
Design and Analysis of 
DNA Strand Displacement Devices 
using Probabilistic Model Checking 

Dave Parker  

School of Computer Science, University of Birmingham

Centre for Systems Biology, Birmingham, June 2012

Joint work with:

Matthew Lakin, Luca Cardelli, Marta Kwiatkowska and Andrew Phillips

Overview

•  Quantitative verification

−  probabilistic model checking and PRISM

•  Modelling and analysis of biological systems

−  a discrete stochastic approach

−  probabilistic model checking: “in-silico” experiments

•  Two-domain DNA strand displacement

−  gate correctness, reliability and performance

−  design optimisation: garbage collection

−  a larger example: approximate majority

−  see: [Lakin/Parker/…, Royal Society Interface, 2012]

•  Summary, challenges & directions

Verification via model checking

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
 require-

ments

¬EF fail

Model checker

e.g. SMV, Spin

Model checking: Automatic formal verification of
correctness properties of computerised systems

Probabilistic model checking

•  Why and what?

•  Why probability?

−  unreliability (e.g. component failures)

−  uncertainty (e.g. message losses/delays over wireless)

−  randomisation (e.g. in protocols such as Bluetooth, ZigBee)

−  stochasticity (e.g. biological/chemical reaction rates)

•  Quantitative properties

−  reliability, performance, quality of service, …

−  “the probability of an airbag failing to deploy within 0.02s”

−  “the expected power usage of a sensor network over 1 hour”

−  “the expected time for a cell signalling pathway to complete”

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic temporal  
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
 require-

ments

P<0.01 [F
≤t fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

Probabilistic model checking: Automatic verification of
quantitative properties of systems with stochastic behaviour

Probabilistic model checking

•  Construction and analysis of finite probabilistic models

−  e.g. Markov chains, Markov decision processes, …

−  specified in high-level modelling formalisms

−  exhaustive model exploration (all possible states/executions)

•  Automated analysis of wide range of quantitative properties

−  properties specified using temporal logic

−  “exact” results obtained via numerical computation

−  linear equation systems, iterative methods, uniformisation, …

−  as opposed to, for example, Monte Carlo simulations

−  efficient techniques from verification + performance analysis

−  mature tool support available

The PRISM tool

•  PRISM: Probabilistic symbolic model checker

−  developed at Birmingham/Oxford University, since 1999

−  free, open source software (GPL), runs on all major OSs

•  Support for:

−  models: Markov chains, Markov decision processes, …

−  properties: PCTL, CSL, LTL, PCTL*, costs/rewards, …

•  Features:

−  simple but flexible high-level modelling language

−  user interface: editors, simulator, experiments, graph plotting

−  multiple efficient model checking engines (e.g. symbolic)

•  Many import/export options, tool connections

−  in: (Bio)PEPA, stochastic π-calculus, DSD, SBML, Petri nets, …

−  out: Matlab, MRMC, INFAMY, PARAM, …

•  See: http://www.prismmodelchecker.org/

PRISM – Case studies

•  Randomised communication protocols

−  Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …

•  Randomised distributed algorithms

−  consensus, leader election, self-stabilisation, …

•  Security protocols/systems

−  pin cracking, anonymity, quantum crypto, contract signing, …

•  Planning & controller synthesis

−  robotics, dynamic power management, …

•  Performance & reliability

−  nanotechnology, cloud computing, manufacturing systems, …

•  Biological systems

−  cell signalling pathways, DNA computation, …

•  See: www.prismmodelchecker.org/casestudies

Overview

•  Quantitative verification

−  probabilistic model checking and PRISM

•  Modelling and analysis of biological systems

−  a discrete stochastic approach

−  probabilistic model checking: “in-silico” experiments

•  Two-domain DNA strand displacement

−  gate correctness, reliability and performance

−  design optimisation: garbage collection

−  a larger example: approximate majority

•  Summary, challenges & directions

Modelling biological systems

•  Aim: model a mixture of interacting molecules

−  multiple molecular species, interacting through reactions

−  cell signalling pathway, gene regulatory network, …

−  fixed volume (spatially uniform), pressure and temperature

•  Simple example:

−  3 species A, B and AB; 3 reactions:

−  reversible binding of A and B to form AB; degradation of A

•  Two approaches to modelling

−  discrete, stochastic

−  continuous, deterministic

A
k3

A + B AB
k1

k2

Modelling biological systems

•  Discrete, stochastic approach

−  (integer) counts of number of 
each molecule: x=(xA,xB,xAB)

