
 i

 DESIGN AND ANALYSIS OF

 HASH FUNCTIONS

 By

 Murali Krishna Reddy Danda

 Under the supervision of:

 Principle Supervisor : Dr. Xun Yi

 Co-supervisor : Dr. Alasdair McAndrew

 For the degree of

 Master of Science by Research (Computer Science)

 (Two years Masters by Research thesis in Network security and

 Cryptography/ Internet Security)

 A thesis submitted to the School of Computer Science

 and Mathematics, Victoria University

 2007

 ii

Declaration

“I, Murali Krishna Reddy Danda, declare that the Master by Research thesis entitled

Design and Analysis of Hash Functions is no more than 60,000 words in length,

exclusive of tables, figures, appendices, references and footnotes. This thesis contains

no material that has been submitted previously, in whole or in part, for the award of

any other academic degree or diploma. Except where otherwise indicated, this thesis

is my own work”.

Signature Date

 iii

Acknowledgments

 It is first a privilege and a pleasure for me to thank my principle supervisor,

Senior Lecturer Dr. Xun Yi and my co-supervisor, Senior Lecturer Dr. Alasdair

McAndrew, for their constant encouragement, support and advice. Without their

enthusiasm (and well-timed prods), their never failing humour and their assurances at

all times that my research was worth while, this thesis would barely have begun,

much less been completed.

 I greatly acknowledge Associate Professor Peter Cerone, Head of School of

Computer Science and Mathematics and other staff of the school of Computer Science

and Mathematics for being supportive and cooperative. I deeply owe my appreciation

to my research office mates Michael Grubinger, Hao Lan Zhang and Guandong Xu

for their friendly and frank advice.

 It is a particular pleasure to acknowledge the help of the library staff at

Victoria University for providing much up-to-date (international) information and

many useful reference books. Also, it’s my pleasure to thank Mrs. Pushpa Richards,

research coordinator, Department of Computer Science and Engineering, Victoria

University, for her comprehensive answers even for silly questions of mine.

 Finally, I would like to thank my family and friends for their encouragement

and support. I would like to express my special gratitude to my elder brother Vamsi

Danda and cousin Vamsi Kolli for their continuous support, encouragement,

understanding and patience.

 iv

Abstract

 A function that compresses an arbitrarily large message into a fixed small size

‘message digest’ is known as a hash function. For the last two decades, many types of

hash functions have been defined but, the most widely used in many of the

cryptographic applications currently are hash functions based on block ciphers and the

dedicated hash functions. Almost all the dedicated hash functions are generated using

the Merkle-Damgård construction which is developed independently by Merkle and

Damgård in 1989 [6, 7].
 A hash function is said to be broken if an attacker is able to show that the

design of the hash function violates at least one of its claimed security property.

There are various types of attacking strategies found on hash functions, such as

attacks based on the block ciphers, attacks depending on the algorithm, attacks

independent of the algorithm, attacks based on signature schemes, and high level

attacks. Besides this, in recent years, many structural weaknesses have been found in

the Merkle-Damgård construction [51-54], which indirectly effects the hash functions

developed based on this construction.

 MD5, SHA-0 and SHA-1 are currently the most widely deployed hash

functions. However, they were all broken by Wang using a differential collision attack

in 2004 [55-60], which increased the urgency of replacement for these widely used

hash functions. Since then, many replacements and modifications have been proposed

for the existing hash functions. The first alternative proposed is the replacement of the

effected hash function with the SHA-2 group of hash functions.

 This thesis presents a survey on different types of the hash functions, different

types of attacks on the hash functions and structural weaknesses of the hash functions.

Besides that, a new type of classification based on the number of inputs to the hash

function and based on the streamability and non-streamability of the design is

presented. This classification consists of explanation of the working process of the

already existing hash functions and their security analysis. Also, compression of the

Merkle-Damgård construction with its related constructions is presented. Moreover,

three major methods of strengthening hash functions so as to avoid the recent threats

on hash functions are presented.

 v

 The three methods dealt are: 1) Generating a collision resistant hash function

using a new message preprocessing method called reverse interleaving. 2)

Enhancement of hash functions such as MD-5 and SHA-1 using a different message

expansion coding, and 3) Proposal of a new hash function called 3-branch. The first

two methods can be considered as modifications and the third method can be seen as a

replacement to the already existing hash functions which are effected by recent

differential collision attacks. The security analysis of each proposal is also presented

against the known generic attacks, along with some of the applications of the

dedicated hash function.

 v

 Contents

Declaration ii

Acknowledgements iii

Abstract iv

Contents vi

List of figures x

List of tables xi

Chapter 1: Introduction 1

 1.1. Overview of hash functions…………………………………………………….1

 1.2. Types of hash functions………………………………………………………...6

 1.2.1. Hash functions based on block ciphers……………………………………..6

 1.2.1.1. Davies-Meyer method…………………………………………………..7

 1.2.1.2. Matyas-Meyer-Oseas method…………………………………………...8

 1.2.1.3. Miyaguchi-Preneel method……………………………………………..8

 1.2.1.4. MDC-2 and MDC-4 methods…………………………………………...9

 1.2.2. Dedicated hash functions…………………………………………………...9

 1.2.2.1. Merkle-Damgård construction………………………………………….9

 1.2.2.2. MD-5 Message digest algorithm………………………………………10

 1.2.2.3. Secure hash algorithm SHA-1………………………………………....12

 1.3. Types of attacks on hash functions…………………………………………….15

 1.3.1. Attacks independent of the algorithm……………………………………...15

 1.3.1.1. Random attack………………………………………………………....16

 1.3.1.2. Pseudo attack…………………………………………………………..16

 1.3.1.3. Exhaustive key search attack…………………………………………..16

 1.3.1.4. Birthday attack………………………………………………………...17

 1.3.2. Attacks dependent on the algorithm……………………………………….17

 vi

 1.3.2.1. Meet in middle attack………………………………………………….17

 1.3.2.2 Constrained meet in the middle attack…………………………………18

 1.3.2.3. Generalized meet in the middle attack………………………………...18

 1.3.2.4. Correcting block attack………………………………………………..18

 1.3.2.5. Fixed point attack……………………………………………………...19

 1.3.2.6. Differential attack……………………………………………………...19

 1.3.3. Attacks dependent on an interaction with the signature scheme…………..19

 1.3.4. Attacks dependent on the underlying block cipher………………………..19

 1.3.5. High level attacks………………………………………………………….20

 1.3.5.1. Replay attack…………………………………………………………..20

 1.3.5.2. Padding attack…………………………………………………………20

 1.4. Structural weaknesses of Merkle-Damgård hash construction………………..20

 1.4.1. Message expansion attack…………………………………………………21

 1.4.2. Joux’s multi-collision attack………………………………………………21

 1.4.3. Fixed point attack by Dean and its extension by-

 -Kelsey and Schneier……………………………………………………....22

 1.4.4. The herding attack by Kelsey and Kohno………………………………....23

 1.5. Recent Multi-collision attacks on hash functions……………………………..23

Chapter 2: Classification of hash functions and their security analysis-

 -against the known generic attacks 26

 2.1. Streamable and non-streamable hash functions……………………………….27

 2.1.1. RIPEMD-160……………………………………………………………...27

 2.1.2. Zipper hash construction…………………………………………………..30

 2.1.2.1. Security analysis of zipper hash construction…………………………30

 2.2. Hash functions based on two inputs…………………………………………...32

 2.2.1. Wide pipe hash function or wide pipe hash construction...……………......32

 2.2.1.1. Security analysis of wide pipe and double pipe designs………………33

 2.2.2. The 3C and 3C+ hash constructions……………………………………….34

 2.2.2.1. Security analysis of 3C and 3C+ hash constructions………………….36

 2.3. Hash functions based on three inputs………………………………………….36

 2.3.1. Dithering hash function……………………………………………………36

 2.3.1.1. Security analysis of dithering hash functions………………………….38

 2.3.2. Double pipe hash function or double pipe hash construction...…………...39

 vii

 2.4. Hash functions based on four inputs…………………………………………..40

 2.4.1. Pre-fix free Merkle-Damgård construction………………………………..40

 2.4.1.1. Security analysis of the Pre-fix free Merkle-Damgård construction…..41

 2.4.2. HAIFA—a framework of iterative hash functions………………………...41

 2.4.2.1. Security analysis of HAIFA construction……………………………..43

 2.5. Comparison of Merkle-Damgård with related constructions………………….44

 2.6. Security reduction proof……………………………………………………….45

Chapter 3: Modifications and replacements to the existing hash functions 46

 3.1. Collision resistance of a hash function using message preprocessing………...46

 3.1.1. Message preprocessing framework……………………………………......47

 3.1.2. Local expansion approach…………………………………………………47

 3.1.2.1. Message whitening approach………………………………………….48

 3.1.2.2. Message self interleaving approach…………………………………...48

 3.1.2.3. Reverse interleaving approach………………………………………...48

 3.1.3. Security analysis of the local expansion approach………………………...49

 3.1.4. Implementation issue………………………………………………………51

 3.2. Enhanced SHA-1 IME hash function………………………………………….52

 3.2.1. Message expansion in SHA-0, SHA-1, SHA-1 IME and-

 enhanced SHA-1 IME hash functions……………………………………..53

 3.2.2. Security analysis of these hash functions………………………………….56

 3.3. The 3-branch a new dedicated hash function………………………………….57

 3.3.1. Description of 3-branch……………………………………………………57

 3.3.1.1. Padding procedure……………………………………………………..57

 3.3.1.2. Initialization vectors…………………………………………………...58

 3.3.1.3. Structure of 3-branch…………………………………………………..58

 3.3.1.4. Branch function………………………………………………………..59

 3.3.1.5. Step function…………………………………………………………..60

 3.3.1.6. Constants and dither values……………………………………………62

 3.3.1.7. Efficiency and performance…………………………………………...63

 3.3.1.8. Security analysis of 3-branch………………………………………….64

Chapter 4: Applications of hash functions 67

 4.1. Digital signature……………………………………….....................................67

 4.1.1. Creation of digital signature……………………………………………….67

 4.1.2. Verification of digital signature…………………………………………...68

 viii

 4.2. Data integrity…………………………………………………………………..69

 4.2.1. Data integrity using a ‘MAC’ alone……………………………………….69

 4.2.2. Data integrity using encryption and ‘MDC’……………………………….70

 4.2.3. Data integrity using an ‘MDC’ and an authentic channel…………………71

Chapter 5: Conclusion and future work 72

 5.1. Conclusion……………………………………………………………………..72

 5.2. Future works………………………………………………………...................74

References 75

 ix

 List of figures

1. General model of iterative hash function construction [3].................................3

2. Compression function for a set of hash functions based on block ciphers [8]...7

3. The Davies-Myere hash construction [10]…………………………………….7

4. Matyas-Meyer-Oseas hash construction [10]………………………………….8

5. Miyaguchi-Preneel hash construction [10]…………………………………….8

6. Merkle-Damgård hash construction [11]……………………………………...9

7. MD-5 Compression function [12]……………………………………………11

8. SHA-1 Compression function [12]…………………………………………..14

9. Fixed point for a compression function………………………………………19

10. Processing of single 512-bit block in RIPEMD-160 [86]……………………28

11. Step function of RIPEMD-160 [86]………………………………………….29

12. Zipper hash construction [84]………………………………………………...30

13. Wide-pipe hash construction [82]……………………………………………33

13a. Double-pipe hash construction [82]………………………………………... ..39

14. 3C hash construction [11]……………………………………………………34

15. 3C+ hash construction [11]…………………………………………………..35

16. Dithering hash function………………………………………………………37

17. Prefix-free Merkle-Damgård hash construction [82]………………………...40

18. HAIFA hash construction [85]……………………………………………….42

19. Structure of 3-branch hash function………………………………………….59

20. Step function of 3-branch hash function……………………………………..60

20a. Step function of 3-branch hash function-Part-A……………………………..61

20b. Step function of 3-branch hash function-Pare-B……………………………..61

21. Splitting step function of 3-branch and FORK………………………………66

22. Creation of digital signature………………………………………………….68

23. Verification of digital signature……………………………………………...69

24. Data integrity using a ‘MAC’ alone………………………………………….70

25. Data integrity using encryption and MDC…………………………………...71

26. Data integrity using an ‘MDC’ and an authentic channel……………………71

 x

 List of tables

1. Primitive logic functions used in MD-5 [12]………………………………...12

2. Primitive logic functions used in SHA-1 [12]……………………………….13

3. Collision for MD-4 hash function [60]………………………………………25

4. Collision for MD-5 hash function……………………………………………25

5. Ordering rule of message words in 3-branch………………………………...59

6. Constants used in 3-branch hash function……………………………………62

7. Ordering rule of the constants in each branch………………………………..62

8. Ordering rule of dither values………………………………………………..63

9. Compression of some hash functions against some attacks………………….66

 xi

Chapter 1

Introduction

1.1. Overview of hash functions:

 A function that maps an arbitrary large message into a message digest of fixed

small size is known as a hash function. The input to a hash function is typically called

as a ‘message’ or the ‘plain text’ and the output is often referred to as ‘message

digest’ or the ‘hash value’ [1]. The basic idea is that, the message digest should serve

as a compact representative image of an input string and can be used as if it is

uniquely identifiable with that string. That is, the output of the hash functions should

serve as a digital finger-print for the input and should be the same each time the same

message is hashed.

 For a hash function to be secure it is required to be one-way and collision

resistant. The one-way property can be achieved if it is easy to generate the message

digest of a message but, is hard to determine the original message when the digest of

it is known. On the other hand, collision resistance can be attained if it is hard to find

two different messages, having same message digest as output. Apart from these

requirements, the hash function should be accepting a message of any size as input

and computation of the message digest must be fast and efficient.

 Depending on whether or not a key is used or not in designing a hash function,

hash functions can be divided into two types:

 1) Keyed hash functions and

 2) Unkeyed hash functions.

1) Keyed hash functions:

 As the name indicates, keyed hash functions use a key in generating a hash

value. The function will accept two inputs: one a message of arbitrary finite-length,

and the other is a fixed-length key. The main idea is that, an adversary without the

knowledge of this key should be unable to forge the message. Message Authentication

Code is a keyed hash function because it uses two different inputs specifically an

arbitrary length message and a fixed length key. Besides that, the output is of fixed

length.

 xii

Definition-1: (Keyed hash functions) [2]

 The map nkH }1,0{}1,0{}1,0{: * →× is said to be a keyed hash function with

n -bit output and k -bit key if H is a deterministic function that takes two inputs, the

first of an arbitrary length, the second of k -bit length and outputs a binary string of

length n -bits. Where ,k n are positive integers. n}1,0{ & k}1,0{ are the set of all

binary strings of length n and k respectively and *}1,0{ is a set of all finite binary

strings.

2) Unkeyed hash functions:

 Almost all the hash functions that have been used since the early 1990’s for

various types of applications in cryptography are unkeyed. The generation of hash

function under this mechanism do not need a key. These hash functions can be used

for error detection, by appending the digest to the message during the transmission.

The error can be detected, if the digest of the received message, at the receiving end is

not equal to the received message digest. This is also known as modification detection

and hence these functions are also called modification detection codes or

manipulation detection codes. Infact, keyed hash functions can also be used for error

detection but the unkeyed hash functions are easier to use for this application because

there will not be any problem of secrecy of key used.

Definition-2: (Unkeyed hash functions)

 The map nH }1,0{}1,0{: * → is said to be an unkeyed hash function with n -bit

output if H is a deterministic function that takes an arbitrary length message as input

and outputs a binary string of length n -bit. The notations ,n n}1,0{ and *}1,0{ are

similar to that of in Definition-1.

 As a fact of readability, one can note that this thesis deals only with unkeyed

hash functions. Most unkeyed hash functions are designed using an iterative process

which hashes the arbitrary length inputs by processing successive fixed size blocks of

the inputs. These are also known as iterative hash functions because of the underlying

iterative structure. Figure 1 illustrates the iterative structure based on which the

unkeyed hash functions can be generated. This iterative structure is generally known

as Merkle-Damgård hash construction designed by Ralph Merkle and Ivan Damgård

independently in 1989 [6, 7].

 xiii

 In this iterative process the arbitrary finite-length input message M is divided

into r -blocks of fixed length, each of l -bits rmmmM ,.....,, 21= . The preprocessing

which is typically known as padding involves appending extra bits as necessary to

attain an overall bit-length which is a multiple of the block length .l The length of the

original message before padding is also included in the last block of the padded input

for security reasons.

 (a) High level view (b) Detailed view

 Hash function H original input M

 Iterative compression

 function

fixed length output

 output output

 Figure 1: General model of iterative hash function construction [3].

 Each block of the message M represented as im where ri ,.....,2,1= serves as

input to an internal fixed size hash function ,f known as the compression function of

H . The iterative processing starts with a predefined initial value, the initialization

vector .0IV That is, the first round of the iterative process takes 0IV and 1m as inputs

and computes an n -bit intermediate value for some fixed ,n this in turn serves as an

input to the second round along with the second block of the message .2m This

process is continued r -times and the final output rIV is of n -bit length, which is

generally known as the message digest.

 An optional output transformation g is often used at the final step, to harden

the message digest further. This output transformation is also known as finalisation

 optional output transformation

 arbitrary length input

preprocessing

 formatted input
iterative rmmM ,.....,1=
processing

append padding bits

append length

 im

 1−iIV iIV

g

f

 xiv

function it has several purposes such as compressing a bigger length message digest

into a required smaller length or for better mixing on the bits in the hash sum. The

finalisation function is also a compression function.

 The preprocessing in the iterative hash function design may have several

purposes such as, increasing the security of the whole process. The following four are

some of the purposes of the preprocessing for hash functions of current generation [4].

1. Purpose-1: To divide the message so that its length in bits becomes a

multiple of some desired block size.

2. Purpose-2: To defeat, various message expansion attacks by appending a

length count (generally known as Merkle-Damgård strengthening).

3. Purpose-3: To make it available the minimum distance property which in

turn guarantees to produce a large change in the final message digest, even

for a small change in the input message.

4. Purpose-4: To include some time dependent variability in order to change

the way in which the input message is converted into the final message

digest and evolve in a way that the input message is processed.

 There can be many other purposes for preprocessing as in [5] Szydlo and Yin

used two different techniques called ‘message whitening’ and ‘message self

interleaving’ to preprocess the message, for improving the security level of the

existing hash functions such as MD5 and SHA-1 against the recent attacks by Wang.

The basic idea of preprocessing can be used to improve the collision resistance of the

underlaying compression function without upgrading it to a better compression

function. For a message M and compression function ,f using the message

preprocessing one can generate a compression function f ′ such that

() ()()MfMf σ=′ where σ is a preprocessing function *: MM →σ and

*MM < . The function σ can be chosen appropriately for the particular

compression function .f

 The two methods of preprocessing message whitening and message self

interleaving are of similar type. In message whitening the basic idea is to alter the

message by inserting fixed characters at regular intervals. The fixed characters can be

words filled with all zero bits. On the other hand, in message self interleaving the idea

is to duplicate each message block so that, each bit appears twice after the

 xv

preprocessing. For example, for a message sequence rmmmM ,.....,, 21= after

preprocessing with self interleaving the sequence appears like

rr mmmmmmM ,,.....,,,, 2211
* = .

