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Abstract  

 

 A function that compresses an arbitrarily large message into a fixed small size 

‘message digest’ is known as a hash function. For the last two decades, many types of 

hash functions have been defined but, the most widely used in many of the 

cryptographic applications currently are hash functions based on block ciphers and the 

dedicated hash functions. Almost all the dedicated hash functions are generated using 

the Merkle-Damgård construction which is developed independently by Merkle and 

Damgård in 1989 [6, 7].  
 A hash function is said to be broken if an attacker is able to show that the 

design of the hash function violates at least one of its claimed security property.     

There are various types of attacking strategies found on hash functions, such as 

attacks based on the block ciphers, attacks depending on the algorithm, attacks 

independent of the algorithm, attacks based on signature schemes, and high level 

attacks. Besides this, in recent years, many structural weaknesses have been found in 

the Merkle-Damgård construction [51-54], which indirectly effects the hash functions 

developed based on this construction.  

 MD5, SHA-0 and SHA-1 are currently the most widely deployed hash 

functions. However, they were all broken by Wang using a differential collision attack 

in 2004 [55-60], which increased the urgency of replacement for these widely used 

hash functions. Since then, many replacements and modifications have been proposed 

for the existing hash functions. The first alternative proposed is the replacement of the 

effected hash function with the SHA-2 group of hash functions. 

 This thesis presents a survey on different types of the hash functions, different 

types of attacks on the hash functions and structural weaknesses of the hash functions. 

Besides that, a new type of classification based on the number of inputs to the hash 

function and based on the streamability and non-streamability of the design is 

presented. This classification consists of explanation of the working process of the 

already existing hash functions and their security analysis. Also, compression of the 

Merkle-Damgård construction with its related constructions is presented.   Moreover, 

three major methods of strengthening hash functions so as to avoid the recent threats 

on hash functions are presented. 



 v

 The three methods dealt are: 1) Generating a collision resistant hash function 

using a new message preprocessing method called reverse interleaving. 2) 

Enhancement of hash functions such as MD-5 and SHA-1 using a different message 

expansion coding, and 3) Proposal of a new hash function called 3-branch. The first 

two methods can be considered as modifications and the third method can be seen as a 

replacement to the already existing hash functions which are effected by recent 

differential collision attacks. The security analysis of each proposal is also presented 

against the known generic attacks, along with some of the applications of the 

dedicated hash function. 
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Chapter 1   

Introduction  

 

1.1. Overview of hash functions: 

 A function that maps an arbitrary large message into a message digest of fixed 

small size is known as a hash function. The input to a hash function is typically called 

as a ‘message’ or the ‘plain text’ and the output is often referred to as ‘message 

digest’ or the ‘hash value’ [1]. The basic idea is that, the message digest should serve 

as a compact representative image of an input string and can be used as if it is 

uniquely identifiable with that string. That is, the output of the hash functions should 

serve as a digital finger-print for the input and should be the same each time the same 

message is hashed. 

 For a hash function to be secure it is required to be one-way and collision 

resistant. The one-way property can be achieved if it is easy to generate the message 

digest of a message but, is hard to determine the original message when the digest of 

it is known. On the other hand, collision resistance can be attained if it is hard to find 

two different messages, having same message digest as output. Apart from these 

requirements, the hash function should be accepting a message of any size as input 

and computation of the message digest must be fast and efficient. 

 Depending on whether or not a key is used or not in designing a hash function, 

hash functions can be divided into two types: 

 1) Keyed hash functions and 

 2) Unkeyed hash functions. 

1) Keyed hash functions:  

 As the name indicates, keyed hash functions use a key in generating a hash 

value. The function will accept two inputs: one a message of arbitrary finite-length, 

and the other is a fixed-length key. The main idea is that, an adversary without the 

knowledge of this key should be unable to forge the message. Message Authentication 

Code is a keyed hash function because it uses two different inputs specifically an 

arbitrary length message and a fixed length key. Besides that, the output is of fixed 

length.  
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Definition-1: (Keyed hash functions) [2]  

 The map nkH }1,0{}1,0{}1,0{: * →×  is said to be a keyed hash function with 

n -bit output and k -bit key if H  is a deterministic function that takes two inputs, the 

first of an arbitrary length, the second of k -bit length and outputs a binary string of 

length n -bits. Where ,k n  are positive integers. n}1,0{  & k}1,0{  are the set of all 

binary strings of length n  and k  respectively and *}1,0{  is a set of all finite binary 

strings. 

2) Unkeyed hash functions: 

 Almost all the hash functions that have been used since the early 1990’s for 

various types of applications in cryptography are unkeyed. The generation of hash 

function under this mechanism do not need a key. These hash functions can be used 

for error detection, by appending the digest to the message during the transmission. 

The error can be detected, if the digest of the received message, at the receiving end is 

not equal to the received message digest. This is also known as modification detection 

and hence these functions are also called modification detection codes or 

manipulation detection codes. Infact, keyed hash functions can also be used for error 

detection but the unkeyed hash functions are easier to use for this application because 

there will not be any problem of secrecy of key used. 

Definition-2: (Unkeyed hash functions) 

 The map nH }1,0{}1,0{: * →  is said to be an unkeyed hash function with n -bit 

output if H  is a deterministic function that takes an arbitrary length message as input 

and outputs a binary string of length n -bit. The notations ,n n}1,0{  and *}1,0{  are 

similar to that of in Definition-1. 

 As a fact of readability, one can note that this thesis deals only with unkeyed 

hash functions. Most unkeyed hash functions are designed using an iterative process 

which hashes the arbitrary length inputs by processing successive fixed size blocks of 

the inputs. These are also known as iterative hash functions because of the underlying 

iterative structure. Figure 1 illustrates the iterative structure based on which the 

unkeyed hash functions can be generated. This iterative structure is generally known 

as Merkle-Damgård hash construction designed by Ralph Merkle and Ivan Damgård 

independently in 1989 [6, 7]. 
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 In this iterative process the arbitrary finite-length input message M  is divided 

into r -blocks of fixed length, each of l -bits rmmmM ,.....,, 21= . The preprocessing 

which is typically known as padding involves appending extra bits as necessary to 

attain an overall bit-length which is a multiple of the block length .l  The length of the 

original message before padding is also included in the last block of the padded input 

for security reasons.  

 (a) High level view                                                           (b) Detailed view 

                                                                        Hash function H           original input M                          

                                                                                                                                               

                                                                                                                                                                         

                                                                                                                                                                  

        

               Iterative compression                                                                                                                       

                       function                                                                                            

                                              

fixed length output                                                            

                                                                   

                                    output                                                                      output                                         

           Figure 1: General model of iterative hash function construction [3]. 

 Each block of the message M  represented as im  where ri ,.....,2,1=  serves as 

input to an internal fixed size hash function ,f  known as the compression function of 

H . The iterative processing starts with a predefined initial value, the initialization 

vector .0IV  That is, the first round of the iterative process takes 0IV  and 1m  as inputs 

and computes an n -bit intermediate value for some fixed ,n  this in turn serves as an 

input to the second round along with the second block of the message .2m  This 

process is continued r -times and the final output rIV  is of n -bit length, which is 

generally known as the message digest. 

 An optional output transformation g is often used at the final step, to harden 

the message digest further. This output transformation is also known as finalisation 

  optional output transformation  

 
     arbitrary length input 
 

preprocessing 
 
 
 
 
 
 
                               formatted input 
iterative                  rmmM ,.....,1=  
processing                              
 
 
 
 
 
 
                             

append padding bits 

append length 

                       im         
 
 1−iIV                iIV             
           

g  

f  
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function it has several purposes such as compressing a bigger length message digest 

into a required smaller length or for better mixing on the bits in the hash sum. The 

finalisation function is also a compression function.          

 The preprocessing in the iterative hash function design may have several 

purposes such as, increasing the security of the whole process. The following four are 

some of the purposes of the preprocessing for hash functions of current generation [4].  

1. Purpose-1: To divide the message so that its length in bits becomes a 

multiple of some desired block size. 

2. Purpose-2: To defeat, various message expansion attacks by appending a 

length count (generally known as Merkle-Damgård strengthening). 

3. Purpose-3: To make it available the minimum distance property which in 

turn guarantees to produce a large change in the final message digest, even 

for a small change in the input message. 

4. Purpose-4: To include some time dependent variability in order to change 

the way in which the input message is converted into the final message 

digest and evolve in a way that the input message is processed. 

 There can be many other purposes for preprocessing as in [5] Szydlo and Yin 

used two different techniques called ‘message whitening’ and ‘message self 

interleaving’ to preprocess the message, for improving the security level of the 

existing hash functions such as MD5 and SHA-1 against the recent attacks by Wang. 

The basic idea of preprocessing can be used to improve the collision resistance of the 

underlaying compression function without upgrading it to a better compression 

function. For a message M  and compression function ,f  using the message 

preprocessing one can generate a compression function f ′  such that 

( ) ( )( )MfMf σ=′  where σ  is a preprocessing function *: MM →σ  and 

*MM < . The function σ  can be chosen appropriately for the particular 

compression function .f  

 The two methods of preprocessing message whitening and message self 

interleaving are of similar type. In message whitening the basic idea is to alter the 

message by inserting fixed characters at regular intervals. The fixed characters can be 

words filled with all zero bits. On the other hand, in message self interleaving the idea 

is to duplicate each message block so that, each bit appears twice after the 
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preprocessing. For example, for a message sequence rmmmM ,.....,, 21=  after 

preprocessing with self interleaving the sequence appears like 

rr mmmmmmM ,,.....,,,, 2211
* = . 

 While the security of the keyed hash functions depends on the secrecy of the 

key used the security of the unkeyed hash functions depend on the underlaying 

compression function. That is, an iterative hash function is collision resistant if the 

underlaying compression function is collision resistant [6, 7]. The well known basic 

security properties of hash functions are preimage resistance, second preimage 

resistance and collision resistance. Let H  be a hash function and MM ′,  be two 

messages such that MM ′≠  then [3]: 

1. Preimage resistance: For all pre-specified outputs, it should be 

computationally infeasible to find any input which hashes to that pre-specified 

output. That is, given a hash value ,y  it should be very hard to find a preimage 

M ′  such that .)( yMH =′  

2. Second preimage resistance: It should be computationally infeasible to find 

any second input which has the same output as any specified input. That is, 

given any message ,M  it should be hard to find a second preimage MM ≠′  

such that, ( ) ( )MHMH ′= . 

3. Collision resistance: It should to computationally infeasible to find any two 

distinct inputs MM ′, which hash to the same output. 

 The hash function map { } { }nH 1,01,0: * →  is a many to one function. Hence, it 

is clear that there exist more than one different messages having same hash value. 

But, the iterative structure should be designed in such a way that it is not feasible to 

generate different messages having same hash value. Additionally, they should resist 

preimage and second pre image attacks. 

 Hash functions can be used for error detection, by appending the digest to the 

message during the transmission. The appended digest bits are also called parity bits 

[8, 13]. The error can be detected, if the digest of the received message, at the 

receiving end is not equal to the received message digest. This is also known as 

modification detection and hence these functions are also called modification 

detection codes. 
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 It is possible to generate a fixed length digital signature, which depends on the 

whole message and ensures authenticity of the message using a hash function. For 

generating the digital signature of a message ,M  using hash function ,H  first the 

message digest of the message M  is generated and then, encrypted with the secret 

key of the sender. Either of the public key algorithm or the private key algorithm can 

be used for encryption. The secure email systems PGP and S/MIME both use SHA-1 

hash functions for signatures and message authentication [12]. 

 In the case of storing passwords of all the clients in the server, who have 

registered with a specific password poses an obvious security risk. In such cases, hash 

functions can be used by the server and the message digest of the password string 

could be stored instead of the password directly. With this scheme in place, even if 

the adversary succeeds in breaking into the server, he will be able to construct any 

string that has same message digest as any of the original passwords. 

 

1.2. Types of hash functions: 

 Apart from the classification of keyed and unkeyed hash functions, they can 

also be classified into the following ways as in [8]: 

a) Hash functions based on modular arithmetic. 

b) Hash functions based on cellular automatons. 

c) Hash functions based on knapsack problems. 

d) Hash functions based on algebric matrix. 

e) Hash functions based on block ciphers. 

f) Dedicated hash functions. 

Dedicated and block cipher based hash functions are the most widely used ones 

currently and relevant to this thesis. Hence only these two types are described here. 

1.2.1. Hash functions based on block ciphers [8, 9]: 

  Hash functions based on block ciphers, are usually slower when compared to 

that of the dedicated hash functions. But, in few cases they are useful and easier 

because single implementation of block cipher can be used for a block cipher as well 

as a hash function. Davies-Meyer, Miyaguchi-Preneel, Matyas-Meyer-Oseas, MDC-2 

and MDC-4 are some methods to generate a compression function of a hash function 

from a block cipher.  
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 The general construction of a compression function ( )f  for a hash functions 

based on block ciphers can be described using the following diagram:  

                                                                    K         T  

 

  

                                           P                                                1+iX  

  

Figure 2: Compression function for a set of hash functions based on block                      

ciphers [8]. 

           In Figure 2 ( )E  is a block cipher that takes an input P and key .K  The 

arbitrary length message M is divided into n  blocks and each block is processed in 

one round. The input ,P  the key K  and the XOR value T  are chosen from the set 

},,,{ Iiii XMXMVS ⊕= , where V  is a constant value, iX  is the output of the 

previous round and iM  is the current message block being processed as i  indicates 

the number of message blocks. 

1.2.1.1. Davies-Meyer method: 

           In Davies-Meyer hash compression function, the block cipher E  takes a block 

of the message im  as a key and 1−iH  the previous hash value as a plaintext to be 

encrypted. The output cipher text is then XORed with the previous hash value 1−iH  to 

produce the next hash value iH . For the first round, a pre-specified initial value oH  is 

used.                            

                                                            1−iH  

 

 

                                     im    

 

 

                                                                  iH               

                         Figure 3: The Davies-Myere hash construction [10]. 

Thus the Davies-Meyer hash construction can be formulated as: 

11)( −− ⊕= ii
imi HHEH . Various versions of Davies-Meyer hash construction have 

 
 
 
 
                   ( )f  

( )E
 

 
 E  
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been generated just by replacing the XOR operation with any other group operation, 

such as addition on 64-bit unsigned integers. 

1.2.1.2. Matyas-Meyer-Oseas method: 

           The Mathyas-Meyer-Oseas construction is opposite to the Davies-Meyer 

construction. Here each block of the message im  is the plaintext to be encrypted and 

the previous hash value 1−iH  acts as the key to the block cipher. oH  is a pre specified 

initial value for the first round. If the block size and key size of the block cipher varies 

then, the hash value is first fed through the function ( )g  for padding to make it fit as 

key for cipher. The formal definition for Matyas-Meyer-Oseas hash construction is 

iiHgi mmEH
i

⊕=
−

)()( 1
 and the diagrammatical representation is given using Figure 4. 

                                                                          im  

 

                      

                            1−iH  

 

 

                                                                        iH  

                         Figure 4: Matyas-Meyer-Oseas hash construction [10]. 

1.2.1.3. Miyaguchi-Preneel method:  

                 The Miyaguchi-Preneel hash construction is an extended version of the 

Matyas-Meyer-Oseas hash construction. The only difference between these two 

constructions is that the previous hash value 1−iH  is also XORed with the cipertext 

along with the message block im  in Miyaguchi-Preneel construction.  

                                                                         im  
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                              Figure 5: Miyaguchi-Preneel hash construction [10]. 
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However, in Matyas-Meyer-Oseas hash construction only message block im  is 

XORed with the ciphertext.  

Thus the formal definition of Miyaguchi-Preneel hash construction can be 

iiiHgi mHmEH
i

⊕⊕= −− 1)( )(
1

. The diagrammatical representation of this construction 

is given in Figure 5. 

