Design and Analysis of
DNA Strand Displacement Devices
using Probabilistic Model Checking

Dave Parker

School of Computer Science, University of Birmingham

Joint work with:

Matthew Lakin, Luca Cardelli, Marta Kwiatkowska and Andrew Phillips

Centre for Systems Biology, Birmingham, June 2012

Overview

+ Quantitative verification
— probabilistic model checking and PRISM

Modelling and analysis of biological systems
- — a discrete stochastic approach
— probabilistic model checking: “in-silico” experiments

- Two-domain DNA strand displacement
— gate correctness, reliability and performance
— design optimisation: garbage collection
y — a larger example: approximate majority
: — see: [Lakin/Parker/..., Royal Society Interface, 201 2]

- Summary, challenges & directions

Verification via model checking

Model checking: Automatic formal verification of
correctness properties of computerised systems

Finite-state
model
Result
o %
~
Model checker
—p €.9. SMV, Spin
Y,
)
. Counter-
Q - —_—
RS} N EF fail) example
System Temporal logic O O>0+0
require- specification

ments

Probabilistic model checking

- Why and what?

; - Why probability?
— unreliability (e.g. component failures)
- — uncertainty (e.g. message losses/delays over wireless)
— randomisation (e.g. in protocols such as Bluetooth, ZigBee)
— stochasticity (e.g. biological/chemical reaction rates)

- Quantitative properties
— reliability, performance, quality of service, ...
— “the probability of an airbag failing to deploy within 0.02s”

i A

— “the expected power usage of a sensor network over 1 hour”
— “the expected time for a cell signalling pathway to complete”

Probabilistic model checking

Probabilistic model checking: Automatic verification of
quantitative properties of systems with stochastic behaviour

- Probabilistic model —3p Result
System e.g. Markov chain g x
Quantitative
results
Probabilistic) i
model checker —)
e.g. PRISM - i
2 C::)
o° P oo [F=tfail]| = Counter-
System_’ —» example
require- Probabilistic temporal

ments logic specification +O*O<§>O

e.g. PCTL, CSL, LTL

Probabilistic model checking

Construction and analysis of finite probabilistic models
— e.g. Markov chains, Markov decision processes, ...
— specified in high-level modelling formalisms
— exhaustive model exploration (all possible states/executions)

- Automated analysis of wide range of quantitative properties
— properties specified using temporal logic
— “exact” results obtained via numerical computation
— linear equation systems, iterative methods, uniformisation, ...
— as opposed to, for example, Monte Carlo simulations
— efficient techniques from verification + performance analysis
— mature tool support available

i A

The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source software (GPL), runs on all major OSs

.5 - Support for:
=5 — models: Markov chains, Markov decision processes, ... ‘
1 — properties: PCTL, CSL, LTL, PCTL*, costs/rewards, ...
Features:

— simple but flexible high-level modelling language

— user interface: editors, simulator, experiments, graph plotting

— multiple efficient model checking engines (e.g. symbolic)
Many import/export options, tool connections

— in: (Bio)PEPA, stochastic Tr-calculus, DSD, SBML, Petri nets, ...

— out: Matlab, MRMC, INFAMY, PARAM, ...

i A

. See: http://www.prismmodelchecker.org/

i A

PRISM - Case studies

Randomised communication protocols

— Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, ...
Randomised distributed algorithms

— consensus, leader election, self-stabilisation, ...
Security protocols/systems

— pin cracking, anonymity, quantum crypto, contract signing, ...

Planning & controller synthesis
— robotics, dynamic power management, ...
Performance & reliability

— nanotechnology, cloud computing, manufacturing systems, ...

Biological systems
— cell signalling pathways, DNA computation, ...

