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Abstract—Quantum-dot Cellular Automata (QCA) as an emerging nanotechnology is envisioned to overcome 

the scaling and the heat dissipation issues of the current CMOS technology. In a QCA structure, information 

destruction plays an essential role in the overall heat dissipation, and in turn in the power consumption of the 

system. Therefore, reversible logic, which significantly controls the information flow of the system, is 

deemed suitable to achieve ultra-low power structures. In order to benefit from the opportunities QCA and 

reversible logic provide, in this paper, we first review and implement prior reversible full-adder art in QCA. 

We then propose a novel reversible design based on three- and five-input majority gates, and a robust one-

layer crossover scheme. The new full-adder significantly advances previous designs in terms of the 

optimization metrics, namely, cell count, area, and delay. The proposed efficient full-adder is then used to 

design reversible Ripple Carry Adders (RCAs) with different sizes (i.e. 4, 8 and 16 bits). It is demonstrated 

that the new RCAs lead to 33% less garbage outputs, which can be essential in terms of lowering power 

consumption. This along with the achieved improvements in area, complexity, and delay introduces an ultra-

efficient reversible QCA adder that can be beneficial in developing future computer arithmetic circuits and 

architectures.  

 

Index Terms— Reversible Computing, Quantum-Dot Cellular Automata (QCA), Full-Adder, Ripple Carry 

Adder, One-Layer Crossover Scheme, Five-input Majority Gate. 

 

1.  Introduction 

Reversible logic was devised mainly to decrease energy dissipation and achieve low power circuits [1]. 

According to Landauer’s investigations [2], each bit of information lost in a circuit produces KTln2 Joules of 

heat energy, where k is the Boltzmann’s constant and T is the absolute temperature. In order to avoid 

information loss and to minimize power dissipation in a circuit, all the computations must be performed in a 

reversible way [1]. In a reversible circuit, constructed from reversible gates, the information loss is avoided 

by providing a one to one mapping between the input and output vectors of the circuit. Therefore the input 

vector can be uniquely recovered from the output vector and vice versa.   

Quantum-dot Cellular Automata (QCA) as a new nanotechnology has been explored for designing circuits such 

as full-adders [3-10], restoring and non-restoring array dividers [11], multiplexers and flip flops [13-15]. 

QCA as one of the candidate nanotechnologies to implement reversible logic gates [16-18], promises a dense 

and high speed structure at a nano scale. Different studies performed on QCA-based reversible circuits 

include: testable reversible latches [17], testable reversible sequential circuits [18], multi-function reversible 

gates [19], reversible multiplexers [20], reversible logic gates [21] and their testability [22]. This paper 

presents a novel reversible QCA full-adder based on three- and five-input majority gates, which outperforms 

previous designs in terms of area, delay, and complexity. The proposed circuit uses a reversible design that 
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compared to conventional QCA circuits, significantly improves the control of the information flow of the 

system and is deemed suitable to achieve ultra-low power structures. The new design has a one-layer 

structure and uses a robust and coplanar crossover scheme [23]. This design also uses robust three-input 

majority gates to achieve a reliable structure with respect to sneak noise paths [24-25]. The new high-

performance full-adder is used to design reversible Ripple Carry Adders (RCAs) with different sizes (i.e. 4, 8 

and 16 bits). These adders, compared to their counterparts, lead to significant improvements in terms of the 

number of garbage outputs, area, delay, and complexity. This can be beneficial in developing future efficient 

computer arithmetic circuits and architectures.  

The remainder of this paper is organized as follows: In section 2, a brief background on QCA is provided. 

Section 3 surveys previous reversible full-adder designs. The proposed QCA reversible full-adder is 

introduced in section 4. Section 5 presents the design and analysis of RCAs. It also provides a detailed 

comparison of various reversible adders. Finally, section 6 gives concluding remarks. 

 

2.  QCA Background 

A basic QCA cell contains four quantum dots and two excess electrons, through which a binary 

representation can be achieved by two stable arrangements of the electrons inside the cell (Fig. 1(a)). QCA 

circuits operate based on a specific clocking scheme as demonstrated in Fig. 1(b). This figure presents four 

QCA clocking waveforms with a 900 phase delay based on the Landauer clocking mechanism [4]. The 

fundamental building block of QCA circuits is a QCA majority gate. The layout of a robust three-input 

majority gate is shown in Fig. 1(c) [24-25]. Since in a three-input majority gate, the inputs may arrive from 

different paths and with different delays, three clocking zones with a 900 phase delay can be used to avoid the 

impact of the sneak noise paths on the output [24-25] (clocking zones 0, 1 and 2 in Fig. 1(c)).  