1.2.1.4 MDC-2 and MDC-4 methods: 

           The above described three methods for generating hash function based on 

block cipher will generate a single length hash. MDC-2 and MDC-4 are manipulation 

detection codes requiring 2 and 4 block cipher operations respectively, they employ a 

combination of either 2 or 4 iterations of the Matyas-Meyer-Oseas method to produce 

a double length hash. The general construction for MDC-2 and MDC-4 can also be 

generated with other two methods as well. The detailed description and 

diagrammatical representation of these methods can be found in [10]. 

1.2.2 Dedicated hash functions: 

 Hash functions that are specially designed for the purpose of hashing a 

plaintext are known as dedicated hash functions. These hash functions are not based 

on hard problems such as factorization and discrete logarithms. MD2, MD4, MD5, 

SHA-0, SHA-1, SHA-2, HALAVL and RIPEMD are some examples of dedicated 

hash functions. Almost all the dedicated hash functions are based on the basic 

construction of Merkle-Damgård hence this construction is first described here.  

1.2.2.1. Merkle-Damgård construction: 

 The Merkle-Damgård construction was designed by Merkle and Damgård 

independently. A brief description of this model is already given in Section-1.1. The 

detailed description, of the same model is presented in this section, based on which 

the enhancements to the iterative structure to improve the security level of the whole 

hash function are designed in further sections of this thesis. 

   1m                          2m                                  rm                                                               
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  Figure 6: Merkle-Damgård hash construction [11]. 



 xx

 The detailed illustration of the Merkle-Damgård hash construction is given 

using Figure 6. The message M  of arbitrary finite length which is to be hashed is 

divided into r -blocks of l -bits each rmmmM ,.....,, 21= . An initial value 0IV = n}1,0{  

is set to the hash function and the following process is repeated r -times 

),( 1 iii MIVfIV −=  where, ri ,.....,.2,1= . 

 The final output of this process is optionally transformed into another form 

using the transformation function .g  This is also generated using a compression 

function and is also known as the finalisation function as mentioned in Section-1.1. 

Thus, the final output of the total process will be )( rIVg  if the finalisation function is 

used. 

1.2.2.2 MD-5 Message digest algorithm [12]: 

 The MD-5 message digest algorithm was designed by Rivest. The logic behind 

this algorithm is that, it accepts a message of arbitrary length as input and produces an 

output of a 128-bit length message digest. The whole process is explained using the 

following five steps: 

Step 1: Appending padding bits: 

 The message is padded so that its length in bits is congruent to 448 modulo 

512. That is, the length of the padded message is 64-bits less than an integer multiple 

of 512-bits. Padding is always added, even if the message is already of the desired 

length. (The message M  at this stage appears as rmmmM ,.....,, 21= . That is, 

message is divided into r -blocks each of l -bits.) 

Step 2: Append length: 

 A 64-bit representation of the length in bits of the original message before 

padding is appended to the output of the step-1. Only if the original length is greater 

than 642 bits the lower order 64-bits of the length are used. Thus, the field contains the 

length of the original message, modulo .264  

Step 3: Initialization vector: 

 A 128-bit buffer is used to hold intermediate and final results of the hash 

function. The buffer can be represented as four 32-bit strings. The values of the 

initialization vector for MD-5 in hexadecimal are as follow:  

                                           A: 67452301  

                                           B: EFCDAB89 
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                                           C: 98BADCFE 

                                           D: 10325476 

Step 4: Processing message in 512-bit blocks:  

 The main part of the algorithm is the compression function that consists of 

four rounds of processing. Each round takes as input the current 512-bit block being 

processed represented as im  where ri ,....,2,1=  and the 128-bit buffer value ‘ABCD’ 

which is updated each round. One more input is one fourth of a 64-element table T [1, 

2….. 64] constructed from the sine function. The construction of the table T is not 

concern for this thesis hence, it is not described here. The diagrammatic 

representation this process is shown in Figure 7.  
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   Figure 7: MD-5 Compression function [12].  

               F, T [1…16], total 16-steps 

               G, T [16…32], total 16-steps 

               H, T [32…48], total 16-steps 

               I, T [48…64], total 16-steps 

     Addition modulo 322  operation    
 for corresponding bits 
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 The four rounds have similar structure, but each round uses a different 

primitive logical function referred as F, G, H and I for round 1, round 2, round 3 and 

round 4 respectively. The logical operators AND, OR, NOT and XOR are represented 

by the symbols ,,∨∧  and ⊕  respectively. The following table gives the primitive 

logic functions used in MD-5 algorithm:              

 

 

    

                        

  

  

  

  Table 1: Primitive logic functions used in MD-5 [12]. 

The output of the fourth round is added to the input of the first round and the addition 

is done independently for each of the four words A, B, C and D in the buffer with 

each of the corresponding words of the input.  

Step 5: Output: 

 After the processing of all the r -512 bit blocks, the output from the thr  stage 

is the 128-bit message digest. 

1.2.2.3. Secure hash algorithm-1 (SHA-1) [12]: 

 The secure hash algorithm (SHA) was developed by the National Institute of 

Standards and Technology (NIST) and published as Federal Information Processing 

Standard (FIPS 180). A revised version of FIPS 180 is also issued as FIPS 180-1 in 

1995 and is known as SHA-1. 

 This revised algorithm takes as input a message with a maximum length of 

less than 642  bits and produces a 160-bit message digest. The input is processed in 

512-bit blocks. The overall process of this algorithm can be explained using the 

following five steps:   

Step 1: Appending padding bits: 

 The message is padded so that its length in bits is congruent to 448 modulo 

512. That is, the length of the padded message is 64-bits less than an integer multiple 

of 512-bits. Padding is always added, even if the message is already of the desired 

Round Primitive logic function ~       ~( dcb ,, ) 

     1                          F( dcb ,, )  )()( dbcb ∧∨∧  

     2                           G( dcb ,, ) )()( dcdb ∧∨∧  

     3                     H( dcb ,, )      dcb ⊕⊕  

     4                      I( dcb ,, )      )( dbc ∨⊕  
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length. (The message M  at this stage appears as rmmmM ,.....,, 21= . That is, 

message is divided into r -blocks each of l -bits.) 

Step 2: Append length:  

 A block of 64-bits (treated as an unsigned 64-bit integer) is appended to the 

message for security reasons. This block contains the length of the original message 

before padding. 

Step 3: Initialization Vector: 

 A 160-bit buffer is used to hold intermediate and final results of the hash 

function. The buffer can be represented as five 32-bit registers (A, B, C, D and E). 

These registers are initialized with the following 32-bit hexadecimal values: 

                                                     A: 67452301 

                                                     B: EFCDAB89 

                                                     C: 98BADCFE 

                                                     D: 10325476 

                                                     E: C3D2E1F0 

Step 4: Processing message in 512-bit blocks: 

 The heart of the algorithm is the module that has four similar rounds of 

processing each of 20 steps. The processing can be illustrated as in Figure 8 below. 

The inputs of each round are the 512-bit message block currently being processed and 

the 160-bit buffer value ABCDE. The contents of the buffer are updated as the 

process continues. Each round have a similar structure, but each uses a different 

primitive logical function which are refereed as P, Q, R and S. These are defined as in 

table 2.  

 The output of the fourth round is added to the input to the first round in a way 

such that bits of the input are added to the corresponding bits of the output. This 

addition is similar to that of in the MD-5 process. 

Step Primitive logic function ~             ~( DCBt ,,, ) 

(0 ≤≤ t 19)                  P( DCBt ,,, )        ( CB ∧ )∨ ( DB ∧ ) 

(20 ≤≤ t 39)                 Q( DCBt ,,, )             DCB ⊕⊕  

(40 ≤≤ t 59)                 R( DCBt ,,, ) ( CB ∧ )∨ ( DB ∧ )∨ ( DC ∧ ) 

(60 ≤≤ t 79)                 S( DCBt ,,, )            DCB ⊕⊕  

  

                  Table 2: Primitive logic functions used in SHA-1 [12]. 
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 Step 5: Output: 

 After all the blocks of the message are processed in this way, the output of the 

last stage is of a 160-bit message digest.  
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   Figure 8: SHA-1 Compression Function [12]. 

For a more detailed description and the operation of the single step of the compression 

function of MD-5 and SHA-1, refer to [12]. 

 

 

 

               P, K, W [0… 19] total 20-steps 

               Q, K, W [20…39], total 20-steps 

               R, K, W [40…59], total 20-steps 

               S, K, W [60…79], total 20-steps 

     Addition modulo 322  operation    
 for corresponding bits 
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1.3. Types of attacks on hash functions: 

 A hash function is said to be broken if an attacker is able to show that the 

design of the hash function violates atleast one of the claimed security property. For 

example, if a hash function is claimed to be collision resistant, a successful attack is to 

find at least one collision such that two different messages have the same message 

digest. The following are the known methods of attack on hash functions [8]. 

1.3.1. Attacks independent of the algorithm. 

1.3.1.1. Random attack. 

1.3.1.2. Pseudo attack. 

1.3.1.3. Exhaustive key search attack. 

1.3.1.4. Birthday attack. 

1.3.2. Attacks dependent on the algorithm. 

1.3.2.1. Meet in middle attack. 

1.3.2.2. Constrained meet in the middle attack. 

1.3.2.3. Generalized meet in the middle attack. 

1.3.2.4. Correcting block attack. 

1.3.2.5. Fixed point attack. 

1.3.2.6. Differential attack. 

1.3.3. Attacks dependent on an interaction with the signature scheme. 

1.3.4. Attacks dependent on the underlying block cipher. 

1.3.4.1. Attacks based on complementation property of block ciphers. 

3.4.2. Attacks based on week keys of block ciphers. 

3.4.3. Attacks based on fixed points of block ciphers. 

1.3.5. High level attacks. 

                  1.3.5.1. Replay attack.  

                  1.3.5.2. Padding attack. 

1.3.1. Attacks independent of the algorithm: 

 There are some general methods available for cryptanalysis by assuming that a 

hash function uniformly distributes the set of messages to the set of possible digests. 

These methods do not assume knowledge of the algorithm and only depend on the 

message digest length. Random attack, pseudo attack, exhaustive key search attack 

and birthday attack are the examples of the attack independent of the algorithm. Each 

of these attacks can be explained as follows. 
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1.3.1.1. Random attack: 

 In a random attack, the attacker chooses a random message or part of a 

message and hopes that its message digest is equal to the actual message. If the hash 

function has the required random behaviour, then the probability of success is equal to  
a2/1 , where, a  is the number of bits of the message digest. For a MDC (message 

authentication code) the attack depends on two elements: 

1. The number of trials. 

2. The expected value for a successful attack. 

1.3.1.2. Pseudo attack: 

 In a keyed hash function, since a secret key contributes to the hashing process, 

the methods of attack on the secret key should be included. If the cryptanalysis is able 

to find a method to extract the secret key, then the system is compromised during the 

key lifetime [8]. 

  Let H be a keyed hash function, with k  as a real key and M as a message. In 

a pseudo attack, a cryptanalyst tries to find a pseudo key k  such that 

),(),( MkHMkH = . This is similar to finding more than one key.  

 A pseudo key k  for some given ),( MDM  pairs does not necessarily generate 

a correct message digest for another message. Where, MD  is the message digest of 

the message .M  That is, suppose a key ,k  is used to generate t  pairs of 

),,(),.....,,(),,( 2211 tt MDMMDMMDM  where ),( ii MKHMD =  and ,,.....,2,1 ti =  

now if the cryptanalyst can find a pseudo key k  with ),( ii MkHMD =  it does not 

necessarily imply that for any ).,(),(,,.....,2,1, MkHMkHtiMM i ′=′=≠′  

1.3.1.3. Exhaustive key search attack: 

 It is well known that, in a keyed hash function a secret key is used in the 

hashing process to make the algorithm secure. If the cryptanalyst has access to at least 

one pair of ),,( MDM  where MD  is the message digest of the message .M  The key 

can be found by examining the key space elements against the ),( MDM  pairs. Since 

the map MDM →  is not one-to-one, more than one key could be found [13]. 

The expected number of trials is given by:  
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where, n  is the message digest length and m  is the number of ),( MDM  pairs. If k  is 

the key length in bits then the total number of trials to identify the key is given by: 

                                                              n

k

m −−
−

+
21

12 , [13] 

The number of resulting keys including the real key is expected to be: 

                                                                mn

k

2
121 −

+ , [13] 

1.3.1.4. Birthday attack: 

 The idea behind this attack originates from Birthday paradox. The birthday 

paradox states that given a group of 23 randomly chosen people the probability, of at 

least two people having the same birthday is more than ½ [14]. The mathematics 

behind this is being used to generate a well-known cryptographic attack called 

birthday attack.  

 To describe this, let us assume that the message digest of length n  bits which 

provides n2  possibilities for the message digest. If two pools from the digest space, 

one containing 1x  samples and the other containing 2x  samples are generated by a 

cryptanalyst, the probability of finding a match between the two pools is 

approximated by, 

                                                          
n
xx

e
p

2
21

11−≈  [15]. 

where the approximation is more accurate for larger values of  2x  compared with that 

of 1x .  

1.3.2. Attacks dependent on the algorithm: 

 These types of attacks depend on some high level properties of the elementary 

function .f  However, these attacks would not be successful on keyed hash functions 

because a secret key protects the components of the hash function.  

1.3.2.1. Meet in the middle attack: 

 This attack is a variation of birthday attack and is applicable to the hash 

functions that use a round function. Instead of message digest, intermediate chaining 

variables are compared. This attack enables a cryptanalyst to construct a message with 

a pre-specified message digest, which is not possible in case of a simple birthday 

attack. 
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 The attacker generates 1r  samples for the first part and 2r  samples for the last 

part of a bogus message. The attacker then goes forwards from initial value and goes 

backwards from the hash value and the probability that the two intermediate values 

are same is given by, 

                                                 
n
rr

e
P

2
21

11−≈ , [13] 

where, n  is the length of initial vector, intermediate values and message digest. The 

only restriction that applies to the meeting point is that it cannot be the first or last 

value of the chaining variable.  

1.3.2.2. Constrained meet in the middle attack: 

 Constrained meet in the middle attack is based on the same principles as the 

meet in the middle attack. However, the only difference is that this attack takes into 

account certain constraints that have to be imposed on the solution. Examples of 

restrictions are that the sum modulo 2 of all blocks should be constant, or that a block 

of the CBC encryption of the solution with a given initial value and key should take a 

pre-specified value. 

1.3.2.3. Generalized meet in the middle attack: 

 Generalized meet in the middle attack was extended to break the p -fold 

iterated schemes. The message is repeated p  times or p  hash values are computed 

corresponding to p initial values in this attack. The size of the message in this 

construction is 1102 −⋅ p  blocks. The number of operations required to break this 

scheme are 2210
n

p ⋅  and not ,2 2
pn

 where n  is the length of the message digest [16, 

17]. 

1.3.2.4. Correcting block attack: 

 In this attack, the cryptanalyst uses an existing message and message digest 

pair and tries to change one or more message blocks such that the resulting digest 

remains unchanged. The hash functions based on modular arithmetic are sensitive 

against this attack.  A correction block attack can also be used to produce a collision. 

Starting with two arbitrary messages M and M ′ and appending one or more correcting 

blocks denoted by X and ,X ′  such that the extended messages XM and XM ′′  have 

the same message digest. Degradation of the performance is major disadvantage of 

this scheme. 
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1.3.2.5. Fixed point attack:  

 A fixed point for a compression functions iii IVmIVf =− ),( 1 , is a pair 

( )ii mIV ,1−  such that ( )iii mIVfIV ,11 −− = . This can be more clearly illustrated using 

Figure 9. 

                                          im                                                                                                                 

                                                                                 Fixed point ( )ii mIV ,1−                                                    

                                       1−iIV             f                   1−= ii IVIV                                            

  Figure 9: Fixed point for a compression function. 

This means that the existence of the message block im does not affect the result. 

Hence, whenever the intermediate value is equal to 1−iIV , iM  can be inserted to the 

message [7].   

1.3.2.6. Differential attack: 

 This attack is applicable to block ciphers and hash functions and is based on 

the study of the relation between input and output differences. The attack is statistical 

as one search for input differences that are likely to cause a certain output difference. 

