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Design and Analysis of Feedforward Symbol Timing
Estimators Based on the Conditional Maximum
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Abstract—This paper presents a general feedforward symbol-
timing estimation framework based on the conditional maximum
likelihood principle. The proposed timing estimator presents re-
duced implementation complexity and is obtained by performing
an approximation on the Fourier series expansion of the condi-
tional maximum likelihood function. The proposed algorithm is
applied to linear modulations and two commonly used continuous
phase modulations: minimum shift keying (MSK) and Gaussian
MSK (GMSK). For the linear modulations, it is shown both ana-
lytically and via simulations that the performance of the proposed
estimator is very close to the conditional CRB and modified CRB
for signal-to-noise ratios (SNRs) in the range SNR < 30 dB. Fur-
thermore, the proposed estimator is shown to be asymptotically
equivalent to the classic square-law nonlinearity estimator under
certain conditions. In the case of MSK and GMSK modulations,
although the proposed algorithm reaches the conditional CRB at
certain SNRs, however, the conditional CRB is quite far away from
the modified CRB, and there exists an alternative algorithm whose
performance comes closer to the modified CRB. Therefore, the pro-
posed estimator is more suitable for linear modulations than for
MSK and GMSK modulations.

Index Terms—Conditional maximum likelihood, Cramér—Rao
bound, feedforward, GMSK, linear modulations, MSK, symbol
timing estimation.

1. INTRODUCTION

N digital receivers, symbol timing synchronization can be

implemented either in a feedforward or feedback mode. Al-
though feedback schemes exhibit good tracking performances,
they require a relatively long acquisition time. Therefore,
for burst-mode transmissions, feedforward timing recovery
schemes are more suitable. An all-digital feedforward symbol
timing recovery scheme consists of first estimating the timing
delay from the received samples, which is the focus of this
paper, and then adjusting the timing using some sort of inter-
polation [1], [2].

Due to bandwidth efficiency considerations, nondata-aided or
blind symbol timing estimation schemes have attracted much at-
tention during the last decade. Most of the feedforward timing
estimators proposed in the literature exploit the cyclostation-
arity induced by oversampling the received signal [3]-[8]. In
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[3], Oerder and Meyr proposed the well-known square nonlin-
earity estimator. Several extensions of this square nonlinearity
estimator can be found in [5]-[7]. In [8], a low-SNR approxi-
mation was applied to the maximum likelihood function in order
to derive a logarithmic nonlinearity. Reference [4] reported for
the first time a detailed performance analysis of the estimators
based on various types of nonlinearities.

Recently, the conditional maximum likelihood (CML)
principle was introduced for designing digital timing delay
synchronizers by Riba et al. [9], [10]. The CML solution
is especially important for symbol timing synchronization
because it yields self-noise free timing estimates at medium
and high SNRs. However, [9] and [10] concentrate on deriving
a CML timing error detector (TED) so that the timing delay
can only be tracked using a feedback loop. A first example
of a feedforward symbol timing estimator based on the CML
principle was reported in [11]. However, no insightful analysis
pertaining to the design principles and performances has been
reported. The purpose of this paper is to fill in this gap in the
literature. The main design and performance characteristics of
CML-based feedforward symbol timing delay estimators are
established for general linear modulations and two commonly
used continuous-phase modulations, namely, minimum shift
keying (MSK) and Gaussian MSK (GMSK) [12], [13]. The
performance of the timing estimators is analyzed analytically
and through simulations, and compared with the conditional
Cramér—-Rao bound (CCRB) [9], [10], the modified CRB
(MCRB) [14], and other existing state-of-the-art feedforward
timing delay estimators [3], [14], [16], [17], [19].

In the proposed algorithm, an approximation is applied to the
Fourier series expansion of the CML function so that the com-
plexity of the proposed estimator is greatly reduced. Although
the resulting estimator is not completely self-noise free (due to
the approximation), the performances of the proposed estimator
(for both linear and nonlinear modulations) are in general very
close to the CCRB for signal-to-noise ratios (SNRs) smaller
than 30 dB. For higher SNRs, a mean square error (MSE) floor
occurs, but notice that at that high SNRs, the estimation MSE
achieved by the proposed estimator is already very small; there-
fore, the effect of MSE floors becomes relatively less critical.

For linear modulations, it is shown that the proposed esti-
mator is asymptotically equivalent to the well-known square
nonlinearity estimator [3]. However, the proposed estimator ex-
hibits better performance (less self-noise/jitter) than [3] when a
reduced number of data samples are available. Furthermore, it is
shown that the performances of the proposed estimator for linear
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modulations are also very close to the MCRB for SNR < 30 dB.
For MSK and GMSK modulations, although the performances
of the proposed estimator come very close to the CCRB at cer-
tain SNR ranges, however, the CCRB is quite far away from the
MCRB, and there exists an alternative algorithm whose perfor-
mance comes closer to the MCRB. Therefore, it is concluded
that the proposed estimator is more suitable for linear modula-
tions than MSK and GMSK modulations.