Multi-layer and coplanar crossover schemes have been introduced to cross wires in QCA circuits [5, 23, 

26-28]. Since the required technology for implementing a multi-layer QCA circuit has not yet been 

completely developed [4], the coplanar crossover scheme is used to design one-layer QCA circuits. The QCA 

layout of a robust coplanar crossover scheme [23] is shown in Fig. 1(d). This scheme is based on 900 QCA 

cells and uses two QCA clocking zones with 1800 phase delay at the crossing point. In this scheme, when the 

horizontal QCA cells at the crossing point are in switch and hold phases, the QCA cells of the vertical wire 

are in release and relax phases and the signals can be transmitted to the outputs without any impact on each 

other [23]. Although this scheme, in contrast to another crossover technique [28] uses additional clocking 

zones at the vertical and horizontal wires (clocking zones 1 and 3 at the outputs a and b in Fig.1 (d)), based 

on the calculation of kink energy, these additional clocking zones are inevitable to address the sneak noise 

paths and to achieve a robust coplanar crossover scheme [23]. In order to have robust QCA designs, in this 

paper, this crossover scheme is used to design efficient and robust reversible full-adder and Ripple Carry 

Adders. 

 

3. Reversible Gates and Full-Adders 

A reversible gate, as the basic building block of a reversible circuit, provides a one to one mapping 

between its input and output vectors. In other words, a unique output vector is generated from each input 

vector, and vice versa [29]. In order to achieve the reversibility condition, some extra inputs and/or outputs 

should be added to a reversible gate. These are called additional inputs and garbage outputs.  

Fig. 2 depicts the structures of the most popular reversible gates including NOT, CNOT (Feynman), 

Toffoli [29], Peres [30] and Fredkin gates [31]. The quantum cost associated with a reversible gate is defined 

as the number of 1×1 and 2×2 reversible gates or quantum logic gates, where the n×n notation indicates a 

reversible gate with n inputs and n outputs [32].  
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To date, using the reversible gates, different types of reversible circuits have been introduced. In [33] novel 

reversible gates have been used to design carry look-ahead and carry skip BCD subtractors.  

Considering the importance of the field programmable gate arrays (FPGAs) in many applications [34], in 

[35] a 3 input reversible Programmable Logic Array architecture (RPLA) has been introduced. This design is 

constructed using Fredkin and Feynman gates and can be used to generate 28 functions. Also it can be 

configured to act as a 1-bit full adder and subtractor.  

In addition, since the reversible arithmetic units such as subtractors, adders and multipliers are considered 

as the essential components of a quantum computing system, different studies have been done on designing 

efficient reversible units. In [36], a reversible half subtractor using reversible Fredkin and Feynman gate has 

been introduced. This structure is the used to design a reversible full subtractor. This study also presents a 

reversible binary parallel subtractor using the reversible half and full subtractors [36]. In [37], efficient 

reversible Carry look-ahead binary adders as one of the essential units to use in high performance computing 

were introduced. The presented designs use the properties of the reversible Peres gate and the TR gate to 

optimize the logic depth, quantum cost, and gate count compared to the existing designs.  

Generally, the quantum cost, delay, and the number of garbage outputs are used as the major metrics of 

optimization in a reversible gate [38]. In QCA, however, other optimization metrics such as delay, area, 

complexity (number of QCA cells), and the number of majority gates, should also be taken into design 

consideration [18]. 
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              (c) 

 
                                                                                                                                     (d)   
  

Fig. 1. (a) The 900 QCA cell and its binary encoding (b) A QCA wire constructed using four clocking zones based on the Landauer QCA clocking mechanism [4].  

(c) The QCA layout of a robust three-input majority gate [24-25]. (d) The one-layer and robust crossover scheme [23]. 

 

 

As shown in Fig. 2 (a) and (b), the NOT and CNOT are 1×1 and 2×2 reversible gates, respectively. On the 

other hand, the Peres, Toffoli and Fredkin gates are 3×3 reversible gates (Fig. 2 (c-e)). The Toffoli gate as 

one of the most popular reversible gates is a two-through reversible gate in which two outputs are the same as 

inputs (the two outputs P and Q presented in Fig.2 (d)) [38]. As can be seen in Fig.2 (d), a Toffoli gate is 

implemented using 2 V gates, 1 V+ gate and 2 CNOT gates. 