See: www.prismmodelchecker.org/casestudies

Overview

Quantitative verification
— probabilistic model checking and PRISM

Modelling and analysis of biological systems
— a discrete stochastic approach
— probabilistic model checking: “in-silico” experiments

- Two-domain DNA strand displacement

— gate correctness, reliability and performance
— design optimisation: garbage collection
— a larger example: approximate majority

Summary, challenges & directions

Modelling biological systems

- Aim: model a mixture of interacting molecules
‘ — multiple molecular species, interacting through reactions
; — cell signalling pathway, gene regulatory network, ...
— fixed volume (spatially uniform), pressure and temperature

- Simple example:
— 3 species A, B and AB; 3 reactions:
— reversible binding of A and B to form AB; degradation of A

3 .
A+ B «—— AB A—
ks

- Two approaches to modelling
— discrete, stochastic
— continuous, deterministic

i A

Modelling biological systems

- Discrete, stochastic approach

— (integer) counts of numberof A . B —> AR
each molecule: x=(X,,Xg,Xg)

— inherently stochastic process
[McQuarrie, Gillespie]

— continuous-time Markov chain with states x =

— stochastic simulation, numerical soln.,
probabilistic model checking, ...

=== FGFR relocated
Grb2:FGFR

2 3 4
T (hours)

- Continuous, deterministic approach

— (real-valued) concentrations: [A], [B], [AB] ‘

— solution of system of coupled N
ordinary differential equations

— good approximation of E[x]
for very large num.s of molecules

Concentration

——FGFR relocated
—Grb2:FGFR

Discrete stochastic approach

- Chemical master equation K, y
— state vector X=(X,Xg,Xxp) A+B «—— AB A —
— probability P(x,t) that at time k,
t there will be x, of species Z
OP(X, t)

3
N D a,(X=V)P(X-V,1) -a,(X)P(X,1)
¢ -
— stoichiometric vectors: v,=(-1,-1,1), v,=(1,1,-1), v;=(-1,0,0)
— a,(x) are time-independent propensity functions
— mass-action: proportional to reactant combinations
- €.9. a;(Xp, X Xag) = Ky -Xp"Xg

- Stochastic process: continuous-time Markov chain (CTMC)

— transition rates (of exponential delays) derived from a,

Continuous-time Markov chain (CTMC)

. CTMC C = (5,s,,R)

C k; ks
v — states S, initial state s, € S A+B <« AB A—
5 — rate matrix R: S xS - R, k,

— R(s,s’): rate of exponential
delay before moving s — s’
— probability s — s’ triggered
before time t = 1 - e R6:s)t

- Example: CTMC with:
— states (X,,Xg,Xap) € S = {0,1,2]3 @,@
— initial state (2,2,0)
: - Rates for reactions ks k,
f — r, (binding): rate = x,-Xg-k; @
— r, (unbinding) rate = X5k,

— r; (degradation): rate = x,-k;

Probabilistic model checking

Probabilistic model checking for systems biology...

3
| — Result
s v %
| Biological
system
Quantitative
_,.; results
PRlSM n; S PRISM [21]
; Pl
)
| o° P,[Fta>0] Counter-
System — —» example
properties Temporal logic

e.g. CSL, LTL ~oeo_ 30

PRISM modelling language

- Simple, textual, state-based modelling language
— for Markov chains (and other models)

Language basics

=5 — networks formed from interacting modules

— state of each module given by finite-ranging variables

— behaviour of each module specified by guarded commands
— interactions between modules through synchronisation

— interactions are associated with state-dependent rates

: [r,] (@>0) — ky*a : (@'=a-1)&@b’=ab+1);
< > < > —— 4 —
action guard rate update

PRISM language - example

module A
a : [0..N] init N;
ab : [0..N] init O;

[r,]a>0 — k,;*a : (@’=a-1)&(@b’=ab+1);
[r,] ab>0 — k,*ab : (a’=a+1)&(@b’=ab-1);
[r;3] a>0 — ksy*a: (@’=a-1);

endmodule

Reactions r,/r, :

k

1
A+B < AB
k
Reaction r3 :

Ks
A—

module B
b : [0..N] init N;