−  inherently stochastic process 
[McQuarrie, Gillespie]

−  continuous-time Markov chain with states x

−  stochastic simulation, numerical soln.,  
probabilistic model checking, …

•  Continuous, deterministic approach

−  (real-valued) concentrations: [A], [B], [AB]

−  solution of system of coupled  
ordinary differential equations

−  good approximation of E[x]  
for very large num.s of molecules

A
k3

A + B AB
k1

k2

Discrete stochastic approach

•  Chemical master equation

−  state vector x=(xA,xB,xAB)

−  probability P(x,t) that at time  
t there will be xZ of species Z

−  stoichiometric vectors: v1=(-1,-1,1), v2=(1,1,-1), v3=(-1,0,0)

−  ai(x) are time-independent propensity functions

−  mass-action: proportional to reactant combinations

•  e.g. a1(xA,xB,xAB) = k1·xA·xB

•  Stochastic process: continuous-time Markov chain (CTMC)

−  transition rates (of exponential delays) derived from ai

δP(x, t)

δt
= a

i
(x − v

i
)P(x − v

i
, t) −

i=1

3

∑ a
i
(x)P(x, t)

A
k3

A + B AB
k1

k2

Continuous-time Markov chain (CTMC)

•  CTMC C = (S,si,R)

−  states S, initial state si ∈ S

−  rate matrix R : S × S → ℝ≥0

−  R(s,s’): rate of exponential  
delay before moving s → s’

−  probability s → s’ triggered  
before time t = 1 – e-R(s,s’)·t

•  Example: CTMC with:

−  states (xA,xB,xAB) ∈ S = {0,1,2}3

−  initial state (2,2,0)

•  Rates for reactions

−  r1 (binding): rate = xA·xB·k1

−  r2 (unbinding) rate = xAB·k2

−  r3 (degradation): rate = xA·k3

2,2,0

4k1

1,1,1 0,0,2

1,2,0
0,1,1

k1

2k2 k2

0,2,0

2k3

k3

k3 2k1

k2

A
k3

A + B AB
k1

k2

Probabilistic model checking

Probabilistic model checking for systems biology…

CTMC

Temporal logic
e.g. CSL, LTL

Result

Quantitative
results

Biological
system

Counter-
example

System
properties

P=? [F
=t a>0]

0.5

0.1

0.4

PRISM

System 
model

PRISM modelling language

•  Simple, textual, state-based modelling language

−  for Markov chains (and other models)

•  Language basics

−  networks formed from interacting modules

−  state of each module given by finite-ranging variables

−  behaviour of each module specified by guarded commands

−  interactions between modules through synchronisation

−  interactions are associated with state-dependent rates

 [r1] (a>0) → k1*a : (a’=a-1)&(ab’=ab+1);

action guard rate update

PRISM language - example

module A

 a : [0..N] init N;

 ab : [0..N] init 0;

 [r1] a>0 → k1*a : (a’=a-1)&(ab’=ab+1);

 [r2] ab>0 → k2*ab : (a’=a+1)&(ab’=ab-1);

 [r3] a>0 → k3*a : (a’=a-1);

endmodule

module B

 b : [0..N] init N;

 [r1] b>0 → b : (b’=b-1);

 [r2] b<N → b : (b’=b+1);

endmodule

Example (r1):

(a,ab,b)

(a-1,ab+1,b-1)

k1·a·b

A
k3

A + B AB
k1

k2

Reactions r1/r2 :

Reaction r3 :

Property specifications

•  Property specifications are based on temporal logic

−  PRISM uses continuous stochastic logic (CSL) + extensions

−  also supports linear temporal logic (LTL)

−  flexible, compact, unambiguous definition

−  small subset of patterns/templates in common use

−  can express properties about the probability of occurrence of
an event or the expected value of some cost/reward measure

•  CSL example: P>0.9 [F
≤T kpp>0]

−  “with probability greater than 0.9, at least some MAPK is
activated within the first T seconds”

•  Usually focus on “quantitative” CSL: P=? [F
≤T kpp>0]

−  “what is the probability that at least some MAPK is activated
within the first T seconds?”

