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Overview 

•  Quantitative verification 

−  probabilistic model checking and PRISM 

•  Modelling and analysis of biological systems 

−  a discrete stochastic approach 

−  probabilistic model checking: “in-silico” experiments 

•  Two-domain DNA strand displacement 

−  gate correctness, reliability and performance  

−  design optimisation: garbage collection 

−  a larger example: approximate majority 

−  see: [Lakin/Parker/…, Royal Society Interface, 2012] 

•  Summary, challenges & directions 



Verification via model checking 

Finite-state 
model 

Temporal logic 
specification 

Result 
System 

Counter- 
example 

System 
 require- 

ments 

¬EF fail 

Model checker 

e.g. SMV, Spin 

Model checking: Automatic formal verification of 
correctness properties of computerised systems 



Probabilistic model checking 

•  Why and what? 

•  Why probability? 

−  unreliability (e.g. component failures) 

−  uncertainty (e.g. message losses/delays over wireless) 

−  randomisation (e.g. in protocols such as Bluetooth, ZigBee) 

−  stochasticity (e.g. biological/chemical reaction rates) 

•  Quantitative properties 

−  reliability, performance, quality of service, … 

−  “the probability of an airbag failing to deploy within 0.02s” 

−  “the expected power usage of a sensor network over 1 hour” 

−  “the expected time for a cell signalling pathway to complete” 
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Probabilistic model checking 

•  Construction and analysis of finite probabilistic models 

−  e.g. Markov chains, Markov decision processes, … 

−  specified in high-level modelling formalisms 

−  exhaustive model exploration (all possible states/executions) 

•  Automated analysis of wide range of quantitative properties 

−  properties specified using temporal logic 

−  “exact” results obtained via numerical computation 

−  linear equation systems, iterative methods, uniformisation, … 

−  as opposed to, for example, Monte Carlo simulations 

−  efficient techniques from verification + performance analysis 

−  mature tool support available 



The PRISM tool 

•  PRISM: Probabilistic symbolic model checker 

−  developed at Birmingham/Oxford University, since 1999 

−  free, open source software (GPL), runs on all major OSs 

•  Support for: 

−  models: Markov chains, Markov decision processes, … 

−  properties: PCTL, CSL, LTL, PCTL*, costs/rewards, … 

•  Features: 

−  simple but flexible high-level modelling language 

−  user interface: editors, simulator, experiments, graph plotting 

−  multiple efficient model checking engines (e.g. symbolic) 

•  Many import/export options, tool connections 

−  in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, … 

−  out: Matlab, MRMC, INFAMY, PARAM, … 

•  See: http://www.prismmodelchecker.org/ 



PRISM – Case studies 

•  Randomised communication protocols 

−  Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, … 

•  Randomised distributed algorithms 

−  consensus, leader election, self-stabilisation, … 

•  Security protocols/systems 

−  pin cracking, anonymity, quantum crypto, contract signing, … 

•  Planning & controller synthesis 

−  robotics, dynamic power management, … 

•  Performance & reliability 

−  nanotechnology, cloud computing, manufacturing systems, … 

•  Biological systems 

−  cell signalling pathways, DNA computation, … 

•  See: www.prismmodelchecker.org/casestudies 
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Modelling biological systems 

•  Aim: model a mixture of interacting molecules 

−  multiple molecular species, interacting through reactions 

−  cell signalling pathway, gene regulatory network, … 

−  fixed volume (spatially uniform), pressure and temperature 

•  Simple example: 

−  3 species A, B and AB; 3 reactions: 

−  reversible binding of A and B to form AB; degradation of A 

•  Two approaches to modelling 

−  discrete, stochastic 

−  continuous, deterministic 
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Modelling biological systems 

•  Discrete, stochastic approach 

−  (integer) counts of number of 
each molecule: x=(xA,xB,xAB) 

−  inherently stochastic process 
[McQuarrie, Gillespie] 

−  continuous-time Markov chain with states x 

−  stochastic simulation, numerical soln.,  
probabilistic model checking, … 

•  Continuous, deterministic approach 

−  (real-valued) concentrations: [A], [B], [AB] 