The rest of the paper is organized as follows. The signal model
and the CML function are first described in Section II. The pro-
posed feedforward timing estimator is derived in Section III.
The relationship between the proposed estimator and the well-
known square nonlinearity estimator [3] is addressed in Sec-
tion IV. The MSE expressions are derived in Section V. Sim-
ulation results and discussions are then presented in Section VI,
and finally, conclusions are drawn in Section VII.

II. SIGNAL MODEL AND THE CML FUNCTION
A. Signal Model

The complex envelope of a received linear modulation is
given by

r(t) ="y TS gt — AT~ &) n(t) (D)

where 6, is the unknown phase offset; F is the symbol en-
ergy; d; stands for the zero-mean unit variance, independently
and identically distributed (i.i.d.) complex valued symbols being
sent; g(t) is the transmit pulse with unit energy; 7" is the symbol
period; £, € [0,1) is the unknown symbol timing delay to
be estimated; and 7(t) is the complex-valued circularly dis-
tributed white Gaussian noise with power density N,. After
passing through the antialiasing filter, the received signal is then
sampled at the rate 1/7;, where T} 2 (T'/Q). Note that the
oversampling factor () is determined by the frequency span of
g(t); if g(¢) is bandlimited to f = £1/T (an example of which
is the square-root raised cosine pulse), ) = 2 is sufficient. The
received vector r, which consists of L,() consecutive received
samples (where L, is the observation length), can be expressed
as (without loss of generality, we consider the received sequence
start at t = 0)

r = [r(0), t(Ty), -, r(L,Q - DT)]" = A.,dy+1 (2)

where!

112

[a-z,(c), a—p,41(e), -, ar,4r,-1(c)]  (3)
[g(—iT —eT), g(Ts —iT —€T), ...,
9((LoQ — )T, —iT — eT)]" (4)

o [E,
d, 2 ¢i% ? [d*Lwdengl: dLo+Lg*1]T ®)

72 [70), n(1), ..., n(L.Q — 1)]" (6)

INotation x7 denotes the transpose of x, and x* stands for the transpose
conjugate of x.
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n(1) E n(iT/Q), and L, denotes the number of symbols af-
fected by the inter-symbol interference (ISI) introduced by one
side of g(t).

For MSK and GMSK modulations, the complex envelope of
the received signal is given by

E, . .
r(t) =1/ T exp [jﬁz anq(t = nT —e,T) + j0, | +n(t)

@)
where a,, stands for the i.i.d. binary transmitted symbols, and
q(t) is the phase response of the modulator with length L and
satisfies

0, t<0
Q(t):{l. t> LT (8)

The derivative of ¢(t) is referred to as the frequency response of
the modulator and takes the form of a rectangular pulse or a con-
volution between a rectangular pulse and a Gaussian-shaped
pulse for MSK and GMSK modulations, respectively. Ac-
cording to the Laurent’s expansion (LE) [18] and the fact that
most of the energy of the GMSK modulation is concentrated
in the first component of the expansion [18]-[20] (the MSK
signal has only one component in the expansion), MSK- and
GMSK-received signals can be approximated by

r(t) = el E? > dig(t—iT — e, T) +n(t) (9

where
d; = exp ly 5 n; an] (10)
N L—1
g(t) = ] ot +nT) (11)
n=0
and
L [ sinlra(@®],  0<t<LT
p(t) =< p(2LT —t), LT <t <2LT (12)
0, otherwise.

Therefore, the sampled MSK and GMSK modulations can also
be expressed in a form similar to (2). Since the pseudo-symbols
(or equivalent data) d; are zero mean and unit variance, a single
system model is sufficient to treat the linear modulations, MSK,
and GMSK signals within a common framework.

Remark 1: Notice that another formulation for the GMSK
signal is to express the signal using all the 27! terms of the
LE, as is done in [10]. However, there is a disadvantage in
doing this: Including more LE terms in the formulation would
significantly increase the number of pseudo-symbols. Since, in
the CML method, the pseudo-symbols and the unknown timing
delay are jointly estimated from an observation vector of cer-
tain length, increasing the number of pseudo-symbols to be es-
timated would definitely degrade the overall estimation accu-
racy (of both pseudo-symbols and timing delay). Of course, ne-
glecting some small LE terms (as is done in this paper) would
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introduce interference and degrade the performance for the re-
sulting estimator, but from the simulation examples to be pre-
sented in Section VI, the effect of the system model approxima-
tion (9) is very small and occurs only at a very high SNR region
(at SNR > 50 dB).

Remark 2: MSK and GMSK modulations belong to a
broader class of modulation called MSK-type modulation [12],
[13]. The system model, the subsequent proposed estimator,
and the MSE analysis can also be applied to other members of
this MSK-type modulation as long as the approximation in (9)
is tight (e.g., IRC, 2RC modulations). However, in this paper,
we only concentrate on two commonly used members: MSK
and GMSK.