−  typically compute/plot for a range of parameter values

Example (FGF)

•  Probability that a signal is present at time T

−  P=? [F
=T (FRS2_GRB>0 & relocFRS2=0 & degFRS2=0)]

More examples of (extended) CSL

•  P=? [F
[t,t] a=i]

−  “the probability that there are exactly i A after t seconds”

•  P=? [F a=0]

−  “probability that all A proteins are eventually degraded”

•  S=? [c+d>M]

−  “long-run probability that the total number of Cs and Ds
activated is above M”

•  P=? [c=0 U>t c>0 {c=0}{“max”}]

−  “highest probability of it taking more than t seconds for C to
become activated, from any state where there are none”

•  P=? [F c=N] / P=? [F c>0]

−  “the (conditional) probability that all C proteins are eventually
activated, given that at least some of them are”

•  R{“active_d”}=? [I
=t]

−  “the expected number of activated D at time instant t”

Case studies

•  Fibroblast Growth Factor (FGF) pathway

−  [Heath/Kwiatkowska/Norman/Parker/Tymchyshyn/Gaffney]

−  12 species, 14 sets of reaction rules

−  model checking (PRISM)+ simulation (stochastic π-calculus)

−  “in-silico” experiments: systematic removal of components

−  results validated by subsequent lab experiments

•  RKIP-inhibited ERK pathway [Calder/Vyshemirsky/Gilbert/Orton]

−  model checking using PEPA and PRISM models

−  formal analysis highlighted errors in existing models

−  corrected models then validated against experimental data

•  And more: Codon bias, Ribosome kinetics, Sorbitol
dehydrogenase, T Cell Signalling Events, …

−  www.prismmodelchecker.org/casestudies/index.php#biology

Overview

•  Quantitative verification

−  probabilistic model checking and PRISM

•  Modelling and analysis of biological systems

−  a discrete stochastic approach

−  probabilistic model checking: “in-silico” experiments

•  Two-domain DNA strand displacement

−  gate correctness, reliability and performance

−  design optimisation: garbage collection

−  a larger example: approximate majority

•  Summary, challenges & directions

Two-Domain DNA Strand Displacement

•  DNA computing with a restricted class of DNA strand
displacement structures

−  double strands with nicks (interruptions) in the top strand

−  and two-domain single strands consisting of 
one (short) toehold domain and one recognition domain

−  “toehold exchange”: branch migration of strand <t^ x>
leading to displacement of strand <x t^>

•  Used to construct transducers, fork/join gates

−  which can emulate Petri net transitions

 [Cardelli’10] Luca Cardelli. Two-Domain DNA Strand Displacement.
 Proc. Development of Computational Models (DCM’10)

Example: Transducer

•  Transducer: converts input <t^ x> into output <t^ y>

Example: Transducer

•  Transducer: full reaction list

input output unreactive structures
(no exposed toeholds)

DNA programming

•  Challenge: correct, reliable designs; avoid interference

•  [Cardelli’10] proposes a “nick algebra” to formalise the
definition and behaviour of these two-domain DNA strands

−  syntax, algebraic equivalence relation, reduction rules

•  Strict subset of DSD (DNA Strand Displacement) language

−  [Cardelli, Phillips, et al.]

−  accompanying software Visual DSD for analysis/simulation

−  now extended to include auto-generation of PRISM models

•  Example:

new t@0.0003,0.1126

def T(N, x, y) =

(N* <t^ a> | N* <y t^>| N* t^:[x t^]:[a t^]:[a] | N* [x]:[t^ y]:[t^ a]:t^)

(T(1, x, y) | 1 * <t^ x>)

Transducers: Correctness

•  Formalising correctness…

−  identify states where gate has terminated correctly: "all_done”

−  (correct number of outputs, no reactive gates left)

•  Check:

−  (i) any possible deadlock state that can be reached  
must satisfy "all_done” 
(ii) there is at least one path through the system that 
reaches a state satisfying "all_done”

•  In temporal logic (CTL):

−  A [G "deadlock" => "all_done"]

−  E [F "all_done"]

•  Verify using PRISM…

−  for one transducer: both properties true

−  for two transducers in series: (ii) is true, but (i) is false

Transducer flaw

•  PRISM identifies a 5-step trace to the  
“bad” deadlock state

−  problem caused by “crosstalk” 
(interference) between DSD species 
from the two copies of the gates

−  previously found manually [Cardelli’10]

−  detection now fully automated

•  Bug is easily fixed

−  (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,1,1,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

output

Transducers: Quantitative properties

•  We can also use PRISM to study the kinetics of the pair of
(faulty) transducers:

−  P=? [F
[T,T] "deadlock"]

−  P=? [F
[T,T] "deadlock" & !"all_done"]

−  P=? [F
[T,T] "deadlock" & "all_done"]

success/error 
equally likely

Transducers: Reliability

•  Even without fixing the flaw in the transducer design…

−  we can improve reliability by using larger numbers of copies

•  Plot: Expected number of reactive gates in the final state

−  for N copies of the faulty transducer pair

Transducers: Performance

•  We analyse the performance of the (corrected) transducers

−  circuit composed of chain of K transducers

−  Seelig/Soloveichik showed execution time linear in depth

•  Analysed for DSD model in PRISM:

−  R{"time"}=? [F "all_done"]

Catalysts in DSD

•  Slightly more complex DSD gate design

−  extension of the transducer gate design

•  Chemical reaction X → Z catalysed by 3rd species Y

−  i.e. X + Y → Y + Z

•  Design decision:

−  can/should we implement garbage collection (GC)?

−  i.e. tidying up of intermediate species into inert structures

−  omitting GC makes design simpler and cheaper

−  but is it still correct? 
and what about efficiency?

•  PRISM analysis:

−  both designs correct

−  GC speeds up gate  
execution significantly

−  due to extra reactions

Approximate Majority

•  Approximate majority population protocol [Angluin et al.]

−  two populations X, Y and an auxiliary species B

−  aim is to converge to a consensus: either X or Y

−  should converge to population with initial majority

•  Reactions:

•  We implement the approximate majority protocol in DSD

−  using the catalyst reactions shown earlier

−  and then analyse its correctness

X + Y Y + B
k1

Y + X X + B
k2

B + X X + X
k3

B + Y Y + Y
k4

Approximate majority: Simulation

•  Typical simulation run:

−  in this instance, the protocol chooses Y

Approximate majority: Analysis

•  Plot probability of choosing X for varying initial X/Y

−  0.5 for equal initX and initY

−  rapidly approaches 1 as majority increases

Approximate majority: Analysis

•  [Angluin et al.] prove correct consensus obtained with high
probability if the initX-initY margin is above ω(√N log N)

−  re-plot same data against (relative) initX-initY margin

−  for various total initial population sizes N (=4,…,10)

−  note increasingly clear threshold for larger N

Model checking DNA: Limitations

•  Key challenge (as always): state space explosion

−  CTMCs solved for this work up to approx. 2m states

•  Already using various methods to reduce state space:

−  careful gate design to reduce number of asynchronous steps

−  highest level of abstraction for reactions in DSD tool

−  for approximate majority, fuels modelled as “constant species”

•  Some positive results:

−  bugs found in small systems, which also exist in bigger ones

−  we illustrated useful design trade-offs with small populations

−  earlier work (FGF): successful expt. validation for small sizes

•  On the other hand:

−  transducer bug only arises for a transducer pair, not when
studied in isolation; can we explore all possible interfaces?

−  how can we formally relate results obtained from smaller
models to larger ones?

Overview

•  Quantitative verification

−  probabilistic model checking and PRISM

•  Modelling and analysis of biological systems

−  a discrete stochastic approach

−  probabilistic model checking: “in-silico” experiments

•  Two-domain DNA strand displacement

−  gate correctness, reliability and performance

−  design optimisation: garbage collection

−  a larger example: approximate majority

•  Summary, challenges & directions

Summary

•  Probabilistic model checking

−  automatic, exhaustive construction of probabilistic models

−  analysis of formally specified quantitative properties

−  efficient techniques, tools available

•  Probabilistic model checking for systems biology

−  discrete, stochastic model: chemical master equation

−  solution of continuous-time Markov chains

−  quantitative properties expressed in temporal logic

•  DNA strand displacement

−  two-domain DSD designs analysed with Visual DSD, PRISM

−  correctness, reliability, performance, design decisions

Challenges and Directions

•  Challenges

−  scalability, infinite-state systems

−  correct level of abstraction for formal languages?

−  appropriate (and testable) model checking queries?

−  closer integration of model checking tools, engines

•  Directions

−  model abstractions (and automatic construction of)

−  infinite state systems: truncation for time-bounded properties

−  model reduction techniques: bisimulation, symmetry, …

−  approximate/statistical model checking (simulation-based)

−  stochastic hybrid systems: discrete + continuous populations

−  compositional probabilistic model checking