−  solution of system of coupled  
ordinary differential equations 

−  good approximation of E[x]  
for very large num.s of molecules 
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Discrete stochastic approach 

•  Chemical master equation 

−  state vector x=(xA,xB,xAB) 

−  probability P(x,t) that at time  
t there will be xZ of species Z 

−  stoichiometric vectors: v1=(-1,-1,1), v2=(1,1,-1), v3=(-1,0,0) 

−  ai(x) are time-independent propensity functions 

−  mass-action: proportional to reactant combinations 

•  e.g. a1(xA,xB,xAB) = k1·xA·xB 

•  Stochastic process: continuous-time Markov chain (CTMC) 

−  transition rates (of exponential delays) derived from ai 
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Continuous-time Markov chain (CTMC) 

•  CTMC C = (S,si,R) 

−  states S, initial state si ∈ S 

−  rate matrix R : S × S → ℝ≥0 

−  R(s,s’): rate of exponential  
delay before moving s → s’ 

−  probability s → s’ triggered  
before time t = 1 – e-R(s,s’)·t 

•  Example: CTMC with: 

−  states (xA,xB,xAB) ∈ S = {0,1,2}3 

−  initial state (2,2,0) 

•  Rates for reactions 

−  r1 (binding): rate = xA·xB·k1 

−  r2 (unbinding) rate = xAB·k2 

−  r3 (degradation): rate = xA·k3 
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Probabilistic model checking 

Probabilistic model checking for systems biology… 
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PRISM modelling language 

•  Simple, textual, state-based modelling language 

−  for Markov chains (and other models) 

•  Language basics 

−  networks formed from interacting modules 

−  state of each module given by finite-ranging variables 

−  behaviour of each module specified by guarded commands 

−  interactions between modules through synchronisation 

−  interactions are associated with state-dependent rates 

   [r1]    (a>0)  →  k1*a  :  (a’=a-1)&(ab’=ab+1); 

action guard rate update 



PRISM language - example 

module A 

    a : [0..N] init N; 

    ab : [0..N] init 0; 

    [r1] a>0 → k1*a : (a’=a-1)&(ab’=ab+1); 

    [r2] ab>0 → k2*ab : (a’=a+1)&(ab’=ab-1); 

    [r3] a>0 → k3*a : (a’=a-1); 

endmodule 

module B 

    b : [0..N] init N; 

    [r1] b>0 → b : (b’=b-1); 

    [r2] b<N → b : (b’=b+1); 

endmodule 

Example (r1): 

(a,ab,b) 

(a-1,ab+1,b-1) 

k1·a·b 
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Property specifications 

•  Property specifications are based on temporal logic 

−  PRISM uses continuous stochastic logic (CSL) + extensions 

−  also supports linear temporal logic (LTL) 

−  flexible, compact, unambiguous definition 

−  small subset of patterns/templates in common use 

−  can express properties about the probability of occurrence of 
an event or the expected value of some cost/reward measure 

•  CSL example: P>0.9 [ F
≤T kpp>0 ] 

−  “with probability greater than 0.9, at least some MAPK is 
activated within the first T seconds” 

•  Usually focus on “quantitative” CSL: P=? [ F
≤T kpp>0 ] 

−  “what is the probability that at least some MAPK is activated 
within the first T seconds?” 

−  typically compute/plot for a range of parameter values 



Example (FGF) 

•  Probability that a signal is present at time T  

−  P=? [ F
=T (FRS2_GRB>0 & relocFRS2=0 & degFRS2=0) ] 



More examples of (extended) CSL 

•  P=? [ F
[t,t] a=i ] 

−  “the probability that there are exactly i A after t seconds” 

•  P=? [ F a=0 ] 

−  “probability that all A proteins are eventually degraded” 

•  S=? [ c+d>M ] 

−  “long-run probability that the total number of Cs and Ds 
activated is above M” 

•  P=? [ c=0 U>t c>0  {c=0}{“max”} ] 

−  “highest probability of it taking more than t seconds for C to 
become activated, from any state where there are none” 