B. CML Function

From (2), the joint maximum likelihood estimate of ¢, and
d, is given by maximizing

1 (r—A.d)#(r—-A.d)
p(rle,d) = WGXP - N
13)
or equivalently minimizing
J(rle,d) = (r — A.d)H (r — A.d) (14)

where € and d are the trial values for ¢, and d,, respectively.
In the CML approach, the nuisance parameters d,, are mod-
eled as deterministic and estimated from the received vector r.
From the linear signal model given in (2), if no constraint is
imposed on the possible value of d,, the maximum likelihood
estimate for d, (when ¢ is fixed) is [15]
d=(A7A.) " Al (15)
Plugging (15) into (14), after some straightforward manipula-
tions, and dropping the irrelevant terms, the timing delay is es-
timated by maximizing the following CML function [9]:
Ae)=r"A. (AFA) " APr. (16)
In general, the maximum of the CML function can be found by
plugging different values of ¢ into (16). The value that provides
the maximum value of A(e) is the CML estimate. Since ¢ is a
continuous variable, this exhaustive search method requires a
lot of computations and is impractical. Alternatively, a timing
error detector (TED) [9] can be used in a feedback configura-
tion. However, in burst mode transmissions, feedforward timing
delay estimators [3]—-[8] are preferred since they avoid the rel-
atively long acquisition time and hang-up problem in feedback
schemes. In the following, a new method for optimizing (16) is
proposed so that an efficient implementation of the feedforward
symbol-timing estimator results.

III. PROPOSED ESTIMATOR

Fig. 1 shows some realizations of the CML function calcu-
lated using (16), where the true timing delay is €, = 0.25 (for
the linear modulation, g(t) is a square-root raised cosine filter
with roll-off factor 0.5). It can be seen that the CML function
has only one maximum. Since the CML function is smooth, we
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Fig. 1. Examples of CML functions.

expect that it is not necessary to calculate the CML function for
all the values of e. It is possible that the CML function is first
calculated for some ¢’s and that the values in between can be
found by interpolation.

More specifically, suppose we calculated K uniformly spaced
values of A(e) using (16) such that a sequence A(k) 2 A(k/K)
fork =0,1,..., K — 1is obtained (without loss of generality,
we consider K is even). Let us construct a periodic sequence
A(m) by periodically extending A (k). Further, denote A(e) as
the continuous and periodic function with its samples given by
1~X( ). According to the sampling theorem, as long as the sam-
pling frequency 1/K is higher than twice the highest frequency
of A(e), then A(e) can be represented by its samples A(m)
without loss of information. The relationship between A(e) and
A(m) is then given by

A(m)sinc (WK (g - %)) (17)

where sinc(z) 2 sin(x)/z. Now, expand A(e) into a Fourier
series

(18)

00
J27pe
g Ape

p=—00

where

1
A, = / A(e)e™92mPe . (19)
0

Substituting (17) into (19) yields

1
Ap = /smc 7rK g - %)) e~I2mPE g
0

m=—0o0

B 1 0o

1
= Z /smc <7rK (6 — - %)) e~I2TPE g

=i —oo
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Fig. 2. Block diagrams for (a) the IDFT-based CML estimator (/X' = 4), (b) the proposed estimator (K = 4), and (c) the squaring estimator.

K-1 ®
/ sinc(m Ke)e 72™P¢ e

bade o}

K = 4. For the rest of the paper, we refer to this estimator as
the IDFT-based CML estimator.
To avoid the complexity in performing the K’-point IDFT,

K-1 e 1 an approximation is applied to (18). More precisely, it can be
= Z Ak)em 7 F - E& {sinc(me)} f=2 (20)  seen from Fig. 1 that the CML function for symbol timing esti-
k=0 mation resembles a sine function with one period in the interval
where §{} denote the Fourier transform. It is clear that 0<e<llItis expect.ed that th.e Fourier (.:oefﬁc1f3nt {41 18
_ much larger than the Fourier coefficients associated with higher
% kK;ol A(k)e*ﬂ+pk7 p= _%7 - % frequencies. Therefore, it is sufficient to approximate (18) as
Ap = D follows:
0 otherwise.

Ae) = Ag + 2Re{A1e7?™}, for0<e<1 (23)

From (18), it can be seen that once the coefficients A, are de-
termined, A(e) can be calculated for any ¢ € [0,1). Then,
the problem of maximizing (16) can now be replaced by max-
imizing (18). For efficient implementation, the function A(e)

where Re{z} stands for real part of x. In order to maximize
A(e), the following equation must hold:

for 0 < € < 1 can be approximated by a K’-point sequence arg(A,) = —2me (24)
(K’ > K) as follows: .
where arg(z) denotes the phase of z, or, equivalently
£
A= > A B fork = 0,1,.. K — 1. (22) 1 = e
= » =0,1,..., . f=——arg Z A(k)e™ "% . (25)
p=—X 2m k=0

This is equivalent to first calculating A, using (21), then zero
padding the high-frequency coefficients (A,), and finally per-
forming a K’-point inverse discrete Fourier transform (IDFT).
For sufficiently large value of K/, A(k’) becomes very close to
A(e) for 0 < & < 1, and the index with the maximum amplitude
can be viewed as an estimate of the unknown timing parameter
€,. Fig. 2(a) shows the block diagram for this algorithm when

The estimated delay ¢ is the normalized (with respect to 7') time
difference between the first sample of the received vector r and
the nearest optimum sampling instant. The calculation within
the arg(.) operation is actually the first bin (i.e., second output)
of a K-point discrete Fourier transform (DFT) of the sequence
A(k) (or the Fourier coefficient at symbol rate f = 1/T). Based
on (24), it is not difficult to check that the proposed estimator
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(25) is asymptotically unbiased, which is a result that is inde-
pendent of the approximation used in (23).