 While the security of the keyed hash functions depends on the secrecy of the

key used the security of the unkeyed hash functions depend on the underlaying

compression function. That is, an iterative hash function is collision resistant if the

underlaying compression function is collision resistant [6, 7]. The well known basic

security properties of hash functions are preimage resistance, second preimage

resistance and collision resistance. Let H be a hash function and MM ′, be two

messages such that MM ′≠ then [3]:

1. Preimage resistance: For all pre-specified outputs, it should be

computationally infeasible to find any input which hashes to that pre-specified

output. That is, given a hash value ,y it should be very hard to find a preimage

M ′ such that .)(yMH =′

2. Second preimage resistance: It should be computationally infeasible to find

any second input which has the same output as any specified input. That is,

given any message ,M it should be hard to find a second preimage MM ≠′

such that, () ()MHMH ′= .

3. Collision resistance: It should to computationally infeasible to find any two

distinct inputs MM ′, which hash to the same output.

 The hash function map { } { }nH 1,01,0: * → is a many to one function. Hence, it

is clear that there exist more than one different messages having same hash value.

But, the iterative structure should be designed in such a way that it is not feasible to

generate different messages having same hash value. Additionally, they should resist

preimage and second pre image attacks.

 Hash functions can be used for error detection, by appending the digest to the

message during the transmission. The appended digest bits are also called parity bits

[8, 13]. The error can be detected, if the digest of the received message, at the

receiving end is not equal to the received message digest. This is also known as

modification detection and hence these functions are also called modification

detection codes.

 xvi

 It is possible to generate a fixed length digital signature, which depends on the

whole message and ensures authenticity of the message using a hash function. For

generating the digital signature of a message ,M using hash function ,H first the

message digest of the message M is generated and then, encrypted with the secret

key of the sender. Either of the public key algorithm or the private key algorithm can

be used for encryption. The secure email systems PGP and S/MIME both use SHA-1

hash functions for signatures and message authentication [12].

 In the case of storing passwords of all the clients in the server, who have

registered with a specific password poses an obvious security risk. In such cases, hash

functions can be used by the server and the message digest of the password string

could be stored instead of the password directly. With this scheme in place, even if

the adversary succeeds in breaking into the server, he will be able to construct any

string that has same message digest as any of the original passwords.

1.2. Types of hash functions:

 Apart from the classification of keyed and unkeyed hash functions, they can

also be classified into the following ways as in [8]:

a) Hash functions based on modular arithmetic.

b) Hash functions based on cellular automatons.

c) Hash functions based on knapsack problems.

d) Hash functions based on algebric matrix.

e) Hash functions based on block ciphers.

f) Dedicated hash functions.

Dedicated and block cipher based hash functions are the most widely used ones

currently and relevant to this thesis. Hence only these two types are described here.

1.2.1. Hash functions based on block ciphers [8, 9]:

 Hash functions based on block ciphers, are usually slower when compared to

that of the dedicated hash functions. But, in few cases they are useful and easier

because single implementation of block cipher can be used for a block cipher as well

as a hash function. Davies-Meyer, Miyaguchi-Preneel, Matyas-Meyer-Oseas, MDC-2

and MDC-4 are some methods to generate a compression function of a hash function

from a block cipher.

 xvii

 The general construction of a compression function ()f for a hash functions

based on block ciphers can be described using the following diagram:

 K T

 P 1+iX

Figure 2: Compression function for a set of hash functions based on block

ciphers [8].

 In Figure 2 ()E is a block cipher that takes an input P and key .K The

arbitrary length message M is divided into n blocks and each block is processed in

one round. The input ,P the key K and the XOR value T are chosen from the set

},,,{ Iiii XMXMVS ⊕= , where V is a constant value, iX is the output of the

previous round and iM is the current message block being processed as i indicates

the number of message blocks.

1.2.1.1. Davies-Meyer method:

 In Davies-Meyer hash compression function, the block cipher E takes a block

of the message im as a key and 1−iH the previous hash value as a plaintext to be

encrypted. The output cipher text is then XORed with the previous hash value 1−iH to

produce the next hash value iH . For the first round, a pre-specified initial value oH is

used.

 1−iH

 im

 iH

 Figure 3: The Davies-Myere hash construction [10].

Thus the Davies-Meyer hash construction can be formulated as:

11)(−− ⊕= ii
imi HHEH . Various versions of Davies-Meyer hash construction have

 ()f

()E

 E

 xviii

been generated just by replacing the XOR operation with any other group operation,

such as addition on 64-bit unsigned integers.

1.2.1.2. Matyas-Meyer-Oseas method:

 The Mathyas-Meyer-Oseas construction is opposite to the Davies-Meyer

construction. Here each block of the message im is the plaintext to be encrypted and

the previous hash value 1−iH acts as the key to the block cipher. oH is a pre specified

initial value for the first round. If the block size and key size of the block cipher varies

then, the hash value is first fed through the function ()g for padding to make it fit as

key for cipher. The formal definition for Matyas-Meyer-Oseas hash construction is

iiHgi mmEH
i

⊕=
−

)()(1
 and the diagrammatical representation is given using Figure 4.

 im

 1−iH

 iH

 Figure 4: Matyas-Meyer-Oseas hash construction [10].

1.2.1.3. Miyaguchi-Preneel method:

 The Miyaguchi-Preneel hash construction is an extended version of the

Matyas-Meyer-Oseas hash construction. The only difference between these two

constructions is that the previous hash value 1−iH is also XORed with the cipertext

along with the message block im in Miyaguchi-Preneel construction.

 im

 1−iH

 iH

 Figure 5: Miyaguchi-Preneel hash construction [10].

 E

()g

 E

()g

 xix

However, in Matyas-Meyer-Oseas hash construction only message block im is

XORed with the ciphertext.

Thus the formal definition of Miyaguchi-Preneel hash construction can be

iiiHgi mHmEH
i

⊕⊕= −− 1)()(
1

. The diagrammatical representation of this construction

is given in Figure 5.

1.2.1.4 MDC-2 and MDC-4 methods:

 The above described three methods for generating hash function based on

block cipher will generate a single length hash. MDC-2 and MDC-4 are manipulation

detection codes requiring 2 and 4 block cipher operations respectively, they employ a

combination of either 2 or 4 iterations of the Matyas-Meyer-Oseas method to produce

a double length hash. The general construction for MDC-2 and MDC-4 can also be

generated with other two methods as well. The detailed description and

diagrammatical representation of these methods can be found in [10].

1.2.2 Dedicated hash functions:

 Hash functions that are specially designed for the purpose of hashing a

plaintext are known as dedicated hash functions. These hash functions are not based

on hard problems such as factorization and discrete logarithms. MD2, MD4, MD5,

SHA-0, SHA-1, SHA-2, HALAVL and RIPEMD are some examples of dedicated

hash functions. Almost all the dedicated hash functions are based on the basic

construction of Merkle-Damgård hence this construction is first described here.

1.2.2.1. Merkle-Damgård construction:

 The Merkle-Damgård construction was designed by Merkle and Damgård

independently. A brief description of this model is already given in Section-1.1. The

detailed description, of the same model is presented in this section, based on which

the enhancements to the iterative structure to improve the security level of the whole

hash function are designed in further sections of this thesis.

 1m 2m rm

 f f f g

0IV = initial value 1IV 2IV 1−rIV rIV ()rIVg

 Figure 6: Merkle-Damgård hash construction [11].

 xx

 The detailed illustration of the Merkle-Damgård hash construction is given

using Figure 6. The message M of arbitrary finite length which is to be hashed is

divided into r -blocks of l -bits each rmmmM ,.....,, 21= . An initial value 0IV = n}1,0{

is set to the hash function and the following process is repeated r -times

),(1 iii MIVfIV −= where, ri ,.....,.2,1= .

 The final output of this process is optionally transformed into another form

using the transformation function .g This is also generated using a compression

function and is also known as the finalisation function as mentioned in Section-1.1.

Thus, the final output of the total process will be)(rIVg if the finalisation function is

used.

1.2.2.2 MD-5 Message digest algorithm [12]:

 The MD-5 message digest algorithm was designed by Rivest. The logic behind

this algorithm is that, it accepts a message of arbitrary length as input and produces an

output of a 128-bit length message digest. The whole process is explained using the

following five steps:

Step 1: Appending padding bits:

 The message is padded so that its length in bits is congruent to 448 modulo

512. That is, the length of the padded message is 64-bits less than an integer multiple

of 512-bits. Padding is always added, even if the message is already of the desired

length. (The message M at this stage appears as rmmmM ,.....,, 21= . That is,

message is divided into r -blocks each of l -bits.)

Step 2: Append length:

 A 64-bit representation of the length in bits of the original message before

padding is appended to the output of the step-1. Only if the original length is greater

than 642 bits the lower order 64-bits of the length are used. Thus, the field contains the

length of the original message, modulo .264

Step 3: Initialization vector:

 A 128-bit buffer is used to hold intermediate and final results of the hash

function. The buffer can be represented as four 32-bit strings. The values of the

initialization vector for MD-5 in hexadecimal are as follow:

 A: 67452301

 B: EFCDAB89

 xxi

 C: 98BADCFE

 D: 10325476

Step 4: Processing message in 512-bit blocks:

 The main part of the algorithm is the compression function that consists of

four rounds of processing. Each round takes as input the current 512-bit block being

processed represented as im where ri ,....,2,1= and the 128-bit buffer value ‘ABCD’

which is updated each round. One more input is one fourth of a 64-element table T [1,

2….. 64] constructed from the sine function. The construction of the table T is not

concern for this thesis hence, it is not described here. The diagrammatic

representation this process is shown in Figure 7.

 im 1−iIV

 A B C D

 A B C D

 A B C D

 A B C D

 iIV

 Figure 7: MD-5 Compression function [12].

 F, T [1…16], total 16-steps

 G, T [16…32], total 16-steps

 H, T [32…48], total 16-steps

 I, T [48…64], total 16-steps

 Addition modulo 322 operation
 for corresponding bits

 xxii

 The four rounds have similar structure, but each round uses a different

primitive logical function referred as F, G, H and I for round 1, round 2, round 3 and

round 4 respectively. The logical operators AND, OR, NOT and XOR are represented

by the symbols ,,∨∧ and ⊕ respectively. The following table gives the primitive

logic functions used in MD-5 algorithm:

 Table 1: Primitive logic functions used in MD-5 [12].

The output of the fourth round is added to the input of the first round and the addition

is done independently for each of the four words A, B, C and D in the buffer with

each of the corresponding words of the input.

Step 5: Output:

 After the processing of all the r -512 bit blocks, the output from the thr stage

is the 128-bit message digest.

1.2.2.3. Secure hash algorithm-1 (SHA-1) [12]:

 The secure hash algorithm (SHA) was developed by the National Institute of

Standards and Technology (NIST) and published as Federal Information Processing

Standard (FIPS 180). A revised version of FIPS 180 is also issued as FIPS 180-1 in

1995 and is known as SHA-1.

 This revised algorithm takes as input a message with a maximum length of

less than 642 bits and produces a 160-bit message digest. The input is processed in

512-bit blocks. The overall process of this algorithm can be explained using the

following five steps:

Step 1: Appending padding bits:

 The message is padded so that its length in bits is congruent to 448 modulo

512. That is, the length of the padded message is 64-bits less than an integer multiple

of 512-bits. Padding is always added, even if the message is already of the desired

Round Primitive logic function ~ ~(dcb ,,)

 1 F(dcb ,,))()(dbcb ∧∨∧

 2 G(dcb ,,))()(dcdb ∧∨∧

 3 H(dcb ,,) dcb ⊕⊕

 4 I(dcb ,,))(dbc ∨⊕

 xxiii

length. (The message M at this stage appears as rmmmM ,.....,, 21= . That is,

message is divided into r -blocks each of l -bits.)

Step 2: Append length:

 A block of 64-bits (treated as an unsigned 64-bit integer) is appended to the

message for security reasons. This block contains the length of the original message

before padding.

Step 3: Initialization Vector:

 A 160-bit buffer is used to hold intermediate and final results of the hash

function. The buffer can be represented as five 32-bit registers (A, B, C, D and E).

These registers are initialized with the following 32-bit hexadecimal values:

 A: 67452301

 B: EFCDAB89

 C: 98BADCFE

 D: 10325476

 E: C3D2E1F0

Step 4: Processing message in 512-bit blocks:

 The heart of the algorithm is the module that has four similar rounds of

processing each of 20 steps. The processing can be illustrated as in Figure 8 below.

The inputs of each round are the 512-bit message block currently being processed and

the 160-bit buffer value ABCDE. The contents of the buffer are updated as the

process continues. Each round have a similar structure, but each uses a different

primitive logical function which are refereed as P, Q, R and S. These are defined as in

table 2.

 The output of the fourth round is added to the input to the first round in a way

such that bits of the input are added to the corresponding bits of the output. This

addition is similar to that of in the MD-5 process.

Step Primitive logic function ~ ~(DCBt ,,,)

(0 ≤≤ t 19) P(DCBt ,,,) (CB ∧)∨ (DB ∧)

(20 ≤≤ t 39) Q(DCBt ,,,) DCB ⊕⊕

(40 ≤≤ t 59) R(DCBt ,,,) (CB ∧)∨ (DB ∧)∨ (DC ∧)

(60 ≤≤ t 79) S(DCBt ,,,) DCB ⊕⊕

 Table 2: Primitive logic functions used in SHA-1 [12].

 xxiv

 Step 5: Output:

 After all the blocks of the message are processed in this way, the output of the

last stage is of a 160-bit message digest.

im 1−iIV

 A B C D E

 A B C D E

 A B C D E

 A B C D E

 iIV

 Figure 8: SHA-1 Compression Function [12].

For a more detailed description and the operation of the single step of the compression

function of MD-5 and SHA-1, refer to [12].

 P, K, W [0… 19] total 20-steps

 Q, K, W [20…39], total 20-steps

 R, K, W [40…59], total 20-steps

 S, K, W [60…79], total 20-steps

 Addition modulo 322 operation
 for corresponding bits

 xxv

1.3. Types of attacks on hash functions:

 A hash function is said to be broken if an attacker is able to show that the

design of the hash function violates atleast one of the claimed security property. For

example, if a hash function is claimed to be collision resistant, a successful attack is to

find at least one collision such that two different messages have the same message

digest. The following are the known methods of attack on hash functions [8].

1.3.1. Attacks independent of the algorithm.

1.3.1.1. Random attack.

1.3.1.2. Pseudo attack.

1.3.1.3. Exhaustive key search attack.

1.3.1.4. Birthday attack.

1.3.2. Attacks dependent on the algorithm.

1.3.2.1. Meet in middle attack.

1.3.2.2. Constrained meet in the middle attack.

1.3.2.3. Generalized meet in the middle attack.

1.3.2.4. Correcting block attack.

1.3.2.5. Fixed point attack.

1.3.2.6. Differential attack.

1.3.3. Attacks dependent on an interaction with the signature scheme.

1.3.4. Attacks dependent on the underlying block cipher.

1.3.4.1. Attacks based on complementation property of block ciphers.

3.4.2. Attacks based on week keys of block ciphers.

3.4.3. Attacks based on fixed points of block ciphers.

1.3.5. High level attacks.

 1.3.5.1. Replay attack.

 1.3.5.2. Padding attack.

1.3.1. Attacks independent of the algorithm:

 There are some general methods available for cryptanalysis by assuming that a

hash function uniformly distributes the set of messages to the set of possible digests.

These methods do not assume knowledge of the algorithm and only depend on the

message digest length. Random attack, pseudo attack, exhaustive key search attack

and birthday attack are the examples of the attack independent of the algorithm. Each

of these attacks can be explained as follows.

 xxvi

1.3.1.1. Random attack:

 In a random attack, the attacker chooses a random message or part of a

message and hopes that its message digest is equal to the actual message. If the hash

function has the required random behaviour, then the probability of success is equal to
a2/1 , where, a is the number of bits of the message digest. For a MDC (message

authentication code) the attack depends on two elements:

1. The number of trials.

2. The expected value for a successful attack.

1.3.1.2. Pseudo attack:

 In a keyed hash function, since a secret key contributes to the hashing process,

the methods of attack on the secret key should be included. If the cryptanalysis is able

to find a method to extract the secret key, then the system is compromised during the

key lifetime [8].

 Let H be a keyed hash function, with k as a real key and M as a message. In

a pseudo attack, a cryptanalyst tries to find a pseudo key k such that

),(),(MkHMkH = . This is similar to finding more than one key.

 A pseudo key k for some given),(MDM pairs does not necessarily generate

a correct message digest for another message. Where, MD is the message digest of

the message .M That is, suppose a key ,k is used to generate t pairs of

),,(),.....,,(),,(2211 tt MDMMDMMDM where),(ii MKHMD = and ,,.....,2,1 ti =

now if the cryptanalyst can find a pseudo key k with),(ii MkHMD = it does not

necessarily imply that for any).,(),(,,.....,2,1, MkHMkHtiMM i ′=′=≠′

1.3.1.3. Exhaustive key search attack:

 It is well known that, in a keyed hash function a secret key is used in the

hashing process to make the algorithm secure. If the cryptanalyst has access to at least

one pair of),,(MDM where MD is the message digest of the message .M The key

can be found by examining the key space elements against the),(MDM pairs. Since

the map MDM → is not one-to-one, more than one key could be found [13].

The expected number of trials is given by:

 n

m

i
inn

i
−

=
− −

<

 − ∑ 21

1
22

11
1

)1(, [13]

 xxvii

where, n is the message digest length and m is the number of),(MDM pairs. If k is

the key length in bits then the total number of trials to identify the key is given by:

 n

k

m −−
−

+
21

12 , [13]

The number of resulting keys including the real key is expected to be:

 mn

k

2
121 −

+ , [13]

1.3.1.4. Birthday attack:

 The idea behind this attack originates from Birthday paradox. The birthday

paradox states that given a group of 23 randomly chosen people the probability, of at

least two people having the same birthday is more than ½ [14]. The mathematics

behind this is being used to generate a well-known cryptographic attack called

birthday attack.

 To describe this, let us assume that the message digest of length n bits which

provides n2 possibilities for the message digest. If two pools from the digest space,

one containing 1x samples and the other containing 2x samples are generated by a

cryptanalyst, the probability of finding a match between the two pools is

approximated by,

n
xx

e
p

2
21

11−≈ [15].

where the approximation is more accurate for larger values of 2x compared with that

of 1x .

1.3.2. Attacks dependent on the algorithm:

 These types of attacks depend on some high level properties of the elementary

function .f However, these attacks would not be successful on keyed hash functions

because a secret key protects the components of the hash function.

1.3.2.1. Meet in the middle attack:

 This attack is a variation of birthday attack and is applicable to the hash

functions that use a round function. Instead of message digest, intermediate chaining

variables are compared. This attack enables a cryptanalyst to construct a message with

a pre-specified message digest, which is not possible in case of a simple birthday

attack.

 xxviii

 The attacker generates 1r samples for the first part and 2r samples for the last

part of a bogus message. The attacker then goes forwards from initial value and goes

backwards from the hash value and the probability that the two intermediate values

are same is given by,

n
rr

e
P

2
21

11−≈ , [13]

where, n is the length of initial vector, intermediate values and message digest. The

only restriction that applies to the meeting point is that it cannot be the first or last

value of the chaining variable.

1.3.2.2. Constrained meet in the middle attack:

 Constrained meet in the middle attack is based on the same principles as the

meet in the middle attack. However, the only difference is that this attack takes into

account certain constraints that have to be imposed on the solution. Examples of

restrictions are that the sum modulo 2 of all blocks should be constant, or that a block

of the CBC encryption of the solution with a given initial value and key should take a

pre-specified value.