If the difference is equal to zero then a collision can be achieved [20]. 

1.3.3. Attacks dependent on an interaction with the signature scheme: 

 Examples of this kind of attack are described in [28, 105, 106]. Even if the 

hash function is collision resistant hash function in some cases, it is possible to break 

the signature scheme. In all the known examples of such an interaction, multiplicative 

structure in both the hash function and the signature schemes are noticed. The security 

of a digital signature, which is not existentially forgeable under a chosen message 

attack, will not decrease if it is combined with a collision resistant hash function 

[105]. 

1.3.4. Attacks dependent on the underlying block cipher: 

 If a block cipher is used specially for hashing rather than just to protect 

message privacy, some particular weaknesses can be expected. Such weaknesses can 

be used to insert special messages or to perform certain manipulations without 

changing the final output. This is equal to generating two different messages with the 

same output, which can be the starting place for generating a collision in any hash 

function [22, 23, 24]. The attacks can be based on complementary properties, weak 

keys and fixed points of the block ciphers. 
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1.3.5. High level attacks: 

 Repaly attack and padding attack are the two well-known high-level attacks. 

These attacks are applicable only when the hash functions are used in non-hashing 

purposes or in a protocol.  

1.3.5.1. Repaly attack: 

 Repaly attack is also known as restore attack. In replay attacks, the 

components of the hash function are reused. The cryptanalyst may store the 

information that is transmitted and redo it at a different time. The cryptanalyst may 

also delete the contents of the transmitted message so that the intended receiver will 

be receiving a message of different meaning.  

 To avoid this type of attack, a timestamp can be attacked to the transmitted 

message. A timestamp is the date and time of the moment at which the message is 

sent. A unique identifier of the message can be provided if the resolution of the time 

is sufficiently high [8, 13]. 

1.3.5.2. Padding attack:  

              Let ),( MDM  be a pair where MD  is a message digest of a message .M  

Using padding attack a cryptanalyst can develop a different pair ),( DMM ′′  where the 

difference between the messages M and M ′  is just the padding. That is, just by 

changing the length of padding of the same message the same message digest can be 

obtained claming that the messages are different [28].  

              It is sufficient to prepend the length of the original message to the padded 

message, to avoid this attack [8]. 

1.4. Structural weaknesses of Merkle-Damgård hash construction: 

             The design of a hash function, which is a long studied problem, has recently 

become more problematic. It is obvious that, any structural weakness in the Merkle-

Damgård hash construction, would affect all the hash functions that uses its design 

criteria. There are many such weaknesses found by cryptographic researchers against 

this design. The following are some of the structural weaknesses of Merkle-Damgård 

constructions: 

 1.4.1. Message expansion attack. 

 1.4.2. Joux’s multi-collision attack 

 1.4.3. Fixed point attack by Dean and its extension by Kelsey and                                           

                       Schneier and 
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  1.4.4. The herding attack by Kelsey and Kohno. 

1.4.1. Message expansion attack: 

 The message expansion attack is a well known generic weakness of the 

iterative hash construction. This is also known as length extension attack. Let a 

message M  is split into r -blocks such that, .,.....,, 21 rmmmM =  An attacker can 

choose a message M ′  such that, .,,.....,, 121 +=′ rr mmmmM  Since the first r -blocks 

of both the messages are equal, the chaining values produced by these messages by 

using the iterative construction will also be the same.  

 A special case of this attack is partial message collision. To explain this, 

consider a system having two inputs: a key and a message. If the system depends only 

on the message for activating, then the attacker can activate the system using a simple 

birthday attack with much lesser probability. This is because the system does not 

depend on the total input bits. 

 In [29] Ferguson and Schneier proposed a solution to the message expansion 

attack. The problem can be solved by using the hash function twice. That is, instead of 

the message M  tending to the message digest ( )MH  for the hash function H  it is 

made to become ( )( )MMHH . This ensures that, the iterative hash function 

computation depends on all the available bits of the message and no partial message 

or length extension attacks can work.   

1.4.2 Joux’s multi collision attack [30]: 

 In [51] Antoine Joux found that finding multi-collisions on an iterative hash 

function is not much harder than finding ordinary collision. If the results of two 

independent n -bit hash functions are concatenated then, it is generally believed that, 

the resultant hash function is as good as n2 -bit. Hence, finding a second preimage on 

this concatenated hash function should take effort n22  operations. Interestingly, Joux 

observed that if one of the hash functions is an iterative hash function, then 

concatenation leads to hardly any additional security. Apart from that, he observed 

that concatenation of several iterative hash functions is only as secure as the stronger 

of the hash functions. 

  His multi-collision attack can be explained as follows. An n -bit iterative hash 

function spits the input in a number of fixed size blocks, say rmmm ,.....,, 21 . The 

message digest is calculated in r -rounds as a function of the r -blocks and a fixed n -
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bit initialization vector .0IV  For ri ,.....,2,1=  a compression function is applied to 

1−iIV  and im  which yields n -bit value ,iIV  the message digest. 

 Now, construct a collision for an n -bit iterative hash functions ,H  at values 

11a  and 12a  with 1211 aa ≠  such that ( ) ( )1211 aHaH = . This takes at most about 2/2 n  

operations. Let this value be equal to .1IV  Similarly, it takes at most 2/2 n  operations 

to construct a collision for H  where its initialization vector is replaced by 21a  and 

22a  such that this takes about 2/2 n  operations ( ) ( )2221 11
aHaH IVIV = , where 

1IVH  

indicates usage of 1IV  as initialization vector as opposed to the default initialization 

vector.  

 Then it follows from the way iterative hash functions work that H  applied to 

the concatenation of the ia1  and ja2 , with }2,1{, ∈ji , always results in the same 

value, let it be 2IV , independent of the choices of i  and .j  So, the two pairs ( )1211 , aa  

and ( )2221 , aa  result in a four-way collision from four distinct values 

211222112111 ,, aaaaaa  and 2212 aa  all of which having the same hash value. 

These four values can then be concatenated with a newly constructed collision for 

resulting in an eight way collision. Further, these eight values can be concatenated for 

generating sixteen way collision, etc. 

1.4.3. Fixed point attack by Dean and its extension by Kelsey and Scheiner [52, 

53]: 

 Dean in [52] noticed that finding second pre-image attacks for the iterative 

hash function is not too hard if the compression function of the hash function is such 

that finding fixed points is easy. Dean’s attack exactly suits in the case of designs 

based on Davies-Meyer block cipher construction because it is easy to find fixed 

points in this type of block cipher construction. His attack consists of the following 

two steps: 

Step-1: Finding some particular number of fixed points denoted by ‘A’ and                  

   selecting one message block and computing chaining value denoted by ‘B’. 

Step-2: Once collision between a chaining value and a fixed point that is,                  

    between chaining values in ‘A’ and in ‘B’ is found the length extension  

               attack is applied for trying to add blocks that cause the same chaining values 

               as the original message does. 
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 Once such a message is found it is easy to expand the number of blocks in the 

message to the appropriate length by repeating the fixed points any times as needed. 

Later, Kelsey and Schneier in [53] extended this attack to the hash functions where 

finding fixed points is not easy. They repeated Dean’s attack in the following manner. 

In each call to the compression functions for ri ≤≤1  a collision between a one block 

message and a 12 1 +−i  block message is found. This procedure finds a chaining value 

that can be reached by the messages of lengths between r  and 12 1 −++ rr  blocks. 

The second step of Dean’s attack is repeated from this chaining value and the length 

of the found message is controlled by the expandable prefix. 

1.4.4 The herding attack by Kelsey and Kohno: 

 In [54] Kelsey and Kohno noticed that it is possible to perform a time-memory 

trade-off for several instances of pre-image attacks. An attacker using this attack can 

commit to a digital value available publically that corresponds to some meaningful 

message.  For example, prediction of the availability of collision in new designs for 

hash functions.  

 After the announcement of the result, the attacker publishes a message that has 

the pre published digital value and contains the correct information along with some 

suffix. The main idea behind this attack is to start with possible number of chaining 

values and is also based on selection of the digital value which, helps the attacker to 

perform a pre-image attack on the actual result obtained. Unlike Dean’s attack this 

attack can be applied to a shorter message as well.  

 

1.5. Recent multi block collision attacks on hash functions: 

 In 2005 there were attacks proposed even on the popular hash function SHA-

1. Before this, there were no attacks known against SHA-1 though there were attacks 

against weakened variants of SHA-1. The attacks in [55-60] are some of the recent 

attacks against widely used hash functions. Most of the attacks are the collision 

attacks, except some like [55] which is a second preimage attack on MD4. 

 Xiaoyun Wang is the main researcher behind [55-60] attacks though there are 

many co-researchers involved. All these attacks follow a similar methodology. The 

following are the three major steps involved in her attacks: 

Step-1: Finding a collision differential in which two different messages M  and 

        M ′  produce a collision. 
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Step-2: Derive a set of sufficient conditions which ensure the collision differential  

              to hold.         

Step-3: For any random message ,M  make some modifications to it in such a  

              way that almost all the sufficient conditions specified in step-2 hold. 

 The first step, finding a collision differential is a simple step. It is selected in 

such a way that, it is efficient to find collision on corresponding hash function. The 

differential in [60] is sufficient to find collision on MD4 but, it is not efficient to find 

weak messages and second preimages because it has too many conditions. Hence, 

another differential is selected in [55] to overcome this difficulty. Thus, it means 

selecting a collision differential is completely of independent choice for the attacker. 

 Second, a set of sufficient conditions are derived on chaining variables from 

the boolean functions properties and bit carry. These sufficient conditions are 

generated in such a way that, if all of them are satisfied by a particular message ,M  

then another message ,M ′  which is not equal to the message M  gives the same 

message digest when hashed with a hash function .H  Here H  can be MD4, MD5, 

SHA-0, SHA-1, SHA-2, HAVAL or RIPEMD. Constructing the collision and 

deriving the sufficient conditions go on simultaneously. On one hand, sufficient 

conditions are derived according to the differential path. On the other hand, the path 

for constructing collision is adjusted in such a way to avoid the contradictory 

conditions. 

 Then the third step is the message modification. Message modification is a 

technique to weaken any stronger message in such a way that, it is easy to find a 

collision. There are two major types of message modification techniques; they are: 

1) Single-step message modification and 2) Multi-step message modification. 

 The modification technique that is used to convert one bit of a message is    

called the single step message modification technique or also known as the basic 

modification technique. A part of the conditions in the second round of the hash 

function can be corrected using multi-message modification which is also called as 

advanced modification technique. For MD-4, the probability of attack is notably low, 

just after single message modification but, for the hash functions MD-5, SHA-0 and 

SHA-1 multi message modification is essential. Table 3 from [60] shows a collision 

for MD-4 hash function at messages M1 and M2 where P is the hash value without 

padding and P-1 is the hash value with padding.  
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M1 4d7a9c83  56cb927a  b9d5a578  57a7a5ee  de748a3c  dcc366b3  b683a020  3b2a5d9f 

C69d71b3  f9e99198 d79f805e  a63bb2e8  45dd8e31  97e31fe5  2794bf08   b9e8c2e9 

M2 4d7a9c83  d6cb927a  29d5a578  57a7a5ee  de748a3c  dcc366b3  b683a020  3b2a5d9f 

C69d71b3  f9e99198  d79f805e  a63bb2e8  45dd8e31  97e31fe5  2794bf08  b9e8c2e9 

P 5f5c1a0d  71b36046  1b5435da   9b0d807a 

P-1 4d7e6a1d  efa93d2d  de054b45d  864c429b 

   Table 3: Collision for MD-4 hash function [60]. 

One more pair of messages which produce collision on MD-5 with Wang’s method is 

shown in Table 4 in which, MD is the message digest generated by both the messages. 

   Table 4: Collision for MD-5 hash function [10]. 

 Some of the challenges faced by various researchers in this field are to solve 

the attacks such as: 1) Message expansion attack, 2) Joux’s multi collision attack, 

3)Fixed point attack by Dean, 4) The herding attack by Kelsey et al and 5) Multi 

block collisions by Wang. These problems are presented in Section 1.4 and Section 

1.5. As a contribution to this thesis there are three methods dealt: 1) Generating a 

collision resistant hash function using a new message preprocessing method called 

reverse interleaving. 2) Enhancement of hash functions such as MD-5 and SHA-1 

using a different message expansion coding, and 3) Proposal of a new hash function 

called 3-branch. The first two methods can be considered as modifications which are 

presented in Section 3.1 and Section 3. The third method can be seen as a replacement 

to the already existing hash functions which are effected by recent differential 

collision attacks and presented in Section 3.3. The security analysis of each proposal 

is also presented against the known generic attacks, along with some of the 

applications of the dedicated hash function.  

M1 d131dd02  c5e6eec4  693d9a06  98aff95c  2fcab587   12467eab  4004583e   b8fb7f89 

55ad3406  09f4b302  83e48883  2571415a  085125e8  f7cdc99f  d91dbdf2  80373c5b 

d8823e31  56348f5b  ae6dacd4  36c919c6  dd53e2b4  87da03fd  02396306  d248cda0 

e99f3342  0f577ee8  ce54b670  80a80d1e  c69821bc  b6a88393  96f9652b   6ff72a70 

M2 d131dd02  c5e6eec4  693d9a06  98aff95c  2fcab507  12467eab  4004583e b8fb7f89 

55ad3406  09f4b302  83e48883  25f1415a  085125e8  f7cdc99f  d91dbd72  80373c5b 

d8823e31  56348f5b  ae6dacd4  36c919c6  dd53e234  87da03fd  02396306  d248cda0 

e99f3342  0f577ee8  ce54b670  80a80d1e  c69821bc  b6a88393  96f9652b   6ff72a70 

MD 79054025  255fb1a2  6e4bc422  aef54eb4 
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Chapter 2   

Classification of hash functions and 

their security analysis against the 

known generic attacks:  

  

 Many alternatives and modifications to Merkle-Damgård constructions have 

been proposed in recent years since Joux’s attack came into appearance. The main 

idea, behind all these designs is to provide a solution to all or at least some of the 

known generic attacks for the existing iterative structure. The following are some of 

the modified Merkle-Damgård constructions which are at least as secure as the 

original construction of Merkle-Damgård structure for any weakness discussed in the 

above sections: 

a) Wide pipe and Double pipe hash functions by Stefan Lucks [82]. 

b) Prefix free Merkle-Damgård construction by Coron et al. [83] 

c) Zipper Hash by Moses Liskov. [84] 

d) 3c and 3c++ designs by [11] 

e) HAIFA—A framework of iterative hash functions by Eli Biham et al. [85]. 

f) Dithering hash function [4]. 

 

NOTE: All of these hash constructions are collision resistant if the underlying 

compression function is collision resistant. The proof of this is quite simple, the same 

arguments that used to prove that the Merkle-Damgård construction retains the 

collision resistance of the underlying compression function from [6, 7] can be used to 

prove that these hash functions do so as well. 

  

 The point to be noted here is that there are many other modified versions 

proposed recently, but only most notable ones will be considered and explained. The 

enhancements proposed as a part of this thesis mostly depend on these modified 

constructions. In this section, the hash functions are classified based on streamability 

and non-streamability and based on the number of inputs to the compression function 
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in each round. We believe that, this type of classification has not been done by any 

other researcher in this field. 

 

2.1. Streamable and non streamable hash functions: 

            In [84] Liskov proposed a non-streamable hash function called the Zipper 

hash. Currently, this is the only non-streamable design available for hash functions. A 

typical example of the streamable hash function is RIPEMD-160. The design of these 

two hash functions is described here to differentiate between streamable and non-

streamable hash functions. 

2.1.1. RIPEMD-160 hash functions [86]:  

               RIPEMD-160 is a 160-bit dedicated hash function designed by Hans 

Dobbertin, Antoon Bosselaers and Bart Preneel. The input message is processed in 

512-bit blocks similar to that of MD-5 hash function. The following steps explain the 

processing of RIPEMD-160.  

Step 1: Append padding bits: 

             The message is padded so that its length is congruent to 448 modulo 512. 

