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Abstract—This paper initiates a saturated function series ap-
proach for chaos generation. The systematic saturated function se-
ries methodology developed here can create multiscroll chaotic at-
tractors from a three-dimensional (3D) linear autonomous system
with a simple saturated function series controller, including one-di-
rectional -scroll, two-directional -grid scroll, and 3-D

-grid scroll chaotic attractors. The dynamical behaviors and
chaos generation mechanism of multiscroll systems are further in-
vestigated by analyzing the system trajectories. In particular, a
two-dimensional (2D) Poincaré return map is rigorously derived
for verifying the chaotic behaviors of the double-scroll chaotic at-
tractor, which is a basic generator of various multiscroll chaotic
attractors investigated in the paper.

Index Terms—Chaos generation, multiscroll chaotic attractor,
saturated function series, saturated plateau.

I. INTRODUCTION

I T IS WELL KNOWN that chaos is useful and has great po-
tential in many real-world engineering fields such as digital

data encryption and secure communications, biomedical engi-
neering, flow dynamics and liquid mixing, power-systems pro-
tection, and so on [1], [2].

Currently, generation of multiscroll chaotic attractors has been
extensively studied and is no longer a very difficult task [3]–[17].
For example, Suykens et al. introduced several methods for
generating -scroll chaotic attractors using simple circuits
[3]–[6], [9], [10], including the generalized Chua’s circuit [4]
and cellular neural network (CNN) [5], [7]. A piecewise-linear
(PWL) implementation of double scrolls [3] was also proposed
by Arena et al. in [7]. The essence of these methods is to add
breakpoints in the PWL characteristic function of the nonlinear
resistor in Chua’s circuit [18], [19]. Tang et al. proposed a
sine-function approach for creating -scroll chaotic attractors,
with a systematical circuit realization that can physically pro-
duce up to as many as ten scrolls visible on the oscilloscope [8],
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[12]. Ozoguz et al. presented a nonlinear transconductor method
for generating -scroll attractors [11]. Lü et al. introduced a
switching manifold approach for creating chaotic attractors
with multiple-merged basins of attraction [14]. Yalcin et al.

proposed a stair function method for generating one-directional
(1-D) -scroll, two-directional (2-D) -grid scroll, and
three-directional (3-D) -grid scroll chaotic attractors
[10]. Hysteresis can also generate chaos [20]–[27]. Elwakil
and Kennedy constructed a class of circuit-independent chaotic
oscillators [20]. Elwakil et al. proposed some hysteresis chaotic
oscillators [21]. Recently, Lü et al. presented a hysteresis series
approach for creating 1-D -scroll, 2-D -grid scroll, and
3-D -grid scroll chaotic attractors [16]. Last but not
least, Cafagna and Grassi [17] produced a ring Chua’s circuit
method for generating 1-D -scroll and 2-D -grid scroll
chaotic attractors. To this end, it should be noted that stair circuit,
hysteresis circuit, and saturated circuit are the three kinds of
basic circuits. Since it has been reported that stair circuit and
hysteresis circuit can create 3-D multiscroll chaotic attractors
[10], [15], [16], it is therefore very interesting to ask whether or
not saturated circuit can also generate 3-D multiscroll chaotic
attractors. This paper gives a positive answer to this question.

More precisely, this paper proposes a saturated function series
approach for generating multiscroll chaotic attractors, including
1-D -scroll, 2-D -grid scroll, and 3-D -grid
scroll chaotic attractors. It is noticed that the saturated function
series is continuous,yet the stair functionand hysteresis series are
not continuous at all switching points. The dynamical behaviors
and chaos generation mechanism of the multiscroll systems are
further investigated by analyzing their trajectories. In particular,
a 2-D Poincaré return map is rigorously derived for verifying the
chaotic behaviors of the double-scroll chaotic attractor, which is
a basic generator of various multiscroll chaotic attractors studied
in the paper. In comparison, however, most of the reported multi-
scroll chaotic attractors are only verified by using com-
puter simulation and/or electronic circuits, where theoretical
analysis and rigorous mathematical proofs are not available.