Various design approaches have been proposed for implementing a reversible full-adder [39-54]. Table I 

lists a number of these designs and provides the schematics for each of them. Furthermore, two designs have 

so far been presented for a QCA reversible full-adder [55-56]. These QCA-based designs are demonstrated in 

Table II. The design in [55] is a 3*5 reversible gate. In contrast to [56], this design is constructed using six 

three-input majority gates (presented as first and second QCA1 in Table II). The design in [56] is a 4*4 gate 

with two garbage outputs. It consists of two Toffoli and two Feynman gates to operate as a reversible full-

adder. Note that, both these designs use the multi-layer crossover scheme, which imposes challenges in terms 

of fabrication. 
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Fig. 2.  The schematics of (a) NOT (b) CNOT (c) Peres (d) Toffoli and (e) Fredkin reversible gates. 

 

In order to compare the structure of previous reversible designs, we have investigated all the surveyed 

reversible full-adders [39-56], in terms of the number of inputs/outputs, the number of garbage outputs and 

the number of three-input majority gates. For those designs that have not been implemented using majority 

gates, we have used a simple rule to calculate the number of majority gates required to implement them. 

Since in QCA, an XOR gate can be implemented using three three-input majority gates and an AND/OR 

operation is implemented using one three-input majority gate, the total number of three-input majority gates 

in Table III is calculated based on the required number of XOR and AND/OR gates in a reversible full-adder. 

As Table III suggests, the QCA reversible design presented in [56] incurs the minimum number of three-

input majority gates. This significantly improves, compared to other designs, the area, delay, and complexity 

metrics.    

In the next section we introduce a new reversible full-adder, which further improves all the optimization 

metrics of a QCA reversible design. This structure, in contrast to its counterparts, deploys three- and five-

input majority gates. It has a one layer structure and uses the robust and coplanar crossover scheme in [23]. It 

also uses the QCA clocking rule in [24-25] to achieve robust three-input majority gates against sneak noise 

paths. Further, the new full-adder is used to design highly efficient Reversible Ripple Carry Adders with 

different sizes. 

 
TABLE I 

The schematics of reversible full-adders in [39-54] 

Ref Reversible FA Ref Reversible FA 
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Ref Reversible FA Ref Reversible FA 
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Ref Reversible FA Ref Reversible FA 
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TABLE II 

THE  QCA BASED REVERSIBLE FULL-ADDERS IN [55-56] 

Ref Reversible FA 
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TABLE III 

A comparison of reversible full-adders in [39-56] 

Reversible 

full-adder 

Number of 

inputs/outputs 

Number of 

garbage outputs 

Number of three-input 

majority gates 

[39] 5×5 3 19 

[40] 4×4 2 14 

[41] 5×5 3 40 

[42] 4×4 2 15 

[43] 4×4 2 15 

[44] 4×4 2 15 

[45] 4×4 2 24 

[46] 4×4 2 14 

[47] 4×4 2 15 

[48] 4×4 2 14 

[49] 4×4 2 15 

[50] 4×4 2 14 

[51] 4×4 2 14 

[52] 4×4 2 14 

[53] 4×4 2 19 

[54] 4×4 2 18 

[55] 4×4 2 14 

[56] 3×5 3 6 
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4.  New QCA Reversible Full-Adder 

Various designs for QCA and reversible QCA full-adders have been proposed to improve robustness, 

complexity, area and delay in QCA-based arithmetic and logic circuitry [5-8, 55-56]. Here, we propose a 

novel reversible gate, which deploys a five-input majority gate as proposed in one of our previous works on 

QCA full-adder (Fig. 3) [8]. This design is aimed at advancing previous reversible QCA designs to reach 

very high efficiency.  

Fig. 4 presents the schematic of the proposed novel reversible gate, which is composed of two other 

reversible gates N1 and N2. The truth tables of these gates are shown in Tables IV and V, respectively. In 

the proposed gate, the inputs are presented as A, B, Cin and D while the outputs are shown as O1, O2, G1 

and G2. In this design, if the input D is set to zero (as presented in Fig. 5), the proposed gate acts as a 

reversible full-adder gate. In this case, as shown in Table VI, the outputs O1 and O2 are used to transfer the 

sum and carry value of the reversible full-adder, while G1 and G2 are the two garbage outputs.  

  Fig. 6 presents the QCA layout of the proposed reversible design which uses the five-input majority 

gate layout in [9]. As demonstrated in this figure, in order to achieve a robust structure against sneak noise 

paths [24-25] three clocking zones with a 900 phase delay are used in each of the three-input majority gates. 