1.3.2.3. Generalized meet in the middle attack:

 Generalized meet in the middle attack was extended to break the p -fold

iterated schemes. The message is repeated p times or p hash values are computed

corresponding to p initial values in this attack. The size of the message in this

construction is 1102 −⋅ p blocks. The number of operations required to break this

scheme are 2210
n

p ⋅ and not ,2 2
pn

 where n is the length of the message digest [16,

17].

1.3.2.4. Correcting block attack:

 In this attack, the cryptanalyst uses an existing message and message digest

pair and tries to change one or more message blocks such that the resulting digest

remains unchanged. The hash functions based on modular arithmetic are sensitive

against this attack. A correction block attack can also be used to produce a collision.

Starting with two arbitrary messages M and M ′ and appending one or more correcting

blocks denoted by X and ,X ′ such that the extended messages XM and XM ′′ have

the same message digest. Degradation of the performance is major disadvantage of

this scheme.

 xxix

1.3.2.5. Fixed point attack:

 A fixed point for a compression functions iii IVmIVf =−),(1 , is a pair

()ii mIV ,1− such that ()iii mIVfIV ,11 −− = . This can be more clearly illustrated using

Figure 9.

 im

 Fixed point ()ii mIV ,1−

 1−iIV f 1−= ii IVIV

 Figure 9: Fixed point for a compression function.

This means that the existence of the message block im does not affect the result.

Hence, whenever the intermediate value is equal to 1−iIV , iM can be inserted to the

message [7].

1.3.2.6. Differential attack:

 This attack is applicable to block ciphers and hash functions and is based on

the study of the relation between input and output differences. The attack is statistical

as one search for input differences that are likely to cause a certain output difference.

If the difference is equal to zero then a collision can be achieved [20].

1.3.3. Attacks dependent on an interaction with the signature scheme:

 Examples of this kind of attack are described in [28, 105, 106]. Even if the

hash function is collision resistant hash function in some cases, it is possible to break

the signature scheme. In all the known examples of such an interaction, multiplicative

structure in both the hash function and the signature schemes are noticed. The security

of a digital signature, which is not existentially forgeable under a chosen message

attack, will not decrease if it is combined with a collision resistant hash function

[105].

1.3.4. Attacks dependent on the underlying block cipher:

 If a block cipher is used specially for hashing rather than just to protect

message privacy, some particular weaknesses can be expected. Such weaknesses can

be used to insert special messages or to perform certain manipulations without

changing the final output. This is equal to generating two different messages with the

same output, which can be the starting place for generating a collision in any hash

function [22, 23, 24]. The attacks can be based on complementary properties, weak

keys and fixed points of the block ciphers.

 xxx

1.3.5. High level attacks:

 Repaly attack and padding attack are the two well-known high-level attacks.

These attacks are applicable only when the hash functions are used in non-hashing

purposes or in a protocol.

1.3.5.1. Repaly attack:

 Repaly attack is also known as restore attack. In replay attacks, the

components of the hash function are reused. The cryptanalyst may store the

information that is transmitted and redo it at a different time. The cryptanalyst may

also delete the contents of the transmitted message so that the intended receiver will

be receiving a message of different meaning.

 To avoid this type of attack, a timestamp can be attacked to the transmitted

message. A timestamp is the date and time of the moment at which the message is

sent. A unique identifier of the message can be provided if the resolution of the time

is sufficiently high [8, 13].

1.3.5.2. Padding attack:

 Let),(MDM be a pair where MD is a message digest of a message .M

Using padding attack a cryptanalyst can develop a different pair),(DMM ′′ where the

difference between the messages M and M ′ is just the padding. That is, just by

changing the length of padding of the same message the same message digest can be

obtained claming that the messages are different [28].

 It is sufficient to prepend the length of the original message to the padded

message, to avoid this attack [8].

1.4. Structural weaknesses of Merkle-Damgård hash construction:

 The design of a hash function, which is a long studied problem, has recently

become more problematic. It is obvious that, any structural weakness in the Merkle-

Damgård hash construction, would affect all the hash functions that uses its design

criteria. There are many such weaknesses found by cryptographic researchers against

this design. The following are some of the structural weaknesses of Merkle-Damgård

constructions:

 1.4.1. Message expansion attack.

 1.4.2. Joux’s multi-collision attack

 1.4.3. Fixed point attack by Dean and its extension by Kelsey and

 Schneier and

 xxxi

 1.4.4. The herding attack by Kelsey and Kohno.

1.4.1. Message expansion attack:

 The message expansion attack is a well known generic weakness of the

iterative hash construction. This is also known as length extension attack. Let a

message M is split into r -blocks such that, .,.....,, 21 rmmmM = An attacker can

choose a message M ′ such that, .,,.....,, 121 +=′ rr mmmmM Since the first r -blocks

of both the messages are equal, the chaining values produced by these messages by

using the iterative construction will also be the same.

 A special case of this attack is partial message collision. To explain this,

consider a system having two inputs: a key and a message. If the system depends only

on the message for activating, then the attacker can activate the system using a simple

birthday attack with much lesser probability. This is because the system does not

depend on the total input bits.

 In [29] Ferguson and Schneier proposed a solution to the message expansion

attack. The problem can be solved by using the hash function twice. That is, instead of

the message M tending to the message digest ()MH for the hash function H it is

made to become ()()MMHH . This ensures that, the iterative hash function

computation depends on all the available bits of the message and no partial message

or length extension attacks can work.

1.4.2 Joux’s multi collision attack [30]:

 In [51] Antoine Joux found that finding multi-collisions on an iterative hash

function is not much harder than finding ordinary collision. If the results of two

independent n -bit hash functions are concatenated then, it is generally believed that,

the resultant hash function is as good as n2 -bit. Hence, finding a second preimage on

this concatenated hash function should take effort n22 operations. Interestingly, Joux

observed that if one of the hash functions is an iterative hash function, then

concatenation leads to hardly any additional security. Apart from that, he observed

that concatenation of several iterative hash functions is only as secure as the stronger

of the hash functions.

 His multi-collision attack can be explained as follows. An n -bit iterative hash

function spits the input in a number of fixed size blocks, say rmmm ,.....,, 21 . The

message digest is calculated in r -rounds as a function of the r -blocks and a fixed n -

 xxxii

bit initialization vector .0IV For ri ,.....,2,1= a compression function is applied to

1−iIV and im which yields n -bit value ,iIV the message digest.

 Now, construct a collision for an n -bit iterative hash functions ,H at values

11a and 12a with 1211 aa ≠ such that () ()1211 aHaH = . This takes at most about 2/2 n

operations. Let this value be equal to .1IV Similarly, it takes at most 2/2 n operations

to construct a collision for H where its initialization vector is replaced by 21a and

22a such that this takes about 2/2 n operations () ()2221 11
aHaH IVIV = , where

1IVH

indicates usage of 1IV as initialization vector as opposed to the default initialization

vector.

 Then it follows from the way iterative hash functions work that H applied to

the concatenation of the ia1 and ja2 , with }2,1{, ∈ji , always results in the same

value, let it be 2IV , independent of the choices of i and .j So, the two pairs ()1211 , aa

and ()2221 , aa result in a four-way collision from four distinct values

211222112111 ,, aaaaaa and 2212 aa all of which having the same hash value.

These four values can then be concatenated with a newly constructed collision for

resulting in an eight way collision. Further, these eight values can be concatenated for

generating sixteen way collision, etc.

1.4.3. Fixed point attack by Dean and its extension by Kelsey and Scheiner [52,

53]:

 Dean in [52] noticed that finding second pre-image attacks for the iterative

hash function is not too hard if the compression function of the hash function is such

that finding fixed points is easy. Dean’s attack exactly suits in the case of designs

based on Davies-Meyer block cipher construction because it is easy to find fixed

points in this type of block cipher construction. His attack consists of the following

two steps:

Step-1: Finding some particular number of fixed points denoted by ‘A’ and

 selecting one message block and computing chaining value denoted by ‘B’.

Step-2: Once collision between a chaining value and a fixed point that is,

 between chaining values in ‘A’ and in ‘B’ is found the length extension

 attack is applied for trying to add blocks that cause the same chaining values

 as the original message does.

 xxxiii

 Once such a message is found it is easy to expand the number of blocks in the

message to the appropriate length by repeating the fixed points any times as needed.

Later, Kelsey and Schneier in [53] extended this attack to the hash functions where

finding fixed points is not easy. They repeated Dean’s attack in the following manner.

In each call to the compression functions for ri ≤≤1 a collision between a one block

message and a 12 1 +−i block message is found. This procedure finds a chaining value

that can be reached by the messages of lengths between r and 12 1 −++ rr blocks.

The second step of Dean’s attack is repeated from this chaining value and the length

of the found message is controlled by the expandable prefix.

1.4.4 The herding attack by Kelsey and Kohno:

 In [54] Kelsey and Kohno noticed that it is possible to perform a time-memory

trade-off for several instances of pre-image attacks. An attacker using this attack can

commit to a digital value available publically that corresponds to some meaningful

message. For example, prediction of the availability of collision in new designs for

hash functions.

 After the announcement of the result, the attacker publishes a message that has

the pre published digital value and contains the correct information along with some

suffix. The main idea behind this attack is to start with possible number of chaining

values and is also based on selection of the digital value which, helps the attacker to

perform a pre-image attack on the actual result obtained. Unlike Dean’s attack this

attack can be applied to a shorter message as well.

1.5. Recent multi block collision attacks on hash functions:

 In 2005 there were attacks proposed even on the popular hash function SHA-

1. Before this, there were no attacks known against SHA-1 though there were attacks

against weakened variants of SHA-1. The attacks in [55-60] are some of the recent

attacks against widely used hash functions. Most of the attacks are the collision

attacks, except some like [55] which is a second preimage attack on MD4.

 Xiaoyun Wang is the main researcher behind [55-60] attacks though there are

many co-researchers involved. All these attacks follow a similar methodology. The

following are the three major steps involved in her attacks:

Step-1: Finding a collision differential in which two different messages M and

 M ′ produce a collision.

 xxxiv

Step-2: Derive a set of sufficient conditions which ensure the collision differential

 to hold.

Step-3: For any random message ,M make some modifications to it in such a

 way that almost all the sufficient conditions specified in step-2 hold.

 The first step, finding a collision differential is a simple step. It is selected in

such a way that, it is efficient to find collision on corresponding hash function. The

differential in [60] is sufficient to find collision on MD4 but, it is not efficient to find

weak messages and second preimages because it has too many conditions. Hence,

another differential is selected in [55] to overcome this difficulty. Thus, it means

selecting a collision differential is completely of independent choice for the attacker.

 Second, a set of sufficient conditions are derived on chaining variables from

the boolean functions properties and bit carry. These sufficient conditions are

generated in such a way that, if all of them are satisfied by a particular message ,M

then another message ,M ′ which is not equal to the message M gives the same

message digest when hashed with a hash function .H Here H can be MD4, MD5,

SHA-0, SHA-1, SHA-2, HAVAL or RIPEMD. Constructing the collision and

deriving the sufficient conditions go on simultaneously. On one hand, sufficient

conditions are derived according to the differential path. On the other hand, the path

for constructing collision is adjusted in such a way to avoid the contradictory

conditions.

 Then the third step is the message modification. Message modification is a

technique to weaken any stronger message in such a way that, it is easy to find a

collision. There are two major types of message modification techniques; they are:

1) Single-step message modification and 2) Multi-step message modification.

 The modification technique that is used to convert one bit of a message is

called the single step message modification technique or also known as the basic

modification technique. A part of the conditions in the second round of the hash

function can be corrected using multi-message modification which is also called as

advanced modification technique. For MD-4, the probability of attack is notably low,

just after single message modification but, for the hash functions MD-5, SHA-0 and

SHA-1 multi message modification is essential. Table 3 from [60] shows a collision

for MD-4 hash function at messages M1 and M2 where P is the hash value without

padding and P-1 is the hash value with padding.

 xxxv

M1 4d7a9c83 56cb927a b9d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

C69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31 97e31fe5 2794bf08 b9e8c2e9

M2 4d7a9c83 d6cb927a 29d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

C69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31 97e31fe5 2794bf08 b9e8c2e9

P 5f5c1a0d 71b36046 1b5435da 9b0d807a

P-1 4d7e6a1d efa93d2d de054b45d 864c429b

 Table 3: Collision for MD-4 hash function [60].

One more pair of messages which produce collision on MD-5 with Wang’s method is

shown in Table 4 in which, MD is the message digest generated by both the messages.

 Table 4: Collision for MD-5 hash function [10].

 Some of the challenges faced by various researchers in this field are to solve

the attacks such as: 1) Message expansion attack, 2) Joux’s multi collision attack,

3)Fixed point attack by Dean, 4) The herding attack by Kelsey et al and 5) Multi

block collisions by Wang. These problems are presented in Section 1.4 and Section

1.5. As a contribution to this thesis there are three methods dealt: 1) Generating a

collision resistant hash function using a new message preprocessing method called

reverse interleaving. 2) Enhancement of hash functions such as MD-5 and SHA-1

using a different message expansion coding, and 3) Proposal of a new hash function

called 3-branch. The first two methods can be considered as modifications which are

presented in Section 3.1 and Section 3. The third method can be seen as a replacement

to the already existing hash functions which are effected by recent differential

collision attacks and presented in Section 3.3. The security analysis of each proposal

is also presented against the known generic attacks, along with some of the

applications of the dedicated hash function.

M1 d131dd02 c5e6eec4 693d9a06 98aff95c 2fcab587 12467eab 4004583e b8fb7f89

55ad3406 09f4b302 83e48883 2571415a 085125e8 f7cdc99f d91dbdf2 80373c5b

d8823e31 56348f5b ae6dacd4 36c919c6 dd53e2b4 87da03fd 02396306 d248cda0

e99f3342 0f577ee8 ce54b670 80a80d1e c69821bc b6a88393 96f9652b 6ff72a70

M2 d131dd02 c5e6eec4 693d9a06 98aff95c 2fcab507 12467eab 4004583e b8fb7f89

55ad3406 09f4b302 83e48883 25f1415a 085125e8 f7cdc99f d91dbd72 80373c5b

d8823e31 56348f5b ae6dacd4 36c919c6 dd53e234 87da03fd 02396306 d248cda0

e99f3342 0f577ee8 ce54b670 80a80d1e c69821bc b6a88393 96f9652b 6ff72a70

MD 79054025 255fb1a2 6e4bc422 aef54eb4

 xxxvi

Chapter 2

Classification of hash functions and

their security analysis against the

known generic attacks:

 Many alternatives and modifications to Merkle-Damgård constructions have

been proposed in recent years since Joux’s attack came into appearance. The main

idea, behind all these designs is to provide a solution to all or at least some of the

known generic attacks for the existing iterative structure. The following are some of

the modified Merkle-Damgård constructions which are at least as secure as the

original construction of Merkle-Damgård structure for any weakness discussed in the

above sections:

a) Wide pipe and Double pipe hash functions by Stefan Lucks [82].

b) Prefix free Merkle-Damgård construction by Coron et al. [83]

c) Zipper Hash by Moses Liskov. [84]

d) 3c and 3c++ designs by [11]

e) HAIFA—A framework of iterative hash functions by Eli Biham et al. [85].

f) Dithering hash function [4].

NOTE: All of these hash constructions are collision resistant if the underlying

compression function is collision resistant. The proof of this is quite simple, the same

arguments that used to prove that the Merkle-Damgård construction retains the

collision resistance of the underlying compression function from [6, 7] can be used to

prove that these hash functions do so as well.

 The point to be noted here is that there are many other modified versions

proposed recently, but only most notable ones will be considered and explained. The

enhancements proposed as a part of this thesis mostly depend on these modified

constructions. In this section, the hash functions are classified based on streamability

and non-streamability and based on the number of inputs to the compression function

 xxxvii

in each round. We believe that, this type of classification has not been done by any

other researcher in this field.

2.1. Streamable and non streamable hash functions:

 In [84] Liskov proposed a non-streamable hash function called the Zipper

hash. Currently, this is the only non-streamable design available for hash functions. A

typical example of the streamable hash function is RIPEMD-160. The design of these

two hash functions is described here to differentiate between streamable and non-

streamable hash functions.

2.1.1. RIPEMD-160 hash functions [86]:

 RIPEMD-160 is a 160-bit dedicated hash function designed by Hans

Dobbertin, Antoon Bosselaers and Bart Preneel. The input message is processed in

512-bit blocks similar to that of MD-5 hash function. The following steps explain the

processing of RIPEMD-160.

Step 1: Append padding bits:

 The message is padded so that its length is congruent to 448 modulo 512.

Padding is always added even if the message is already of the desired length. Thus,

the number of padding bits is in the range of 1 to 512. The padding consists of a

single 1-bit followed by the necessary number of 0-bits. (The message M at this

stage appears as rmmmM ,.....,, 21= . That is, message is divided into r -blocks each

of 512=l -bits.)

Step 2: Append length:

 A block of 64-bits is appended to the message. This block is treated as an

unsigned 64-bit integer and contains the length modulo 642 of the original message

before padding. This is similar to that of MD-5 hash function.

Step 3: Initialize MD buffer:

 A 160-bit buffer is used for holding intermediate and final results of the hash

function. The buffer can be represented as five 32-bit registers A, B, C, D and E. The

buffer is represented as iIV where ri ≤≤1 . These registers are initialized with the

following hexadecimal values:

 A: 67452301

 B: EFCDAB89

 C: 98BADCFE

 xxxviii

 D: 10325476

 E: C3D2E1F0

 iIV

 im im

 1+iIV

 Figure 10: Processing of single 512-bit block in RIPEMD-160 [86].

Step 4: Processing message in 512-bit blocks:

 The upgrading of the value of the buffer from the starting initial value to the

new value is done according the step operation shown in Figure 11.

 16-steps

 16-steps

 16-steps

 16-steps

 16-steps

 16-steps

 16-steps

 16-steps

 16-steps

 16-steps

 xxxix

 im

 jK

 FIGURE 11: Step function of RIPEMD-160 [86].

where,

im is the message block to be processed,

jK is the constant used, 10>>> is circular lift shift of 10 bit,

s(j)>>> is circular left shift of the 32-bit register with s(j) being a function that

determines the amount of rotation for a particular step and

()DCBjf ,,, is the primitive logic function used in step j of the left column and step

j−79 for the right column where 790 ≤≤ j .

 The processing of the message blocks in this hash function follows ten rounds

of processing of 16-steps each. These ten rounds have similar structure and are

arranged as two parallel columns of five rounds each. The functions 4321 ,,, ffff and

5f are called the primitive logic functions which used in five rounds of left column

and the same functions are used in reverse order in right column. The Figure 10

describes the design of RIPEMD-160 hash function. Each round in left column takes

as input the current 512-bit block and the 160-bit buffer value .ABCDE

 The same inputs are given to the right column but to differentiate the initial

registers they are represented as EDCBA ′′′′′ in this column. In each round an additive

constant is also used. For more information on the functions and constants used in

RIPEMD-160, see [12].

 iA iB iC iD iE

 iA iB iC iD iE

 s (j)>>> 10>>>

 jf

 xl

Step 5: Output:

 After all the 512-bit message blocks are processed the output from the final
thr stage is the 160-bit message digest. For more information of the primitive logic

functions and the constants used see [12].

2.1.2. Zipper hash construction:

 In [84] it is shown that a weak compression function can be used to design a

strong ideal primitive. In order to prove this, Liskov [84] designed a construction

called “Zipper hash” that makes an ideal hash function from weak ideal compression

function. This design requires r2 compression function evaluations for an r -block

input. Other iterative hash function construction described above are streamable that

means a message can be hashed piece by piece with a small, finite amount of

memory. But, the Zipper hash construction is a non-streamable hash function.

 rm 2m 1m

 f f f

rIV 1−rIV 2IV 1IV 0IV =initial value

 1m 2m rm

 f ′ f ′ f ′ g

′= 0IVIVr ′
1IV ′

2IV ′
−1rIV ′

rIV

 ′

rIVg

 Figure- 12: Zipper hash construction [84].