Padding is always added even if the message is already of the desired length. Thus, 

the number of padding bits is in the range of 1 to 512. The padding consists of a 

single 1-bit followed by the necessary number of 0-bits. (The message M  at this 

stage appears as rmmmM ,.....,, 21= . That is, message is divided into r -blocks each 

of 512=l -bits.) 

Step 2: Append length: 

             A block of 64-bits is appended to the message. This block is treated as an 

unsigned 64-bit integer and contains the length modulo 642  of the original message 

before padding. This is similar to that of MD-5 hash function. 

Step 3: Initialize MD buffer: 

            A 160-bit buffer is used for holding intermediate and final results of the hash 

function. The buffer can be represented as five 32-bit registers A, B, C, D and E. The 

buffer is represented as iIV  where ri ≤≤1 . These registers are initialized with the 

following hexadecimal values: 

                                               A: 67452301 

                                                B: EFCDAB89 

                                                C: 98BADCFE 
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                                                D: 10325476 

                                                E: C3D2E1F0          

                                                             iIV                                                                                           

             im                                                                                                                  im  
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     Figure 10: Processing of single 512-bit block in RIPEMD-160 [86]. 

Step 4: Processing message in 512-bit blocks: 

 The upgrading of the value of the buffer from the starting initial value to the 

new value is done according the step operation shown in Figure 11. 
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                                FIGURE 11: Step function of RIPEMD-160 [86]. 

where,  

im  is the message block to be processed,  

jK  is the constant used, 10>>> is circular lift shift of 10 bit,  

s(j)>>> is circular left shift of the 32-bit register with s(j) being a function that 

determines the amount of rotation for a particular step and 

( )DCBjf ,,,  is the primitive logic function used in step j  of the left column and step 

j−79  for the right column where 790 ≤≤ j . 

 The processing of the message blocks in this hash function follows ten rounds 

of processing of 16-steps each. These ten rounds have similar structure and are 

arranged as two parallel columns of five rounds each. The functions 4321 ,,, ffff  and 

5f  are called the primitive logic functions which used in five rounds of left column 

and the same functions are used in reverse order in right column. The Figure 10 

describes the design of RIPEMD-160 hash function. Each round in left column takes 

as input the current 512-bit block and the 160-bit buffer value .ABCDE  

 The same inputs are given to the right column but to differentiate the initial 

registers they are represented as EDCBA ′′′′′  in this column. In each round an additive 

constant is also used. For more information on the functions and constants used in 

RIPEMD-160, see [12].  

    iA              iB               iC              iD               iE  

    iA              iB               iC              iD               iE  

  s (j)>>> 10>>> 

 jf  
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Step 5: Output: 

 After all the 512-bit message blocks are processed the output from the final 
thr  stage is the 160-bit message digest. For more information of the primitive logic 

functions and the constants used see [12]. 

2.1.2. Zipper hash construction: 

 In [84] it is shown that a weak compression function can be used to design a 

strong ideal primitive. In order to prove this, Liskov [84] designed a construction 

called “Zipper hash” that makes an ideal hash function from weak ideal compression 

function. This design requires r2  compression function evaluations for an r -block 

input. Other iterative hash function construction described above are streamable that 

means a message can be hashed piece by piece with a small, finite amount of 

memory. But, the Zipper hash construction is a non-streamable hash function. 

                      rm                                     2m                       1m                               

                                                                                                                                                            

                                                                                                                                                                  

                   f                                         f                        f                                                          

rIV                       1−rIV                  2IV             1IV                           0IV =initial value                                   

   1m                          2m                                  rm                                                               

 

                                                                                                                                                            

              f ′                          f ′                                   f ′                           g                                                    

′= 0IVIVr              ′
1IV                     ′

2IV     ′
−1rIV                      ′

rIV                  




 ′

rIVg                               

                                Figure- 12: Zipper hash construction [84]. 

2.1.2.1. Security analysis of the Zipper hash construction against some of the 

known generic attacks: 

 The security of the Zipper hash construction is based on the belief that the 

non-streamable hash functions are not vulnerable to the known generic attacks. This is 

because this construction is very new, it has not been analysed against the standard 

attacks. But, from the structure it is clear that the Zipper hash construction can easily 

avoid the two types of the message expansion attacks because of the additional hash 

function used in the construction.  



 xli

 Since there are two different compression functions used for the same message 

block, the probability of finding the fixed points seems to be harder. Hence, Dean’s 

attack and its extension may be harder to apply on this design. If there exists a 

collision attack in this design it will be easy to find multi-collision attack just as in the 

case of Merkle-Damgård design because, the structure of both the designs are almost 

similar expect from the non-streamability in the zipper hash. Since, there is an 

additional compression function used in zipper hash, the attacker should consider both 

of them separately for analysing it easily.  

 Here comes the opportunity of defining the streamable and nonstreamable 

hash functions. The definitions are presented at this place because after reading 

Chapter 1 and the hash functions RIPEMD-160 and Zipper hash one can understand 

what are the inputs used by a dedicated hash function and why they are required. The 

similar sorts of inputs are used in the definitions of streamable and nonstreamable 

hash functions here. 

Definition-3: (Streamable hash function) 

 A hash function H  is said to be streamable if its compression function if  is 

of the form ( )iiii mIVfIV ,1−=  where, 0IV  is the initial value used, im  is the message 

block. Also ri ,......,1=  and r  is the number of blocks in which the message is 

divided. The final value rIV  is called the hash value of the input message. 

Definition-4: (Nonstreamable hash function) 

 A nonstreamable hash function H  makes use of two streamable hash 

functions. The compression function 'F  of one streamable hash function is of the 

form ( )iii mIVFIV ,'
1

''
−=  and the compression function F  of the other streamable hash 

function is of the form  ( )iii mIVFIV ,1−=  where, '
0IVIVr = , im  is the message block 

such that ri ,......,1=  and  r  is the number of blocks in which the message is divided. 

Also,  0IV  is a fixed initial value. 

 Thus, from the definitions of streamable and nonstreamable hash functions 

one can say that, nonstreamable hash function use two compression functions in 

generating the final hash. The hash value of the original message with some initial 

value is used by the first compression function in generating the initial value for the 

second compression function. Hence, it can be said that nonstreamable hash function 

is a combination of two streamable hash functions. 
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 Apart from the streamability and non-streamability hash functions can be also 

be classified based on the number of inputs to the hash function as in the following 

ways: 

 a). Hash functions based on two inputs: 

 b). Hash functions based on three inputs. 

 c). Hash functions based on four inputs. 

2.2. Hash functions based on two inputs: 

 The hash functions MD4, MD5, SHA-1 and RIPEMD-160 are some examples 

of the hash functions based on two inputs. The enhanced Merkle-Damgård 

constructions, for example the wide pipe [82] and the 3C and 3C++ [11] also come 

under this type of classification. The Zipper hash [84] described above can also be of 

this kind but with a non-streamable structure. 

2.2.1. Wide pipe hash function or wide pipe hash construction: 

 Wide pipe and Double pipe hash functions have been proposed by Stefan 

Lucks [82] as failure tolerant designs showing that they are more resistant against 

generic attacks. The core idea behind Wide pipe construction is to increase the size of 

the internal state of an n -bit hash function to nw >  bit. While wide pipe design 

maintains more internal state than the message digest size n  using larger compression 

function, the double pipe design maintains twice the hash size as the internal state size 

by using one single n -bit compression function twice in parallel to process each 

message block. 

 The idea of increasing the internal state to improve protection against existing 

internal collisions has been independently proposed by Finney in a mailing list [87]. 

The processing of the wide pipe actually uses two compression functions f  and f ′ . 

Let { }wIV 1,00 =  be a randomly chosen initial value, then the wide pipe hash function 

is processed as in the following two steps: 

  Step-1: { } { } { }wpwf 1,01,01,0: →×  

  Step-2: { } { }nwf 1,01,0: →′  

This means that first a compression function f  is used to process a large internal 

state w  along with the p -bit blocks of original message. Then, the compression 

function f ′  is used to process the w -bit output of the first one to produce a required 
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n -bit message digest.  Diagrammatically this can be shown as in Figure 13 for a 

message M  divided into r -blocks that is, rmmmM ,.....,, 21= .  

 1m                          2m                                  rm                                                               

                                                                                                                                                            

                                                                                                                                                                  

             f                            f                                    f                            f ′                               

0IV = initial value    1IV                   2IV     1−rIV                      rIV                     ( )rIVf ′                               

   Figure 13: Wide-pipe hash constructions [82]. 

The chaining values of each round for the first compression function f  will be of w -

bit and the final output ( )rIVf ′  will be of n -bit. The diagrammatical representation 

of both Wide pipe design and Merkle-Damgård construction are similar the only 

difference is that the internal state of the chaining values in the Wide pipe design is 

larger compared with that of the Merkle-Damgård construction. 

2.2.1.1. Security analysis of Wide-pipe and Double-pipe designs against known 

generic attacks: 

 Double pipe in Section 2.3.2 comes under the classification of hash functions 

based on three inputs while wide pipe hash function comes under the hash functions 

based on two inputs. But, the security analysis of both these hash functions is 

presented here for convenience. Both wide pipe and double pipe hash constructions 

can avoid the message expansion and partial message expansion attacks. This is 

because of the additional hash function used at the end of the processing according to 

[29].  The security of the wide-pipe hash construction can be considered improved 

when compared with Merkle-Damgård hash construction because of the internal 

collision resistance being much stronger than final collision resistance. But, in the 

case of double pipe hash construction the security is based on using the same 

compression function twice for each round with different initial values. 

 Finding fixed points, for wide pipe construction is not as easy as in the 

Merkle-Damgård construction because of the same reason of extended internal state.  

This extension will result in more number of operations for finding fixed points in the 

compression function of wide pipe. In the case of Double pipe compression function 

finding fixed points will depend on two different initial values for the same message. 

This may take more time in computing fixed points. Hence security of these two 
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constructions against Dean’s attack and its extension by Kelsey and Schneier is more 

than general Merkle-Damgård construction. 

2.2.2. The 3C and 3C+ hash constructions: 

3C hash construction: 

 The 3C construction has two chains in its structure; one is the accumulation 

chain and the other one is the cascade chain. There is an accumulator XOR function 

iterated in the accumulation chain and a compression function f  which is iterated in 

the cascade chain similarly as in the Merkle-Damgård construction. From Figure 14 

we can see that 3C is a simple modification to Merkle-Damgård construction. 

 Let the message to be hashed be M  divided into r -blocks each of length l  

and 0IV  be the initial value. Also, let iIV  and iVI ′  be the chaining values in the 

cascade chain and accumulation chain respectively for .1 ri ≤≤  

Cascade chain 

 1m                          2m                                      rm                                                            

                                                                                                                                                            

                                                                                                                                                                  

               f              1IV        f            2IV … 1−rIV        f                rIV        g               

0IV = initial value                                                        VI ′′     

                                                                   

                                                                                           Z    

                                                                              padding 

                                     ′= 11 IVIV       ′
2IV … ′

−1rIV      Z                                                        

                                    accumulation chain                                                                           

     Figure 14: 3C hash construction [11]. 

 Then, as in the normal Merkle-Damgård construction, for i = 1 to ,r  

),( 1 iii MIVfIV −=  where 0IV = initial value and .11
′= IVIV  In the accumulation 

chain, for 2=i  to ,r  iii IVIVIV ⊕′=′ −1 . Let the result ′
rIV  in the accumulation chain 

be denoted with .Z  An extra compression function denoted by ,g  is added at the end. 

The ‘message digest’ of the 3C construction is ),( rIVZg  where Z  is the result of Z  

after padding. The final message digest is represented by .VI ′′   
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To process one block data, the compression function is executed three times: 

(1) First process the data block. 

(2) Next process the padded block which is called Merkle-Damgård 

strengthening. 

(3) Finally the block Z  formed in the accumulation chain as shown in Figure 14. 

3C+ hash construction: 

 The construction of the 3C+ hash function is shown diagrammatically in the 

Figure 15. In 3C+ hash construction an additional chain called a final chain is added 

to the cascade and accumulation chains of the 3C hash construction. The final chain 

accumulates data from the cascade chain after the second message block is hashed. 

The final compression function represented by g  takes the concatenation of the 

accumulated data from the accumulation and final chains after appropriately padded.  

cascade chain 

 1m                          2m                                      rm                                                            

                                                                                                                                                            

                                                                                                                                                                  

               f              1IV        f            2IV … 1−rIV        f               rIV         g               

0IV = initial value                                                        VI ′′      

                                                                   

                                                                                           Z    

                                                                              C & P 

                                     ′= 11 IVIV      ′
2IV … ′

−1rIV  Z                          

                            accumulation chain                                                                           

 

                                                                           final chain 

                                                                                                                                                                      

            1
3IV                 1

1−rIV          1
rIV                                                                                     

                                            Figure 15: 3C+ hash construction [11]. 

 The notation C & P in the figure is used to denote the concatenation and 

padding of the messages from the accumulation chain and the final chain. The 

chaining values of the final chain are represented by 1
jIV  where rj ,.....,3=  because 

the first chaining value of this chain starts after the second message block is hashed. 
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2.2.2.1. Security analysis of the 3C and 3C+ hash constructions against the 

known generic attacks: 

 Joux’s multi-collision attack costs N  times as much as building ordinary 2-

collisons for generating N2 -collisions in the Merkle-Damgård construction. This 

attack can be used for finding multi pre-images very effectively. This attack works on 

the 3C hash construction as effectively as it works on Merkle-Damgård construction. 

To generate a multi-collision attack on 3C-hash function, the attacker finds collisions 

on every compression function f  in the cascade chain that would result in a collision 

at the subsequent points of the XOR-operation in the accumulation chain. 

 The attacking technique used in finding N -way pre-images on the Merkle-

Damgård hash for a given hash value works on the 3C construction as well. For doing 

so, the attacker first finds N -collisions on d -block messages with the chaining value 

of each block equal to the chaining value of the thd  block. Then the ( )thd 1+  block is 

found such that the execution of the last two compression functions would result in 

the given message digest. The message expansion attack explained in Section 1.4.1 

can be prevented by the 3C-design because of the use of the extra compression 

function at the end [29]. 

 In the 3C-design, since the chaining state is twice as large as the hash value, a 

fixed point is defined for both the chains. This can be obtained for any message block 

im , only when ( ) ,0,0 =imf  and this occurs with a probability of n−2  where  n  is the 

length of the hash function. This means that finding fixed points for the compression 

function of the 3C-design will not assist in finding second pre-images for less than n2  

operations. This clearly shows that, Dean’s attack and its extension by Kelsey’s and 

Schneier’s (see Section 1.4.3) do not work on the 3C-design. 

 

2.3. Hash functions based on three inputs 

 Dithering hash function and the double pipe hash function are the two hash 

functions that come under this type of classification. They can be explained as 

follows: 

2.3.1. Dithering hash function: 

 The main idea behind dithering hash function is to use an additional input to 

the Merkle-Damgård hash construction in such a way that this input will change the 

chaining values of the each stage. This in turn, makes the problem of finding the fixed 
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points much harder and provides more protection against Dean’s attack and its 

extension under any circumstances. This construction is almost similar to that of the 

HAIFA hash construction which will be described in Section 2.4.2. The only 

difference is that there is no salt value used as input and instead of the number of bits 

hashed so far, the dithering design uses a square-free sequence or an abelian square 

free sequence.  

 The square-free sequences are aperiodic sequences over a finite alphabet with 

the property that no sub word is repeated. For a message ,M  divided into r -blocks 

each of length ,l  that is, rmmmM ,.....,, 21=  the thi chaining value for the dithering 

hash design can be formally represented as ( )11 ,, −−= iiii dmIVfIV  where 

,,.....,2,1 ri =  and 1−id  represents the initial dither value. There is an additional 

finalisation function ,g  used at the end of the process. The diagrammatical view can 

be shown using the Figure 16.  