From a computational viewpoint, it is worth mentioning
that the proposed estimator only involves the calculation of
K samples of the CML function using (16), a K-point DFT,
and an arg(.) operation. From the results to be presented, it
is found that K = 4 is sufficient to yield good estimates in
practical applications. Therefore, the four-point DFT in (25)
can be computed easily without requiring any multiplications.
The main complexity comes from the calculation of the four
samples of A(e) using (16). However, notice that the matrix
A_(AEA_)"'AZ can be precomputed for ¢ = k/4 with
0 < k < 3. This greatly reduces the arithmetic complexity
of implementation. Complexity can be further reduced by
approximating the precomputed A.(AZA_)7'AH using
sum-of-power-of-two (SOPOT) expressions [21], [22].

IV. RELATIONSHIP WITH THE SQUARE
NONLINEARITY ESTIMATOR

In this section, we will show that if ¢() is a square-root raised
cosine pulse, the proposed estimator in (25) asymptotically re-
duces to the well-known square nonlinearity estimator [3]. First
notice that when g(¢) is a square-root raised cosine pulse and
in the asymptotic case (as L, — 00), [AfAE]ij ~ 0;; [10],
where 6;; = 1 if 7+ = j and zero otherwise. Notice that the ma-
trix AZ A_ is of dimension (L, + 2L,) x (L, + 2Lg). The
approximation [AZ A_];; &~ &;; holds very well for the central
portion (of dimension L, x L,) of AZ A_. For the boundary
of Af A _, the values are smaller than 1. As L, — o0, the
boundary of AZ A becomes insignificant and can be ignored.
Putting [AZ A_];; = 6,; into (16), it follows that

2
Ale) = ||AZx|. (26)
Now consider the ‘" element of Afr(i = —L,,—L, +
1,..., L,+L,—-1)
L.Q—1
[Afr]Z = g(nTs —iT — eT)r(nTy)
n=0
= > g((i+)T —nTo)#(nl))  (27)

where 7(t) 2 r(t)w(t), with w(t) a rectangular window of
length L,T. It is recognized that the summation in (27) is just
the filtering of 7(¢), through g(¢), followed then by sampling
att = (i + &)T'. Notice that since g(t) is a square-root raised
cosine filter, g(t) = g(—t) and (27) actually correspond to the
sampled matched filter output. If we define x(t) 2 g(—t)@7(t),
where ® denotes convolution, we have [AZr]; = z((i + €)T).
Plugging this result into (26) and noting that asymptotically, the
range of ¢ can be approximated by : = 0, ..., L, — 1, we have
. kT
T <LT + % )

L,—1 2

(28)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 5, MAY 2005

The proposed CML feedforward timing delay estimator in (25)

can then be rewritten as
x<¢T+%T> )e—”,?‘} (29)

1 K-1/L,—1
é:—%arg{Z(Z
2 _M}
e~ K .

k=0 \ i=0
1 el i
=— g arg Z x <?>
1=0

Therefore, when L, — oo and K = 4, we have the well-known
squaring algorithm [3]. Figs. 2(b) and 2(c) show the block di-
agrams for the proposed estimator (25) with K = 4 and the
squaring algorithm. It can be seen that the structures of the pro-
posed algorithm and the squaring algorithm are very alike. Note
that both the proposed algorithm and the squaring algorithm re-
quire four samples per symbol period to form the timing esti-
mate. For the proposed estimator, the received signal is first sam-
pled with minimum oversampling ratio () = 2, and then, sam-
ples with K = 4 different phases are generated by filtering [see
(27)]. For the squaring algorithm, the four different samples per
symbol period are directly obtained through sampling. Notice
that the squaring algorithm might work also by first sampling at
Q@ = 2, and then, the intermediate (additional two) samples are
computed by interpolation before symbol timing estimation. Al-
though the proposed estimator and the squaring algorithm have
many characteristics in common, simulation results presented
in Section VI show that the proposed estimator outperforms the
squaring algorithm for reduced length observation records.

(30)

V. ANALYTICAL PERFORMANCE ANALYSIS

In this section, we derive the mean square error (MSE) ex-
pressions for the proposed estimator as a function of F;/N,.
First, express the true timing delay ¢, as follows:

1 .
0= —5o arg(e92me0),

(3D

From (25) and (31), the MSE for a specific delay is given by?
1)’ Im{g} )’
E[é-¢)]=—| E —J 2
[(6 —,)?] (27r> (arctan{%e{(f)} (32)
where
K—1
j2mk

¢ = im0 N A(k)e T

k=0

(33)

Applying the approximation arctan (z) ~ z for small z, we

have
1) -9 \°
(ﬁ) B <j<¢+¢*)) ]
L ( 1 ) E[¢’] — 2E[¢p¢"] + E [(¢")°]
21 ) E[¢?] + 2E[¢p¢*] + E[(¢*)?]
) < 1 )2 Re {E[4?]} — Elp*]
21 ] Re{E[¢?]} + E[pg*]

2Notation E[z] denotes the mean of random variable z, whereas Jm{¢}
stands for the imaginary part of ¢.