2.1.2.1. Security analysis of the Zipper hash construction against some of the

known generic attacks:

 The security of the Zipper hash construction is based on the belief that the

non-streamable hash functions are not vulnerable to the known generic attacks. This is

because this construction is very new, it has not been analysed against the standard

attacks. But, from the structure it is clear that the Zipper hash construction can easily

avoid the two types of the message expansion attacks because of the additional hash

function used in the construction.

 xli

 Since there are two different compression functions used for the same message

block, the probability of finding the fixed points seems to be harder. Hence, Dean’s

attack and its extension may be harder to apply on this design. If there exists a

collision attack in this design it will be easy to find multi-collision attack just as in the

case of Merkle-Damgård design because, the structure of both the designs are almost

similar expect from the non-streamability in the zipper hash. Since, there is an

additional compression function used in zipper hash, the attacker should consider both

of them separately for analysing it easily.

 Here comes the opportunity of defining the streamable and nonstreamable

hash functions. The definitions are presented at this place because after reading

Chapter 1 and the hash functions RIPEMD-160 and Zipper hash one can understand

what are the inputs used by a dedicated hash function and why they are required. The

similar sorts of inputs are used in the definitions of streamable and nonstreamable

hash functions here.

Definition-3: (Streamable hash function)

 A hash function H is said to be streamable if its compression function if is

of the form ()iiii mIVfIV ,1−= where, 0IV is the initial value used, im is the message

block. Also ri ,......,1= and r is the number of blocks in which the message is

divided. The final value rIV is called the hash value of the input message.

Definition-4: (Nonstreamable hash function)

 A nonstreamable hash function H makes use of two streamable hash

functions. The compression function 'F of one streamable hash function is of the

form ()iii mIVFIV ,'
1

''
−= and the compression function F of the other streamable hash

function is of the form ()iii mIVFIV ,1−= where, '
0IVIVr = , im is the message block

such that ri ,......,1= and r is the number of blocks in which the message is divided.

Also, 0IV is a fixed initial value.

 Thus, from the definitions of streamable and nonstreamable hash functions

one can say that, nonstreamable hash function use two compression functions in

generating the final hash. The hash value of the original message with some initial

value is used by the first compression function in generating the initial value for the

second compression function. Hence, it can be said that nonstreamable hash function

is a combination of two streamable hash functions.

 xlii

 Apart from the streamability and non-streamability hash functions can be also

be classified based on the number of inputs to the hash function as in the following

ways:

 a). Hash functions based on two inputs:

 b). Hash functions based on three inputs.

 c). Hash functions based on four inputs.

2.2. Hash functions based on two inputs:

 The hash functions MD4, MD5, SHA-1 and RIPEMD-160 are some examples

of the hash functions based on two inputs. The enhanced Merkle-Damgård

constructions, for example the wide pipe [82] and the 3C and 3C++ [11] also come

under this type of classification. The Zipper hash [84] described above can also be of

this kind but with a non-streamable structure.

2.2.1. Wide pipe hash function or wide pipe hash construction:

 Wide pipe and Double pipe hash functions have been proposed by Stefan

Lucks [82] as failure tolerant designs showing that they are more resistant against

generic attacks. The core idea behind Wide pipe construction is to increase the size of

the internal state of an n -bit hash function to nw > bit. While wide pipe design

maintains more internal state than the message digest size n using larger compression

function, the double pipe design maintains twice the hash size as the internal state size

by using one single n -bit compression function twice in parallel to process each

message block.

 The idea of increasing the internal state to improve protection against existing

internal collisions has been independently proposed by Finney in a mailing list [87].

The processing of the wide pipe actually uses two compression functions f and f ′ .

Let { }wIV 1,00 = be a randomly chosen initial value, then the wide pipe hash function

is processed as in the following two steps:

 Step-1: { } { } { }wpwf 1,01,01,0: →×

 Step-2: { } { }nwf 1,01,0: →′

This means that first a compression function f is used to process a large internal

state w along with the p -bit blocks of original message. Then, the compression

function f ′ is used to process the w -bit output of the first one to produce a required

 xliii

n -bit message digest. Diagrammatically this can be shown as in Figure 13 for a

message M divided into r -blocks that is, rmmmM ,.....,, 21= .

 1m 2m rm

 f f f f ′

0IV = initial value 1IV 2IV 1−rIV rIV ()rIVf ′

 Figure 13: Wide-pipe hash constructions [82].

The chaining values of each round for the first compression function f will be of w -

bit and the final output ()rIVf ′ will be of n -bit. The diagrammatical representation

of both Wide pipe design and Merkle-Damgård construction are similar the only

difference is that the internal state of the chaining values in the Wide pipe design is

larger compared with that of the Merkle-Damgård construction.

2.2.1.1. Security analysis of Wide-pipe and Double-pipe designs against known

generic attacks:

 Double pipe in Section 2.3.2 comes under the classification of hash functions

based on three inputs while wide pipe hash function comes under the hash functions

based on two inputs. But, the security analysis of both these hash functions is

presented here for convenience. Both wide pipe and double pipe hash constructions

can avoid the message expansion and partial message expansion attacks. This is

because of the additional hash function used at the end of the processing according to

[29]. The security of the wide-pipe hash construction can be considered improved

when compared with Merkle-Damgård hash construction because of the internal

collision resistance being much stronger than final collision resistance. But, in the

case of double pipe hash construction the security is based on using the same

compression function twice for each round with different initial values.

 Finding fixed points, for wide pipe construction is not as easy as in the

Merkle-Damgård construction because of the same reason of extended internal state.

This extension will result in more number of operations for finding fixed points in the

compression function of wide pipe. In the case of Double pipe compression function

finding fixed points will depend on two different initial values for the same message.

This may take more time in computing fixed points. Hence security of these two

 xliv

constructions against Dean’s attack and its extension by Kelsey and Schneier is more

than general Merkle-Damgård construction.

2.2.2. The 3C and 3C+ hash constructions:

3C hash construction:

 The 3C construction has two chains in its structure; one is the accumulation

chain and the other one is the cascade chain. There is an accumulator XOR function

iterated in the accumulation chain and a compression function f which is iterated in

the cascade chain similarly as in the Merkle-Damgård construction. From Figure 14

we can see that 3C is a simple modification to Merkle-Damgård construction.

 Let the message to be hashed be M divided into r -blocks each of length l

and 0IV be the initial value. Also, let iIV and iVI ′ be the chaining values in the

cascade chain and accumulation chain respectively for .1 ri ≤≤

Cascade chain

 1m 2m rm

 f 1IV f 2IV … 1−rIV f rIV g

0IV = initial value VI ′′

 Z

 padding

 ′= 11 IVIV ′
2IV … ′

−1rIV Z

 accumulation chain

 Figure 14: 3C hash construction [11].

 Then, as in the normal Merkle-Damgård construction, for i = 1 to ,r

),(1 iii MIVfIV −= where 0IV = initial value and .11
′= IVIV In the accumulation

chain, for 2=i to ,r iii IVIVIV ⊕′=′ −1 . Let the result ′
rIV in the accumulation chain

be denoted with .Z An extra compression function denoted by ,g is added at the end.

The ‘message digest’ of the 3C construction is),(rIVZg where Z is the result of Z

after padding. The final message digest is represented by .VI ′′

 xlv

To process one block data, the compression function is executed three times:

(1) First process the data block.

(2) Next process the padded block which is called Merkle-Damgård

strengthening.

(3) Finally the block Z formed in the accumulation chain as shown in Figure 14.

3C+ hash construction:

 The construction of the 3C+ hash function is shown diagrammatically in the

Figure 15. In 3C+ hash construction an additional chain called a final chain is added

to the cascade and accumulation chains of the 3C hash construction. The final chain

accumulates data from the cascade chain after the second message block is hashed.

The final compression function represented by g takes the concatenation of the

accumulated data from the accumulation and final chains after appropriately padded.

cascade chain

 1m 2m rm

 f 1IV f 2IV … 1−rIV f rIV g

0IV = initial value VI ′′

 Z

 C & P

 ′= 11 IVIV ′
2IV … ′

−1rIV Z

 accumulation chain

 final chain

 1
3IV 1

1−rIV 1
rIV

 Figure 15: 3C+ hash construction [11].

 The notation C & P in the figure is used to denote the concatenation and

padding of the messages from the accumulation chain and the final chain. The

chaining values of the final chain are represented by 1
jIV where rj ,.....,3= because

the first chaining value of this chain starts after the second message block is hashed.

 xlvi

2.2.2.1. Security analysis of the 3C and 3C+ hash constructions against the

known generic attacks:

 Joux’s multi-collision attack costs N times as much as building ordinary 2-

collisons for generating N2 -collisions in the Merkle-Damgård construction. This

attack can be used for finding multi pre-images very effectively. This attack works on

the 3C hash construction as effectively as it works on Merkle-Damgård construction.

To generate a multi-collision attack on 3C-hash function, the attacker finds collisions

on every compression function f in the cascade chain that would result in a collision

at the subsequent points of the XOR-operation in the accumulation chain.

 The attacking technique used in finding N -way pre-images on the Merkle-

Damgård hash for a given hash value works on the 3C construction as well. For doing

so, the attacker first finds N -collisions on d -block messages with the chaining value

of each block equal to the chaining value of the thd block. Then the ()thd 1+ block is

found such that the execution of the last two compression functions would result in

the given message digest. The message expansion attack explained in Section 1.4.1

can be prevented by the 3C-design because of the use of the extra compression

function at the end [29].

 In the 3C-design, since the chaining state is twice as large as the hash value, a

fixed point is defined for both the chains. This can be obtained for any message block

im , only when () ,0,0 =imf and this occurs with a probability of n−2 where n is the

length of the hash function. This means that finding fixed points for the compression

function of the 3C-design will not assist in finding second pre-images for less than n2

operations. This clearly shows that, Dean’s attack and its extension by Kelsey’s and

Schneier’s (see Section 1.4.3) do not work on the 3C-design.

2.3. Hash functions based on three inputs

 Dithering hash function and the double pipe hash function are the two hash

functions that come under this type of classification. They can be explained as

follows:

2.3.1. Dithering hash function:

 The main idea behind dithering hash function is to use an additional input to

the Merkle-Damgård hash construction in such a way that this input will change the

chaining values of the each stage. This in turn, makes the problem of finding the fixed

 xlvii

points much harder and provides more protection against Dean’s attack and its

extension under any circumstances. This construction is almost similar to that of the

HAIFA hash construction which will be described in Section 2.4.2. The only

difference is that there is no salt value used as input and instead of the number of bits

hashed so far, the dithering design uses a square-free sequence or an abelian square

free sequence.

 The square-free sequences are aperiodic sequences over a finite alphabet with

the property that no sub word is repeated. For a message ,M divided into r -blocks

each of length ,l that is, rmmmM ,.....,, 21= the thi chaining value for the dithering

hash design can be formally represented as ()11 ,, −−= iiii dmIVfIV where

,,.....,2,1 ri = and 1−id represents the initial dither value. There is an additional

finalisation function ,g used at the end of the process. The diagrammatical view can

be shown using the Figure 16.

 0d 1m 1d 2m rd rm

 f f f g

0IV = initial value 1IV 2IV 1−rIV rIV ()rIVf ′

 Figure 16: Dithering hash function.

 The dither value can be selected in many ways: one of the ways by following

the suggestion of Kelsey and Schneier the value can be selected as the index ,i that is,

.idi = This enhances the performance of the hash function however, the compression

function should accept an arbitrarily large input ,i because the size of the message

input M is not going to be padded. The efficiency of this hash function depends on

the size of the dither value. The smaller the dither value the more efficient is the

design but, to resist against the generic attacks it should be sufficiently large.

 A pseudorandom sequence rppp ,.....,, 10 can also be used as a dither value.

This solution can provide only a tiny improvement to the protection of the hash

functions from the known attacks. Another suggestion for selecting the dither value

can be alternative 0’s and 1’s. That is, id value is made equal to ‘0’ when i is even

 xlviii

and id value is made equal to ‘1’ when i is odd. But, this solution cannot prevent the

repetition of pairs of blocks, as the dither input has period two.

 The obvious solution suggested by Rivest in [4] is to use a square free

sequence or an abelian square free sequences as dither value. As explained above, the

square free sequences are aperiodic sequences over a finite alphabet with the property

that no sub-word is repeated. An example of the square free word is ‘madam’, in this

word no sequence is repeated but in the word ‘freshness’ the sequence ‘es’ is repeated

twice so ‘freshness’ is not square free sequence.

Definition-5: (Square-free sequence) [4]

 A word X is said to be square free if it is contains no squares. That is, X

should not contains any sub-word of the form ‘ ee ’ where ‘ e ’ is finite and non empty.

Thus, a sequence generated using such a square free words is known as square-free

sequence.

 There is one more version of the square free sequence called the abelian

square free sequence. This odds further conditions to simply square free. For example,

a sequence ‘12343241’ is square-free but not abelian square-free because sub word

‘234’ is followed by its permutation ‘324’. This generates the opportunity to define

the later also.

Definition-6: (Abelian square free sequence) [4]

 A word X is said to be an abelian square-free word if it can not be written in

the form zyxyX ′= for the words zyyx ,,, ′ where y is not an empty word and y′ is

a permutation of y and are not next to each other. Thus, a sequence generated from

such words is known as abelian square free sequence.

 The generation of the abelian square-free sequence, is not hard [4] and it is

more repetition free then the square-free sequence. Hence, it is obvious to use the

former sequence instead of the later sequence as the dither value. The easier the

generation of these sequences the easier the use of the dithering hash function.

2.3.1.1. Security analysis of the dithering hash function against known generic

attacks:

 The dither value is selected in such a way that it is repetition free which in turn

makes the chaining values of the hash function to be repetition free. Thus, finding

fixed points become harder for an attacker. In other words, the attacker is forced with

the difficulty of funding the fixed point of the form (),,, 111 −−− == iiiii dmIVfIVIV

 xlix

similar to the idea of Biham et al in the HAIFA hash construction [85]. Hence, Dean’s

attack and its extension can be restricted by the dithering hash construction.

 By inspecting the structure of the dithering hash function it is clear that there

is no additional effort required by the attacker to find multi-collisions just as in the

case of the normal Merkle-Damgård hash construction. However, to avoid multi-

collisions the internal state can be increased just as in the case of the wide-pipe

hashing by using larger dither values and corresponding sized initial values. The

general message expansion attack can be avoided by the dithering design because of

the additional finalization function g used at the end.

2.3.2. Double pipe hash function or double pipe hash construction:

 The double pipe is designed to solve the question: Is it possible to design an

iterative hash function and prove its security without making the assumption that,

some internal building block is much stronger than the hash function itself? This

problem appears even in wide pipe design. In double pipe design a single narrow-pipe

compression function { } { } { } ,1,01,01,0: npnnf →× + where np > with three random

initial values ′
0IV , ″

0IV and 0IV all belonging to { }w1,0 (where { }w1,0 is similar as in

the case of wide pipe hash construction) is used to avoid this problem. Figure 13a

gives the diagrammatical view of this design.

′
0IV = initial value ′

1IV ′
2IV … ′

−1rIV ′
rIV

 f f f

 1m 2m rm

 f

 f f f 0IV final hash

″
0IV = initial value ″

1IV ″
2IV … ″

−1rIV ″
rIV

 Figure 13a: Double-pipe hash construction [82].

 Cascading hash functions seems to be a general solution to improve the

security of hash functions. But Joux’s attack shows that cascading iterated hash

functions are not really particularly secure. In contrast, Lucks proved that cascading

 l

can be used for improving security and generated double pipe design which appears

like cascading. The point to be understood here is that double pipe design is

cascading of the compression functions and not the case of hash function cascading.

Hence, cascading can be a solution for improving the security of hash function if the

compression functions are cascaded and not the hash functions directly. The security

analysis of this hash function is mentioned in Section-2.2.1.1.

2.4. Hash functions based on four inputs

2.4.1. Prefix-free Merkle-Damgård hash construction:

 In [83] Coron et al proposed a modified design for Merkle-Damgård

construction and showed that it is indistinguishable from a random oracle. A random

oracle is a theoretical black box that responds to every query with a random response

chosen uniformly from its output domain, except that for any specific query, it

responds the same way every time is receives the same query.

 Originally, Bellare and Rogaway introduced the random oracle model as a

paradigm for designing efficient protocols [88] which is used by Coron et al in [83].

One more work used by them is the indifferentiability framework of Maurer et al [89]

to show that their construction is indifferentiable from a random oracle. It is known

that, the Merkle-Damgård hash construction makes use of only two inputs to generate

the chaining values in each round. But, the prefix-free Merkle-Damgård hash

construction uses four inputs in each round.

 v 1 1m v 2 2m v r rm

 f f f

 0IV = initial value 1IV 2IV 1−rIV rIV

 Figure 17: Prefix-free Merkle-Damgård hash construction [82].

 The diagrammatical view for this construction is as in the Figure 17, for a

message M of length c divided into r -blocks each of length l represented as

rmmmM ,.....,, 21= . The string v is a binary encoding of the message length say c

and the other input i for ri ,.....,2,1= is the encoded block index. The length of

these strings in bits can be equal to the number of bits required for the compression

 li

function to complete the iteration. Formally this design can be represented as,

()ivmIVfIV iii ,,,1−= for ri ,.....,2,1= .

2.4.1.1. Security analysis of the prefix-free Merkle-Damgård hash construction

against the known generic attacks:

 Similarly, as in the case of the wide pipe and double pipe hash construction, an

additional hash function can be used at the end of the prefix-free construction as well.

Hence, the message expansion attack and the partial message expansion attack can be

avoided for this construction. Joux’s multi-collision attack applies to this construction

as well. The additional work required by an attacker to find a collision on this

construction compared with that of Merkle-Damgård construction is to decode the

strings v and i .

 In the case of finding fixed points the attacker is forced to work hard to find

point such as ()ivmivfiviv iiii ,,,1 ==+ in prefix-free Merkle-Damgård design

instead of simply, ()iiii mivfiviv ,1 ==+ as in the case of Merkle-Damgård

construction. Thus, applying Dean’s attack and its extension on this modified design

will be harder.

2.4.2. HAIFA hash construction [85]:

 The name HAIFA is taken from HAash Iterative FrAmework and is designed

by Eli Biham and Orr Dunkelman [85]. The inputs to the compression function in this

design are the message block, the initial value, the number of bits hashed so far and

the salt value. The point to be noted here is that the salt value and the number of bits

hashed so far are inbuilt to the message block. That is, these two inputs are padded to

the message block.

 Formally, compression function of HAIFA for message ,M divided into r -

blocks each of length l that is, rmmmM ,.....,, 21= can be represented as

{ } { } { } { } { }nsblnf 1,01,01,01,01,0: →××× with n -bit initial value, l -bit message block,

b -bits input of number of bits hashed so for, s -bit salt value and n -bit hash value or

the message digest. Thus, the chaining value iIV is computed as

()saltbhmIVfIV iiii ,,, 11 −−= where, ibh represents number of bits hashed until now,

for ri ,.....,1= and salt represents the salt value.

 lii

 The designers of HAIFA claim that it is possible to add the number of blocks

that were hashed so for as an input to the compression function of HAIFA. But, this

scheme keeps track of the number of bits hashed so far and not the number of blocks

hashed so far. Thus, it is easier for implementations to consider only one parameter

the number of bits rather two nearly related parameters: the number of bits and

number of blocks.