Also, this layout uses the robust coplanar crossover scheme in [23] to achieve a one layer and robust 

structure. This results in a reliable and efficient design. In the next section the proposed design’s 

functionality is firstly verified and then it is compared against previous designs. Next, it is used to design 4, 

8 and 16-bit reversible Ripple Carry Adders.  

 

Maj Carry out

A B Cin

Maj 5 Sum =maj5(A, B, Cin, maj(A, B, Cin) , maj(A, B, Cin))

=maj(A, B, Cin)

 
Fig. 3. The schematic of the QCA full-adder constructed using three and five-input majority gates [8] 
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Fig. 5. The schematic of the new reversible full-adder based on Fig.4 
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TABLE IV 

The truth table of the new reversible gate N1 in Fig.4 

outputs inputs 

C XOR(Maj(A,B,C),D) A B D C B A 

0 0 0 0 0 0 0 0 

0 1 0 0 1 0 0 0 

1 0 0 0 0 1 0 0 

1 1 0 0 1 1 0 0 

0 0 1 0 0 0 1 0 

0 1 1 0 1 0 1 0 

1 1 1 0 0 1 1 0 

1 0 1 0 1 1 1 0 

0 0 0 1 0 0 0 1 

0 1 0 1 1 0 0 1 

1 1 0 1 0 1 0 1 

1 0 0 1 1 1 0 1 

0 1 1 1 0 0 1 1 

0 0 1 1 1 0 1 1 

1 1 1 1 0 1 1 1 

1 0 1 1 1 1 1 1 

 

TABLE V 

The truth table of the new reversible gate N2 in Fig.4 

outputs inputs 

C ))C,B,A(maj,)C,B,A(maj,C,B,A(Maj B C B A 

0 0 0 0 0 0 

1 1 0 1 0 0 

0 1 1 0 1 0 

1 0 1 1 1 0 

0 1 0 0 0 1 

1 0 0 1 0 1 

0 0 1 0 1 1 

1 1 1 1 1 1 

 

TABLE VI 

The truth table of the proposed reversible full-adder (Fig.5) 

outputs inputs 

O1 O2  G2=C G1=B D C B A 

0 0 0 0 0 0 0 0 

1 0 1 0 0 1 0 0 

1 0 0 1 0 0 1 0 

0 1 1 1 0 1 1 0 

1 0 0 0 0 0 0 1 

0 1 1 0 0 1 0 1 

0 1 0 1 0 0 1 1 

1 1 1 1 0 1 1 1 

maj(a0, b0, c0)

Carry=maj(a0, b0, c0) 0

Maj 5

 
Fig. 6. The QCA layout of the new reversible full-adder in Fig.5 
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5.  Simulation and Comparison Results 

In order to verify the functionality of the proposed design, it was simulated using both bi-stable and 

coherence vector simulation engines of QCA designer version 2.0.3. Same results were achieved using both 

simulation engines, which indicates the accuracy of the proposed design. Fig. 7 demonstrates the simulation 

results for the reversible full-adder design presented in Fig. 6, using the default parameters of both 

simulation engines. In this figure, based on the QCA layout of the new design, the outputs are valid after 

the fourth falling edge of clock0. 

In order to compare the proposed design to the best previous reversible full-adders [39-54] and to 

previous QCA reversible full-adders [55-56], we first required to redesign these full-adders, using the same 

robust methodology that we utilized for our proposed design. The previous QCA reversible full-adders [55-

56] are implemented using the multi-layer crossover scheme and without considering the required clocking 

rule that is required to achieve a robust three-input majority gate [24-25]. As mentioned earlier, since the 

required technology for implementing the multi-layer wire crossing has not yet been introduced, the robust 

coplanar crossover scheme in [23] is used in all redesigned reversible structures. Besides, in all these 

designs, the QCA clocking rule in [24-25] (presented in Fig.1 (c)) is used to achieve robust structures 

against sneak noise paths. 

The number of majority gates has a direct relationship with the complexity (the number of cells) of the 

design. In addition, wire crossings are usually the source of uncertainties in QCA logic, so careful wire 

crossing is essential. Furthermore, cell arrangement plays an essential role in the total occupied area of any 

QCA circuit. Hence, the required number of majority gates, the needed wire crossings, and the cell 

arrangements were considered as the key factors of their suitability for implementing in QCA, when 

selecting the best previous reversible full-adders.  