Q

E [(é — 50)2]

(34)
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Fig. 3. Plots of E[(¢ — ¢*)?] and E[(¢ + ¢*)?] as a function of E./N,
fore, = 0,0.25, 0.5, and 0.75 (g(*) is a square-root raised cosine pulse with
a=05Q=2,K =4,L, =100,and L, = 3). Note that all curves for
different values of €, overlap.

The last equality in (34) comes from the fact that E[(¢*)?] =
(E[#?])*. The second approximation in (34) can be justified
using similar arguments as in [23]. A close examination of the
fraction (¢ — ¢*)?/(¢ + ¢*)? in (34) illustrates that the mean
of its denominator is much larger than the mean of its numer-
ator, and the standard deviations of its numerator and denom-
inator are in general much smaller than the mean of denomi-
nator. Fig. 3 plots E[(¢ — ¢*)?] and E[(¢ + ¢*)?] as a function
of Es/N, when ¢(t) is a square-root raised cosine pulse with
a=05Q=2K=4,L, =100,and Ly, = 3 fore, = 0,
0.25,0.5, and 0.75. Note that all curves for different values of ¢,
overlap. It can be seen that for E,/N, > 10 dB, E[(¢ — ¢*)?]
is much smaller than E[(¢ + ¢*)?]. The same result can be ob-
tained for other different pulse shapes g(¢). In addition, one can
check that at medium and high E/N,, the standard deviations
of (¢ — ¢*)? and (¢ + ¢*)? are small relative to E[(¢ + ¢*)?].
All these considerations justify the second approximation made
in (34).
From (33), we note that

1913
K—-1K-1
Elp¢*]= > > E[A(k)A" (k)]
k1=0 k2=0
% o R 2 (36)

It is proved in the Appendix that
E [A(k1)A(k2)]

E2
= 75 {tr B, PL ] tr [By,PL]

o

B\
+tr [Bi, PL By, PL | + c(k1, ko) + (F) 0

x {tr [Bi, PL ] tr[By,] + tr [Bi, PL By, |
+ tr [By, PL By, ] + tr [B,PL | r[By,]}

—2
+ <%> Q2 {tr[Bkl]tr[Bkz] +tr[Bk1Bk2]}}
(37)
E [A(k1)A* (k)]

E2
= ﬁ {tr [ B, PL ] tr[By,P.,]

BN
+1r [B%;PEOB]QPEo] + C(kh kz) + <N ) Q

x {tr [B, PL | tr[By,] + tr [P, By, B |
+tr [B, PL BL | + tr [By,P., ] tr[By,]}

-2
+ (%) Q* {w[By, | [By,]+tr [Bf, By,] }}
(38)
where tr[.] denotes the trace of a matrix. In (37) and (38)
B2 A (AFA)T AT, (39)

P.isan L,Q x L,Q matrix with the (¢, j)th element (i, =
0,1,...,L,Q — 1) given by

[Ps]ij 2 io: q* (% —nT — ET) g <% —nT — ET)

and (41), shown at the bottom of the page, where m4 = E[|d;|*]

9 jame, E-lK-1 is the fourth-order moment of the transmitted symbols, which is
E[¢7] =e Z Z E [A(k1)A(k2)] fixed for a specific constellation (e.g., my = 1 for PSK and
jf;:o kz;?rk? my > 1 for quadrature amplitude modulation). Therefore, the
Xxe K e K (35) MSE for a specific delay ¢, can be found by using (34)—(38).
(ma—2) Y [an(eo) "B a,(e,)] [an(eo) ¥ Br,a,(c,)] for linear modulations
ok ko) S8 2 2 (=DMl [ag, (e0) "B, an, (0)] [an, (c0) " Br,an, ()] @1
=2 Y [an(eo)"Bran(c,)] [an(eo) I Bryan(e,)] . for MSK and GMSK
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Fig. 4. MSE of the proposed estimator and the IDFT-based CML estimator
with (a) K = 4and (b) K = 8 (QPSK, Q = 2,0 = 0.5, L, = 100, and
L, =3).

As the symbol timing delay ¢, is assumed to be uniformly dis-
tributed in [0,1), the average MSE is calculated by numerical
integration of (34).