The rest of this paper is organized as follows. In Section II, the
concept of saturated function series is introduced. The saturated
function series approach is then introduced in Section III for cre-
ating multiscroll chaotic attractors, including 1-D -scroll, 2-D

-grid scroll, and 3-D -grid scroll attractors. In
Section IV, dynamical behaviors and chaos generation mecha-
nism of the multiscroll systems are further investigated, and a
2D Poincaré return map is rigorously derived for verifying the
chaotic behaviors of the double-scroll attractor. Conclusions are
finally given in Section V.
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Fig. 1. (a) Opamp and its PWL model. (b) OTA and its PWL model.

II. SATURATED FUNCTION SERIES

This section introduces the saturated function series concept.

A. Saturated Circuit

It is well known that the saturated circuit is one of the basic

PWL circuits. The PWL models for operational amplifiers

(opamps) and operational transconductance amplifiers (OTAs)

can be well characterized by saturated circuit [28]. From Fig. 1,

one can see that the PWL approximations for opamps and OTAs

are quite accurate [28]. It leads to a simple representation for

opamp, which is in the linear region for ,

with voltage amplification , positive saturation , and

negative saturation , as follows:

(1)

It is called an opamp finite-gain model. In each of the three

regions, the opamp can be characterized by a linear circuit.

Similarly, for the OTA, in the linear region

, with transconductance gain , positive saturation ,

and negative saturation , one has

(2)

B. Saturated Function Series

Consider the following saturated function:

if

if

if

(3)

where is the slope of the middle segment, the upper

radial and the lower radial

are called saturated plateaus, and the segment

between the two saturated plateaus

Fig. 2. Saturated function f (x; k).

Fig. 3. Saturated function series with k = 1; h = 4.

is called the saturated slope. Fig. 2 shows the phase portrait of

the saturated function .

Definition 1: The following PWL function:

(4)

is called a saturated function series, where is the slope of

saturated function series, is the saturated delay time of

the saturated function series, and are positive integers, and

if

if

if

and
if

if

if

One may recast the saturated function series as

follows:

if

if
if

if

(5)

Fig. 3 shows the phase portrait of this saturated function series

with . It is noticed that saturated function series (5)

is a PWL continuous function and has better analytical property

such as the existence of solution and stability. However, one

should notice that the stair function in [10] and the hysteresis

series in [15], [16] are not continuous in all switching points.
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Consider the following 3-D linear autonomous system:

(6)

where are state variables, and are positive real con-

stants. To guide the linear system (6) to generate chaotic be-

havior, it needs to add a nonlinear controller to stretch and fold

the trajectories of the system repeatedly. Note that the PWL con-

troller is the simplest nonlinear continuous controller. Here, the

saturated function series (5) is used as the controller.

III. DESIGN OF MULTISCROLL CHAOTIC ATTRACTORS

FROM SATURATED FUNCTION SERIES

This section introduces a new and systematic method—sat-

urated function series approach—for generating multiscroll

chaotic attractors, including 1-D -scroll, 2-D -grid

scroll, and 3-D -grid scroll chaotic attractors, from

the linear autonomous system (6) by using a PWL controller.

Note that (6) has a unique equilibrium point and its

corresponding characteristic equation is

(7)

Denote , and

.

Solving (7) gives

(8)

and

(9)

Numerical computations show that the linear system (6) with

a saturated function series controller will produce chaotic be-

havior under the conditions of , and . That

is, (7) has a negative eigenvalue and one pair of complex con-

jugate eigenvalues with positive real parts. Moreover, the equi-

librium point is a two dimensionally unstable saddle,

called a saddle point of index 2 [17]–[19].

In the following, assume that

(10)

A. New Double Scroll Chaotic Attractor

Here, the saturated function is chosen as a controller

to guide system (6) to generate chaos. The controlled system is

described by

(11)

where is defined by (3).

When , system (11) has a

double-scroll chaotic attractor as shown in Fig. 4(a). Fig. 4(b)

shows the - plane projection of the double-scroll attractor;

Fig. 4(c) shows that the variable spirals around two values,

, making random excursions between these two values

which correspond to the centers of the two scrolls in the attractor;

Fig. 4(d) shows the Poincaré map on section , where it

is clear that the trajectories are folded and the corresponding

double-scroll map reported in [9] can also be observed.