The selected reversible full-adders ([42], [46], [50] and [54]) were then designed in QCA using the robust 

coplanar crossover and with considering the required clocking rule for a three-input majority gate. 

As shown in Table III, the reversible full-adder in [56] is the best previous structure in terms of the 

required number of three-input majority gates. The redesigned layout of this full-adder using the 

aforementioned robust methodology is shown in Fig. 8. Table VII presents the comparison of our new 

reversible full-adder (Fig. 6) and the QCA layouts of the full-adders presented in [42, 46, 50, 54-56] in 

terms of area, delay and complexity. According to this comparison, the proposed reversible full-adder 

achieves the improvement ratios of 31%, 22% and 3% compared to [56] in terms of area, complexity, and 

delay, respectively. Furthermore, as shown in Table VIII, the proposed design surpasses the best previous 

reversible design in terms of the number of inputs/outputs, the number of majority gates, and the number of 

garbage outputs. 

The proposed efficient reversible full-adder is used to design high performance reversible Ripple Carry 

Adders (RCAs) with different sizes (i.e. 4, 8 and 16 bits). Fig. 9 shows the structure of the n-bit reversible 

Ripple Carry Adder constructed using the proposed design. The QCA layouts of the 16 bit reversible RCAs 

constructed using the proposed design (Fig. 6) and its best counterpart (Fig. 8) are also demonstrated in Fig. 

10 and Fig. 11, respectively. Table IX presents a detailed comparison of RCAs in terms of area, delay, 

complexity and the number of garbage outputs. Based on these results, the new RCAs achieve significant 

improvements in terms of the optimization metrics. The 16 bit RCA constructed using the proposed 

reversible full-adder achieves the improvement ratios of 54%, 24% and 6% compared to the redesigned 

layout of [56] in terms of area, complexity, and delay, respectively. Based on this comparison, the proposed 

reversible full-adder can be used as an efficient component to design reversible arithmetic circuits. 
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Fig. 7. The simulation results of the proposed QCA reversible full-adder in Fig.6 

 

 
Fig. 8. The QCA layout of redesigned reversible full-adder of [56] with considering three-input majority gate clocking rule [24-25] and using the robust and one 

layer crossing scheme [23]. 

 

TABLE VII 

A comparison of new reversible full-adder and redesigned structures 

delay 

 (clock cycle) 

cell count 

(complexity) 

area 

 (µm2) 
Reversible Full-Adder 

7.75 744 1.32 [42] 

5 510 0.69 [46] 

5 561 0.72 [50] 

7.5 770 1.06 [54] 

5 484 0.84 [55] 

3.2 305 0.47 [56] 

3.1 236 0.32 New reversible FA in Fig. 6 
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TABLE VIII 

A comparison of the new reversible full-adder and the redesigned layout of ([56]) 

Number of garbage outputs 
Number of 

five-input majority gates 

Number of 

three-input majority gates 

Number of 

inputs/outputs 
Reversible Full-Adder 

3 ---- 6 3×5 Redesigned reversible full-adder of [56] (Fig.8) 

2 1 4 4×4 New design in Fig.6 
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Fig. 9. The schematic of the n-bit reversible Ripple Carry Adder constructed using the new design in Fig. 6. 
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Fig. 10. The QCA layout of a 16 bit reversible Ripple Carry Adder constructed using the new design in Fig. 6. 
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Fig. 11. The QCA layout of a 16 bit reversible Ripple Carry Adder constructed using the redesigned layout of [56]. 

 
TABLE IX 

A comparison of RCAs constructed using the new reversible full-adder and redesigned layout of [56] 

delay 

 (clock cycle) 

cell count 

(complexity) 

area 

 (µm2) 

Number of 

garbage 

outputs 

Reversible RCAs 

15.2 2559 6.45 12 4 bit 
Redesigned 

layout of [56] 
27.2 7425 22.4 24 8 bit 

51.2 24073 82.85 48 16 bit 

12.1 1646 2.81 8 4 bit 
Proposed 

reversible FA 
24.1 5206 9.94 16 8 bit 

48.1 18134 37.74 32 16 bit 

 

6.  Conclusion 

A novel reversible full-adder in QCA, which is optimized in terms of the number of garbage outputs, 

area, delay, and complexity, is introduced. It has a one-layer layout and uses a robust crossover scheme. It 

also utilizes reliable three-input majority gates to achieve a forceful structure against sneak noise paths. We 

have demonstrated designing reversible Ripple Carry Adders based on the proposed new design. 
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Simulation results using both bi-stable and coherence vector simulation engines of QCAdesigner indicate 

the accuracy and efficiency of the proposed designs. These designs, surpass the RCAs constructed using the 

best previous designs in terms of the number of garbage outputs, area, delay, and complexity. The new 

design, therefore, can improve the implementation of reversible QCA-based devices and computers.  