Notice that the MSE expressions in this section can only be
regarded as an approximated analysis for GMSK since only the
principle component of LE is taken into consideration. How-
ever, from the results to be presented in next section, excellent
agreement between analytical expressions and simulations can
be observed (see Fig. 9); only a small deviation occurs at very
high SNRs.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the proposed algorithm and
other existing symbol timing estimators are assessed by Monte
Carlo simulations and then compared with the analytical re-
sults derived in the last section, the CCRB [10], and the MCRB
[14]. In all the simulations, the observation length is fixed to
L, = 100, and ¢, is uniformly distributed in the range [0,1). 6,
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Fig. 5. Comparison between analytical MSE and simulations of the proposed

estimator (QPSK, Q@ =2, K =4, = 0.5, L, = 100,and L, = 3).

is generated as a uniformly distributed random variable in the
range [—, ) and is constant in each estimation. Each point is
obtained by averaging 10* simulation runs. In all figures, the
CCRB and the MCRB are plotted as references.

First, consider the case of linear modulations. QPSK is
chosen as the symbol constellation. The oversampling ratio for
the proposed estimator is ) = 2, g(t) is the square-root raised
cosine pulse with roll-off factor = 0.5, and the number of
ISI symbols introduced by one side of g(t) is assumed to be
L, = 3. Figs. 4(a) and 4(b) show the MSE against E, /N, for
the proposed algorithm and the IDFT-based CML estimator
for K = 4 and K = 8, respectively. It can be seen [from
both Figs. 4(a) and 4(b)] that the proposed algorithm has a
performance similar to that of IDFT-based CML estimator
with K’ = 2048. This further justifies the approximation in
(23). Note that for K = 4, the self noise is not completely
eliminated for both the IDFT-based CML estimator and the
proposed estimator [as seen from the MSE departure from
CCRB at high SNR in Fig. 4(a)]. This can be explained as
follows. For the IDFT-based CML estimator, the self-noise is
due to the small value of K chosen since in the derivation, it is
assumed that the CML function can be completely represented
by K samples. However, there is no guarantee that K = 4 is
sufficient (although K = 4 results in pretty good performance).
Increasing the value of K to 8 removes the self noise of the
IDFT-based CML estimator (with K’/ = 2048), as shown
in Fig. 4(b). For the proposed estimator, although it is also
required that K should be large enough such that A(e) can be
represented by its samples, the self noise is due to another more
critical factor—the approximation (23) in the CML function.
This can be seen from the fact that the performance of the
proposed estimator does not improve by increasing K from 4 to
8 [compare Figs. 4(a) and 4(b)]. As K = 4 is good enough for
the proposed estimator, K = 4 is used for the rest of the paper.

Fig. 5 illustrates the very close match between the simulation
and the analytical results derived in the last section. It is also
clear that for the SNRs under consideration, the performance
of the proposed algorithm is very close to the CCRB, which
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Fig. 6. Comparison of the MSE of the proposed estimator and the square
nonlinearity estimator (QPSK, o« = 0.5, L, = 100, and L, = 3).

means that the proposed estimator almost reaches the ultimate
performance of the CML principle. Furthermore, the CCRB is
close to the MCRB. Since the MCRB is a lower bound on the
variance of any unbiased estimate, this shows that the proposed
algorithm is close to optimal for a wide range of E;/N,. Notice
that at 5 /N,, around 30 dB, an MSE floor begins to occur (due
to the approximation (23) in the CML function), but at that high
SNR, the estimation MSE achieved by the proposed estimator
is already very small (on the order of 109), and therefore, the
effect of the MSE floor becomes relatively less critical.

Fig. 6 compares the performance of the proposed estimator
with that of the square nonlinearity estimator (with Q = 4)
[3]. It is apparent that the proposed estimator outperforms the
square nonlinearity estimator, especially at high F;/N,. This
is because for finite observation length, A A_ # 1, and the
self-noise is better cancelled by the matrix (AZ A.)~! than L.
Fig. 7 compares the performances of the proposed algorithm
with the existing state-of-the-art feedforward algorithms that re-
quire only two samples per symbol to operate: Mengali [14, pp.
401], Zhu et al. [16], and Lee [17]. It can be seen that while the
performances for different algorithms are similar at low E;/N,,
the proposed algorithm has the smallest MSE at high E,/N,.

Next, consider that MSK is the modulation format. Fig. 8
shows the performances of the proposed estimator (with ) = 2,
@ = 4, and Q = 8) and the low-SNR approximated max-
imum likelihood (ML) algorithm [19] for MSK. The number
of ISI symbols introduced by one side of g(¢) is assumed to be
1. The following observations can be inferred from Fig. 8. First,
it can be seen that for the proposed algorithm, the higher the
oversampling ratio, the better the performance. This is because
the pulse g(¢) is time limited [18]; therefore, its frequency re-
sponse is not bandlimited; a higher oversampling ratio reduces
the aliasing and, thus, provides better performance. Second, the
theoretical MSE analysis matches the simulation results very
well. Third, although a higher oversampling ratio increases the
range of SNRs over which the performance of the proposed es-
timator comes close to the CCRB, MSE floors still occur at
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Fig. 7. MSE for the proposed estimator, the algorithms in [14, pp. 401], [16],
and [17] (QPSK, @ = 2, a« = 0.5, L, = 100,and L, = 3).
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Fig. 8. MSE of the proposed estimator () = 2, @ = 4, and = 8) and the
low-SNR approximated ML algorithm [19] for MSK (L3 = 1 and L, = 100).

high SNRs due to the approximation (23) assumed in the deriva-
tion of estimator. Furthermore, the CCRB is far away from the
MCRB, and the simulation results show that the low-SNR ap-
proximated ML algorithm [19] approaches the MCRB. There-
fore, direct application of the CML principle is not suitable for
the MSK modulation.