 To protect the HAIFA hash construction against second pre-image attacks the

authors proposed to use a salt parameter as an additional input to the compression

function each time it’s called. This salt value is selected from families of hash

functions (as the theoretical definition of hash functions defines families of hash

functions). Each time the compression function is executed the user will select one

function of the family of hash functions, either at random, or by incrementing by one.

It can also be selected as the frame number or sequence number of the message that is

transmitted.

 The salt value is used as an additional input to the compression function

instead of changing the initial value and it is also added to the padding. It can be used

as a key in the keyed hash functions. The salt value ‘ salt ’ is made equal to zero that

is, ,0=salt for some applications where, the value cannot be selected from a family

of hash functions because of the requirements based on applications. There are four

values entered to the compression function each time it is called. The diagrammatical

view of the HAIFA hash construction is shown in Figure 18.

 salt 0bh 1m salt 1bh 2m salt rbh rm

 f f f

 0IV =initial value 1IV 2IV 1−rIV rIV

 Figure 18: HAIFA hash construction [85].

 The parameters ibh (number of bits hashed) so far and the salt (the salt value)

can also be viewed as additional fields in the chaining values and can be removed

from the last block. This appears like increasing the internal state of the compression

function as in the case of wide-pipe hash construction (see Section 2.2.1). But, the

former require additional memory for the salt value which is fixed for all blocks

 liii

unlike the larger memory required for the later construction for storing larger initial

values.

 Note that a variable hash size can be provided for the HAIFA hash

construction. For example, consider the SHA-1 hash function, the last 64-bits out of

512-bits of each block can be represented with the number of bits hashed so far and

the last but one 64-bits can represent the salt value. This can generate a message

digest of length 384-bits; such a solution is given in [83] as a chopped solution of

hash functions.

2.4.2.1. Security analysis of the HAIFA hash construction against known generic

attacks:

 The HAIFA hash construction protects both forms of message expansion

attacks. The proof for it is that, the last block is compressed with the number of bits

that were hashed so far and this value is not a multiple of a block, then the resulting

digest will not be equal to the chaining value. This is in contract to the requirement of

the message expansion. Also, if the message is a multiple of the block size, then an

additional block is hashed with padding being the same number of bits hashed so far.

 The same solution protects this construction from Dean’s attack and its

extended version. In these attacks the goal of the attacker is to find the fix-points in

the compression function. In the HAIFA hash construction the attacker has to find the

fix-points of the form ()saltbhmivfiviv iiiii ,,, 111 −−− == which is definitely harder

than just simply finding fixed point of the form ()iiii mivfiviv ,1 == − .

 Joux’s multi-collision attack applies to almost all the hash functions that use

the iterative structure. The time complexity to find a collision for each block in the

HAIFA hash construction is not different from that of in Merkle-Damgård

construction. However, the attacker cannot compute the multi-collision before the

selection of the salt value. Joux’s attack can also be prevented by the wide-pipe

construction but, it requires a large internal state for computation. However, the

HAIFA construction does not require any large internal state which may reduces the

efficiency of the computation.

 The pre-computation required for the herding attack (see Section 1.4.4) is

infeasible in the case of HAIFA hash construction because the salt value is mixed into

the chaining value. Moreover, the attacker cannot find the exact digest value unless

the salt value is known. Thus, one can say that, the herding attack does not work on

 liv

this construction. The length of the salt value should be at least 64-bits or half that of

the message digest in order to make it infeasible for the attacker to find an attack on

the hash function. This in turn increases the hardness of finding fixed points as well.

2.5. Comparison of Merkle-Damgård hash construction with related

constructions:

 The wide-pipe and double-pipe hash function designs are proposed by Lucks

in [82]. He proved that these designs have more resistance against generic attacks than

the normal Merkle-Damgård construction. This is because of the widened internal

state for wide pipe design. On the other hand, the double-pipe design employs one

single n -bit compression function twice in parallel for each message block to provide

more resistance against the attacks.

 Ferguson and Schneier in [29] proposed a double hashing scheme ()()MHH

for a hash function H and a message .M This scheme is a key less or a fixed initial

value 0IV variant of the NMAC and HMAC constructions of message authentication

code proposed by Bellare et al in [90]. It is obvious that an attacker can find multi

block collisions on these constructions similarly as in the case of Merkle-Damgård

construction. That is, the attacker finds multi-block collisions in the inner hash

function first, which cannot be prevented by the application of the hash function

again. Then he can progress the attack to the whole hash function. But, this is not the

case in wide pipe and double pipe designs.

 Due to poor message expansion of the compression functions of hash

functions like MD5 and SHA-1 Wang was able to find differential collisions on them

in [60]. These collisions were made weaker by Jutla and Pathak in [91]. Also, in [5]

Szudlo and Yin proposed two new types of preprocessing of messages called the

message whitening and the message self interleaving to improve the security against

the attacks. While, these kinds of preprocessings are required for the MD5 and SHA-1

designs to resist against the known attacks wide pipe, double pipe, 3C and 3C+

designs do not require such preprocessing.

 As far as the performance is considered MD5 and SHA-1 hash functions are

faster than the other proposed designs as explained in the above sections, and also

because of the additional requirements like more number of XOR operations and

more number of inputs for some of these new hash designs.

 lv

2.6. Security reduction proof:

 The security of a generic cryptosystem ‘CS’ based on problem ‘A’ can be

shown in the following manner:

The cryptosystem ‘CS’ is said to be secure if problem ‘A’ is based on well known

difficult problem such as, factorization. But, if ‘A’ is some new unknown problem

then the case of security reduction arrives in proving the cryptosystem’s security.

Now, if it can be shown that problem ‘A’ is reducible to problem ‘B’ where ‘B’ is a

difficult and well know problem such as, discrete logarithm problem then it can be

said that, the security of the cryptosystem ‘CS’ is reducible to the security of the

problem ‘B’. Since, ‘B’ is difficult to solve it is easy to say that ‘CS’ is as secure as

problem ‘B’.

 For most of the hash function designs, their security is proved with a security

reduction to a number theoretic problem that is believed to be difficult. For instance,

in [108] Damgård designed two hash functions which are reducible to RSA

factorization problem and proved that, the security of these hash functions is reducible

to finding collision in a RSA modulus. Also, a construction based on the discrete

logarithm problem modulo a composite is proposed by Gibson [109]. MASH-1 and

MASH-2 (where MASH stands for Modular Arithmetic Secure Hash) are the two

hash functions based on modular arithmetic [113-115]. As stated by Coppersmith and

Preneel in [111] the best known preimage and collision attacks on MASH-1 needs
2/2n and 4/2n operations respectively.

 A security reduction proof for a hash function is said to be good when, finding

a collision on it’s design leads to solving the well established problem with sufficient

probability, specifically with probability one. Reduction security proofs of this kind

are known as tight security reduction proofs. On the other hand, if the reduction is not

good that is, if the probability is too small, the security on the design can be said to be

weak and reduction security proofs of this kind are said to be loose security reduction

proofs. Finding security reduction proof is difficult for all hash function. Hence, the

security of such hash functions is determined without security reductions. A modulus

,N which is a product of two large prime numbers is used mainly for deriving the

security of the hash function. Even more efficient method is based on modular

squaring. There exists an argument for squaring which is, any algorithm that can

extract modular square roots is reducible to a factoring algorithm [34].

 lvi

Chapter 3

Modifications and replacements to the

existing hash functions

3.1. Collision resistance of a hash function using message preprocessing:

 In recent past, the hash function research has undergone some interesting

cryptanalysis. Wang’s attack is the one which has shown the major disadvantage of

MD5, SHA-1 and other related hash functions. MD5 and SHA-1 hash functions are

the most widely used hash functions in various applications and these have been

broken by Wang’s attack [55-60]. To avoid such attacks on these hash functions, the

major step is to examine the dependency of a particular protocol on collision

resistance for its security.

 It is obvious that there will not be any need to change the hash function for the

applications which do not depend on collision resistance. But, for the applications

which depend on collision resistance, the better and easier alternative is to change the

hash function totally. At present, SHA-2 [92] family is the only alternative for such

replacement. The hash functions SHA-256, SHA-224, SHA-384 and SHA-512 are

collectively known as SHA-2 hash standards. It is expected that this family is

significantly stronger than other relative hash functions.

 The second alternative is to redesign the whole hash function in such a way

that the design is collision resistant. This can be a reasonable alternative only if the

new design is completely resistant against all types of attacks and weaknesses

discussed in the above sections. In [5] Szydlo and Yin proposed a completely

different alternative, which depends on effectively redesigning just the message pre-

processing and not the whole design of the hash function.

 The advantage of this alternative is that the standard hash functions can be

used without making any changes except an additional preprocessing instead of the

already existing preprocess. One more advantage is that, there will not be any

additional requirements like changing the output length or truncating the output bits.

In other words, some applications may find this alternative may extend the useful life

 lvii

of existing hash functions which are vulnerable against the differential collision attack

by Wang.

3.1.1. Message preprocessing framework:

 A new type of message pre-processing framework is used in [5]. The major

working assumption behind this general technique suggested for improving the

collision resistance is that there is no need to change the underlying hash function

itself. Let M be a message string to be hashed and H be a standard hash function

such as MD5 or SHA-1. The objective here is to derive a hash function H ′ which

calls H as a subroutine.

 In this design, the message is preprocessed using a different type of

preprocessing technique, before it is hashed in a normal way. Formally speaking if

MM ′→Φ : is a preprocessing function mapping strings to strings. For each such

function, a derived hash function H ′ can be defined as () ()()MHMH Φ=′ . The

message preprocessing function Φ should be simple and the derived hash function

H ′ must be collision resistant against the known attacks even if the original hash

function H is not.

 The other requirement for many applications in cryptography is the streaming

data requirement. That is, many applications are set up architecturally to

incrementally digest an arbitrary large message as it is available. Formally, according

to [5] the function Φ is called a local expansion if it can be defined by

() rr mmmmmm ′′′=Φ,,,.....,, 2121 where each im is of fixed length and ()ii mfm =′

for some expansion function { } { }llf ′→ 1,01,0: , where .ll >′ Thus from [5] it is clear

that Φ should be a local expansion.

3.1.2. Local expansion approach:

 There are two local expansion approaches proposed in [5] for pre-processing

the arbitrary finite length message before it is hashed, namely message whitening and

message self interleaving. These two techniques increase security of the underlying

hash function by increasing the structure within each message block [5]. A new and a

similar type of approach which is more efficient then these two approaches is

proposed in this section and is named as the reverse interleaving approach.

 To understand how the message is processed in the compression function of

the hash function after the message whitening approach or message self interleaving

 lviii

approach one can see [5]. The similar processing can be used in the case of reverse

interleaving approach.

3.1.2.1. Message whitening approach [5]:

 Wang’s method of attack derives a good differential first to attack a hash

function. The motivation in message whitening is to decrease the flexibility in finding

good differentials. The basic idea here is to alter the message by inserting fixed

characters at regular intervals. These fixed characters can be taken to be words filled

with all zero bits. In a hash function with 512-bit block size, fixed sequences smaller

than 512-bits can be expanded into full 512-bits. For example, each sequence of

()t−16 32-bit blocks of ()tmmmm −= 1621 ,.....,, can be expanded to

()0,.....,0,,.....,, 1621 tmmmm −= , where the last t blocks would be fixed as zeros.

 Each execution of the compression function effectively only processes ()t−16

message words, rather than 16 message words. These schemes are also easy to

implement because such pre-processing is a local expansion. Thus, the streaming

requirement can also be met. The pre-processing here uses only fewer bits of message

which allows the message to be better mixed within the calculation.

3.1.2.2. Message self interleaving approach [5]:

 The basic idea in this approach is to duplicate each message block such that,

each bit appears twice after the pre-processing. For example, a message M of

arbitrary finite length which is divided into r -blocks each of length ,l represented as,

()rmmmM,, 21= after message self interleaving local expansion process Φ , each

block appears twice such that, () ().,,.....,,,, 2211 rr mmmmmmM =Φ Similar to that of

message whitening approach, message interleaving causes fewer message bits to be

fed into each message block which cause better mixing.

3.1.2.3. Reverse interleaving approach:

 A new approach for the local expansion can be designed using inverse double

mirror image sequence of a message. To understand this approach, we need to define

inverse double mirror image sequence for a message .M This is explained here. Let

the message M of arbitrary finite length be divided into r -blocks each of fixed length

l such that, ()rr mmmmM ,,.....,, 121 −= . For any sequence of the form

nn mmmm ,,....., 121 − there exists an inverse sequence of the form 121 ,,.....,, mmmm nn − .

Similarly, for the above sequence there exists, an inverse sequence of the form

 lix

()121 ,,.....,, mmmmM rr −= . The new sequence of the form

() () () ()11121 ,,.....,,,.....,,,, mmmmmmmm ririrr +−− is called the inverted double mirror

image sequence of the message .M

 This kind of sequence can be used for the pre-processing in such a way that,

each message block appears twice after the process completes and it can be formally

represented as () ()jjrrrr mmmmmmmmmmM ,,.....,,,,,,,, 112211 −−=Φ . Where,

2/)1(+= rj for r is odd and 12/ += rj for r is even. This sequence appears to be

similar to that of message self interleaving but here the order of the message blocks is

different. The first block appears in first and second positions, the last block appears

in third and forth positions, the second block appears in fifth and sixth positions, the

last but one block appears in seventh and eighth positions and so on. This means, the

order of the input message blocks to the compression function also changes

accordingly.

 The advantage of the reordering of the sequence in this form can be seen in the

Section 3.1.3. Similar to that of message whitening and message self interleaving this

approach also cause few message bits to be fed into each message block, which

causes better mixing of the input parameters. The randomization of the bits in the

chaining variables will be better in this case compared with that of the other two

approaches because of the different ordering of the message blocks.

3.1.3. Security analysis of the local expansion approach:

 From [60] it is clear that to find a collision on the hash functions MD5 and

SHA-1 the techniques of selecting good differentials, deriving a set of sufficient

conditions and message modification are used. Hence, to avoid the collision it is

sufficient to show that these techniques do not apply to the hash function. The three

local expansion approaches described in the above section can be used to harden the

good differential selection and message modification techniques. In this section it is

explained how message modification technique can be weakened.

 First, a brief review of the message modification technique from [60] is

presented here. The round function of the MD5 and SHA-1 hash functions can be

formulated using the following general formula:

 =−1ix h (input chaining variables) + im ,

 lx

where, 1−ix is the output chaining variable and im is the message block used in step i ,

and ri ,.....2,1= for a message divided into r -blocks each of fixed length in such a

way that rmmmM ,.....,, 21= .

 After constructing the differential path it is easy to derive the set of sufficient

conditions on 1−ix which ensure that all conditions on the path hold. The conditions

are of the form yx ji =, where y is ‘0’ or ‘1’. That is, the thj bit of the chaining

variable ix is transferred from ‘0 to 1’ or ‘1 to 0’. The main idea behind the message

modification technique is to simply set the bit jix , to the correct bit y such that the

derived sufficient conditions hold.

 This basic technique can be used for the first 16 steps in MD5 and SHA-1

since the message blocks are independent of each other until this stage. A simple

variant of this technique is to modify the message words used in two steps before step

i to make sure that, all the conditions hold. A more advanced technique called multi-

step message modification technique which is used to modify the more number of bits

of a particular chaining variable is also available. This technique is used after step-16

in both MD5 and SHA-1 hash functions.

 In both reverse interleaving and message self interleaving approaches, each

message block appears twice after the process but the order of the words is different

in the former compared with that of the latter. But, in both these approaches for

applying the message modification technique, two consecutive message blocks have

to be modified simultaneously, which makes it almost impossible to change any

single bit.

 Now, suppose a differential path has chosen for finding collision on a hash

function which uses any of the interleaving approaches and the sufficient conditions

on ‘ 1−ix ’ the chaining values have been determined. Since, most of these conditions

can no longer be made to hold through message modification because of these

interleaving approach used the complexity of the attack will be greater. In the case of

message whitening all the whitened message blocks cannot be modified, since these

message words are simply zero and independent of the input message.

 In the reverse interleaving approach the last block becomes the third and

fourth input block, last but one block becomes seventh and eighth input block and so

on. That is, the input order of the message blocks to the compression function will be

 lxi

completely different. This different order of the message blocks will generate a

completely different and more randomized message digest compared with that of the

other two approaches.

 There will be better mixing of the inputs in the reverse interleaving approach,

because the order of input message blocks is completely different. The better mixing

of the input blocks in the compression function will always be an advantage because it

will increase the complexity of the attack. One, more advantage is that for finding

differential attack the order of the inputs to the compression function should be first

known which requires an additional effort from the attacker.

 Diagrammatically, the security of reverse interleaving approach can be

compared with that of the self interleaving approach in the following way:

Let us consider the message blocks are represented in the following way:

 (1)

 Then, after self interleaving process the message blocks appears as:

 (2)

after reverse interleaving the message blocks appears as:

 (3)

Since the order of the input of the message blocks to the compression function is

redirected as in (3) above the output will also be more random compared with that of

(2). This is the argument of security for reverse interleaving and hence it provides

more resistant against the differential attack of Wang.

3.1.4. Implementation issue:

 The implementation of these types of preprocessing techniques is straight

forward. The preprocessing can be done prior to calling the compression function. Let

us consider a hash function H and let ()MH be the original implementation of the

hash function H , where H can be any hash function vulnerable to the Wang’s attack.

Also, let ()MppΦ be the preprocessing function of the same message ,M where ppΦ

can be any of the three local expansion approaches explained in the above section.

With the advanced techniques in today’s computer world like storing a huge message

1m 2m rm

1m 1m 2m 2m rm rm

1m 1m rm rm jm jm

 lxii

in a tiny amount of memory space the implementation of this hash function is easier

and is more advantageous then others. Moreover, in applications where the message is

of smaller size this can be more advantageous because the message length is a major

factor in maintaining the last block of the whole padded message. The new hash

function which is having the additional coding for the preprocessing can be as

follows:

()

()
()

}

{

MH
MM

M

pp

pp

′

Φ=′

Φ

That is, the hash function will just hash the preprocessed message M ′ , instead of the

original message M with a different type of preprocessing. The original

preprocessing used in the hash functions H say MD5 hash function will not be

required for this type of implementation. But the original length padding in the last

block can be still maintained. One more advantage of the local expansion approach is

that, it can be used in any of the newly designed hash functions explained in the

classification of hash functions previously.

3.2. Enhanced SHA-1 IME hash function:

 The secure hash algorithm (SHA) was first published in 1993 as the secure

hash standard in ‘FIPS PUB 180’ by US government standards agency NIST

(National Institute of Standards and Technology) and is commonly known as SHA-0.

Two years later, an enhanced version of the same hash function was published in

‘FIPS PUB 180-1’ which is commonly referred as SHA-1. Both these algorithms are

similar; the only difference is that the SHA-1 uses a single bitwise rotation in the

message schedule in its compression function where as, SHA-0 does not (explained

clearly in further part of this section).

 This change in the algorithm is done to enhance the security of it. Both these

algorithms generate a message digest of length 160 bits by accepting a message of

maximum length 1264 − bits. In 2004 both these are totally broken using the

differential attack by Wang in [55, 60]. These attacks concentrated on the poor

message expansion of the hash function’s compression function. Specifically, the

 lxiii

three hash functions MD5, SHA-0 and SHA-1 which are widely deployed in

cryptographic applications are designed using a similar design principle.