Obviously, system (11) has three equilibria,

and , which correspond to the three PWL parts of the

saturated function in Fig. 2, respectively. Equilibria

possess eigenvalues ,

which are called saddle points of index 2 since the two com-

plex conjugate eigenvalues have positive real parts [17]–[19].

Equilibrium point has eigenvalues

, which is called saddle point of index 1 since

the real eigenvalue is positive [17]. It is noticed that the scrolls

are generated only around the equilibria of saddle points of index

2 [17]–[19]. Moreover, equilibria correspond to the two

saturated plateaus, which are responsible for generating the two

scrolls in the double-scroll attractor. However, the equilibrium

point corresponds to the saturated slope and is responsible

for connecting these two symmetrical scrolls. The Lyapunov

exponent spectrum and Lyapunov dimension can be calculated

by using the numerical methods described in [29], yielding

, and .

According to the above analysis, this new double-scroll at-

tractor is similar to but different from Chua’s double-scroll at-

tractor [18] since Chua’s double-scroll attractor is created by

using Chua’s circuit and the two circuits are not topologically

equivalent.

B. 1-D -Scroll Chaotic Attractors

In the following, to create -scroll chaotic attractors

, a saturated function series controller is added to system (6),

leading to

(12)

where is defined by (5), and are

positive constants.

Assume that

(13)
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Fig. 4. Double-scroll chaotic attractor. (a) x-y-z space. (b) x-y plane projection. (c) Variable x(t). (d) Poincaré map on section y = 0.

Obviously, all equilibrium points of system (12)

are located along the -axis, and can be classified into two dif-

ferent sets

(14)

and

(15)

For all equilibria in set , the characteristic equations are (7)

and the corresponding eigenvalues satisfy and

with and from assumption (10). That

is, all equilibria in set are saddle points of index 2. For all

equilibria in set , the corresponding characteristic equations

are

(16)

Since and ,

(16) has one positive eigenvalue and two negative eigenvalues, or

one positive eigenvalue and a pair of complex conjugate eigen-

values with negative real parts. To generate chaos from system

(12), one may assume that (16) has a positive eigenvalue and a

pair of complex eigenvalues with negative real parts. It means

that all equilibria in set are saddle points of index 1. Since

the scrolls are generated only around saddle points of index 2

[17]–[19], system (12) has the potential to create a maximum of

-scroll chaotic attractor for some suitable parame-

ters . It should be emphasized that the

equilibria in set are responsible for generating

scrolls of the attractor. However, the equilibria in set

are responsible for connecting these scrolls to

form a whole chaotic attractor. Moreover, each equilibrium point

in set corresponds to a unique saturated plateau of the satu-

rated function series (5) and also corresponds to a unique scroll

of the whole attractor. Furthermore, each equilibrium point in

set corresponds to a unique saturated slope of the saturated

function series (5) and also corresponds to a unique connection

between two neighboring scrolls.
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Fig. 5. Three-scroll chaotic attractor. (a) x-y-z space. (b) x-y plane projection.

Fig. 5 shows a 3-scroll chaotic attractor of system (12), where

. The

Lyapunov exponent spectrum of this 3-scroll chaotic attractor

includes . Fig. 6

displays a 6-scroll chaotic attractor of system (12), where

. The

Lyapunov exponent spectrum of this 6-scroll chaotic attractor

includes .

Remark 1: In fact, system (12) can create an -scroll chaotic

attractor , including odd and even number of scrolls

chaotic attractors, by adjusting suitable parameters. There are

three basic design strategies to obtain suitable circuit parame-

ters for specified -scroll chaotic attractors: 1) parameters

satisfy condition (10); 2) parameters satisfy con-

dition (13) where, for simplification, assume that and

; 3) parameters control the number of scrolls in

negative and positive -directions, respectively.

C. 2–D -Grid Scroll Chaotic Attractors

Here, a saturated function series controller is added to system

(6) for generating -grid scroll chaotic attractors. The con-

trolled system is described by

(17)

where and are defined by

(5), and are positive constants.