  0d  1m                    1d   2m                            rd   rm                                       

                                                                                                                                                            

                                                                                                                                                                  

                 f                           f                                     f                          g                     

0IV = initial value    1IV                   2IV     1−rIV                      rIV                     ( )rIVf ′                               

   Figure 16: Dithering hash function.   

 The dither value can be selected in many ways: one of the ways by following 

the suggestion of Kelsey and Schneier the value can be selected as the index ,i  that is, 

.idi =  This enhances the performance of the hash function however, the compression 

function should accept an arbitrarily large input ,i  because the size of the message 

input M  is not going to be padded. The efficiency of this hash function depends on 

the size of the dither value. The smaller the dither value the more efficient is the 

design but, to resist against the generic attacks it should be sufficiently large. 

 A pseudorandom sequence rppp ,.....,, 10  can also be used as a dither value. 

This solution can provide only a tiny improvement to the protection of the hash 

functions from the known attacks. Another suggestion for selecting the dither value 

can be alternative 0’s and 1’s. That is, id  value is made equal to ‘0’ when i  is even 
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and id  value is made equal to ‘1’ when i  is odd. But, this solution cannot prevent the 

repetition of pairs of blocks, as the dither input has period two.  

 The obvious solution suggested by Rivest in [4] is to use a square free 

sequence or an abelian square free sequences as dither value. As explained above, the 

square free sequences are aperiodic sequences over a finite alphabet with the property 

that no sub-word is repeated. An example of the square free word is ‘madam’, in this 

word no sequence is repeated but in the word ‘freshness’ the sequence ‘es’ is repeated 

twice so ‘freshness’ is not square free sequence. 

Definition-5: (Square-free sequence) [4] 

  A word X  is said to be square free if it is contains no squares. That is, X  

should not contains any sub-word of the form ‘ ee ’ where ‘ e ’ is finite and non empty. 

Thus, a sequence generated using such a square free words is known as square-free 

sequence. 

 There is one more version of the square free sequence called the abelian 

square free sequence. This odds further conditions to simply square free. For example, 

a sequence ‘12343241’ is square-free but not abelian square-free because sub word 

‘234’ is followed by its permutation ‘324’. This generates the opportunity to define 

the later also.  

Definition-6: (Abelian square free sequence) [4] 

 A word X  is said to be an abelian square-free word if it can not be written in 

the form zyxyX ′=  for the words zyyx ,,, ′  where y  is not an empty word and y′  is 

a permutation of y  and are not next to each other. Thus, a sequence generated from 

such words is known as abelian square free sequence.  

 The generation of the abelian square-free sequence, is not hard [4] and it is 

more repetition free then the square-free sequence. Hence, it is obvious to use the 

former sequence instead of the later sequence as the dither value. The easier the 

generation of these sequences the easier the use of the dithering hash function. 

2.3.1.1. Security analysis of the dithering hash function against known generic 

attacks: 

 The dither value is selected in such a way that it is repetition free which in turn 

makes the chaining values of the hash function to be repetition free. Thus, finding 

fixed points become harder for an attacker. In other words, the attacker is forced with 

the difficulty of funding the fixed point of the form ( ),,, 111 −−− == iiiii dmIVfIVIV  
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similar to the idea of Biham et al in the HAIFA hash construction [85]. Hence, Dean’s 

attack and its extension can be restricted by the dithering hash construction. 

 By inspecting the structure of the dithering hash function it is clear that there 

is no additional effort required by the attacker to find multi-collisions just as in the 

case of the normal Merkle-Damgård hash construction. However, to avoid multi-

collisions the internal state can be increased just as in the case of the wide-pipe 

hashing by using larger dither values and corresponding sized initial values. The 

general message expansion attack can be avoided by the dithering design because of 

the additional finalization function g  used at the end. 

2.3.2. Double pipe hash function or double pipe hash construction: 

 The double pipe is designed to solve the question: Is it possible to design an 

iterative hash function and prove its security without making the assumption that, 

some internal building block is much stronger than the hash function itself? This 

problem appears even in wide pipe design. In double pipe design a single narrow-pipe 

compression function { } { } { } ,1,01,01,0: npnnf →× +  where np >  with three random 

initial values ′
0IV , ″

0IV and 0IV  all belonging to { }w1,0  (where { }w1,0  is similar as in 

the case of wide pipe hash construction) is used to avoid this problem. Figure 13a 

gives the diagrammatical view of this design.   

′
0IV = initial value    ′

1IV                   ′
2IV … ′

−1rIV                   ′
rIV                                                              

           f                              f                                      f                                                                         

     

                                                                                                                                                        

 1m                             2m                                   rm                                                                                      

                                                                                                                  f                                    

                                                                                                                                                                        

          f                               f                                    f                    0IV          final hash                              

″
0IV = initial value    ″

1IV                 ″
2IV … ″

−1rIV                 ″
rIV                                                               

   Figure 13a: Double-pipe hash construction [82]. 

 Cascading hash functions seems to be a general solution to improve the 

security of hash functions. But Joux’s attack shows that cascading iterated hash 

functions are not really particularly secure. In contrast, Lucks proved that cascading 
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can be used for improving security and generated double pipe design which appears 

like cascading.  The point to be understood here is that double pipe design is 

cascading of the compression functions and not the case of hash function cascading. 

Hence, cascading can be a solution for improving the security of hash function if the 

compression functions are cascaded and not the hash functions directly. The security 

analysis of this hash function is mentioned in Section-2.2.1.1. 

 

2.4. Hash functions based on four inputs 

2.4.1. Prefix-free Merkle-Damgård hash construction:  

 In [83] Coron et al proposed a modified design for Merkle-Damgård 

construction and showed that it is indistinguishable from a random oracle. A random 

oracle is a theoretical black box that responds to every query with a random response 

chosen uniformly from its output domain, except that for any specific query, it 

responds the same way every time is receives the same query.  

 Originally, Bellare and Rogaway introduced the random oracle model as a 

paradigm for designing efficient protocols [88] which is used by Coron et al in [83]. 

One more work used by them is the indifferentiability framework of Maurer et al [89] 

to show that their construction is indifferentiable from a random oracle. It is known 

that, the Merkle-Damgård hash construction makes use of only two inputs to generate 

the chaining values in each round. But, the prefix-free Merkle-Damgård hash 

construction uses four inputs in each round.  

      v  1 1m                    v 2 2m                          v r rm                                                               

                                                                                                                                                            

                                                                                                                                                                  

                            f                               f                                       f                                                          

            0IV = initial value          1IV                      2IV       1−rIV                             rIV                                  

  Figure 17: Prefix-free Merkle-Damgård hash construction [82]. 

 The diagrammatical view for this construction is as in the Figure 17, for a 

message M  of length c  divided into r -blocks each of length l  represented as 

rmmmM ,.....,, 21= . The string v  is a binary encoding of the message length say c  

and the other input i  for ri ,.....,2,1=  is the encoded block index. The length of 

these strings in bits can be equal to the number of bits required for the compression 
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function to complete the iteration. Formally this design can be represented as, 

( )ivmIVfIV iii ,,,1−=  for ri ,.....,2,1= . 

2.4.1.1. Security analysis of the prefix-free Merkle-Damgård hash construction 

against the known generic attacks: 

 Similarly, as in the case of the wide pipe and double pipe hash construction, an 

additional hash function can be used at the end of the prefix-free construction as well. 

Hence, the message expansion attack and the partial message expansion attack can be 

avoided for this construction.  Joux’s multi-collision attack applies to this construction 

as well. The additional work required by an attacker to find a collision on this 

construction compared with that of Merkle-Damgård construction is to decode the 

strings v  and i .  

 In the case of finding fixed points the attacker is forced to work hard to find 

point such as ( )ivmivfiviv iiii ,,,1 ==+  in prefix-free Merkle-Damgård design 

instead of simply, ( )iiii mivfiviv ,1 ==+  as in the case of Merkle-Damgård 

construction. Thus, applying Dean’s attack and its extension on this modified design 

will be harder. 

2.4.2. HAIFA hash construction [85]: 

 The name HAIFA is taken from HAash Iterative FrAmework and is designed 

by Eli Biham and Orr Dunkelman [85]. The inputs to the compression function in this 

design are the message block, the initial value, the number of bits hashed so far and 

the salt value. The point to be noted here is that the salt value and the number of bits 

hashed so far are inbuilt to the message block. That is, these two inputs are padded to 

the message block. 

 Formally, compression function of HAIFA for message ,M  divided into r -

blocks each of length l  that is, rmmmM ,.....,, 21=  can be represented as 

{ } { } { } { } { }nsblnf 1,01,01,01,01,0: →×××  with n -bit initial value, l -bit message block, 

b -bits input of number of bits hashed so for, s -bit salt value and n -bit hash value or 

the message digest. Thus, the chaining value iIV  is computed as 

( )saltbhmIVfIV iiii ,,, 11 −−=  where, ibh  represents number of bits hashed until now, 

for ri ,.....,1=  and salt  represents the salt value.  
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 The designers of HAIFA claim that it is possible to add the number of blocks 

that were hashed so for as an input to the compression function of HAIFA. But, this 

scheme keeps track of the number of bits hashed so far and not the number of blocks 

hashed so far. Thus, it is easier for implementations to consider only one parameter 

the number of bits rather two nearly related parameters: the number of bits and 

number of blocks. 

 To protect the HAIFA hash construction against second pre-image attacks the 

authors proposed to use a salt parameter as an additional input to the compression 

function each time it’s called. This salt value is selected from families of hash 

functions (as the theoretical definition of hash functions defines families of hash 

functions). Each time the compression function is executed the user will select one 

function of the family of hash functions, either at random, or by incrementing by one. 

It can also be selected as the frame number or sequence number of the message that is 

transmitted. 

 The salt value is used as an additional input to the compression function 

instead of changing the initial value and it is also added to the padding. It can be used 

as a key in the keyed hash functions. The salt value ‘ salt ’ is made equal to zero that 

is, ,0=salt  for some applications where, the value cannot be selected from a family 

of hash functions because of the requirements based on applications. There are four 

values entered to the compression function each time it is called. The diagrammatical 

view of the HAIFA hash construction is shown in Figure 18. 

   salt  0bh 1m           salt  1bh 2m                          salt  rbh rm                                                        

                                                                                                                                                            

                                                                                                                                                                  

                         f                           f                                           f                                  

          0IV =initial value        1IV                     2IV           1−rIV                     rIV                                          

   Figure 18: HAIFA hash construction [85]. 

 The parameters ibh (number of bits hashed) so far and the salt (the salt value) 

can also be viewed as additional fields in the chaining values and can be removed 

from the last block. This appears like increasing the internal state of the compression 

function as in the case of wide-pipe hash construction (see Section 2.2.1). But, the 

former require additional memory for the salt value which is fixed for all blocks 
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unlike the larger memory required for the later construction for storing larger initial 

values. 

 Note that a variable hash size can be provided for the HAIFA hash 

construction. For example, consider the SHA-1 hash function, the last 64-bits out of 

512-bits of each block can be represented with the number of bits hashed so far and 

the last but one 64-bits can represent the salt value. This can generate a message 

digest of length 384-bits; such a solution is given in [83] as a chopped solution of 

hash functions. 

2.4.2.1. Security analysis of the HAIFA hash construction against known generic 

attacks: 

 The HAIFA hash construction protects both forms of message expansion 

attacks. The proof for it is that, the last block is compressed with the number of bits 

that were hashed so far and this value is not a multiple of a block, then the resulting 

digest will not be equal to the chaining value. This is in contract to the requirement of 

the message expansion. Also, if the message is a multiple of the block size, then an 

additional block is hashed with padding being the same number of bits hashed so far.  

 The same solution protects this construction from Dean’s attack and its 

extended version. In these attacks the goal of the attacker is to find the fix-points in 

the compression function. In the HAIFA hash construction the attacker has to find the 

fix-points of the form ( )saltbhmivfiviv iiiii ,,, 111 −−− ==  which is definitely harder 

than just simply finding fixed point of the form ( )iiii mivfiviv ,1 == − . 

 Joux’s multi-collision attack applies to almost all the hash functions that use 

the iterative structure. The time complexity to find a collision for each block in the 

HAIFA hash construction is not different from that of in Merkle-Damgård 

construction. However, the attacker cannot compute the multi-collision before the 

selection of the salt value. Joux’s attack can also be prevented by the wide-pipe 

construction but, it requires a large internal state for computation. However, the 

HAIFA construction does not require any large internal state which may reduces the 

efficiency of the computation. 

 The pre-computation required for the herding attack (see Section 1.4.4) is 

infeasible in the case of HAIFA hash construction because the salt value is mixed into 

the chaining value. Moreover, the attacker cannot find the exact digest value unless 

the salt value is known. Thus, one can say that, the herding attack does not work on 
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this construction. The length of the salt value should be at least 64-bits or half that of 

the message digest in order to make it infeasible for the attacker to find an attack on 

the hash function. This in turn increases the hardness of finding fixed points as well. 

 

2.5. Comparison of Merkle-Damgård hash construction with related 

constructions: 

 The wide-pipe and double-pipe hash function designs are proposed by Lucks 

in [82]. He proved that these designs have more resistance against generic attacks than 

the normal Merkle-Damgård construction. This is because of the widened internal 

state for wide pipe design. On the other hand, the double-pipe design employs one 

single n -bit compression function twice in parallel for each message block to provide 

more resistance against the attacks. 

 Ferguson and Schneier in [29] proposed a double hashing scheme ( )( )MHH  

for a hash function H  and a message .M  This scheme is a key less or a fixed initial 

value 0IV  variant of the NMAC and HMAC constructions of message authentication 

code proposed by Bellare et al in [90]. It is obvious that an attacker can find multi 

block collisions on these constructions similarly as in the case of Merkle-Damgård 

construction. That is, the attacker finds multi-block collisions in the inner hash 

function first, which cannot be prevented by the application of the hash function 

again. Then he can progress the attack to the whole hash function. But, this is not the 

case in wide pipe and double pipe designs. 

 Due to poor message expansion of the compression functions of hash 

functions like MD5 and SHA-1 Wang was able to find differential collisions on them 

in [60]. These collisions were made weaker by Jutla and Pathak in [91]. Also, in [5] 

Szudlo and Yin proposed two new types of preprocessing of messages called the 

message whitening and the message self interleaving to improve the security against 

the attacks. While, these kinds of preprocessings are required for the MD5 and SHA-1 

designs to resist against the known attacks wide pipe, double pipe, 3C and 3C+ 

designs do not require such preprocessing. 

 As far as the performance is considered MD5 and SHA-1 hash functions are 

faster than the other proposed designs as explained in the above sections, and also 

because of the additional requirements like more number of XOR operations and 

more number of inputs for some of these new hash designs. 
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2.6. Security reduction proof: 

 The security of a generic cryptosystem ‘CS’ based on problem ‘A’ can be 

shown in the following manner:  

The cryptosystem ‘CS’ is said to be secure if problem ‘A’ is based on well known 

difficult problem such as, factorization. But, if ‘A’ is some new unknown problem 

then the case of security reduction arrives in proving the cryptosystem’s security. 

Now, if it can be shown that problem ‘A’ is reducible to problem ‘B’ where ‘B’ is  a 

difficult and well know problem such as, discrete logarithm problem then it can be 

said that, the security of the cryptosystem ‘CS’ is reducible to the security of the 

problem ‘B’. Since, ‘B’ is difficult to solve it is easy to say that ‘CS’ is as secure as 

problem ‘B’. 

 For most of the hash function designs, their security is proved with a security 

reduction to a number theoretic problem that is believed to be difficult. For instance, 

in [108] Damgård designed two hash functions which are reducible to RSA 

factorization problem and proved that, the security of these hash functions is reducible 

to finding collision in a RSA modulus. Also, a construction based on the discrete 

logarithm problem modulo a composite is proposed by Gibson [109]. MASH-1 and 

MASH-2 (where MASH stands for Modular Arithmetic Secure Hash) are the two 

hash functions based on modular arithmetic [113-115]. As stated by Coppersmith and 

Preneel in [111] the best known preimage and collision attacks on MASH-1 needs 
2/2n  and 4/2n  operations respectively. 