[r,] b>0 — b : (b’=b-1);
[r,] b<N — b : (b’=b+1);

endmodule

Example (r,):

(a,ab,b)

l k]'a'b

(a-1,ab+1,b-1)

Property specifications

Property specifications are based on temporal logic
— PRISM uses continuous stochastic logic (CSL) + extensions
— also supports linear temporal logic (LTL)
— flexible, compact, unambiguous definition

et — small subset of patterns/templates in common use

— can express properties about the probability of occurrence of
an event or the expected value of some cost/reward measure

CSL example: P_y o [F=T kpp>0]

— “with probability greater than 0.9, at least some MAPK is
activated within the first T seconds”

i A

Usually focus on “quantitative” CSL: P_, [F=T kpp>0]

— “what is the probability that at least some MAPK is activated
within the first T seconds?”

— typically compute/plot for a range of parameter values

Example (FGF)

- Probability that a signal is present at time T
— P_, [F°T (FRS2_GRB>0 & relocFRS2=0 & degFRS2=0)]

wii 148

—v— full model/no PLC
—a—no SHP2
no SRC
+—no SPRY

R e i e S S S e i R i i e e i SRS S e

S
o))

O
~

O
N

Probability the signal present at time T

oF-e

10 20 30 40 50 60
T (minutes)

More examples of (extended) CSL

P_, [Fltt a=i]

— “the probability that there are exactly i A after t seconds”
P,[Fa=0]

— “probability that all A proteins are eventually degraded”
- S, [c+d>M]

— “long-run probability that the total number of Cs and Ds
activated is above M”

P.,[c=0U>*c>0 {c=0K"max"}]

— “highest probability of it taking more than t seconds for C to
become activated, from any state where there are none”

P,[Fc=N]/P_,[Fc>0]

— “the (conditional) probability that all C proteins are eventually
activated, given that at least some of them are”

R{“active_d”}:? [1=t]
— “the expected number of activated D at time instant t”

Case studies

Fibroblast Growth Factor (FGF) pathway

— [Heath/Kwiatkowska/Norman/Parker/ Tymchyshyn/Gaffney]

— 12 species, 14 sets of reaction rules

— model checking (PRISM)+ simulation (stochastic Tt-calculus)
= — “in-silico” experiments: systematic removal of components
— results validated by subsequent lab experiments

RKIP-inhibited ERK pathway [Calder/Vyshemirsky/Gilbert/Orton]
— model checking using PEPA and PRISM models
— formal analysis highlighted errors in existing models
— corrected models then validated against experimental data

i A

- And more: Codon bias, Ribosome kinetics, Sorbitol
dehydrogenase, T Cell Signalling Events, ...

— www.prismmodelchecker.org/casestudies/index.php#biology

Overview

Quantitative verification
— probabilistic model checking and PRISM

wii 148

Modelling and analysis of biological systems
s — a discrete stochastic approach
| — probabilistic model checking: “in-silico” experiments

- Two-domain DNA strand displacement
— gate correctness, reliability and performance
— design optimisation: garbage collection
y — a larger example: approximate majority

Summary, challenges & directions

Two-Domain DNA Strand Displacement

DNA computing with a restricted class of DNA strand
displacement structures
— double strands with nicks (interruptions) in the top strand

— —
t X t a t a

I e R e —

— and two-domain single strands consisting of
one (short) toehold domain and one recognition domain

— — — —
t X t t X E ; t X t X t
. —_— - — —

— “toehold exchange”: branch migration of strand <tA x>
leading to displacement of strand <x tA>

: - Used to construct transducers, fork/join gates
— which can emulate Petri net transitions

[Cardelli’10] Luca Cardelli. Two-Domain DNA Strand Displacement.
Proc. Development of Computational Models (DCM’10)