Now, let us consider the GMSK modulation. Fig. 9 shows
the performances of the proposed estimator (with ) = 2 and
@ = 4) and the low-SNR approximated ML algorithm [19] for
GMSK with premodulator bandwidth BT = 0.5. The number
of IST symbols introduced by one side of g(t) is assumed to be
2. Notice that although the proposed estimator is based on the
approximated linear model (9), the GMSK signal in the simula-
tion is generated according to (7) without approximation. The
MCRB for GMSK is exact, and its expression can be found
in [14]. For the CCRB, it is based on the approximated linear
model (9). Although the resulting CCRB is not exact, it is still
a valid lower bound for the proposed estimator since when the
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Fig.9. MSE of the proposed estimator (¢ = 2 and () = 4) and the low-SNR
approximated ML algorithm [19] for GMSK with BT = 0.5 (Ly = 2 and
L, = 100).

proposed estimator is applied to the true GMSK signal, the ig-
nored components in LE would become interferences, and the
performances would be poorer than that predicted by the CCRB,
which assumes no interference from other components of LE.
Note that the CCRB obtained by expressing the GMSK signal
using all the LE components (as done in [10]) is not applicable
here since in that case, the resultant CCRB is conditioned on the
fact that all the pseudo-symbols are being jointly estimated to-
gether with the unknown timing offset, whereas in the proposed
estimator, only the pseudo symbols related to the first LE com-
ponent are estimated.

From Fig. 9, it can be seen that for the proposed estimator, a
higher oversampling ratio also results in better performance for
the same reason as in the case of MSK modulation. However,
by comparing Figs. 8 and 9, if the same oversampling ratio is
used, it is found that the performance of the proposed estimator
for GMSK modulation is better than that corresponding to MSK.
This is due to the fact that the pulse §(¢) is longer in GMSK than
in MSK (although they both are time-limited); therefore, with
the same oversampling ratio, the aliasing introduced in GMSK
is smaller than that in MSK. Second, it is obvious that the ana-
Iytical MSE expressions derived in the last section match very
well with the simulation results. Only for the case of K = 4 and
at SNR = 50-60 dB, the analytical MSE expressions predict a
slightly better performance than simulations. Third, the perfor-
mance of the proposed estimator with () = 4 comes very close
to the CCRB for E;/N, < 40 dB. The MSE floor, which is
caused by the approximation (23) in the CML function, begins
to occur only for F /N, > 40 dB. Notice that the effect of the
approximation (9) in the system model (which results in the gap
between analytical MSE and simulations) is much smaller than
that of approximation (23) in the CML function (which causes
the MSE floor). Compared to the low-SNR approximated ML
algorithm [19], at low SNRs, the proposed estimator exhibits
poorer performance, but for medium and high SNRs, the pro-
posed estimator performs much better.
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Finally, notice that the CCRB is far away from the MCRB,
as in the case of MSK. Since the CCRB is a valid bound only
for estimators that rely on quadratic nonlinearities [10], it is ex-
pected that algorithms exploiting higher order (>2) nonlineari-
ties might exist with performances closer to the MCRB. An ex-
ample of such an algorithm is the low-SNR approximated ML
algorithm [19], for which we already demonstrated that its per-
formance is closer to the MCRB at low SNRs. The next question
is whether there is an estimator whose performance comes close
to the MCRB for a larger range of SNRs. This is a subject that
is open to future investigations.

VII. CONCLUSIONS

A new feedforward symbol-timing estimator based on the
conditional maximum likelihood principle was proposed. An
approximation was applied in the Fourier series expansion of the
CML function so that the complexity of the proposed estimator
is greatly reduced. It was shown, analytically and via simula-
tions, that the performances of the proposed estimator for linear
modulations are, in general, very close to the CCRB and MCRB
for SNR < 30 dB. For higher SNRs, MSE floors occur, but no-
tice that at these high SNRs, the MSE achieved by the proposed
estimator is already very small, and therefore, the effect of MSE
floors becomes relatively less critical. Furthermore, for linear
modulations where the transmit pulse is a square-root raised co-
sine pulse, the proposed estimator was shown to be asymptoti-
cally equivalent to the well-known square nonlinearity estimator
[3]. However, in the presence of a reduced number of samples,
the proposed estimator presents better performance than [3]. For
MSK and GMSK modulations, it was found that although the
performances of the proposed estimator come very close to the
CCRB at certain SNR ranges, however, the CCRB is quite far
away from the MCRB, and there exists an alternative algorithm
that come closer to the MCRB. Therefore, it was concluded that
the proposed estimator is more suitable for linear modulations
than MSK and GMSK modulations.