 A security reduction proof for a hash function is said to be good when, finding 

a collision on it’s design leads to solving the well established problem with sufficient 

probability, specifically with probability one. Reduction security proofs of this kind 

are known as tight security reduction proofs. On the other hand, if the reduction is not 

good that is, if the probability is too small, the security on the design can be said to be 

weak and reduction security proofs of this kind are said to be loose security reduction 

proofs. Finding security reduction proof is difficult for all hash function. Hence, the 

security of such hash functions is determined without security reductions. A modulus 

,N  which is a product of two large prime numbers is used mainly for deriving the 

security of the hash function. Even more efficient method is based on modular 

squaring. There exists an argument for squaring which is, any algorithm that can 

extract modular square roots is reducible to a factoring algorithm [34]. 
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Chapter 3  

Modifications and replacements to the 

existing hash functions  
 

3.1. Collision resistance of a hash function using message preprocessing: 

 In recent past, the hash function research has undergone some interesting 

cryptanalysis. Wang’s attack is the one which has shown the major disadvantage of 

MD5, SHA-1 and other related hash functions. MD5 and SHA-1 hash functions are 

the most widely used hash functions in various applications and these have been 

broken by Wang’s attack [55-60]. To avoid such attacks on these hash functions, the 

major step is to examine the dependency of a particular protocol on collision 

resistance for its security.  

 It is obvious that there will not be any need to change the hash function for the 

applications which do not depend on collision resistance. But, for the applications 

which depend on collision resistance, the better and easier alternative is to change the 

hash function totally. At present, SHA-2 [92] family is the only alternative for such 

replacement. The hash functions SHA-256, SHA-224, SHA-384 and SHA-512 are 

collectively known as SHA-2 hash standards. It is expected that this family is 

significantly stronger than other relative hash functions. 

 The second alternative is to redesign the whole hash function in such a way 

that the design is collision resistant. This can be a reasonable alternative only if the 

new design is completely resistant against all types of attacks and weaknesses 

discussed in the above sections. In [5] Szydlo and Yin proposed a completely 

different alternative, which depends on effectively redesigning just the message pre-

processing and not the whole design of the hash function. 

 The advantage of this alternative is that the standard hash functions can be 

used without making any changes except an additional preprocessing instead of the 

already existing preprocess. One more advantage is that, there will not be any 

additional requirements like changing the output length or truncating the output bits. 

In other words, some applications may find this alternative may extend the useful life 
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of existing hash functions which are vulnerable against the differential collision attack 

by Wang. 

3.1.1. Message preprocessing framework: 

 A new type of message pre-processing framework is used in [5]. The major 

working assumption behind this general technique suggested for improving the 

collision resistance is that there is no need to change the underlying hash function 

itself. Let M be a message string to be hashed and H  be a standard hash function 

such as MD5 or SHA-1. The objective here is to derive a hash function H ′  which 

calls H  as a subroutine.  

 In this design, the message is preprocessed using a different type of 

preprocessing technique, before it is hashed in a normal way. Formally speaking if 

MM ′→Φ :  is a preprocessing function mapping strings to strings. For each such 

function, a derived hash function H ′  can be defined as ( ) ( )( )MHMH Φ=′ . The 

message preprocessing function Φ  should be simple and the derived hash function 

H ′  must be collision resistant against the known attacks even if the original hash 

function H  is not. 

 The other requirement for many applications in cryptography is the streaming 

data requirement. That is, many applications are set up architecturally to 

incrementally digest an arbitrary large message as it is available. Formally, according 

to [5] the function Φ  is called a local expansion if it can be defined by 

( ) rr mmmmmm ′′′=Φ .....,,,.....,, 2121  where each im  is of fixed length and ( )ii mfm =′  

for some expansion function { } { }llf ′→ 1,01,0: , where .ll >′  Thus from [5] it is clear 

that Φ  should be a local expansion. 

3.1.2. Local expansion approach: 

  There are two local expansion approaches proposed in [5] for pre-processing 

the arbitrary finite length message before it is hashed, namely message whitening and 

message self interleaving. These two techniques increase security of the underlying 

hash function by increasing the structure within each message block [5]. A new and a 

similar type of approach which is more efficient then these two approaches is 

proposed in this section and is named as the reverse interleaving approach. 

 To understand how the message is processed in the compression function of 

the hash function after the message whitening approach or message self interleaving 
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approach one can see [5]. The similar processing can be used in the case of reverse 

interleaving approach. 

3.1.2.1. Message whitening approach [5]: 

 Wang’s method of attack derives a good differential first to attack a hash 

function. The motivation in message whitening is to decrease the flexibility in finding 

good differentials. The basic idea here is to alter the message by inserting fixed 

characters at regular intervals. These fixed characters can be taken to be words filled 

with all zero bits. In a hash function with 512-bit block size, fixed sequences smaller 

than 512-bits can be expanded into full 512-bits. For example, each sequence of 

( )t−16  32-bit blocks of ( )tmmmm −= 1621 ,.....,,  can be expanded to 

( )0,.....,0,,.....,, 1621 tmmmm −= , where the last t  blocks would be fixed as zeros.  

 Each execution of the compression function effectively only processes ( )t−16  

message words, rather than 16 message words. These schemes are also easy to 

implement because such pre-processing is a local expansion. Thus, the streaming 

requirement can also be met. The pre-processing here uses only fewer bits of message 

which allows the message to be better mixed within the calculation. 

3.1.2.2. Message self interleaving approach [5]: 

 The basic idea in this approach is to duplicate each message block such that, 

each bit appears twice after the pre-processing. For example, a message M of 

arbitrary finite length which is divided into r -blocks each of length ,l  represented as, 

( )rmmmM .....,, 21=  after message self interleaving local expansion process Φ , each 

block appears twice such that, ( ) ( ).,,.....,,,, 2211 rr mmmmmmM =Φ  Similar to that of 

message whitening approach, message interleaving causes fewer message bits to be 

fed into each message block which cause better mixing.    

3.1.2.3. Reverse interleaving approach: 

 A new approach for the local expansion can be designed using inverse double 

mirror image sequence of a message. To understand this approach, we need to define 

inverse double mirror image sequence for a message .M  This is explained here. Let 

the message M of arbitrary finite length be divided into r -blocks each of fixed length 

l  such that, ( )rr mmmmM ,,.....,, 121 −= . For any sequence of the form 

nn mmmm ,,....., 121 −  there exists an inverse sequence of the form 121 ,,.....,, mmmm nn − . 

Similarly, for the above sequence there exists, an inverse sequence of the form 
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( )121 ,,.....,, mmmmM rr −= . The new sequence of the form 

( ) ( ) ( ) ( )11121 ,,.....,,,.....,,,, mmmmmmmm ririrr +−−  is called the inverted double mirror 

image sequence of the message .M  

 This kind of sequence can be used for the pre-processing in such a way that, 

each message block appears twice after the process completes and it can be formally 

represented as ( ) ( )jjrrrr mmmmmmmmmmM ,,.....,,,,,,,, 112211 −−=Φ . Where, 

2/)1( += rj  for r  is odd and 12/ += rj  for r  is even. This sequence appears to be 

similar to that of message self interleaving but here the order of the message blocks is 

different. The first block appears in first and second positions, the last block appears 

in third and forth positions, the second block appears in fifth and sixth positions, the 

last but one block appears in seventh and eighth positions and so on. This means, the 

order of the input message blocks to the compression function also changes 

accordingly.  

 The advantage of the reordering of the sequence in this form can be seen in the 

Section 3.1.3. Similar to that of message whitening and message self interleaving this 

approach also cause few message bits to be fed into each message block, which 

causes better mixing of the input parameters. The randomization of the bits in the 

chaining variables will be better in this case compared with that of the other two 

approaches because of the different ordering of the message blocks. 

3.1.3. Security analysis of the local expansion approach: 

 From [60] it is clear that to find a collision on the hash functions MD5 and 

SHA-1 the techniques of selecting good differentials, deriving a set of sufficient 

conditions and message modification are used. Hence, to avoid the collision it is 

sufficient to show that these techniques do not apply to the hash function. The three 

local expansion approaches described in the above section can be used to harden the 

good differential selection and message modification techniques. In this section it is 

explained how message modification technique can be weakened.  

 First, a brief review of the message modification technique from [60] is 

presented here. The round function of the MD5 and SHA-1 hash functions can be 

formulated using the following general formula:  

   =−1ix h (input chaining variables) + im ,  
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where, 1−ix  is the output chaining variable and im is the message block used in step i , 

and ri ,.....2,1=  for a message divided into r -blocks each of fixed length in such a 

way that rmmmM ,.....,, 21= . 

 After constructing the differential path it is easy to derive the set of sufficient 

conditions on 1−ix  which ensure that all conditions on the path hold. The conditions 

are of the form yx ji =,  where y  is ‘0’ or ‘1’. That is, the thj  bit of the chaining 

variable ix  is transferred from ‘0 to 1’ or ‘1 to 0’. The main idea behind the message 

modification technique is to simply set the bit jix ,  to the correct bit y  such that the 

derived sufficient conditions hold.  

 This basic technique can be used for the first 16 steps in MD5 and SHA-1 

since the message blocks are independent of each other until this stage. A simple 

variant of this technique is to modify the message words used in two steps before step 

i  to make sure that, all the conditions hold. A more advanced technique called multi-

step message modification technique which is used to modify the more number of bits 

of a particular chaining variable is also available. This technique is used after step-16 

in both MD5 and SHA-1 hash functions. 

 In both reverse interleaving and message self interleaving approaches, each 

message block appears twice after the process but the order of the words is different 

in the former compared with that of the latter. But, in both these approaches for 

applying the message modification technique, two consecutive message blocks have 

to be modified simultaneously, which makes it almost impossible to change any 

single bit.  

 Now, suppose a differential path has chosen for finding collision on a hash 

function which uses any of the interleaving approaches and the sufficient conditions 

on ‘ 1−ix ’ the chaining values have been determined. Since, most of these conditions 

can no longer be made to hold through message modification because of these 

interleaving approach used the complexity of the attack will be greater. In the case of 

message whitening all the whitened message blocks cannot be modified, since these 

message words are simply zero and independent of the input message. 

 In the reverse interleaving approach the last block becomes the third and 

fourth input block, last but one block becomes seventh and eighth input block and so 

on. That is, the input order of the message blocks to the compression function will be 
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completely different. This different order of the message blocks will generate a 

completely different and more randomized message digest compared with that of the 

other two approaches. 

 There will be better mixing of the inputs in the reverse interleaving approach, 

because the order of input message blocks is completely different. The better mixing 

of the input blocks in the compression function will always be an advantage because it 

will increase the complexity of the attack. One, more advantage is that for finding 

differential attack the order of the inputs to the compression function should be first 

known which requires an additional effort from the attacker. 

 Diagrammatically, the security of reverse interleaving approach can be 

compared with that of the self interleaving approach in the following way: 

Let us consider the message blocks are represented in the following way: 

 

                                                                                                                                 (1) 

  Then,   after self interleaving process the message blocks appears as: 

  

                                                                                                                                   (2) 

after reverse interleaving the message blocks appears as: 

 

                                                                                                                                    (3) 

 

Since the order of the input of the message blocks to the compression function is 

redirected as in (3) above the output will also be more random compared with that of 

(2). This is the argument of security for reverse interleaving and hence it provides 

more resistant against the differential attack of Wang. 

3.1.4. Implementation issue: 

 The implementation of these types of preprocessing techniques is straight 

forward. The preprocessing can be done prior to calling the compression function. Let 

us consider a hash function H and let ( )MH  be the original implementation of the 

hash function H , where H  can be any hash function vulnerable to the Wang’s attack. 

Also, let ( )MppΦ  be the preprocessing function of the same message ,M  where ppΦ  

can be any of the three local expansion approaches explained in the above section. 

With the advanced techniques in today’s computer world like storing a huge message 
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in a tiny amount of memory space the implementation of this hash function is easier 

and is more advantageous then others. Moreover, in applications where the message is 

of smaller size this can be more advantageous because the message length is a major 

factor in maintaining the last block of the whole padded message. The new hash 

function which is having the additional coding for the preprocessing can be as 

follows: 

                                                  

( )

( )
( )

}

{

MH
MM

M

pp

pp

′

Φ=′

Φ

 

That is, the hash function will just hash the preprocessed message M ′ , instead of the 

original message M  with a different type of preprocessing. The original 

preprocessing used in the hash functions H  say MD5 hash function will not be 

required for this type of implementation. But the original length padding in the last 

block can be still maintained. One more advantage of the local expansion approach is 

that, it can be used in any of the newly designed hash functions explained in the 

classification of hash functions previously.  

 

3.2. Enhanced SHA-1 IME hash function: 

 The secure hash algorithm (SHA) was first published in 1993 as the secure 

hash standard in ‘FIPS PUB 180’ by US government standards agency NIST 

(National Institute of Standards and Technology) and is commonly known as SHA-0. 

Two years later, an enhanced version of the same hash function was published in 

‘FIPS PUB 180-1’ which is commonly referred as SHA-1. Both these algorithms are 

similar; the only difference is that the SHA-1 uses a single bitwise rotation in the 

message schedule in its compression function where as, SHA-0 does not (explained 

clearly in further part of this section).  

 This change in the algorithm is done to enhance the security of it. Both these 

algorithms generate a message digest of length 160 bits by accepting a message of 

maximum length 1264 −  bits. In 2004 both these are totally broken using the 

differential attack by Wang in [55, 60]. These attacks concentrated on the poor 

message expansion of the hash function’s compression function. Specifically, the 
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three hash functions MD5, SHA-0 and SHA-1 which are widely deployed in 

cryptographic applications are designed using a similar design principle.  

 In each of these hash functions, the message is first made into blocks of 512 

bits and each 512-bit block is processed by first expanding linearly into sixteen 32-bit 

words. Then, in MD5 these sixteen 32-bit words are used to generate forty eight more 

32-bits words using some logical operation. Similarly, in SHA-0 and SHA-1 hash 

functions another sixty four 32-bit words are generated using the already generated 

sixteen words. From [91] in MD-5 one can notice that there will be only 12-bit 

difference in the 64-expanded words and in the case of SHA-0 and SHA-1 hash 

functions the bit difference in the last 60 generated words is 17 bits and 27 bits 

respectively. Thus, the main reason that, these three hash functions have been 

vulnerable to the differential attack is because of their poor message expansion. 

 In [91] Jutla and Patthak proposed a different expansion mechanism in such a 

way that, the message expansion becomes stronger by generating more bit difference 

in each chaining variable. Using this idea, a new expansion mechanism is proposed in 

this section, which expands the inputs in a better way. The security proofs used in 

[91] for the mechanism proposed in it can be similarly used for the mechanism 

proposed here. 

3.2.1. Message expansion in ‘SHA-0’, ‘SHA-1’, ‘SHA-1 IME’ and enhanced 

SHA-1 IME hash functions: 

 Let M be the message to be processed which is divided into r -blocks each of 

length 512-bits such that, ( )rmmmM ,.....,, 21= . Then each block is further divided 

into sixteen 32-bit words such that, 1510 ,.....,, wwwmi =  for ri ≤≤1 . In both SHA-0 

and SHA-1 hash functions each message block is processed in 80 steps, for the first 

sixteen steps, the sixteen 32-bits words 1510 ,.....,, www  are used and in the further 

steps the words are generated using a specific linear code. Finally, the eighty words 

( )7910 ,.....,, www  can be seen as a code-word constructed using a specific code. 

 The hash functions SHA-0 and SHA-1 use an update function [93, 94] for 

processing each message block. This update function consists of eighty steps divided 

into four rounds. A, B, C, D and E are the five 32-bit registers used as a buffer for 

updating the contents. For each of the eighty rounds the registers are updated with a 

new 32-bit value. The starting value of these registers is known as initial value 
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represented as 000000 EDCBAIV = . In general, tttttt EDCBAIV =  for 790 ≤≤ t . For 

step t  the value tw  is used to update the whole registers. 