 In each of these hash functions, the message is first made into blocks of 512

bits and each 512-bit block is processed by first expanding linearly into sixteen 32-bit

words. Then, in MD5 these sixteen 32-bit words are used to generate forty eight more

32-bits words using some logical operation. Similarly, in SHA-0 and SHA-1 hash

functions another sixty four 32-bit words are generated using the already generated

sixteen words. From [91] in MD-5 one can notice that there will be only 12-bit

difference in the 64-expanded words and in the case of SHA-0 and SHA-1 hash

functions the bit difference in the last 60 generated words is 17 bits and 27 bits

respectively. Thus, the main reason that, these three hash functions have been

vulnerable to the differential attack is because of their poor message expansion.

 In [91] Jutla and Patthak proposed a different expansion mechanism in such a

way that, the message expansion becomes stronger by generating more bit difference

in each chaining variable. Using this idea, a new expansion mechanism is proposed in

this section, which expands the inputs in a better way. The security proofs used in

[91] for the mechanism proposed in it can be similarly used for the mechanism

proposed here.

3.2.1. Message expansion in ‘SHA-0’, ‘SHA-1’, ‘SHA-1 IME’ and enhanced

SHA-1 IME hash functions:

 Let M be the message to be processed which is divided into r -blocks each of

length 512-bits such that, ()rmmmM ,.....,, 21= . Then each block is further divided

into sixteen 32-bit words such that, 1510 ,.....,, wwwmi = for ri ≤≤1 . In both SHA-0

and SHA-1 hash functions each message block is processed in 80 steps, for the first

sixteen steps, the sixteen 32-bits words 1510 ,.....,, www are used and in the further

steps the words are generated using a specific linear code. Finally, the eighty words

()7910 ,.....,, www can be seen as a code-word constructed using a specific code.

 The hash functions SHA-0 and SHA-1 use an update function [93, 94] for

processing each message block. This update function consists of eighty steps divided

into four rounds. A, B, C, D and E are the five 32-bit registers used as a buffer for

updating the contents. For each of the eighty rounds the registers are updated with a

new 32-bit value. The starting value of these registers is known as initial value

 lxiv

represented as 000000 EDCBAIV = . In general, tttttt EDCBAIV = for 790 ≤≤ t . For

step t the value tw is used to update the whole registers.

 Each step uses a fixed constant tα and a bit-wise Boolean operation tO which

depends on the specific round. In SHA-1 this process can be formally represented as:

 For 790 ≤≤ t ,

() ()

.
,

,30
,

,,,5

1

1

1

1

1

tt

tt

tt

tt

ttttttttt

DE
CD
BC
AB

EDCBOAwA

=
=

<<<=
=

+++<<<+=

+

+

+

+

+ α

where ‘+’ denotes the binary addition modulo 322 operation. More description about

the boolean operations used and the initial values 0IV used for SHA-0 and SHA-1

hash functions can be obtained from [12]. The same update function can be used for

the SHA-1 IME in [91] and enhanced SHA-1 IME proposed here.

 The message expansion is explained for just one 512-bit block here let us say

for the message block 1m and the similar process is used for the remaining blocks.

The message block 1m is first divided into sixteen 32-bit words such that,

15101 ,.....,, wwwm = (let 150 ≤≤ j and let j represent the index of these words).

This is processed in eighty steps, so for each step there is need of one word to process

the message. Let t represent the number of steps in the compression function hence

790 ≤≤ t .

In SHA-0 hash function the linear code is:

Equation-1:

≤≤⊕⊕⊕

≤≤≤≤
=

−−−− .7916

.150&150

161483 tforwwww

tjforw
w

tttt

j
t

In SHA-1 hash function the linear code is:

Equation-2:

()

≤≤<<<⊕⊕⊕

≤≤≤≤
=

−−−− .79161

.150&150

161483 tforwwww

tjforw
w

tttt

j
t

 Where 1<<< denotes a one bit rotation to the left. The expansion mechanism

used is a linear one in both hash functions (SHA-0 & SHA-1) and the process in

 lxv

different bits is independent in the case of SHA-0. This is the reason for both these

hash functions to be vulnerable to the differential attack as shown in [55-60].

In SHA-1 IME hash function the code is:

Equation-3:

()()
()()

≤≤<<<⊕⊕⊕⊕⊕⊕⊕
≤≤<<<⊕⊕⊕⊕⊕⊕

≤≤≤≤

=

−−−−−−−−

−−−−−−−

.793613
,351613

.150&150

201521161483

1521161483

tforwwwwwwww
tforwwwwwww

tjforw
w

tttttttt

ttttttt

j

t

Where, <<<13 is 13 –bit rotation to left.

 In [91] Jutla and Patthak proposed a modification to the standard SHA-1 hash

function and named as SHA-1 IME where ‘IME’ stands for ‘Improved Message

Expansion’. A different message expansion mechanism is employed in this hash

functions in such a way that the minimum distance between the similar words is

greater compared with the above two hash functions. If the minimum distance of the

similar words in the sequence is raised, then it is obvious that the randomness in the

bits of the updated register’s message word will significantly raises. Similarly, it is

also obvious that if the randomness is raised, then the message modification technique

used in Wang’s attack should require an additional effort to make the selected

sufficient conditions to hold. Hence, this makes the complexity of the total attack

increase significantly. The code in this improved hash function will be as follows:

In enhanced SHA-1 IME hash function the code is:

 For achieving even better message expansion compared with that of SHA-1

IME the following code can be used.

Equation-4:

()()
()()
()()

≤≤<<<⊕⊕⊕⊕⊕⊕⊕
≤≤<<<⊕⊕⊕⊕⊕⊕⊕

≤≤<<<⊕⊕⊕⊕⊕⊕

≤≤≤≤

=

−−−−−−−−

−−−−−−−−

−−−−−−−

.795613
,552613

,251613

.150&150

201521161483

201531161462

153111962

tforwwwwwwww
tforwwwwwwww

tforwwwwwww

tjforw

w

tttttttt

tttttttt

ttttttt

j

t

Where, <<<13 is 13 –bit rotation to left.

The new words 2−tw and 6−tw used in this equation are chosen carefully in such a way

that, the ‘XOR’ operation between two words will not create null value. That is, care

is taken in such a way that, the same words are not ‘XORed’ at a time. There is no

critical logic involved in breaking the steps at step 25 and step 55. They can be broken

at some different steps as well. However, one should take care that conditions on t

 lxvi

should be as much less as possible because the performance of the hash function will

reduced if more conditions on t are included.

3.2.2. Security analysis of these hash functions:

 The basic idea in generating such an enhanced code for a hash function is to

increase the minimum difference in the neighbouring bits of the intermediate chaining

variables ()ttttt EDCBA , which in turn reduces the frequency of repetition of the

neighbouring bits. From this, one can notice that the randomness in the bits of the

chaining variables will increase, which increases the complexity of the differential

attack. The randomness of the bits in the chaining variables is not more when the

original SHA-0 and SHA-1 codes were considered. Wang used this to find the

collision differential in full eighty steps of SHA-0 and SHA-1 hash functions.

 From equation-3 and equation-4 one can notice that the only difference in the

SHA-1 IME and its enhancement is a simple variation. There is an additional

condition for the steps 5526 ≤≤ t . These additional conditions will lead to more

mixing of the bits in the chaining variables. The additional words used in equation-4

are 62 , −− tt ww and 3−tw along with 1521161483 ,,,,,, −−−−−−− ttttttt wwwwwww and 20−tw . The

inclusion of these additional conditions and words will lead to an advantage because

the additional randomness in chaining variables leads to greater minimum distance.

The conditions and claims used in Section-2 and Section-3 of [91] for the code of

SHA-1 IME hash functions to prove the security of it can be similarly used to the

enhancement of SHA-1 IME proposed above as well.

 The only place where one can include the additional conditions to prove the

security for the enhanced code is in between the steps 5526 ≤≤ t . One can also

notice that there are two words 2−tw and 6−tw used instead of the words 3−tw and 8−tw

in between these steps. This will not lead the whole code to an attack because it is just

a replacement of similar words. Hence the security argument here is that, this enhance

code will provide security not less than SHA-1 IME code and because of the

additional conditions in between the steps 26 and 55 (5526 ≤≤ t) there will be an

additional security against the differential attack.

 Recent attacks on hash function by Wang have been focused on reducing the

difference of intermediate chaining variables caused by the difference of messages.

On the other hand, a hash function can be considered secure if it is computationally

infeasible to calculate such difference in its compression function. The enhancements

 lxvii

for SHA-1 hash function in equation-3 and equation-4 does the same. That is, they

make it computationally infeasible to calculate such differences in the chaining

variables which makes harder for an attacker to find an attack.

3.3. The 3-branch a new dedicated hash function:

 In [95] a new dedicated hash function has been proposed called ‘FORK’. It is

designed to overcome the recent attacks on hash functions in [55-60]. However, in

[98] some weaknesses in the FORK hash function were demonstrated. In this thesis,

an attempt is made to avoid the weaknesses found on this hash function by proposing

a new hash function called the ‘3-BRANCH’. This can be considered as an improved

version of the FORK hash function. The improved version proposed here uses same

initial values and almost the similar step function as in the case of FORK. The

differences between these two hash functions will be explained, as well as the

description and the security analysis follows for the new hash proposal. The hash

function is named so because the structure has only 3 branches.

3.3.1. Description of 3-branch:

 The following are the notations used in the new hash function 3-branch.

 sA<<< : s -bit left rotation for a 32-bit string A

 : XOR operation

 +, : addition mod 322

3.3.1.1. Padding procedure:

 In the 3-branch hash function the input message is processed in 512-bit

message blocks. The message is padded so that its length in bits is congruent to 448

modulo 512. That is, the length of the padded message is 64-bits less than an integer

multiple of 512-bits. Padding is always added, even if the message is already of the

desired length. A 64-bit representation of the length in bits of the original message

before padding is appended at the end.

 Only if the original length is greater than 642 bits the lower order 64-bits of

the length are used. Thus, the field contains the length of the original message,

modulo .264 This is similar in the case of SHA-256 as well and the message here

appears as rMMMM ,.....,, 21= . For convenience the message blocks are represent

here as rMMMM ,.....,, 21= instead of rmmmM ,.....,, 21= . In all the other sections

of this thesis the latter representation is used instead of the former.

 lxviii

3.3.1.2. Initialization vectors:

 A 256-bit buffer is used to hold intermediate and final results of the hash

function. The initial value of the buffer is 000000000 HGFEDCBAIV = . These registers

are initialized with the following 32-bit hexadecimal values:

 6A09E6670 =A ,

 67AE850 BBB = ,

 3C6EF372 0 =C ,

 54FF53A0 AD = ,

 510E527F,0 =E

 9B05688C0 =F ,

 1F83D9AB 0 =G and

 5BE0CD190 =H .

The initialization vectors used here are same compared with that of FORK hash

function.

3.3.1.3. Structure of 3-branch:

 Each successive 512-bit message block rMMM ,.....,, 21 of the message M is

divided into sixteen 32-bit words. These words are used in the following computation

to update the buffer value iIV to 1+iIV :

()() ()()[]
()() ()()[]

−⊕−+

−⊕−
⊕=

∑∑
∑∑

+

32

21
1 ,3,2

,2,1

MIVBRANCHMIVBRANCH

MIVBRANCHMIVBRANCH
IVIV

ii

ii
ii ,

where, () ()()150 ,.....,
jj

MMM
j ΦΦ=∑ is the re-ordering of message words for 3,2,1=j

which is given in the table 5.

 The structure of the of 3-Branch hash function is as shown in the Figure

19. A 512-bit message block is compressed into a 256-bit string using the

compression function of this hash function similar to that of FORK. It consists of

three parallel branch functions BRANCH-1, BRANCH-2 and BRANCH-3 where as

the FORK makes use of four branches.

 lxix

 iIV

 ()∑1
M ()∑2

M ()∑3
M

 1+iIV

 Figure 19: Structure of 3-branch hash function.

 The input ordering of the message words 1510 ,.....,, MMM is as in the

following table 5 for ‘ jBRANCH − ’ where 30 ≤≤ j :

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

()t1Φ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

()t2Φ 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1

()t3Φ 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3

 Table 5: Ordering rule of message words in 3-branch.

This ordering rule is just similar as in the case of FORK, the only difference that, 3-

Branch has only three branches hence only three different orders for the message are

used.

3.3.1.4. Branch function:

 The branch function of 3-branch is computed using the following steps:

Step-1: The chaining variable iIV is copied to initial variable 0,jV for thj − branch.

Step-2: At thk − step of each branch where 70 ≤≤ k , the step function kjSTEP , is

computed as follows:

 () ()()kjkjkjkkkjkjkj dMMVSTEPV
jj ,,,122,,1, ,,,, βα+ΦΦ+ = ,

where kj ,α and kj ,β are constants and kjd , is the dither value (see Section 3.3.1.6).

1−BRANCH 2−BRANCH 3−BRANCH

 lxx

3.3.1.5. Step function:

 The input register kjV , of kjSTEP , is divided into eight 32-bit registers as

follows:

 ()kjkjkjkjkjkjkjkjkj HGFEDCBAV ,,,,,,,,, ,,,,,,=

 kjSTEP , takes () () kjkjkkkj jj
MMV ,,122, ,,,, βα+ΦΦ and kjd , as inputs and

computes the following output:

()() ()()
()

()() ()()
()() ()()
()() ()()

()

()() ()() ,

,

,

,

,

,

,

,
5

,12,
9

12,,1,

,,12,1,

,
21

,2,
17

2,,1,

,
9

,2,
5

2,,1,

,,2,2,,1,

,,2,1,

,
17

,12,
21

12,,1,

kjkjkkjkkjkjkj

kjkjkkjkj

kjkjkkjkkjkjkj

kjkjkkjkkjkjkj

kjkjkkjkkjkjkj

kjkjkkjkj

kjkjkkjkkjkjkj

dMEfMEgFG

dMEF

dMAgMAfDE

dMAgMAfCD

dMAgMAfBC

dMAB

dMEfMEgHA

jj

j

jj

jj

jj

j

jj

⊕++⊕++=

⊕++=

⊕++⊕++=

⊕++⊕++=

⊕++⊕++=

⊕++=

⊕++⊕++=

<<<
+Φ

<<<
+Φ+

+Φ+

<<<
Φ

<<<
Φ+

<<<
Φ

<<<
Φ+

ΦΦ+

Φ+

<<<
+Φ

<<<
+Φ+

β

β

α

α

α

α

β

where, f and g are nonlinear functions as follows:

() ()227 <<<<<< ⊕+= xxxxf and

() ()2713 <<<<<< +⊕= xxxxg .

 kjA , kjB , kjC , kjD , kjE , kjF , kjG , kjH ,

 ()kM
j

2Φ ()12 +Φ kM
j

 kjd , kjd , kjd , kjd , kjd , kjd , kjd , kjd ,

 1, +kjA 1, +kjB 1, +kjC 1, +kjD 1, +kjE 1, +kjF 1, +kjG 1, +kjH

 Figure 20: Step function of 3-branch hash function.

 PART-A

 PART-B

 lxxi

 kjA , kjB , kjC , kjD ,

 ()kM
j

2Φ

 kj ,α

 PART-A

 kjd , kjd , kjd , kjd ,

 Figure 20(a): Step function of 3-branch hash function – Part-A.

 kjE , kjF , kjG , kjH ,

 ()12 +Φ kM
j

 PART-B

 kj ,α

 kjd , kjd , kjd , kjd ,

 Figure 20(b): Step function of 3-branch hash function – PART-B.

f

<<<5

<<<17

g

<<<9

<<<21

g

<<<9

<<<21

f

<<<5

<<<17

 lxxii

3.3.1.6. Constants and dither values:

 The compression function of 3-branch uses sixteen constants similar to that of

FORK. The following table gives the values of the hexadecimal constants used:

 Table 6: Constants used in 3-branch hash function.

These constants are applied to the order rule similar to that of FORK as given in the

following table:

STEP k k,1α k,1β k,2α k,2β k,3α k,3β

 0 0κ 1κ 15κ 14κ 1κ 0κ

 1 2κ 3κ 13κ 12κ 3κ 2κ

 2 4κ 5κ 11κ 10κ 5κ 4κ

 3 6κ 7κ 9κ 8κ 7κ 6κ

 4 8κ 9κ 7κ 6κ 9κ 8κ

 5 10κ 11κ 5κ 4κ 11κ 10κ

 6 12κ 13κ 3κ 2κ 13κ 12κ

 7 14κ 15κ 1κ 0κ 15κ 14κ

 Table 7: Ordering rule of the constants in each branch.

 In Section 2.3.1 the dither value is already explained. The original idea of

designing a hash function using dither value is of Rivest in [4]. A dither value uses a

square free sequence, of which a special case is on abelian square free sequence.

Constant Hexadecimal value Constant Hexadecimal value

0κ 428A2F98 8κ D807AA98

1κ 71374491 9κ 12835B01

2κ B5C0FBCF 10κ 243185BE

3κ E9B5DBA5 11κ 550C7DC3

4κ 3956C25B 12κ 72BE5D74

5κ 59F111F1 13κ 80DEB1FE

6κ 923F82A4 14κ 9BC06A7

7κ AB1C5ED5 15κ C19BF174

 lxxiii

These are defined in Definition-5 and Definition-6. The generation of abelian square

free sequence is not hard as explained in [4] and it is more repetition free compared

with square free sequence. Hence it is obvious that using the abelian square free

sequence will generate more randomized intermediate and final chaining values [4,

95].

 In 3-branch hash function it is straightforward to make use of a dither value of

hexadecimal values. Let us consider three hexadecimal values BA, and C . Then, as

explained in [4] it is really easy to generate an abelian square free sequence of the

form ...ACDBCBACDCDCCABADBABCBCADCDBDABAABCACDCBCDSa = ,

upto 85-values. A similar sequence can be generated for required number of

hexadecimal numbers say eight digits and can be used in the step function of 3-branch

hash function. For more information on abelian square free sequence generation one

can refer to [95, 96, 97] and Section-7 of [4].

 To make it harder for an attacker to find an attack on 3-branch, different dither

values for processing different message blocks can be used. That is, for processing a

message block 1M , the dither values 1
,kjd can be used and another completely

different dither values 2
,kjd can be used for processing the second message block 2M ,

similarly, for all other message blocks different dither values can be used. But, if the

dither values are used in such a fashion the design becomes complicated. That is,

against the known generic attacks, the 3-branch hash function can be made more

secure at the cost of complexity.

 If the dither values for any message block are chosen as 1510 ,.....,, ddd then the

ordering rule for these values is as in table 8:

 Table 8: Ordering rule of dither values.

3.3.1.7. Efficiency and performance:

 In Section-5 of [4] the performance and efficiency of FORK is compared with

that of SHA-256. Due to the smaller number of additions, XOR and shift rotations

kSTEP − 0 1 2 3 4 5 6 7

kd ,1 0d 2d 4d 6d 8d 10d 12d 14d

kd ,2 15d 13d 11d 9d 7d 5d 3d 1d

kd ,3 0d 2d 4d 6d 8d 10d 12d 14d

 lxxiv

used in FORK it was summarised by the authors that the performance is 30% faster

compared with that of SHA-256. The 3-branch hash function uses even less

operations compared with that of FORK, which can be seen from the structures of

both the hash functions.

 The additional inputs used in 3-branch compared with that of FORK are the

dither values and a XOR operation which is used to mingle these values with the

chaining variable in each step function. On the other hand, one can notice that there

are only three branches in this new proposal. That is, one complete branch is not

required, which will increase the performance by one forth compared with that of

FORK. This shows that 3-branch is more efficient. Thus an argument to show that the

performance and efficiency of 3-branch is not less than FORK can be made without

any difficulty.