 

References 

[1] C. H. Bennett, Logical reversibility of computation, IBM J. Resear. Devel. 17 (1973) 525–532. 

[2] R. Landauer, Irreversibility and Heat Generation in the Computational Process, IBM Journal of Research and Development. 5 (1961) 183-191. 

[3]   S.R. Heikalabad, M.N. Asfestani, M. Hosseinzadeh, A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation 

analysis, The Journal of Supercomputing. 74 (2018) 1994–2005. 

[4] I. Hänninen, J. Takala, Binary Adders on Quantum-Dot Cellular Automata, Journal of Signal Processing Systems. 58 (2010) 87–103, doi:10.1007/s11265-

008-0284-5. 

[5] P.D. Tougaw, C.S. Lent, Logical Devices Implemented Using Quantum Cellular Automata, J. Appl. Phys. Am. Inst. Phys. 75 (1994) 1818–1824. 

[6] W. Wang, K. Walus, G.A. Jullien, “Quantum-Dot Cellular Automata Adders”, in Proc. of IEEE Conference on Nanotechnology, (2003) 461– 464. 

[7] V. Pudi, K. Sridharan, Low Complexity Design of Ripple Carry and Brent–Kung Adders in QCA, IEEE Trans. on Nano. 11 (2012) 105–119. 

[8] M. Rahimi Azghadi, O. Kavehei, K. Navi, A Novel Design for Quantum-dot Cellular Automata Cells and Full-adders, Journal of Applied Sciences. 7 

(2007) 3460–3468.  

[9] S. Hashemi, K. Navi, A novel robust QCA full-adder, Procedia Materials Science, Elsevier. 11 (2015) 376–380. 

[10] M. Mohammadi, M. Mohammadi, S. Gorgin, An efficient design of full adder in quantum-dot cellular automata (QCA) technology, Microelectronics 

Journal, Elsevier, 50 (2016) 35–43. 

[11] S. Sayedsalehi, M.R. Azghadi, S. Angizi, K. Navi, Restoring and non-restoring array divider designs in Quantum-dot Cellular Automata, Information 

Sciences (Elsevier), 31(2015) 86-101. 

[12]   SS. Ahmadpour, M.J. Mosleh, A novel fault-tolerant multiplexer in quantum-dot cellular automata technology, The Journal of Supercomputing, (2018). 

https://doi.org/10.1007/s11227-018-2464-9. 

[13] S. Hashemi, K. Navi, New Robust QCA D Flip Flop and Memory Structures, Microelectronics Journal (Elsevier), 43(12) (2012) 929–940. 

[14] A.Vetteth, K.Walus, V.S. Dimitrov, G.A. Jullien, Quantum-Dot Cellular Automata of Flip-Flops, ATIPS Laboratory 2500 University Drive, N.W., Calgary, 

Alberta, Canada T2 N1N4, 2003. 

[15] X.Yang, L.Cai, X.Zhao, Low power dual-edge triggered flip-flop structure in quantum dot cellular automata, Electron.Lett.46 (2010) 825–626. 

[16] S. F. Murphy, M. Ottavi, M. Frank, E. DeBenedictis, On the design of reversible QDCA systems, Sandia National Laboratories, Albuquerque, NM, Tech. 

Rep. SAND2006-5990, 2006. 

[17] H. Thapliyal, N. Ranganathan, Reversible logic-based concurrently testable latches for molecular QCA, IEEE Trans. Nanotechnol. 9(1) (2010) 62–69. 

[18] H. Thapliyal, N. Ranganathan, S. Kotiyal, Design of Testable Reversible Sequential Circuits, IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems. 21(7) (2013) 1201–1209. 

[19] N. A. Shah, F. A. Khanday, J. Iqbal, Quantum-dot Cellular Automata (QCA) Design of Multi-Function Reversible Logic Gate, Communications in 

Information Science and Management Engineering (CISME). 2(4) (2012) 8–18. 

[20] S. Hashemi, K. Navi, Reversible Multiplexer Design in Quantum-dot Cellular Automata, Quantum Matter (ASP). 6 (2014) 523–528. 