 Each step uses a fixed constant tα  and a bit-wise Boolean operation tO  which 

depends on the specific round. In SHA-1 this process can be formally represented as: 

 For 790 ≤≤ t , 
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where ‘+’ denotes the binary addition modulo 322  operation. More description about 

the boolean operations used and the initial values 0IV  used for SHA-0 and SHA-1 

hash functions can be obtained from [12]. The same update function can be used for 

the SHA-1 IME in [91] and enhanced SHA-1 IME proposed here.  

 The message expansion is explained for just one 512-bit block here let us say 

for the message block 1m  and the similar process is used for the remaining blocks. 

The message block 1m  is first divided into sixteen 32-bit words such that, 

15101 ,.....,, wwwm =  (let 150 ≤≤ j  and let j  represent the index of these words). 

This is processed in eighty steps, so for each step there is need of one word to process 

the message. Let t  represent the number of steps in the compression function hence 

790 ≤≤ t . 

In SHA-0 hash function the linear code is: 

Equation-1: 
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In SHA-1 hash function the linear code is: 

Equation-2: 

( )
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 Where 1<<<  denotes a one bit rotation to the left. The expansion mechanism 

used is a linear one in both hash functions (SHA-0 & SHA-1) and the process in 
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different bits is independent in the case of SHA-0. This is the reason for both these 

hash functions to be vulnerable to the differential attack as shown in [55-60]. 

In SHA-1 IME hash function the code is: 

Equation-3: 

( )( )
( )( )








≤≤<<<⊕⊕⊕⊕⊕⊕⊕
≤≤<<<⊕⊕⊕⊕⊕⊕

≤≤≤≤

=

−−−−−−−−

−−−−−−−

.793613
,351613

.150&150

201521161483

1521161483

tforwwwwwwww
tforwwwwwww

tjforw
w

tttttttt

ttttttt

j

t

Where, <<<13 is 13 –bit rotation to left. 

 In [91] Jutla and Patthak proposed a modification to the standard SHA-1 hash 

function and named as SHA-1 IME where ‘IME’ stands for ‘Improved Message 

Expansion’. A different message expansion mechanism is employed in this hash 

functions in such a way that the minimum distance between the similar words is 

greater compared with the above two hash functions. If the minimum distance of the 

similar words in the sequence is raised, then it is obvious that the randomness in the 

bits of the updated register’s message word will significantly raises. Similarly, it is 

also obvious that if the randomness is raised, then the message modification technique 

used in Wang’s attack should require an additional effort to make the selected 

sufficient conditions to hold. Hence, this makes the complexity of the total attack 

increase significantly. The code in this improved hash function will be as follows: 

In enhanced SHA-1 IME hash function the code is: 

 For achieving even better message expansion compared with that of SHA-1 

IME the following code can be used. 

Equation-4: 

( )( )
( )( )
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Where, <<<13 is 13 –bit rotation to left. 

The new words 2−tw  and 6−tw  used in this equation are chosen carefully in such a way 

that, the ‘XOR’ operation between two words will not create null value. That is, care 

is taken in such a way that, the same words are not ‘XORed’ at a time. There is no 

critical logic involved in breaking the steps at step 25 and step 55. They can be broken 

at some different steps as well. However, one should take care that conditions on t  



 lxvi

should be as much less as possible because the performance of the hash function will 

reduced if more conditions on t  are included. 

3.2.2. Security analysis of these hash functions: 

 The basic idea in generating such an enhanced code for a hash function is to 

increase the minimum difference in the neighbouring bits of the intermediate chaining 

variables ( )ttttt EDCBA , which in turn reduces the frequency of repetition of the 

neighbouring bits. From this, one can notice that the randomness in the bits of the 

chaining variables will increase, which increases the complexity of the differential 

attack. The randomness of the bits in the chaining variables is not more when the 

original SHA-0 and SHA-1 codes were considered. Wang used this to find the 

collision differential in full eighty steps of SHA-0 and SHA-1 hash functions. 

 From equation-3 and equation-4 one can notice that the only difference in the 

SHA-1 IME and its enhancement is a simple variation. There is an additional 

condition for the steps 5526 ≤≤ t . These additional conditions will lead to more 

mixing of the bits in the chaining variables. The additional words used in equation-4 

are 62 , −− tt ww  and 3−tw  along with 1521161483 ,,,,,, −−−−−−− ttttttt wwwwwww  and 20−tw . The 

inclusion of these additional conditions and words will lead to an advantage because 

the additional randomness in chaining variables leads to greater minimum distance. 

The conditions and claims used in Section-2 and Section-3 of [91] for the code of 

SHA-1 IME hash functions to prove the security of it can be similarly used to the 

enhancement of SHA-1 IME proposed above as well.  

 The only place where one can include the additional conditions to prove the 

security for the enhanced code is in between the steps 5526 ≤≤ t . One can also 

notice that there are two words 2−tw  and 6−tw  used instead of the words 3−tw  and 8−tw  

in between these steps. This will not lead the whole code to an attack because it is just 

a replacement of similar words. Hence the security argument here is that, this enhance 

code will provide security not less than SHA-1 IME code and because of the 

additional conditions in between the steps 26 and 55 ( 5526 ≤≤ t ) there will be an 

additional security against the differential attack. 

 Recent attacks on hash function by Wang have been focused on reducing the 

difference of intermediate chaining variables caused by the difference of messages. 

On the other hand, a hash function can be considered secure if it is computationally 

infeasible to calculate such difference in its compression function. The enhancements 
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for SHA-1 hash function in equation-3 and equation-4 does the same. That is, they 

make it computationally infeasible to calculate such differences in the chaining 

variables which makes harder for an attacker to find an attack. 

 

3.3. The 3-branch a new dedicated hash function: 

 In [95] a new dedicated hash function has been proposed called ‘FORK’. It is 

designed to overcome the recent attacks on hash functions in [55-60]. However, in 

[98] some weaknesses in the FORK hash function were demonstrated. In this thesis, 

an attempt is made to avoid the weaknesses found on this hash function by proposing 

a new hash function called the ‘3-BRANCH’. This can be considered as an improved 

version of the FORK hash function. The improved version proposed here uses same 

initial values and almost the similar step function as in the case of FORK. The 

differences between these two hash functions will be explained, as well as the 

description and the security analysis follows for the new hash proposal. The hash 

function is named so because the structure has only 3 branches. 

3.3.1. Description of 3-branch: 

 The following are the notations used in the new hash function 3-branch. 

                                  sA<<<  :  s -bit left rotation for a 32-bit string A  

                      : XOR operation 

                               +,          :  addition mod 322      

3.3.1.1. Padding procedure: 

 In the 3-branch hash function the input message is processed in 512-bit 

message blocks. The message is padded so that its length in bits is congruent to 448 

modulo 512. That is, the length of the padded message is 64-bits less than an integer 

multiple of 512-bits. Padding is always added, even if the message is already of the 

desired length. A 64-bit representation of the length in bits of the original message 

before padding is appended at the end.  

 Only if the original length is greater than 642  bits the lower order 64-bits of 

the length are used. Thus, the field contains the length of the original message, 

modulo .264  This is similar in the case of SHA-256 as well and the message here 

appears as rMMMM ,.....,, 21= .  For convenience the message blocks are represent 

here as rMMMM ,.....,, 21=  instead of rmmmM ,.....,, 21= . In all the other sections 

of this thesis the latter representation is used instead of the former.                                                              
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3.3.1.2. Initialization vectors: 

 A 256-bit buffer is used to hold intermediate and final results of the hash 

function. The initial value of the buffer is 000000000 HGFEDCBAIV = . These registers 

are initialized with the following 32-bit hexadecimal values:     

        6A09E6670 =A ,  

        67AE850 BBB = ,  

       3C6EF372 0 =C ,  

        54FF53A0 AD = ,  

                                         510E527F,0 =E  

                                          9B05688C0 =F ,  

                                         1F83D9AB 0 =G  and 

                                          5BE0CD190 =H . 

The initialization vectors used here are same compared with that of FORK hash 

function. 

3.3.1.3. Structure of 3-branch: 

 Each successive 512-bit message block rMMM ,.....,, 21  of the message M  is 

divided into sixteen 32-bit words. These words are used in the following computation 

to update the buffer value iIV  to 1+iIV : 

( )( ) ( )( )[ ]
( )( ) ( )( )[ ]
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where, ( ) ( )( )150 ,.....,
jj

MMM
j ΦΦ=∑  is the re-ordering of message words for 3,2,1=j  

which is given in the table 5. 

                   The structure of the of 3-Branch hash function is as shown in the Figure 

19. A 512-bit message block is compressed into a 256-bit string using the 

compression function of this hash function similar to that of FORK. It consists of 

three parallel branch functions BRANCH-1, BRANCH-2 and BRANCH-3 where as 

the FORK makes use of four branches. 

 

 

 



 lxix

                                                                    iIV    

  

            ( )∑1
M                             ( )∑2

M                             ( )∑3
M  

 

                                                                                                                                                                        

 

  

 

 

                                                          1+iIV  

                 Figure 19: Structure of 3-branch hash function. 

 The input ordering of the message words 1510 ,.....,, MMM is as in the 

following table 5 for ‘ jBRANCH − ’ where 30 ≤≤ j : 

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

( )t1Φ  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

( )t2Φ  14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1 

( )t3Φ  7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3 

 

  Table 5: Ordering rule of message words in 3-branch. 

This ordering rule is just similar as in the case of FORK, the only difference that, 3-

Branch has only three branches hence only three different orders for the message are 

used. 

3.3.1.4. Branch function: 

 The branch function of 3-branch is computed using the following steps: 

Step-1: The chaining variable iIV  is copied to initial variable 0,jV  for thj −  branch. 

Step-2: At thk −  step of each branch where 70 ≤≤ k , the step function kjSTEP ,  is 

computed as follows: 

  ( ) ( )( )kjkjkjkkkjkjkj dMMVSTEPV
jj ,,,122,,1, ,,,, βα+ΦΦ+ = , 

where kj ,α  and kj ,β  are constants and kjd ,  is the dither value (see Section 3.3.1.6). 

 

 

1−BRANCH  2−BRANCH  3−BRANCH  
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3.3.1.5. Step function: 

 The input register  kjV ,  of kjSTEP ,  is divided into eight 32-bit registers as 

follows: 

   ( )kjkjkjkjkjkjkjkjkj HGFEDCBAV ,,,,,,,,, ,,,,,,=  

  kjSTEP ,  takes ( ) ( ) kjkjkkkj jj
MMV ,,122, ,,,, βα+ΦΦ  and kjd ,  as inputs and 

computes the following output: 
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where, f  and g  are nonlinear functions as follows: 

( ) ( )227 <<<<<< ⊕+= xxxxf  and  

( ) ( )2713 <<<<<< +⊕= xxxxg . 

           kjA ,      kjB ,         kjC ,        kjD ,         kjE ,         kjF ,         kjG ,     kjH ,           

  ( )kM
j

2Φ                                                                                                     ( )12 +Φ kM
j

   

 

 

 

 

 

 

 

       kjd ,       kjd ,         kjd ,         kjd ,                       kjd ,         kjd ,          kjd ,      kjd ,                                         

 

 

            1, +kjA        1, +kjB    1, +kjC      1, +kjD      1, +kjE       1, +kjF      1, +kjG      1, +kjH         

             Figure 20: Step function of 3-branch hash function. 
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  Figure 20(a): Step function of 3-branch hash function – Part-A. 
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  Figure 20(b): Step function of 3-branch hash function – PART-B.                                  
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3.3.1.6. Constants and dither values: 

 The compression function of 3-branch uses sixteen constants similar to that of 

FORK. The following table gives the values of the hexadecimal constants used: 

 

 

 

                Table 6: Constants used in 3-branch hash function. 

These constants are applied to the order rule similar to that of FORK as given in the 

following table: 

STEP  k k,1α k,1β k,2α k,2β k,3α k,3β  

      0 0κ  1κ  15κ  14κ  1κ  0κ  

      1 2κ  3κ  13κ  12κ  3κ  2κ  

      2 4κ  5κ  11κ  10κ  5κ  4κ  

      3 6κ  7κ  9κ  8κ  7κ  6κ  

      4 8κ  9κ  7κ  6κ  9κ  8κ  

      5 10κ  11κ  5κ  4κ  11κ  10κ  

      6 12κ  13κ  3κ  2κ  13κ  12κ  

      7 14κ  15κ  1κ  0κ  15κ  14κ  

          Table 7: Ordering rule of the constants in each branch. 

 In Section 2.3.1 the dither value is already explained. The original idea of 

designing a hash function using dither value is of Rivest in [4]. A dither value uses a 

square free sequence, of which a special case is on abelian square free sequence. 

Constant  Hexadecimal value Constant Hexadecimal value 

0κ  428A2F98 8κ  D807AA98 

1κ  71374491 9κ  12835B01 

2κ  B5C0FBCF 10κ  243185BE 

3κ  E9B5DBA5 11κ  550C7DC3 

4κ  3956C25B 12κ  72BE5D74 

5κ  59F111F1 13κ  80DEB1FE 

6κ  923F82A4 14κ  9BC06A7 

7κ  AB1C5ED5 15κ  C19BF174 
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These are defined in Definition-5 and Definition-6. The generation of abelian square 

free sequence is not hard as explained in [4] and it is more repetition free compared 

with square free sequence. Hence it is obvious that using the abelian square free 

sequence will generate more randomized intermediate and final chaining values [4, 

95]. 

 In 3-branch hash function it is straightforward to make use of a dither value of 

hexadecimal values. Let us consider three hexadecimal values BA,  and C . Then, as 

explained in [4] it is really easy to generate an abelian square free sequence of the 

form ...ACDBCBACDCDCCABADBABCBCADCDBDABAABCACDCBCDSa = , 

upto 85-values. A similar sequence can be generated for required number of 

hexadecimal numbers say eight digits and can be used in the step function of 3-branch 

hash function. For more information on abelian square free sequence generation one 

can refer to [95, 96, 97] and Section-7 of [4]. 

 To make it harder for an attacker to find an attack on 3-branch, different dither 

values for processing different message blocks can be used. That is, for processing a 

message block 1M , the dither values 1
,kjd  can be used and another completely 

different dither values 2
,kjd  can be used for processing the second message block 2M , 

similarly, for all other message blocks different dither values can be used. But, if the 

dither values are used in such a fashion the design becomes complicated. That is, 

against the known generic attacks, the 3-branch hash function can be made more 

secure at the cost of complexity. 

 If the dither values for any message block are chosen as 1510 ,.....,, ddd  then the 

ordering rule for these values is as in table 8: 

 

 

 

  

 

       Table 8: Ordering rule of dither values. 

3.3.1.7. Efficiency and performance: 

 In Section-5 of [4] the performance and efficiency of FORK is compared with 

that of SHA-256. Due to the smaller number of additions, XOR and shift rotations 

kSTEP −  0 1 2 3 4 5 6 7 

kd ,1  0d  2d  4d  6d 8d 10d 12d 14d  

kd ,2  15d  13d 11d 9d 7d 5d  3d  1d  

kd ,3  0d  2d  4d  6d 8d 10d 12d 14d  
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used in FORK it was summarised by the authors that the performance is 30% faster 

compared with that of SHA-256. The 3-branch hash function uses even less 

operations compared with that of FORK, which can be seen from the structures of 

both the hash functions.  

 The additional inputs used in 3-branch compared with that of FORK are the 

dither values and a XOR operation which is used to mingle these values with the 

chaining variable in each step function. On the other hand, one can notice that there 

are only three branches in this new proposal. That is, one complete branch is not 

required, which will increase the performance by one forth compared with that of 

FORK. This shows that 3-branch is more efficient. Thus an argument to show that the 

performance and efficiency of 3-branch is not less than FORK can be made without 

any difficulty. 

 In SHA-1 or SHA-2 hash functions, boolean functions are used where as in 3-

branch nonlinear functions f  and g  are used. These nonlinear functions output one 

word from one input word while the boolean functions output one word with at least 

three words at least. It is easier to adjust several input words of a boolean function and 

control the output whereas it is not the case in nonlinear functions. This drawback of 

the boolean functions makes it easier to find collisions in the hash function. Thus, it 

can be seen that the use of nonlinear functions in a hash function provides greater 

security than that boolean functions. 