 In SHA-1 or SHA-2 hash functions, boolean functions are used where as in 3-

branch nonlinear functions f and g are used. These nonlinear functions output one

word from one input word while the boolean functions output one word with at least

three words at least. It is easier to adjust several input words of a boolean function and

control the output whereas it is not the case in nonlinear functions. This drawback of

the boolean functions makes it easier to find collisions in the hash function. Thus, it

can be seen that the use of nonlinear functions in a hash function provides greater

security than that boolean functions.

3.3.1.8. Security analysis of 3-branch:

 First, if an attacker inserts the message difference to find a collision in 3-

branch then, he expects the following:

 () () 03221 =∆⊕∆+∆⊕∆

where, i∆ is the output difference of the iBRANCH . To obtain such a differential

pattern the attacker should survey the following strategies:

Strategy-1: To construct a differential characteristic with a high probability for a

branch function, say 1BRANCH and then expects that, the operation of the output

differences in the other branches 3∆ is equal to 1∆ .

Solution: In this strategy, if the outputs of each branch function are random, the

probability of the event is almost close to 2562− .

 lxxv

Strategy-2: To construct two different differential characteristics such that

)(3221 ∆⊕∆−=∆⊕∆ . (This can be generated for cancelling the first and second

chaining values to obtain the difference between the chaining values as zero, the

required condition for generating an attack)

Solution: To find an attack using this strategy an attacker has to construct such a

differential pattern of the message words. But, for any message words it is

computationally hard to find such sequences.

Strategy-3: To insert the message difference which yields same message difference

pattern in all the three branches and expect that, same differential characteristics occur

simultaneously in three branches.

Solution: This strategy is relatively easy for an attacker. However, using the message

word reordering this can be avoided just as in the case of FORK. Since the same

message word reordering is used in both hash functions same security level can be

expected for both against this strategy. Similar arguments against inner collision can

be made for 3-branch.

where,

Part-1: Addition of message words.

Part-2: Two parallel mixing structures PART-A and PART-B.

Part-3: Rotation of registers.

Part-4: Addition of dither value. (This is available only in the case of 3-branch)

In [98] Matusiewicz et al analysed FORK and found a collision. This similar

argument cannot hold for 3-branch because there is a new additional input for each

step called the dither value. This can be explained as follows:

 In PART-2 there are two different process involved PART-A and PART-B. In

these two parts, the nonlinear functions f and g are swapped and also the addition

modulo and XOR operations are swapped. Hence, if a differential characteristic for

the PART-2 is found in such a way that, the input and output difference is not more,

then the same thing can be done to the whole branch. In case of FORK, it is possible

to extend such a differential to the whole function where as, in 3-branch there are

various dither values used to avoid such a weakness in each branch.

The step transformation in the FORK and 3-branch can be split into the following

parts as shown in Figure 21:

 lxxvi

 kjA , kjB , kjC , kjD , kjE , kjF , kjG , kjH ,

 Part-1

()kM
j

2Φ ()12 +Φ kM
j

 Part-2

 kjd , kjd , kjd , kjd , kjd , kjd , kjd , kjd ,

 Part-4

 Part-3

 1, +kjA 1, +kjB 1, +kjC 1, +kjD 1, +kjE 1, +kjF 1, +kjG 1, +kjH

 Figure 21: Splitting step function of 3-branch and FORK.

 The following table compares some of the hash functions against the known

structural attacks and multicollision attack by Wang presented in Section 1.4 and

Section 1.5. Here NA=Not applicable and A=Applicable based on the security proofs

for each of the hash functions presented in Chapter 2 and Chapter 3.

Compression Zipper

hash

3C hash Dither hash 3-Branch

hash

Merkle-Damgård

construction

Message

expansion attack

NA NA NA NA A

Joux’s multi-

collision attack

A A A A A

Deans attack NA NA NA NA A

Wang’s attack NA NA NA NA A

 Table 9: Compression of some hash functions against some attacks.

 PART-A

 PART-B

 lxxvii

Chapter-4

Applications of hash functions

 Hash functions are an important primitive in cryptography because of their

great variety of applications. Digital signatures, data integrity, group signatures,

password tables and etc are some examples of the applications of the hash functions.

4.1. Digital signature:

 Digital signatures were the major application of the hash functions

historically. They are easily transportable, cannot be imitated by someone else and

can be automatically time stamped. In fact, digital signatures are independent of hash

functions it’s just more efficient to sign a hash of the message rather that the message

itself. One form of the definition for digital signature can be as in Definition-7. In fact

digital signature can be defined in many other ways as indicated in [1, 8, 13].

Definition-7:

 An electronic signature that can be used to authenticate the identity of the

sender of a message or the signer of a document and also to ensure that the original

content of the message or the document that has been sent is unchanged is known as a

digital signature.

 A hash function can generate a hash value for a message of an arbitrary length

which will be of fixed length and much smaller than the original message. Any

change to the message invariably produces a different hash result when the same hash

function is used. A hash function therefore enables us to create a digital signature to

operate on smaller and predictable amounts of data, while still providing robust

evidentiary correlation to the original message content, thereby efficiently providing

assurance that there has been no modification of the message since it was digitally

signed. Hence, digital signature usually involves two processes, one performed by the

signer and the other by the receiver of the digital signature. The overall operational

pattern of the digital signature can be explained as follows.

4.1.1. Creation of digital signature:

 The whole process for creating digital signature can be explained using the

Figure 22. To sign a message or a document the signer first delimits precisely the

 lxxviii

borders of what is to be signed. The delimited information is called a message or a

document. Then the hash function is used to generate the hash value of the message to

be signed. The hash value generated by the hash function is unique to the message.

The signer then transforms the hash value into a digital signature using his/her private

key. The resulting digital signature is thus unique to both the message and the private

key used to create it. Finally, the digital signature is attached to its message and

transmitted with its message.

 Figure 22: Creation of digital signature.

4.1.2. Verification of digital signature:

 Verification of digital signature is done by computing a new hash result of the

original message by means of the same hash functions used to create the digital

signature. Then, using the public key and the new hash result, the verifier checks the

following: (a) Whether the digital signature was created using the corresponding

private key; and (b) whether the newly computed hash result matches the original

hash result which was transformed into the digital signature during the signing was

transformed into the digital signature during the signing process.

 The verifier will then confirm the digital signature as verified if: (a) The

signer’s private key was used to digitally sign the message, which is known to be the

case if the signer’s public key was used to verify the signature because the signer’s

public key will verify only a digital signature created with the signer’s private key;

and (b) The message was unaltered, which is known to be the case if the hash result

computed by the verifier is identical to the hash result extracted from the digital

signature during the verification process.

 To verifier

 “Only private key holder can sign”

 Message Hash
 function

 Hash result
 Signing
 function

 Message

Private Key

 Digital
 signature

 lxxix

 Figure 23: Verification of digital signature.

 Figure 23: Verification of digital signature.

4.2. Data integrity:

 Data authentication and data integrity are two issues which cannot be

separated. There should be a source for any data which has been altered and if a

source cannot be determined, then the question of alteration cannot be settled.

Integrity mechanisms thus provide data authentication and vice versa. Hence data

authentication should also be considered along with data integrity.

Definition-8: (Data origin authentication):

 The type of authentication whereby a party is corroborated as the original

source of specified data created at some time in the past is known as data origin

authentication.

Definition-9: (Data integrity):

 Data integrity is the property whereby data has not been altered in an

unauthorized manner since the time it was created, transmitted, or stored by an

authorized source.

 Operations which invalidate integrity include insertion of bits, inserting

entirely new data items from fraudulent sources, deletion of bits, reordering of bits or

groups of bits, inversion or substitution of bits and any combination of these.

4.2.1. Data integrity using a ‘MAC’ alone:

 A Message Authentication Code (MAC) is designed specially for applications

where data integrity is required but not necessarily privacy. The originator of a data x

computes a MAC)(xhk (where h is a hash function) over the data using a secret

MAC key k shared with the intended recipient and transmits both the data and the

generated MAC to the recipient.

From
Signer

 Valid Y/N

 “Any one can verify”

Message

Digital
Signature

 Hash
 function

Verifying
 Function

Public Key

 Hash
 result

 lxxx

 The recipient then determines by some means the claimed source identity,

separates the received MAC from the received message, independently computes a

MAC over this message using the shared MAC key and compares the computed MAC

to the received MAC. The recipient interprets the agreement of these values to mean

the data is authentic and has integrity that is, it originated from the other party which

knows the shared key and has not been altered in transit. Data integrity using a MAC

alone can be diagrammatically represented as in Figure 24.

 Secret Key

 Unsecured channel

 Figure 24: Data integrity using a ‘MAC’ alone.

4.2.2. Data integrity using encryption and a Modification Detection code (MDC):

 If both confidentiality and integrity are required then, data integrity technique

employing an MDC-‘ h ’of m -bit may be used. The originator of a data x computes a

hash value)(xhH = over the data, appends it to the message and encrypts the

augmented data using a symmetric encryption algorithm E with shared key k ,

producing cipher text))(||(xhxEC k= . This is transmitted to the recipient who

determines which key to use for decryption and separates the recovered data x′ from

the recovered hash H ′ . For the explanation on MDC Page 2 can be referred.

 The recipient then independently computes the hash)(xh ′ of the received

message x′ and compares this to the recovered hash H ′ . If these matches then the

recovered message is accepted as both being authentic and having integrity. The

definition of MDC is as in Section-1 (page-2). Diagrammatical representation of data

integrity using encryption and an MDC is as shown in Figure 25.

 Message

 MAC
 Algorithm

Message MDC

 lxxxi

 Security-Key

 Encrypted

 Unsecured channel

 Figure 25: Data integrity using encryption and MDC.

4.2.3. Data integrity using an MDC and an authentic channel:

 The use of a secret key is not essential in order to provide data integrity. It

may be eliminated by hashing a message and protecting the authenticity of the hash

via an authentic but not necessarily private channel. The originator computes a hash

code using MDC over the message data then transmits the data to a recipient over an

unsecured channel and finally transmits the hash code over an independent channel

which is known to provide data origin authentication. The recipient hashes the

received data and compares the hash code with the received one. If these values are

same the recipient accepts the data as having integrity. Data integrity using an MDC

and an authentic channel can be diagrammatically represented as in the Figure 26.

 Authentic channel

 Unsecured channel

 Figure 26: Data integrity using an ‘MDC’ and an authentic channel.

 Message MAC
 Algorithm

 MDC

 Message MAC
 Algorithm

MESSAGE MDC

Message MDC

 ENCRYPTION
 ALGORITHM

 lxxxii

Chapter-5

Conclusion and open problems

5.1. Conclusion:

The following are the major points dealt in this thesis:

1. A survey on types of hash functions.

2. A survey on types of attacks on hash functions.

3. Structural weaknesses of the Merkle-Damgård construction.

4. Recent differential collision attack on widely deployed hash functions such as

MD4, MD5 and SHA-1 by Wang.

5. Classification of hash functions based on streamability and non-streamability of the

design and based on number of inputs to the compression function of the hash

function.

6. Replacement and modification methods to the existing dedicated hash functions to

resist against the known generic attacks.

7. Applications of hash functions.

 Sections 1.2 & 1.3 fulfil the first two points. There are various other types of

hash functions but only hash functions based on block ciphers and dedicated hash

functions are explained because of their current wide usage. Almost all the dedicated

hash functions are constructed using the Merkle-Damgård construction. However,

there are various structural weaknesses found on this construction. Some of the

structural weaknesses dealt in this thesis are:

a) Message expansion attack.

b) Joux’s multi-collision attack.

c) Fixed point attack by Dean and its extension by Kelsey and Schneier.

d) The herding attack by Kelsey and Kohno.

MD4, MD5, SHA-0, SHA-1 and RIPEMD are the most widely deployed hash

functions in various applications of cryptography. However, all these hash functions

were broken fully by Wang, using a differential collision attack. To overcome this,

various researchers have proposed a variety of replacements and modifications to the

effected hash functions. Some of the replacements or modifications proposed for

existing hash functions by various researchers in recent past are:

 lxxxiii

a) The Zipper hash construction [84].

b) The wide pipe and the double pipe designs [82].

c) The 3C and the 3C+ hash constructions [11].

d) Dithering hash function [4].

e) Pre fix free Merkle-Damgård construction [83]

f) HAIFA—a framework of iterative hash functions [85].

 Using these and already existing hash functions a new classification for hash

functions is presented in Section-2. This classification is based on streamability and

non-streamability of the design of hash functions and also based on the number of

inputs to the compression function of the hash function. This type of classification is

not seen in any reference of the hash functions. The Zipper hash construction is the

only non-streamable hash function available currently. The security analysis of each

hash function is also presented.

 As far as the modifications to the existing hash functions are concerned, there

are two modification methods proposed in Sections 3.1 and 3.2:

1) Collision resistance of a hash function using message preprocessing and

2) Enhanced SHA-1 IME hash function.

 To provide collision resistance to a hash function using a message preprocessing a

technique called reverse interleaving is proposed which is similar to that of self

interleaving approach proposed in [5]. Using these approaches it is easy to avoid the

collision on hash functions such as MD-5 and SHA-1.

 The implementation of this modification is straight forward and is shown in

Section 3.1.4. The standardized hash function is used without making any changes to

it for processing a message after it is preprocessed using reverse interleaving

technique. These techniques, repeat each message block in such a way that the same

message block appears twice consecutively. Thus, each message block is processed

twice consecutively which makes it hard to apply the message modification technique

of Wang’s attack.

 In [91] an enhancement to SHA-1 hash function has been proposed as a

modified version and is known as SHA-1 IME. In relation to this, a new enhancement

is proposed in Section 3.2 using a different type of enhancement. These replacements

are based on replacing the message expansion mechanism of SHA-1 hash function.

The similar enhancement can be generated to other standardized hash functions. The

 lxxxiv

new enhancement proposed will provide better mixing of the input strings because of

the additional conditions used.

 On the other hand, as far as the replacement of hash functions is concerned a

new 256-bit dedicated hash function known as 3-branch has been proposed. The

design of 3-branch is similar to that of FORK-256 in [95]. The modifications are that

only three branches are used instead of four branches in the compression function of

3-branch to process a message, and an addition input called dither value is used in

each step. In [98] an attack was proposed on FORK-256, the similar attack cannot be

applied to 3-branch because of the additional dither value used as an input to the

compression.

 The performance of FORK-256 is faster compared with that of SHA-256

because of the smaller number of addition and XOR operations used. 3-branch uses

much less operations when compared with that of FORK-256. There are three parallel

branch used to process a message unlike SHA-256, which uses four serial rounds. As

indicated in Section-3.3.1.8 the nonlinear functions used by 3-branch are more secure

than the boolean functions used in SHA-256. All these properties collectively make

the 3-branch secure compared with that of SHA-256 and FORK-256.

 Hash functions are important because of their wide variety of applications.

Digital signatures and MAC’s are the major and historical application of hash

functions. Apart from digital signature some of the major applications of hash

functions are data integrity, group signature, password table, digital watermarking,

etc. Some of these applications are clearly explained in Chapter 4.

5.2. Open problems:

The following are some of the open problems which are worth to consider:

1. Are there any attacks against the dithering hash function design, which in turn

weakens the design of 3-branch?

2. Is there any other possibility of designing different types of non-streamable

hash function designs and what properties do they have against the current

weaknesses?

3. Are there any other types of attacks else than the differential attack which lead

to a collision?

4. Are the modified versions of hash functions proposed recently are really

worthfull to extend lives against the known generic attacks?

 lxxxv

References

[1]. RSA Laboratories. RSA Laboratories frequently asked questions about

today’s cryptography, version 4.1.2000. Accessed on-

http://www.rsasecurity.com. Last accessed on 12th of December 2006.

[2]. Ilya Mironov. “Hash functions: Theory, attacks, and applications”.

Accessed on-

 http://research.microsoft.com/users/mironov/papers/hash_survey.pdf. Last

 accessed on 15th of December 2006.

[3]. Alfred J. Menezes, Paul C. Van Oorschot and Scott A. Vanstone.

Handbook of Applied Cryptography, Chapter 9: “Hash functions and data

integrity”, pages 321-383. The CRC Press series on discrete mathematics and

its applications. CRC Press, 1997.

[4]. Ronald L. Rivest. Abelian square-free dithering for iterated hash

functions. Accessed on- http://theory.lcs.mit.edu/~rivest/Rivest-

AbelianSquareFreeDitheringForIteratedHashFunctions.pdf. Last accessed on

15th of December 2006.

[5]. Michael Szydlo and Yiqun Lisa Yin. “Collision-resistant usage of

MD5 and SHA-1 via message preprocessing”. In David Pointchevalm editor,

CT-RSA, volume 3890 of Lecture Notes in Computer Science, pages 99-114.

Springer,2006

[6]. Ralph Merkle. “One way hash functions and DES”. In Gilles Brassard,

editor, Advances in cryptology: CRYPTO 89, volume 435 of Lecture Notes in

Computer Science, pages 428-446. Springer-Verlag, 1989.

[7]. Ivan Damgård. “A design principle for hash functions”. In Gilles

Brassard, editor, Advances in Cryptology: CRYPTO 89, volume 435 of

Lecture Notes in Computer Science, pages 416-427. Springer-Verlag, 1989.

[8]. S. Bakhtiari, R. Safavi-Naini and J. Pieprzyk. “Cryptographic hash

functions: A Survey”. Technical Report 95-09, Department of Computer

Science, University of Wollongong, July 1995.

[9]. B. Preneel, R. Govaerts and J. Vandewalle. “Hash functions based on

block ciphers”. In Advances in Cryptology, CRYPTO’ 93, Lecture Notes in

Computer Science, pages 268-378. Springer-Verlag, 1994.

 lxxxvi

[10]. Wikipedia, the free encyclopaedia. Hash functions based on block

ciphers. 2005. Accessed on-

 http://en.wikipedia.org/wiki/Hash_functions_based_on_block_ciphers. Last

 accessed on 12th of December 2006.

[11]. Praveen Gauravaram, William Millan, Ed Dawson and Kapali

Viswanathan. “Constructing Secure Hash Functions by Enhancing Merkle-

Damgård Construction”. In Lynn Batten, Reihaneh Safavi-Naini, editors,

Information Security and Privacy, volume 4058 of Lecture Notes in Computer

Science, pages 407-420. Springer, 2006.

[12]. William Stallings. Cryptography and Network Security: Principles and

Practice. Third edition, Prentice Hall. 2003.

[13]. Bart Preneel. Analysis and design of cryptographic hash functions.

PhD thesis, Katholieke Universiteit Leuven, updated version, 2003.

[14]. William Feller. “An introduction to probability theory and its

applications”. Volume 1. Wiley, 1968.

[15]. K. Ohta and K. Koyama. “Meet-in-the-middle attack on digital

signature schemes”. AUSCRYPT’ 90, pages 110-121, 1991.

[16]. D. Coppersmith. “Another birthday attack. Advances in cryptology”,

Proc. Crypto’85, volume 218 of Lecture Notes in Computer Science, pages

14-17. Springer-Verlag, 1985.

[17]. M. Girault. “Hash functions using modulo-n operations”. Advances in

Cryptology, Proc. Eurocrypt’87, volume 304 of Lecture Notes in Computer

Science, pages 217-226. Springer-Verlag, 1988.

[18]. M. Girault, R. Cohen and M. Campana. “A generalized birthday

attack”. Advances in Cryptology, Proc. Eurocrypt’88, volume 330 of Lecture

Notes in Computer Science, pages 129-156. Springer-Verlag, 1988.

