5

STATCOM Distance from Tr. Line 1.45 2.07 3.41 4.22 4.67

P Q P Q P Q P Q P Q

Without Coordinated
Control

Between DFIG and
STATCOM

ANFIS + PI 0.011 0.031 0.041 0.043 0.319 0.107 0.016 0.017 0.021 0.022

FPA + PI 0.010 0.029 0.038 0.040 0.298 0.099 0.015 0.016 0.019 0.021

RMSProp + PI 0.011 0.033 0.044 0.047 0.343 0.114 0.017 0.018 0.022 0.023

With Coordinated Control
Between DFIG and

STATCOM

ANFIS + PI 0.011 0.031 0.041 0.044 0.322 0.107 0.016 0.017 0.021 0.022

FPA + PI 0.011 0.034 0.045 0.047 0.344 0.115 0.017 0.018 0.022 0.023

RMSProp + PI 0.012 0.036 0.048 0.050 0.371 0.124 0.018 0.019 0.023 0.026

Table 9. Comparative analysis of the different PI controllers in terms of step response under line-line-
ground fault condition.

System Type Parameters Proportional
Gain

Integral
Gain Rise Time Peak Time Settling

Time
Max over

Shoot

Situation 1

ANFIS + PI 0.49 0.89 1.37 1.50 1.86 17.49

GA + PI 0.45 0.89 1.29 1.54 2.18 17.13

RMSProp + PI 0.56 1.09 1.58 1.86 2.58 20.97

Situation 2

ANFIS + PI 0.55 0.97 1.49 1.64 2.03 19.05

GA + PI 0.49 0.97 1.41 1.68 2.38 18.65

RMSProp + PI 0.61 1.18 1.72 2.03 2.82 22.82

Figure 32 represents the DC voltage reference of STATCOM, where due to control
action, the system shows major disturbances during the initial stage and at one second
and 1.66 s, respectively. Similarly, the real and reactive power exchange at the point of
STATCOM and GSC is shown in Figure 33.
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Figure 32. DC reference voltage of STATCOM under line-line-ground fault condition.

The ANFIS-based PI controller changes the parameters Kp and Ki according to the
changes in the power system operating condition at the time of disturbance. ANFIS is a
combination of neural network with fuzzy interference system, which is a branch of artificial
intelligence characterized by fuzzification, defuzzification, and rule base. Fuzzy logic deals
with linguistic variables and neural networks, requiring input and output databases for
training. Generally, for linear databases, the back propagation network is used, and for
nonlinear databases, the multilayer feed forward neural network is preferred. The output
of PI controller is set as target for the process of production and for the final stage of the
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neural network training and replicating model. Triangular membership functions here
are used as parameters. The in-feed and result variables of the controller are constructed
using the five membership functions of NL, ZE, PL, NS, and PS. They are used as language
variables. During training, these parameters were trained at intervals of 10 epoch. A
standard PI controller was used here to process the parameters Id and Iq. This output
of the controller was given to the first layer, and it converts this to a crisp variable. Five
membership functions (MFs) were employed in the current model. Taking reference from
MF, the back propagation technique was used to estimate various types of two weights (w1
and w2). The normalization property was utilized to turn the same into a second level of
crisp variable. It was then converted back to an initial physical variable at the end of layer
5 using addition operation.
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From the simulation in MATLAB/SIMULINK, it was observed that proposed ANFIS
is comparable to conventional PI controller and PI plus FLC to increase the stability of
the system. The suggested ANFIS system is learned from the studied system’s transient
responses with the proposed STATCOM in combination with developed Fuzzy plus PI
controller, and the device responses, along with the proposed STATCOM in conjunction
with the ANFIS, provide a better output response. We can say that STATCOM and ANFIS
achieve steady state values and the system’s transient responses are the quickest. This says
that the proposed STATCOM with ANFIS controller will provide the studied device with
sufficient reactive power and improve the damping characteristics to easily dampen the
intrinsic oscillations of the tested system against the tested system without a controller
with a PI and a PID plus fuzzy controller.
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6. Conclusions

Coordinated control among DFIG and STATCOM using ANFIS, FPA, and RMSProp
has been established in the present research paper. A detailed comparative analysis has
been presented among the methodologies. As observed, the coordinated control strategies
work well under conditions such as the faulted distance from the substation, which should
not be more than 3 km from the STATCOM vicinity, with a minimum allowable fault
resistance of 0.18 ohm for the ANFIS and FPA-based control systems. The NN-error, as
obtained from the experiment under case-2 of benchmarking model, was observed to be
0.99982. This is almost close to the reference line passing through the origin. Although
ANFIS shows better performance in predicting the situation, from a stability point it was
not found to be suitable.

In the IEEE-5 bus test system, the STATCOM has been connected between bus no. 2–3
for one experiment and in between 3–5 in the second experiment. From Table 7, it can
be observed that, without coordinated control, the power exchange between the bus 2–3
becomes 0.343 kwatt and 0.114 kvar for RMSprop and that of 0.298 kwatt and 0.099 kvar
for FPA + PI has been achieved. With coordinated control, it increased to 0.371 kwatt and
0.124 kvar for RMSprop.

A detailed stability analysis for the line to line to ground fault was presented in Table 8.
It was found that RMSProp + PI controller provides a maximum overshoot of 17.49% as
compared to 20.97% in ANFIS + PI controller under situation 1. Similarly, under situation 2
it was 19.05% and 22.82%, respectively.
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Appendix A

Table A1. Power flow in five bus system without FACTS controller.

Sl. No. Bus No. Real Power Flow
(P.U)

Reactive Power Flow
(P.U)

01. 1–2 0.0142 0.0419
02. 2–4 0.0541 0.0570
04. 4–4 0.4202 0.1402
04. 4–5 0.0210 0.0220
05. 4–5 0.0277 0.0290
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