3.3.1.8. Security analysis of 3-branch: 

 First, if an attacker inserts the message difference to find a collision in 3-

branch then, he expects the following: 

   ( ) ( ) 03221 =∆⊕∆+∆⊕∆  

where, i∆  is the output difference of the iBRANCH . To obtain such a differential 

pattern the attacker should survey the following strategies: 

Strategy-1: To construct a differential characteristic with a high probability for a 

branch function, say 1BRANCH  and then expects that, the operation of the output 

differences in the other branches 3∆  is equal to 1∆ .  

Solution: In this strategy, if the outputs of each branch function are random, the 

probability of the event is almost close to 2562− .  
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Strategy-2: To construct two different differential characteristics such that 

)( 3221 ∆⊕∆−=∆⊕∆ . (This can be generated for cancelling the first and second 

chaining values to obtain the difference between the chaining values as zero, the 

required condition for generating an attack) 

Solution: To find an attack using this strategy an attacker has to construct such a 

differential pattern of the message words. But, for any message words it is 

computationally hard to find such sequences. 

Strategy-3: To insert the message difference which yields same message difference 

pattern in all the three branches and expect that, same differential characteristics occur 

simultaneously in three branches. 

Solution: This strategy is relatively easy for an attacker. However, using the message 

word reordering this can be avoided just as in the case of FORK. Since the same 

message word reordering is used in both hash functions same security level can be 

expected for both against this strategy. Similar arguments against inner collision can 

be made for 3-branch. 

where,  

Part-1: Addition of message words. 

Part-2: Two parallel mixing structures PART-A and PART-B. 

Part-3: Rotation of registers. 

Part-4: Addition of dither value. (This is available only in the case of 3-branch) 

In [98] Matusiewicz et al analysed FORK and found a collision. This similar 

argument cannot hold for 3-branch because there is a new additional input for each 

step called the dither value. This can be explained as follows:  

 In PART-2 there are two different process involved PART-A and PART-B. In 

these two parts, the nonlinear functions f  and g are swapped and also the addition 

modulo and XOR operations are swapped. Hence, if a differential characteristic for 

the PART-2 is found in such a way that, the input and output difference is not more, 

then the same thing can be done to the whole branch. In case of FORK, it is possible 

to extend such a differential to the whole function where as, in 3-branch there are 

various dither values used to avoid such a weakness in each branch. 

The step transformation in the FORK and 3-branch can be split into the following 

parts as shown in Figure 21: 
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          kjA ,      kjB ,         kjC ,         kjD ,        kjE ,         kjF ,         kjG ,     kjH ,                        

                                                                                                                                Part-1                               

                                                                                                                                                      

( )kM
j

2Φ                                                                                                       ( )12 +Φ kM
j

                    

                                                                                                                                                 

                                                                                                                                                                     

                                                                                                                                                

                                                                                                                                               

                                                                                                                                              

                                                                                                                                                 

                                                                                                                                Part-2 

                                                                                                                                                 

    kjd ,          kjd ,         kjd ,         kjd ,                       kjd ,         kjd ,          kjd ,         kjd ,                                      

     Part-4                                                                                                       

                                                                                                                                                             

                                                                                                                              Part-3              

         1, +kjA   1, +kjB   1, +kjC   1, +kjD   1, +kjE   1, +kjF    1, +kjG     1, +kjH                                 

  Figure 21: Splitting step function of 3-branch and FORK. 

  

 The following table compares some of the hash functions against the known 

structural attacks and multicollision attack by Wang presented in Section 1.4 and 

Section 1.5. Here NA=Not applicable and A=Applicable based on the security proofs 

for each of the hash functions presented in Chapter 2 and Chapter 3. 

Compression Zipper 

hash 

3C hash Dither hash 3-Branch 

hash 

Merkle-Damgård 

construction 

Message 

expansion attack 

NA NA NA NA A 

Joux’s multi-

collision attack 

A A A A A 

Deans attack NA NA NA NA A 

Wang’s attack NA NA NA NA A 

        Table 9: Compression of some hash functions against some attacks. 

 
             
 
                 PART-A 

 
 
 
                   PART-B 
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Chapter-4 

Applications of hash functions  

 

 Hash functions are an important primitive in cryptography because of their 

great variety of applications. Digital signatures, data integrity, group signatures, 

password tables and etc are some examples of the applications of the hash functions. 

 

4.1. Digital signature:  

 Digital signatures were the major application of the hash functions 

historically. They are easily transportable, cannot be imitated by someone else and 

can be automatically time stamped. In fact, digital signatures are independent of hash 

functions it’s just more efficient to sign a hash of the message rather that the message 

itself. One form of the definition for digital signature can be as in Definition-7. In fact 

digital signature can be defined in many other ways as indicated in [1, 8, 13]. 

Definition-7:   

 An electronic signature that can be used to authenticate the identity of the 

sender of a message or the signer of a document and also to ensure that the original 

content of the message or the document that has been sent is unchanged is known as a 

digital signature. 

 A hash function can generate a hash value for a message of an arbitrary length 

which will be of fixed length and much smaller than the original message. Any 

change to the message invariably produces a different hash result when the same hash 

function is used. A hash function therefore enables us to create a digital signature to 

operate on smaller and predictable amounts of data, while still providing robust 

evidentiary correlation to the original message content, thereby efficiently providing 

assurance that there has been no modification of the message since it was digitally 

signed. Hence, digital signature usually involves two processes, one performed by the 

signer and the other by the receiver of the digital signature. The overall operational 

pattern of the digital signature can be explained as follows. 

4.1.1. Creation of digital signature: 

 The whole process for creating digital signature can be explained using the 

Figure 22. To sign a message or a document the signer first delimits precisely the 
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borders of what is to be signed. The delimited information is called a message or a 

document. Then the hash function is used to generate the hash value of the message to 

be signed. The hash value generated by the hash function is unique to the message. 

The signer then transforms the hash value into a digital signature using his/her private 

key. The resulting digital signature is thus unique to both the message and the private 

key used to create it. Finally, the digital signature is attached to its message and 

transmitted with its message.  

 

 

 

 

 

 

 

 

 

 

 

                               Figure 22: Creation of digital signature. 

4.1.2. Verification of digital signature: 

 Verification of digital signature is done by computing a new hash result of the 

original message by means of the same hash functions used to create the digital 

signature. Then, using the public key and the new hash result, the verifier checks the 

following: (a) Whether the digital signature was created using the corresponding 

private key; and (b) whether the newly computed hash result matches the original 

hash result which was transformed into the digital signature during the signing was 

transformed into the digital signature during the signing process.  

 The verifier will then confirm the digital signature as verified if: (a) The 

signer’s private key was used to digitally sign the message, which is known to be the 

case if the signer’s public key was used to verify the signature because the signer’s 

public key will verify only a digital signature created with the signer’s private key; 

and (b) The message was unaltered, which is known to be the case if the hash result 

computed by the verifier is identical to the hash result extracted from the digital 

signature during the verification process. 

                   
 
 
 
 
 
 
 
 
 
 
                                                                                                    To verifier                     
               
                           “Only private key holder can sign” 

  Message       Hash 
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    Hash result 
    Signing   
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   Message 

Private Key 
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    signature 
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   Figure 23: Verification of digital signature. 

  

   Figure 23: Verification of digital signature. 

4.2. Data integrity: 

 Data authentication and data integrity are two issues which cannot be 

separated. There should be a source for any data which has been altered and if a 

source cannot be determined, then the question of alteration cannot be settled. 

Integrity mechanisms thus provide data authentication and vice versa.  Hence data 

authentication should also be considered along with data integrity.  

Definition-8: (Data origin authentication): 

 The type of authentication whereby a party is corroborated as the original 

source of specified data created at some time in the past is known as data origin 

authentication. 

Definition-9: (Data integrity): 

 Data integrity is the property whereby data has not been altered in an 

unauthorized manner since the time it was created, transmitted, or stored by an 

authorized source. 

 Operations which invalidate integrity include insertion of bits, inserting 

entirely new data items from fraudulent sources, deletion of bits, reordering of bits or 

groups of bits, inversion or substitution of bits and any combination of these. 

4.2.1. Data integrity using a ‘MAC’ alone: 

 A Message Authentication Code (MAC) is designed specially for applications 

where data integrity is required but not necessarily privacy. The originator of a data x  

computes a MAC )(xhk (where h  is a hash function) over the data using a secret 

MAC key k  shared with the intended recipient and transmits both the data and the 

generated MAC to the recipient.  
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 The recipient then determines by some means the claimed source identity, 

separates the received MAC from the received message, independently computes a 

MAC over this message using the shared MAC key and compares the computed MAC 

to the received MAC. The recipient interprets the agreement of these values to mean 

the data is authentic and has integrity that is, it originated from the other party which 

knows the shared key and has not been altered in transit. Data integrity using a MAC 

alone can be diagrammatically represented as in Figure 24.    

 

                                       

                                                                                                   

                                                                                           Secret Key 

 

 

 

                                                                                        Unsecured channel    

 

                    Figure 24: Data integrity using a ‘MAC’ alone.  

4.2.2. Data integrity using encryption and a Modification Detection code (MDC): 

 If both confidentiality and integrity are required then, data integrity technique 

employing an MDC-‘ h ’of m -bit may be used. The originator of a data x  computes a 

hash value )(xhH =  over the data, appends it to the message and encrypts the 

augmented data using a symmetric encryption algorithm E  with shared key k , 

producing cipher text ))(||( xhxEC k= . This is transmitted to the recipient who 

determines which key to use for decryption and separates the recovered data x′  from 

the recovered hash H ′ . For the explanation on MDC Page 2 can be referred. 

 The recipient then independently computes the hash )(xh ′ of the received 

message x′  and compares this to the recovered hash H ′ . If these matches then the 

recovered message is accepted as both being authentic and having integrity. The 

definition of MDC is as in Section-1 (page-2). Diagrammatical representation of data 

integrity using encryption and an MDC is as shown in Figure 25. 
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   Figure 25: Data integrity using encryption and MDC. 

4.2.3. Data integrity using an MDC and an authentic channel: 

 The use of a secret key is not essential in order to provide data integrity. It 

may be eliminated by hashing a message and protecting the authenticity of the hash 

via an authentic but not necessarily private channel. The originator computes a hash 

code using MDC over the message data then transmits the data to a recipient over an 

unsecured channel and finally transmits the hash code over an independent channel 

which is known to provide data origin authentication. The recipient hashes the 

received data and compares the hash code with the received one. If these values are 

same the recipient accepts the data as having integrity. Data integrity using an MDC 

and an authentic channel can be diagrammatically represented as in the Figure 26. 
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 Figure 26: Data integrity using an ‘MDC’ and an authentic channel.  
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Chapter-5 

Conclusion and open problems  

 

5.1. Conclusion:  

The following are the major points dealt in this thesis: 

1. A survey on types of hash functions. 

2. A survey on types of attacks on hash functions. 

3. Structural weaknesses of the Merkle-Damgård construction. 

4. Recent differential collision attack on widely deployed hash functions such as 

MD4, MD5 and SHA-1 by Wang. 

5. Classification of hash functions based on streamability and non-streamability of the 

design and based on number of inputs to the compression function of the hash 

function. 

6. Replacement and modification methods to the existing dedicated hash functions to 

resist against the known generic attacks. 

7. Applications of hash functions. 

  Sections 1.2 & 1.3 fulfil the first two points. There are various other types of 

hash functions but only hash functions based on block ciphers and dedicated hash 

functions are explained because of their current wide usage. Almost all the dedicated 

hash functions are constructed using the Merkle-Damgård construction. However, 

there are various structural weaknesses found on this construction. Some of the 

structural weaknesses dealt in this thesis are: 

a) Message expansion attack. 

b) Joux’s multi-collision attack. 

c) Fixed point attack by Dean and its extension by Kelsey and Schneier.                                           

d) The herding attack by Kelsey and Kohno. 

MD4, MD5, SHA-0, SHA-1 and RIPEMD are the most widely deployed hash 

functions in various applications of cryptography. However, all these hash functions 

were broken fully by Wang, using a differential collision attack. To overcome this, 

various researchers have proposed a variety of replacements and modifications to the 

effected hash functions. Some of the replacements or modifications proposed for 

existing hash functions by various researchers in recent past are:  
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a) The Zipper hash construction [84]. 

b) The wide pipe and the double pipe designs [82]. 

c) The 3C and the 3C+ hash constructions [11]. 

d) Dithering hash function [4]. 

e) Pre fix free Merkle-Damgård construction [83]  

f) HAIFA—a framework of iterative hash functions [85]. 

 Using these and already existing hash functions a new classification for hash 

functions is presented in Section-2. This classification is based on streamability and 

non-streamability of the design of hash functions and also based on the number of 

inputs to the compression function of the hash function. This type of classification is 

not seen in any reference of the hash functions. The Zipper hash construction is the 

only non-streamable hash function available currently. The security analysis of each 

hash function is also presented. 

 As far as the modifications to the existing hash functions are concerned, there 

are two modification methods proposed in Sections 3.1 and 3.2: 

1) Collision resistance of a hash function using message preprocessing and 

2) Enhanced SHA-1 IME hash function. 

 To provide collision resistance to a hash function using a message preprocessing a 

technique called reverse interleaving is proposed which is similar to that of self 

interleaving approach proposed in [5]. Using these approaches it is easy to avoid the 

collision on hash functions such as MD-5 and SHA-1.  

 The implementation of this modification is straight forward and is shown in 

Section 3.1.4. The standardized hash function is used without making any changes to 

it for processing a message after it is preprocessed using reverse interleaving 

technique. These techniques, repeat each message block in such a way that the same 

message block appears twice consecutively. Thus, each message block is processed 

twice consecutively which makes it hard to apply the message modification technique 

of Wang’s attack. 

 In [91] an enhancement to SHA-1 hash function has been proposed as a 

modified version and is known as SHA-1 IME. In relation to this, a new enhancement 

is proposed in Section 3.2 using a different type of enhancement. These replacements 

are based on replacing the message expansion mechanism of SHA-1 hash function. 

The similar enhancement can be generated to other standardized hash functions. The 
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new enhancement proposed will provide better mixing of the input strings because of 

the additional conditions used. 

 On the other hand, as far as the replacement of hash functions is concerned a 

new 256-bit dedicated hash function known as 3-branch has been proposed. The 

design of 3-branch is similar to that of FORK-256 in [95]. The modifications are that 

only three branches are used instead of four branches in the compression function of 

3-branch to process a message, and an addition input called dither value is used in 

each step. In [98] an attack was proposed on FORK-256, the similar attack cannot be 

applied to 3-branch because of the additional dither value used as an input to the 

compression. 

 The performance of FORK-256 is faster compared with that of SHA-256 

because of the smaller number of addition and XOR operations used. 3-branch uses 

much less operations when compared with that of FORK-256. There are three parallel 

branch used to process a message unlike SHA-256, which uses four serial rounds. As 

indicated in Section-3.3.1.8 the nonlinear functions used by 3-branch are more secure 

than the boolean functions used in SHA-256. All these properties collectively make 

the 3-branch secure compared with that of SHA-256 and FORK-256. 

 Hash functions are important because of their wide variety of applications. 

Digital signatures and MAC’s are the major and historical application of hash 

functions. Apart from digital signature some of the major applications of hash 

functions are data integrity, group signature, password table, digital watermarking, 

etc. Some of these applications are clearly explained in Chapter 4. 

 

5.2. Open problems: 

The following are some of the open problems which are worth to consider: 

1. Are there any attacks against the dithering hash function design, which in turn 

weakens the design of 3-branch? 

2. Is there any other possibility of designing different types of non-streamable 

hash function designs and what properties do they have against the current 

weaknesses? 

3. Are there any other types of attacks else than the differential attack which lead 

to a collision? 

4. Are the modified versions of hash functions proposed recently are really 

worthfull to extend lives against the known generic attacks? 
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