•  P=? [ F c=N ] / P=? [ F c>0 ] 

−  “the (conditional) probability that all C proteins are eventually 
activated, given that at least some of them are” 

•  R{“active_d”}=? [ I
=t ] 

−  “the expected number of activated D at time instant t” 



Case studies 

•  Fibroblast Growth Factor (FGF) pathway 

−  [Heath/Kwiatkowska/Norman/Parker/Tymchyshyn/Gaffney] 

−  12 species, 14 sets of reaction rules 

−  model checking (PRISM)+ simulation (stochastic π-calculus) 

−  “in-silico” experiments: systematic removal of components 

−  results validated by subsequent lab experiments 

•  RKIP-inhibited ERK pathway [Calder/Vyshemirsky/Gilbert/Orton] 

−  model checking using PEPA and PRISM models 

−  formal analysis highlighted errors in existing models 

−  corrected models then validated against experimental data 

•  And more: Codon bias, Ribosome kinetics, Sorbitol 
dehydrogenase, T Cell Signalling Events, … 

−  www.prismmodelchecker.org/casestudies/index.php#biology 
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Two-Domain DNA Strand Displacement 

•  DNA computing with a restricted class of DNA strand 
displacement structures 

−  double strands with nicks (interruptions) in the top strand 

−  and two-domain single strands consisting of 
one (short) toehold domain and one recognition domain 

−  “toehold exchange”: branch migration of strand <t^ x> 
leading to displacement of strand <x t^> 

•  Used to construct transducers, fork/join gates 

−  which can emulate Petri net transitions 

   [Cardelli’10] Luca Cardelli. Two-Domain DNA Strand Displacement. 
 Proc. Development of Computational Models (DCM’10) 



Example: Transducer 

•  Transducer: converts input <t^ x> into output <t^ y> 



Example: Transducer 

•  Transducer: full reaction list 

input output unreactive structures 
(no exposed toeholds) 



DNA programming 

•  Challenge: correct, reliable designs; avoid interference 

•  [Cardelli’10] proposes a “nick algebra” to formalise the 
definition and behaviour of these two-domain DNA strands 

−  syntax, algebraic equivalence relation, reduction rules 

•  Strict subset of DSD (DNA Strand Displacement) language 

−  [Cardelli, Phillips, et al.] 

−  accompanying software Visual DSD for analysis/simulation  

−  now extended to include auto-generation of PRISM models 

•  Example: 

new t@0.0003,0.1126 

def T(N, x, y) = 

( N* <t^ a> | N* <y t^>| N* t^:[x t^]:[a t^]:[a] | N* [x]:[t^ y]:[t^ a]:t^ ) 

( T(1, x, y) | 1 * <t^ x> ) 



Transducers: Correctness 

•  Formalising correctness… 

−  identify states where gate has terminated correctly: "all_done” 

−  (correct number of outputs, no reactive gates left) 

•  Check: 

−  (i) any possible deadlock state that can be reached  
must satisfy "all_done” 
(ii) there is at least one path through the system that 
reaches a state satisfying "all_done” 

•  In temporal logic (CTL): 

−  A [ G "deadlock" => "all_done" ] 

−  E [ F "all_done" ] 

•  Verify using PRISM… 

−  for one transducer: both properties true 

−  for two transducers in series: (ii) is true, but (i) is false 



Transducer flaw 

•  PRISM identifies a 5-step trace to the  
“bad” deadlock state 

−  problem caused by “crosstalk” 
(interference) between DSD species 
from the two copies of the gates 

−  previously found manually  [Cardelli’10] 

−  detection now fully automated 

•  Bug is easily fixed 

−  (and verified) 

Counterexample: 
(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 
(0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0) 
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0) 

reactive gates 

output 



Transducers: Quantitative properties 

•  We can also use PRISM to study the kinetics of the pair of 
(faulty) transducers: 

−  P=? [ F
[T,T] "deadlock" ] 

−  P=? [ F
[T,T] "deadlock" & !"all_done" ] 