[19]. M. Girault, P. Toffin and B.Vallee. “Computation of approximate Lth

roots modulo-n and application to cryptography”. Advances in cryptology,

Proc. Crypto’88, volume 403 of Lecture Notes in Computer Science, pages

100-117. Springer-Verlag, 1990.

[20]. E. Biham. “On the applicability of differential cryptanalysis to hash

functions’. Oberwolfach (D), March 25-27, 1992.

[21]. E. Biham and A. Shamir. Differential cryptanalysis of iterated

cryptosystems. Springer-Verlag, 1992.

 lxxxvii

[22]. American National Standard for Data Encryption Algorithm (DEA).

X3.92-1981, ANSI, New York.

[23]. L. Brown, M. Kwan, J. Pireprzyk and J. Seberry. “LOKI- a

cryptographic primitive for authentication and secrecy applications”.

Advances in Cryptology, Proc. Auscrypt’90, volume 453 of Lecture Notes in

computer Science, pages 229-236. Springer-Verlag, 1990.

[24]. X. Lai and J.L. Massey. “A proposal for a new block encryption

standard”. Advances in Cryptology, Proc. Eurocrypt’90, volume 473 of

Lecture Notes in Computer Science, pages 389-404. Springer-Verlag, 1991.

[25]. X. Lai, J. L. Massey and S. Murphy. “Markov ciphers and differential

cryptanalysis”. Advances in Cryptology, Proc. Eurocrypt’91, volume 547 of

Lecture Notes in Computer Science, pages 17-38. Springer-Verlag, 1991.

[26]. X. Lai and J. L. Massey. “Hash functions based on block ciphers”.

Advances in Cryptology, Proc. Eurocrypt’92, volume 658 of Lecture Notes in

Computer Science, pages 55-70. Springer-Verlag, 1993.

[27]. X. Lai. “On the design and security of block ciphers”. ETH Series in

Information Processing, volume 1. Hartung-Gorre Verlag, Konstanz, 1992.

[28]. D. Coppersmith. “Analysis of ISO/CCITT Document X.509 Annex

D”. IBM T. J. Watson centre, Yorktown Heights, N. Y., 10598, Internal

Memo, June 11, 1989.

[29]. Niels Ferguson and Bruce Schneier. Practical Cryptography, “Hash

Functions”, pages 83-99. John Wiley and Sons, 2003.

[30]. Arjen K. Lenstra. Further progress in hashing cryptanalysis. Accessed

on- http://cm.bell-labs.com/who/akl/index.html. Last accessed on 16th of

December 2006.

[31]. J. Daemen and V. Rijmen. “The design of Rijndael: AES The

Advanced Encryption Standard”. Springer, 2002.

[32]. J. Black, P. Rogaway and T. Shrimpton. “Black box analysis of the

block cipher based hash function constructions from PGV”. In Advances in

Cryptology CRYPTO’02, volume 2442 of Lecture Notes in Computer science,

pages 320-335. Springer-Verlag, 2002.

[33]. B. Van Rompay. Analysis and design of cryptographic hash functions,

MAC algorithm and block cipher. Katholieke Universiteit Leuven, June 2004.

 lxxxviii

[34]. Bart Preneel. “The state of cryptographic hash functions”. In Lectures

on Data Security, volume 1561 of Lecture Notes in Compute Science, pages

158-182. Springer-Verlag, 1999.

[35]. Paulo Barreto. Personal Communication, 2006.

[36]. Praveen Gauravaram, William Millan and Lauren May. “CRUSH: A

new cryptographic hash function using iterative halving technique”. In

Proceedings of the workshop on cryptographic algorithms and their uses,

pages 28-39. July 2004.

[37]. Praveen Gauravaram, William Millan, Juanma Gonzalez Nieto and

Edward Dawson. “3C-A provably secure pseudorandom function and message

authentication code”. A new mode of operation for cryptographic hash

function. Cryptology ePrint Archive, Report 2005/390, 2005.

[38]. Stefan Lucks. “Design principles for iterated hash functions”.

Cryptology ePrint Archive, Report 2004/253, 2004.

[39]. Hirotaka Yoshida and Alex Biryukov. “Analysis of a SHA-256

variant”. In selected areas in cryptography, volume 3897 of Lecture Notes in

Computer Science, pages 245-260. Springer, 2005.

[40]. Stefan Lucks. “A failure-friendly design principle for hash functions”.

In Bimal Roy, editor, Advances in Cryptology- ASIACRYPT 2005, volume

3788 of Lecture Notes in Computer Science, pages 474-494. Springer-Verlag,

2005.

[41]. Moses Liskov, Ronald L. Rivest and David Wagner. “Tweakable block

ciphers”. In Moti Yung, editor, Advances in Cryptology-Proceedings

CRYPTO’02, volume 2442 of Lecture Notes in Computer Science, pages 31-

46. Springer, 2002.

[42]. Lara Knudsen and Bart Preneel. “Construction of secure and fast hash

functions using nonbinary error-correcting codes”. IEEE Transactions on

Information Theory, 48(9):2524-2539, September 2002.

[43]. T. Satoh, M. Haga and K. Kurosawa. “Towards secure and fast hash

functions”. IEICE Transactions on Fundamentals, E82-A (1), pages 55-62,

1999.

[44]. N. Pramstaller and V Rijmen. “A collision attack on a double block

length hash proposal”. Cryptology ePrint Archive, Report 2006/116, 2006.

 lxxxix

[45]. M. Nandi, W. Lee, K. Sakurai and S. Lee. “Security analyses of 2/3-rat

double length compression function in the black box model”. In Proceedings

of the 12th Fast Software Encryption (FSE 2005), Lecture Notes in Computer

Science 35571, pages 243-254, 2005.

[46]. M. Nandi. “Towards optimal double-length hash functions”. In

Proceedings of the 6th International Conference on Cryptology in India,

INDOCRYPT’05, Lecture Notes in Computer Science 3797, pages 77-89,

2005.

[47]. M. Nandi. Design of iteration on hash functions and its cryptanalysis.

PhD thesis, Indian Statistical Institute, 2005.

[48]. J. Black, M.Cochran and T. Shrimpton. “On the impossibility of highly

efficient block cipher based hash functions”. In EUROCRYPT 2005

Proceedings, volume 3494 of Lecture Notes in Computer Science, pages 526-

541, 2005.

[49]. D.R. Simon. “Finding collisions on a one-way street: Can secure hash

functions are based on general assumptions?”. EUROCRYPT’98 Proceedings,

volume 1403, Lecture Notes in Computer Science, pages 334-345, 1998.

[50]. P. C. van Oorschot and M. J. Wiener. “Parallel collision search with

cryptanalytic applications”. Volume 12-1, pages 1-28, 1999.

[51]. Antoine Joux. Multi-collisions in iterated hash functions. Application

to Cascade Constructions. In Matt Franklin, editor, Advances in Cryptology-

CRYPTO’04, volume 3152 of Lecture Notes in Computer Sciences, pages

306-316, Springer 2004.

[52]. Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD

thesis, Princeton University, 1999.

[53]. John Kelsey and Bruce Schneier. “Second preimages on n-bit hash

functions for much less than n2 work”. In Ronald Cramer, editor, Advances in

Cryptology-EUROCRYPT’05, volume 3494 of Lecture Notes in Computer

Science, pages 474-490. Springer, 2005.

[54]. John Kelsey and Tadayoshi Kohno. “Herding hash functions and the

Nostradamus attack”. Eurocrypt 2006. Accessed on-

http://csrc.nist.gov/pki/HashWorkshop/2005/Oct31_Presentations/Kelsey_Her

dingHash.pdf. Last accessed on 17th of December 2006.

 xc

[55]. H. Yu, G. Wang, G. Zhang, X. Wang. “The second preimage attack on

MD4”. CANS 2005.

[56]. X. Wang, Y. L. Yin, H. Yu. “Finding collision search attacks on SHA-

1”. Crypto 2005.

[57]. X. Wang, H.Yu, Y. L. Yin. “Efficient collision search attacks on SHA-

0”. Crypto 2005.

[58]. X. Wang, A. Yao, F. Yao. “New Collision search for SHA-1”. Crypto

2005.

[59]. X. Wang, H. Yu. “How to break MD5 and other hash functions”.

Volume 3494 of Lecture Notes in Computer Science, pages 19-35. Eurocrypt

2005.

[60]. X. Wang, X. Lai, D. Feng, H. Cheng, X. Yu. “Cryptanalysis of the

hash functions MD4 and RIPEMD”. Volume 3494 of Lecture Notes in

Computer Science, pages 1-18. Eurocrypt 2005.

[61]. E. Biham and R. Chen. “Near Collisions of SHA-0”. Advances in

Cryptology-CRYPTO’04, volume 3152 of Lecture Notes in Computer

Science, pages 290-350. Springer-Verlag, 2004.

[62]. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby.

“Collisions on SHA-0 and Reduced SHA-1”. Advances in Cryptology-

EUROCRYPT’05, volume 3494 of Lecture Notes in Computer Science, pages

36-57. Springer-Verlag, 2005.

[63]. E. Biham and R. Chen. “New Results on SHA-0 and SHA-1”. Rump

Section at CRYPTO’04, August 2004.

[64]. H. Dobbertin. “Cryptanalysis of MD4”. Journal of Cryptology 11:4

(1998), pages 253-271.

[65]. F. Chabaud and A. Joux. “Differential Collisions in SHA-0”. Advances

in Cryptology-CRYPTO’98, volume 1462 of Lecture Notes in Computer

Science, pages 56-71. Springer-Verlag, 1998.

[66]. H. Gilbert and H. Handschuh. “Security Analysis of SHA-256 and

Sisters”. SAC’03, volume 3006 of Lecture Notes in Computer Science, pages

175-193. Springer-Verlag, 2004.

[67]. P. Hawkes, M. Paddon and G. G. Rose. “Security on Corrective

Patterns for the SHA-2 Family”. Cryptology ePrint Archive, Report 2004/207.

 xci

[68]. Ronald L. Rivest. “C-code for generating proposed dither sequence”,

2005. Accessed on-

 http://theory.lcs.mit.edu/~rivest/Rivest-AbelianSquareFreeDithering.c. Last

 accessed on 17th of December 2006.

[69]. Michael Rabin. “Digitalized signatures and public-key functions as

intractable as factorization”. Technical Report MIT/LCS/TR-212, Laboratory

for Computer Science, Massachusetts Institute of Technology, January 1979.

[70]. P. A. B. Pleasants. “Non repetitive sequences”. Proc. Cambridge Phil.

Soc., 68:267-274, 1970.

[71]. Jean-Paul Allouche and Jeffrey Shallit. “On-line bibliography on

repetition-free sequences”. Accessed on-

 http://www.cs.waterloo.ca/~shallit/asbib/repetitions.bib. Last accessed on 12th

of December 2006.

[72]. Junko Nakajima and Mitsuru Matsui. “Performance analysis and

parallel implementation of dedicated hash functions”. Proc. Of

EUROCRYPT’02, volume 2332 of Lecture Notes in Computer Science, pages

165-180. Springer, 2002.

[73]. Bruce Schneier. Applied cryptography: Protocols, algorithms and

source code in C. Second edition, Wiley, 1995.

[74]. Magnus Daum and Stefan Lucks. “Attacking hash functions by

poisoned messages”. Presented at rump session of EUROCRYPT’05. 2005.

[75]. Ronald Cramer and Victor Shoup. “Signature schemes based on the

strong RSA assumption”. ACM Transactions on Information and System

Security, volume 3(3), pages 161-185, 2000.

[76]. G. Tsudik. Message authentication with one way hash functions. IEEE

INFOCOM’92. 1992.

[77]. Y. Zheng and J. Seberry. “Practical approaches to attaining security

against adaptively chosen cipher text attacks”. Advances in Cryptology-

CRYPTO’92 Proceedings, volume 740 of Lecture Notes in Computer Science.

Springer-Verlag, 1992.

[78]. R. Rivest, A. Shamir and L. Adleman. “A method for obtaining digital

signatures and public key cryptosystems”. CACM 21, 1978.

 xcii

[79]. W. Diffie and M. Hellman. “New Directions in Cryptography”. IEEE

Transactions on Information Theory, volume 22-IT, pages 644-654,

November 1976.

[80]. S. Bakhtiari, R. Safavi-Naini and J. Pieprzyk. “On Selectable Collision

full Hash Functions”. In the Australian Conference on Information Security

and Privacy, 1996.

[81]. M. Hattori, S. Hirose and S. Yoshida. “Analysis of double block length

hash functions”. In proceedings of the 9th IME International Conference on

Cryptography and Coding, volume 2898 of Lecture Notes in Computer

Science, Pages 290-302, 2003.

[82]. Stefan Lucks. “A failure-friendly design principle for hash functions”.

In ASIACRYPT’05 Proceedings, volume 3788 of Lecture Notes in Computer

Science, pages 474-494. 2005.

[83]. Jean Sebastien Coron, Yevgeniy Dodis, Cecile Malinaud and Prashant

Puniya. “Merkle-Damgård revisited: How to construct a hash function”. In

CRYPTO’05 Proceedings, volume 3621 Lecture Notes in Computer Science,

pages 430-448, 2005.

[84]. Moses Liskov. “Constructing secure hash functions from weak

compression function: The case of non-streamable hash functions”. Accessed

on http://www.cs.wm.edu/~mliskov/hash.pdf. Last accessed on 17th of

December 2006.

[85]. Eli Biham and Orr Dunkelman. “A framework for iterative hash

functions-HAIFA”. Accessed on-

 http://csrc.nist.gov/pki/HashWorkshop/2006/papers/. Last accessed on 15th of

 December 2006.

[86]. H. Dobbertin, A. Bosselaers and B. Preneel. “RIPEMD-160, a

strengthened version of RIPEMD hash function”. FSE’96, volume 1039 of

Lecture Notes in Computer Science, pages 71-82. Springer-Verlag, 1996.

[87]. Cryptography mailing list. More problems with hash functions. August

2004.

[88]. M. Bellare and P. Rogaway. “Random oracles are practical: a

Paradigm for designing efficient protocols”. Proceedings of First Annual

Conference on Computer and Communications Security, ACM, 1993.

 xciii

[89]. U. Maurer, R. Renner and C. Holenstein. “Indifferentiability,

Impossibility Results on Reductions and Applications to the Random Oracle

Methodology”. Theory of Cryptography-TCC’04, volume 2951, of Lecture

Notes in Computer Science, pages 21-39. Springer-Verlag 2004.

[90]. Mihir Bellar, Ran Canetti and Hugo Krawczyk. “Keying hash

functions for message authentication”. In Nel Koblitz, editor, Advances in

Cryptology- CRYPTO’96, volume 1109 of Lecture Notes in Computer

Science, pages 1-15. Springer-Verlag, 1996.

[91]. C. S. Jutla and A. C. Patthak. “A simple and provable good code for

SHA message expansion”. In IACR ePrint archive 2005/247. July, 2005.

[92]. Federal Information Processing Standard (FIPS). “Secure Hash

Standard”. National Institute for Standards and Technology, August 2002.

[93]. Federal Information Processing Standard (FIPS). “Secure Hash

Standards”. National Institute for Standards and Technology, 1993.

[94]. Federal Information Processing Standard (FIPS). “Secure Hash

Standards”. National Institute for Standards and Technology, 1994.

[95]. D. Hong, S. Jaechul, S. Hong, S. Lee and D. Moon. “A new dedicated

256-bit hash function: FORK-256”. First NIST Workshop on Hash Functions,

2005.

[96]. V. Keranen. “Abelian squares on Automata, Languages and

Programming”. ICALP, volume 623 of Lecture Notes in Computer Science,

pages 41-52. Springer, 1992.

[97]. V. Keranen. “On Abelian square free DT0L-languages over 4 letters”.

Fourth Conference on Combinatorics on Words, volume 27 of TUCS General

Publication, pages 95-109. Turku Center for Computer Science, 2003.

[98]. Krystian Matusiewicz, Scott Contini and Josef Pieprzyk. “Collisions

for two branches of FORK-256”. Accessed on-

http://infosec.pku.edu.cn/~guanzhi/paper/eprint/2006/317.pdf. Last accessed

on 15th of December 2006.

[99]. R. Anderson and E. Biham. “Tiger: A fast new hash function”. In D.

Gollmann, editor, Fast software Encryption-FSE’96, volume 1039 of Lecture

Notes in Computer science, pages 121-144. Springer-Verlag, 1996.

[100]. R. L. Rivest. “The MD4 message digest algorithm”. Request for

Comments (RFC) 1320, Internet Engineering Task Force, April 1990.

 xciv

[101]. R. L. Rivest. “The MD5 message digest algorithm”. Request for

Comments (RFC) 1321, Internet Engineering Task Force, April 1992.

[102]. R. L. Rivest. “The MD2 message digest algorithm”. Request for

Comments (RFC) 1319, Internet Engineering Task Force, 1990.

[103]. H. Yoshida, A. Biryukov, C. D. Canniere, J. Lano and B. Preneel.

“Non randomness of the full 4 and 5 pass HAVAL”. In Proceedings of

SCN’04, volume 3352 of Lecture Notes in Computer Science, pages 324-336.

Springer-Verlag, 2005.

[104]. Y. Shin, J. Kim, G. Kim, S. Hong and S. Lee. “Differential linear type

attacks on reduced rounds of SHACAL-2”. In Proceedings of ACISP’04,

volume 3108 of Lecture Notes in Computer Science, pages 110-122. Springer-

Verlag, 2004.

[105]. I. B. Damgård. The application of claw free functions in cryptography.

PhD Thesis, Aarhus University, Mathematical Institute, 1988.

[106]. I. B. Damgård and L. R. Knudsen. “Some attacks on the ARL hash

function”. Presented at the rump session of AUSCRYPT’92, 1992.

[107]. L. R. Knudsen and J. E. Mathiassen. “Preimage and collision attack on

MD2”. In Proceedings of FSE’05, volume 3557 of Lecture Notes in Computer

Science, pages 255-267. Springer-Verlag, 2005.

[108]. I. B. Damgård. “Collision free hash functions and public key signature

schemes”. Advances in cryptology, Proceedings Eurocrypt’87, LNCS 304, D.

Chaum and W.L. Price, Eds., Pages 203-216, Springer-Verlag, 1988.

[109]. J.K. Gibson. “Discrete logarithm hash function that is collision free

and one way”. IEEE Proceedings-E, Volume 138, No. 6, Pages 407-410, 1991.

[110]. M. Bellare, O. Goldwasser. “Incremental Cryptography: the case of

hashing and signing”. Advances in Cryptology, Proceedings Crypto’ 94,

LNCS 839, Y. Desmedt, Eds., Pages 216-233, Springer-Verlag, 1994.

[111]. D. Coppersmith, B. Preneel. “Comments on MASH-1 and MASH-2”.

ISO/IEC JTC1/SC27/N1055, 1995.

[112]. ISO/IEC 10118. “Information technology-Security techniques-Hash

functions, Part-1: General”. 1994.

[113]. ISO/IEC 10118. “Information technology-Security techniques-Hash

functions, Part-2: Hash functions using n-bit block cipher algorithm”. 1994.

 xcv

[114]. ISO/IEC 10118. “Information technology-Security techniques-Hash

functions, Part-3: Dedicated hash functions, Part-4: Hash functions using

modular arithmetic”. 1998.

[115]. ISO/IEC 10118. “Information technology-Security techniques-Hash

functions, Part-4: Hash functions using modular arithmetic”. FDIS. 1998.