[21] M.A. Al-Shafi, M.S. Islam, A. Newaz Bahar, A Review on Reversible Logic Gates and it’s QCA Implementation, IJCA. 128(2), 2015, 

Available:http://www.ijcaonline.org/archives/volume128/number2/22845- 2015906434  

[22] X. Ma, J. Huang, C. Metra, F. Lombardi, Reversible Gates and Testability of One Dimensional Arrays of Molecular QCA, J. Elec. Test, Springer. 24(1) 

(2008) 297–311.  

[23] S. Hashemi, K. Navi, Designing Quantum-Dot Cellular Automata Circuits Using a Robust One Layer Crossover Scheme, IET, The Journal of Engineering, 

2014, DOI:10.1049/joe.2013.0177. 

[24] K. Kim, K. Wu, R. Karri, The Robust QCA Adder Designs Using Composable QCA Building Blocks, IEEE Trans. Comput.-Aided Des. Integrated Circuits 

Syst. 26 (2007) 176–183.  

[25] K. Kim, K. Wu, R. Karri, “Towards designing robust QCA architectures in the presence of sneak noise paths,” in Proc. of the Design, Automation and Test 

in Europe Conference and Exhibition, 2005, 1214–1219. 

[26] R. Devadoss, K. Paul, M. Balakrishnan, Coplanar QCA crossovers, IET Electron. Lett. 45 (2009) 1234–1235. 

[27] D. Tougaw, M. Khatun, A Scalable Signal Distribution Network for Quantum-Dot Cellular Automata, IEEE Trans. Nanotechnol. 12 (2013) 215–224. 

[28] S.H. Shin, J.C. Jeon, K.Y. Yoo, “Wire-Crossing Technique on Quantum-Dot Cellular Automata,” Second Int. Conf. Next Generation Computer and 

Information Technology (NGCIT), 2013, 52–57. 

[29] T. Toffoli, “Reversible computing,” in Proc. of the 7th Colloquium on Automata, Languages and Programming, Springer, London, UK, 1980, 632–644. 

[30] A. Peres, Reversible Logic and Quantum Computers, Phys. Rev. A, Gen. Phys. 32(6) (1985) 3266–3276. 

[31] E. Fredkin, T. Toffoli, Conservative Logic, Int. J. Theor. Physics. 21(1982) 219–253. 

[32] J. A. Smolin, D.P. Divincenzo, Five Two-Bit Quantum Gates are Sufficient to Implement the Quantum Fredkin Gate, Phys. Rev. A 53, 1996, 2855–2856. 

[33] H. Thapliyal, H.R. Arabnia, M. B. Srinivas; Efficient Reversible Logic Design of BCD Subtractors; Transactions on Computational Science Journal, 

Springer-Verlag, Vol. III, LNCS 5300, pp.99-121, 2009. 

[34] H. Thapliyal, H.R. Arabnia, R. Bajpai, K.K. Sharma, “Combined Integer and Variable Precision (CIVP) Floating Point Multiplication Architecture for 

FPGAs,” Proceedings of 2007 International Conference on Parallel & Distributed Processing Techniques & Applications; PDPTA'07), USA, (2207) 449–

450. 

[35] H. Thapliyal, H.R. Arabnia, “Reversible Programmable Logic Array (RPLA) Using Fredkin and Feynman Gates for Industrial Electronics and 

Applications,” Proceedings of 2006 International Conference on Computer Design & Conference on Computing in Nanotechnology (CDES'06: June 26-29, 

2016; Las Vegas, USA), (2006) 70–74. 

[36] H. Thapliyal, M.B. Srinivas, H.R. Arabnia, “Reversible Logic Synthesis of Half, Full and Parallel Subtractors,” Proceedings of 2005 International 

Conference on Embedded Systems and Applications, ESA'05, June, Las Vegas, (2005)165–172. 

[37] H. Thapliyal, H.V. Jayashree, A.N. Nagamani, Hamid R. Arabnia; Progress in Reversible Processor Design: A Novel Methodology for Reversible Carry 

Look-ahead Adder; Transactions in Computational Science (Springer), XVII, LNCS 7420, Springer-Verlag Berlin Heidelberg, Eds. M. L. Gavrilova and C. 

J. K. Tan, (2013) 73–97. 

[38] H. Thapliyal, N. Ranganathan, Design of Reversible Sequential Circuits Optimizing Quantum Cost, Delay, and Garbage Outputs, JETC. 6(4) (2010) 14-31. 