−  P=? [ F
[T,T] "deadlock" & "all_done" ] 

success/error 
equally likely 



Transducers: Reliability 

•  Even without fixing the flaw in the transducer design… 

−  we can improve reliability by using larger numbers of copies 

•  Plot: Expected number of reactive gates in the final state 

−  for N copies of the faulty transducer pair 



Transducers: Performance 

•  We analyse the performance of the (corrected) transducers 

−  circuit composed of chain of K transducers 

−  Seelig/Soloveichik showed execution time linear in depth 

•  Analysed for DSD model in PRISM: 

−  R{"time"}=? [ F "all_done" ] 



Catalysts in DSD 

•  Slightly more complex DSD gate design 

−  extension of the transducer gate design 

•  Chemical reaction X → Z catalysed by 3rd species Y 

−  i.e. X + Y → Y + Z 

•  Design decision: 

−  can/should we implement garbage collection (GC)? 

−  i.e. tidying up of intermediate species into inert structures 

−  omitting GC makes design simpler and cheaper 

−  but is it still correct? 
and what about efficiency? 

•  PRISM analysis: 

−  both designs correct 

−  GC speeds up gate  
execution significantly 

−  due to extra reactions 



Approximate Majority 

•  Approximate majority population protocol [Angluin et al.] 

−  two populations X, Y and an auxiliary species B 

−  aim is to converge to a consensus: either X or Y 

−  should converge to population with initial majority 

•  Reactions: 

•  We implement the approximate majority protocol in DSD 

−  using the catalyst reactions shown earlier 

−  and then analyse its correctness 

X + Y Y + B 
k1 

Y + X X + B 
k2 

B + X X + X 
k3 

B + Y Y + Y 
k4 



Approximate majority: Simulation 

•  Typical simulation run: 

−  in this instance, the protocol chooses Y 



Approximate majority: Analysis 

•  Plot probability of choosing X for varying initial X/Y 

−  0.5 for equal initX and initY 

−  rapidly approaches 1 as majority increases 



Approximate majority: Analysis 

•  [Angluin et al.] prove correct consensus obtained with high 
probability if the initX-initY margin is above ω(√N log N) 

−  re-plot same data against (relative) initX-initY margin 

−  for various total initial population sizes N (=4,…,10) 

−  note increasingly clear threshold for larger N 



Model checking DNA: Limitations 

•  Key challenge (as always): state space explosion 

−  CTMCs solved for this work up to approx. 2m states 

•  Already using various methods to reduce state space: 

−  careful gate design to reduce number of asynchronous steps 

−  highest level of abstraction for reactions in DSD tool 

−  for approximate majority, fuels modelled as “constant species”  

•  Some positive results: 

−  bugs found in small systems, which also exist in bigger ones 

−  we illustrated useful design trade-offs with small populations 

−  earlier work (FGF): successful expt. validation for small sizes 

•  On the other hand: 

−  transducer bug only arises for a transducer pair, not when 
studied in isolation; can we explore all possible interfaces? 

−  how can we formally relate results obtained from smaller 
models to larger ones? 
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Summary 

•  Probabilistic model checking 

−  automatic, exhaustive construction of probabilistic models 

−  analysis of formally specified quantitative properties 

−  efficient techniques, tools available 

•  Probabilistic model checking for systems biology 

−  discrete, stochastic model: chemical master equation 

−  solution of continuous-time Markov chains 

−  quantitative properties expressed in temporal logic 

•  DNA strand displacement 

−  two-domain DSD designs analysed with Visual DSD, PRISM 

−  correctness, reliability, performance, design decisions 



Challenges and Directions 

•  Challenges 

−  scalability, infinite-state systems 

−  correct level of abstraction for formal languages? 

−  appropriate (and testable) model checking queries? 

−  closer integration of model checking tools, engines 

•  Directions 

−  model abstractions (and automatic construction of) 

−  infinite state systems: truncation for time-bounded properties 

−  model reduction techniques: bisimulation, symmetry, … 

−  approximate/statistical model checking (simulation-based) 

−  stochastic hybrid systems: discrete + continuous populations 

−  compositional probabilistic model checking 