APPENDIX
PROOF OF (37) AND (38)

From the definition of A(¢) in (16), we have

E [A(k1)A(k2)] =E [r¥ By, rr7 By, r]
LoQ—-1LoQ-1L,Q—1L,Q—1

= > X X X uned

;=0 ;=0 lo=0 i2=0

X E[r*(iy)r(l)r” (i2)r(l2)] (42)

where bg) is the (4,7)"" element in Bj. Now, we concentrate
on E[r*(i1)r(l1)r*(i2)r(l2)], which is given by

E[r* (i2)r(L)r* (i2)r(l2)]

(% St (-t
.<ej601 / % Z dnﬁ](% _n2T_501>+77(11)>

=E
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.(e—j&o1 / % > d’ﬁgg*(% —n3T—607>+77*(i2)>
. [Bs T
-<eﬂ° T Zdn4g<%—n4T—€oj>+77(12>>

First, let us consider linear modulations, in which case, we have

.(43)

E[d,, dn,]=0 (44)
[dnld:; ] 6 ’I”Ll,’I”LQ (45)
E [n(i1)n(iz)] = 0 (46)
E [n"(i1)n(i )]= (617 iz) (47)
1, forny = ng # n3z = ny
E[d], d,d) dy,] = 1 0= e F e =0 g
my, fOI'TLl = N4 = N2 = N3
0, otherwise

and therefore, 10 out of the 16 terms that result from (43) vanish.
With the definitions

P.(i,5) 2 Zg* <%—nT €T> (%—nT €T>
9T
£T> (a —nT— £T>

AN NIED (%—RT
- <%T_nT_€T>g<%_nT_€T> (49)

n
the remaining terms can be expressed as

E [r*(i1)r(l)r* (i2)r(l2)] = S14+ S12 4+ S1a+ S23 + S34 + Sa
(50)
where
A £ *
$12 55 ZZZZE [ dp,di d,]

n1 n2 ns na

x g* <% —n T — T) g <% —noT — T)

-g" <% —nsT — T> g <l26T —nyT — T>

E? . . . .
= T_; {P.,(i1,11)P:, (i2,l2) + P-_(i1,12) Pz, (i2,11)

+(ma = 2)Ze, (i1, L iz, o)} (51)
S22 7 S S B, ] Bl a0
<o (U —mr-er) o (4 —nar - er)
_ ESJJEOQPEO (i1, 11)8 (i, I2) (52)
Su 27 5B [0 B i)
<o (=i -eir) o (& —nir—car)
= ENQ Vi, ) (53)

T2
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Sy 2 5 0 S B [ Bl ()l
X <% — T — T) q* <% —n3T — EOT)
_ EséV;Q P.. (ia, 11)8(i1, o) (54)
S 2 S D B, ] Bl (0]
g* <% —n3T — T) g <% —ngT — T)
= ESTL;QPED (i2,12)6(i1,11) (55)
Sa SE n* (in)n(h ) (i)n(l2)]
=E [n"(i1)n(l)] E [n*(i2)n(l2)]
+ E [n*(i1)n" (42)] E [n(l1)n(l2)]
+ E [7*(i1)n(l2)] E [n(l1)n" (i2)]
+E [ (i) E [n(l)] E [ (i2)] E [n(l2)]
N2 2
= %2 ((5(21,[1)5(22,[2) 6(21,[2)(5(22 ll)) (56)

Plugging (50)—(56) back into (42) and expressing the summa-
tions using matrices, some straightforward calculations lead to
(37). A similar procedure can be used to prove (38).

Now, let us consider MSK and GMSK. Since the pseudo-
symbols in (10) are not circularly symmetric, (44) and (48) have
to be modified accordingly. After some lengthy but straightfor-
ward calculations, it is found that

E [dnl dnz] = (_1)7“ 6(7},17 n2> (57)

)

)

E[d}, dy, (e dn,] =4 1,

_1)\n2—ﬂ/1|

[ N

for ny=mno # n3=mny
for n1=ny 75 N2 =mn3
for 1 =MN4="N92 ="N3
for ny=mns 7£ Ty ="4

, otherwise.
(58)

Due to (57), two more cross terms in the expansion of (43) have
to be considered. One of them is Sy3, which is given by

Sl 72](9

ZZE [, . ] E [n(1)n(ls)]

ny ns3
i T T
xg* <% —an—€0T>g <% —ngT —

).

However, thanks to the correlation property of noise samples,
S13 = 0. The other extra term is also zero due to the same
reason. For the fourth-order moment in (58), compared to the
corresponding expression for linear modulations (48), we notice
that m4 = 1, and there is an extra nonzero fourth-order moment.
Therefore, apart from setting /4 = 1 in S7, an extra term has
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to be added to S7 in (51). The modified S;, which is denoted as
S1MsK, can be expressed as

Evg Nng—n
SlMSK:Sl|m4:1+ﬁ Z Z(_l)l o

ny N
ni#ng

« [T LT
g <1?—n1T—EOT)g<16—n2T—EOT)

. <%_R1T_EOT>Q<%—W,2T—5OT>. (59)

Plugging (59) into (42) and then expressing the multiplications
using matrix notation, it can be proved that the only change is
the definition of ¢(k1, k2), which is given in (41).
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