[39]  Md.M.H Azad Khan, “Design of Full-adder with Reversible Gates”, presented at the Int. Conf on Computer and Information Technology, Dhaka, 2002, 

515–519. 

http://www.ijcaonline.org/archives/volume128/number2/22845-


Accepted for Publication at The Journal of Supercomputing, https://doi.org/10.1007/s11227-018-

2683-0 
[40]  A.B. Khlopotine, M. Perkowski, P. Kerntopf, “Reversible logic synthesis by iterative composition”, in Proc. of IWLS, 2002, 261–266. 

[41]  J.W. Bruce, M.A. Thornton, L. Shivakumaraiah, P.S. Kokate, X. Li, “Efficient adder circuits based on a conservative reversible logic gate”, IEEE 

Computer Society Annual Symposium on VLSI, 2002, 74–79. 

[42] H.M.H. Babu, M.d. Rafiqul Islam, A.R. Chowdhury, S.M.A Chowdhury, “On the realization of reversible full-adder circuit”, presented at the Int. Conf on 

Computer and Information Technology, Dhaka, Bangladesh, 880–883, 2003. 

[43]  H.M.H. Babu, M.d. Islam, Chowdhury, A.R. Chowdhury, M.A. Chowdhury, “Reversible Logic Synthesis for Minimization of Full Adder Circuit”, in Proc. 

of the Euro Micro Symposium on Digital System Design (DSD”03), Belek-Antalya, Turkey, 50–54, 2003. 

[44] H. Thapliyal, M.B. Srinivas, “A novel reversible TSG gate and its application for designing reversible carry look-ahead and other adder architectures”, in 

Proc. of the 10th Asia-Pacific conference on Advances in Computer Systems Architecture (ACSAC”05), 805–817, 2005.   

[45]  H. Thapliyal, M.B. Srinivas, “Novel Design and Reversible Logic Synthesis of Multiplexer Based Full Adder and Multipliers”, 48th Midwest Symposium 

on Circuits and Systems, 2, 1593–1596, 2005.   

[46]  S. Islam, R. Islam, Minimization of reversible adder circuits, Asian Journal of Information Technology. 4(12) (2005) 1146–1151. 

[47]  H.M.H. Babu, A.R. Chowdhury, Design of a compact reversible binary coded decimal adder circuit, Journal of Systems Architecture. 52 (2006) 272–282. 

[48]  H. Thapliyal, A.P. Vinod, “Designing Efficient Online Testable Reversible Adders with New Reversible Gate”, in Proc. of ISCAS 2007, New Orleans, 

USA, 1085-1088, 2007. 

[49] M. Haghparasat, K. Navi, A Novel Reversible full adder circuit for Nanotechnology based systems, Journal of Applied Sciences, 7 (2008) 3995–4000. 

[50] M. Haghparast, K. Navi, A Novel reversible BCD adder for nanotechnology based systems, Am. J. Applied Sci., 5(3) (2008) 282–288. 

[51]  M.d. Saiful Islam, “A Novel Quantum Cost Efficient Reversible Full Adder Gate in Nanotechnology”, Available at: http://arxiv.org/abs/1008.3533, 2009. 

[52]  L. Ni, Z. Guan, W. Zhu, “A General Method of Constructing the Reversible Full-adder”, Third International Symposium on Intelligent Information 

Technology and Security Informatics (IITSI), 109–113, 2010.   

[53] D. Sengupta, M. Sultana, A. Chaudhuri, Realization of a Novel Reversible SCG Gate and its Application for Designing Parallel Adder/Subtractor and 

Match Logic, International Journal of Computer Applications. 31(2011) 30–35. 

[54] A.V.  AnanthaLakshmi, G.F. Sudha, Design of a Novel Reversible Full Adder and Reversible Full Subtractor, Advances in Intelligent Systems and 

Computing. 178 (2013) 623–632. 

[55] D. Kunalan, C.L. Cheong, C.F. Chau, A.B. Ghazali, “Design of a 4-bit Adder using Reversible Logic in Quantum-Dot Cellular Automata (QCA) ”, in Proc. 

of IEEE-ICSE2014, Kuala Lumpur, 2014. 

[56] Z. Mohammadi, M. Mohammadi, Implementing a One-Bit Reversible Full Adder Using Quantum-Dot Cellular Automata, Quantum Inf Process, Springer. 

13(2014) 2127–2147. 

http://arxiv.org/abs/1008.3533

	2.  QCA Background
	3. Reversible Gates and Full-Adders
	4.  New QCA Reversible Full-Adder
	5.  Simulation and Comparison Results
	6.  Conclusion
	References