Example: Transducer

- Transducer: converts input <tA x> into output <tA y>

— —
T t 3 Y t
| — RN Y —_— ——
t X t E t a X t ' t a t

wii 148

- Transducer:

Example: Transducer

full reaction list

X t Y
X t Yy
E -8
— Pl

2 T v T = T
$ T T e o
N ¥ E v €& a & & &
o kTt ax =
— [=== [=|4
—> = EE a

L:\La/

unreactive structures
(no exposed toeholds)

|

output

DNA programming

- Challenge: correct, reliable designs; avoid interference

[Cardelli’10] proposes a “nick algebra” to formalise the
definition and behaviour of these two-domain DNA strands

— syntax, algebraic equivalence relation, reduction rules

. Strict subset of DSD (DNA Strand Displacement) language

— [Cardelli, Phillips, et al.]
— accompanying software Visual DSD for analysis/simulation

— now extended to include auto-generation of PRISM models

Example: D i

t a y t
new t@0.0003,0.1126 o T a2t a x T x T & i
def T(N, x, y) =

(N* <tA a> | N* <y tA>| N* tA:[x tA]:[a tA]:[a] | N* [x]:[tA y]:[tA a]:tA)
(TA,x,y) | 1T*<tAx>)

Transducers: Correctness

Formalising correctness...
— identify states where gate has terminated correctly: "all_done’
— (correct number of outputs, no reactive gates left)

- Check:

— (i) any possible deadlock state that can be reached

must satisfy "all_done”
(ii) there is at least one path through the system that

reaches a state satisfying "all_done”
In temporal logic (CTL):
— A [G "deadlock” => "all_done"]
— E[F "all_done"]
- Verify using PRISM...

— for one transducer: both properties true
— for two transducers in series: (ii) is true, but (i) is false

=
o]
v
| -
v
O
S
©O
(Vo)
c
]
| -
T

(1)
(1)
(1)

- PRISM identifies a 5-step trace to the

c.1

“bad” deadlock state

c.2

(V]

Qv

O
8
= 5
S
$S
S 2
HC%
>3
Q0 S

()]
@)
Eb
S0
= v
u <
mm

()]
U y—
—
QO o

)
° €
o =
|

(1)

o2,
N < output

a

c.2

t

from the two copies of the gates

— previously found manually [Cardelli’10]

— detection now fully automated

(1)

t
—_—

x0

Bug is easily fixed

wn
v
—
(o)
(@)}
v
2
-~
o
©
)
| -

— (and verified)

111111

111111

111111

— e o e p— p— p—

N N N N N

Transducers: Quantitative properties

- We can also use PRISM to study the kinetics of the pair of
(faulty) transducers:

3 — P_, [FI'.T "deadlock"]
— P_, [FmT "deadlock" & !"all_done"]

" "o m " success/error
) — P_, [FIT.T1 "deadlock" & "all_done"] /.
s ' equally likely
‘ 1
0.8
>
= 0.6 ‘/ —— Terminate
8 Error
(@] i]| —
(= 0.4 Success
| 0.2
0 1
0 . 3
T 4

x 10

Transducers: Reliability

Even without fixing the flaw in the transducer design...
— we can improve reliability by using larger numbers of copies

Plot: Expected number of reactive gates in the final state
- — for N copies of the faulty transducer pair

N W =
o o o

-
o

Expected percentage

OO
—_
N
w
ik
(6)}
(o)}
~

Transducers: Performance

- We analyse the performance of the (corrected) transducers
— circuit composed of chain of K transducers
— Seelig/Soloveichik showed execution time linear in depth

- Analysed for DSD model in PRISM:
— Reimen—» [F "all_done”]

x104

\¥} w H
T T T

Expected time

—
T

(=

o
-
s |
w
X f

Catalysts in DSD

Slightly more complex DSD gate design
— extension of the transducer gate design

Chemical reaction X — Z catalysed by 3 species Y
—ie.X+Y-Y+/Z

e - Design decision:

— can/should we implement garbage collection (GC)?

— i.e. tidying up of intermediate species into inert structures

— omitting GC makes design simpler and cheaper

— but is it still correct? x 10"
and what about efficiency?

PRISM analysis:
— both designs correct

— GC speeds up gate
execution significantly

— due to extra reactions

o

(2]

—e—No GC
{ | —=— With GC

n

Expected time

N

2
-
n
w
N
&)
o
~
®

Approximate Majority

- Approximate majority population protocol [Angluin et al.]
— two populations X, Y and an auxiliary species B

— aim is to converge to a consensus: either X or Y

— should converge to population with initial majority

Reactions:
K, 3
X+Y —Y+B B+XL>X+X
k, k,
Y+ X — X+ B B+Y —Y+Y

- We implement the approximate majority protocol in DSD
— using the catalyst reactions shown earlier
— and then analyse its correctness

Approximate majority: Simulation

- Typical simulation run:
— in this instance, the protocol chooses Y

wii 148

AM: 1 simulation run

30,000
2 27,500 -
25,000 -
22,500 1
20,000 -
17,500
15,000 X
12,500 - ~Y
10,000
% 7,500 -
: 5,000 -

2,500 -

0- , , . .
0.00000 0.00025 0.00050 0.00075 0.00100
T

Amount of species

Approximate majority: Analysis

- Plot probability of choosing X for varying initial X/Y
— 0.5 for equal initX and initY
— rapidly approaches 1 as majority increases

Probability of choosing X

Approximate majority: Analysis

- [Angluin et al.] prove correct consensus obtained with high
probability if the initX-initY margin is above w(-/N log N)

— re—-plot same data against (relative) initX-initY margin
— for various total initial population sizes N (=4,...,10)
— note increasingly clear threshold for larger N

-1 -0.5 0 0.5 1

(initX-initY)/N

Model checking DNA: Limitations

Key challenge (as always): state space explosion
— CTMC s solved for this work up to approx. 2m states
- Already using various methods to reduce state space:
— careful gate design to reduce number of asynchronous steps
— highest level of abstraction for reactions in DSD tool

— for approximate majority, fuels modelled as “constant species”
Some positive results:

— bugs found in small systems, which also exist in bigger ones
— we illustrated useful design trade-offs with small populations

— earlier work (FGF): successful expt. validation for small sizes
On the other hand:

— transducer bug only arises for a transducer pair, not when
studied in isolation; can we explore all possible interfaces?

— how can we formally relate results obtained from smaller
models to larger ones?

Overview

Quantitative verification
— probabilistic model checking and PRISM

Modelling and analysis of biological systems
— a discrete stochastic approach
— probabilistic model checking: “in-silico” experiments

- Two-domain DNA strand displacement

— gate correctness, reliability and performance
— design optimisation: garbage collection
— a larger example: approximate majority

Summary, challenges & directions

+ Probabilistic model checking
— automatic, exhaustive construction of probabilistic models

— analysis of formally specified quantitative properties
— efficient techniques, tools available

- Probabilistic model checking for systems biology
— discrete, stochastic model: chemical master equation
— solution of continuous-time Markov chains
— quantitative properties expressed in temporal logic

- DNA strand displacement
— two-domain DSD designs analysed with Visual DSD, PRISM
— correctness, reliability, performance, design decisions

Challenges and Directions

- Challenges
— scalability, infinite-state systems
— correct level of abstraction for formal languages?
— appropriate (and testable) model checking queries?
ot — closer integration of model checking tools, engines

- Directions
— model abstractions (and automatic construction of)
— infinite state systems: truncation for time-bounded properties
— model reduction techniques: bisimulation, symmetry, ...
— approximate/statistical model checking (simulation-based)
— stochastic hybrid systems: discrete + continuous populations
— compositional probabilistic model checking

i A