Denote, in addition to (14) and (15), the following:

(18)
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Fig. 6. Six-scroll chaotic attractor. (a) x-y-z space. (b) x-y plane projection.

and

(19)

Assume that (13) holds and

(20)

Then, (17) has equilibrium

points, which are located on the - plane and given by

(21)

It is noticed that all equilibria can be classified into four different

sets

Obviously, the characteristic equations of the linearized

system evaluated at the equilibria in set are (7) and the

corresponding eigenvalues satisfy and

with and by assumption (10). It means that

all equilibria in set are saddle points of index 2. For all

equilibria in set , the corresponding characteristic equations

are

(22)
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Since and

, (22) has one positive eigenvalue and two neg-

ative eigenvalues, or one positive eigenvalue and a pair of com-

plex conjugate eigenvalues with negative real parts. Moreover,

all equilibria in are saddle points of index 1. For all equi-

libria in , the corresponding characteristic equations are (16)

and these equilibria are saddle points of index 1. Similarly, for all

equilibria in , the corresponding characteristic equations are

(23)

Since and

, (23) has one negative eigenvalue and two pos-

itive eigenvalues, or three negative eigenvalues, or one negative

eigenvalue and a pair of complex conjugate eigenvalues.

To create chaos from system (17), one may assume that (23)

has one negative eigenvalue and a pair of complex conjugate

eigenvalues with positive real parts. Thus, the equilibria in

are saddle points of index 2. Since the scrolls can be generated

only around saddle points of index 2 [17]–[19], the equilibria

in and may create scrolls. However, numerical simula-

tions show that only the equilibria in can generate scrolls. In

fact, having a saddle point of index 2 is only a necessary con-

dition, but not a sufficient condition for generating scrolls. Ac-

cording to the Homoclinic S̆ilnikov Theorem [19], it needs a

condition—existence of a homoclinic orbit in the neighboring

region of the equilibrium point—for generating scrolls. There-

fore, system (17) has the potential to create a maximum of 2-D

-grid scroll chaotic attractor, called

2-D -grid scroll chaotic attractor, for suitable parameters

. Note that each equilibrium point

in corresponds to a unique 2-D saturated plateau and also

corresponds to a unique scroll in the whole attractor. More-

over, other equilibria in correspond to the saturated

slopes and are responsible for connecting these

scrolls.

Fig. 7 shows a 6 6-grid scroll chaotic attractor, where

. Clearly, there are six scrolls in the -direc-

tion and six scrolls in the -direction, as shown in Fig. 7(b). The

Lyapunov exponent spectrum of this 6 6-grid scroll attractor

includes . Note that

these 2-D -grid scroll chaotic attractors are generated in

exactly the same way as the 1-D case discussed in the last sub-

section, except that the directions of the system trajectories are

more vertical here. Similarly, one can design 2-D -grid

scroll attractors in - or - directions.

Remark 2: There are five fundamental design guidelines

for obtaining suitable circuit parameters for specified 2-D

-grid scroll attractors: 1) parameters satisfy con-

dition (10); 2) parameters satisfy condition (13)

where, for simplification, assume that and ; 3)

parameters satisfy condition (20) where, for simpli-

fication, assume that and ; 4) parameters

control the numbers of scrolls in negative and positive -direc-

tions, respectively; 5) parameters control the numbers of

scrolls in negative and positive -directions, respectively.

D. 3-D -Grid Scroll Chaotic Attractors

Here, a saturated function series controller is added to system

(6) for creating 3-D -grid scroll chaotic attractors. The

controlled system is

(24)

with

defined by (5), and are positive constants.

In addition to (14), (15), (18), and (19), define

(25)

and

(26)

Assume that (13) and (20) hold and

(27)

Then, (24) has

equilibrium points, given by

(28)

Note that all equilibria can be classified into eight different sets:

For all equilibria in , the corresponding characteristic equa-

tions are (7). From assumption (10), all equilibria in are

saddle points of index 2. For the equilibrium points in , the

corresponding characteristic equations are

(29)

Since and

, (29) has three positive eigenvalues, or one

positive eigenvalue and two negative eigenvalues, or one pos-

itive eigenvalue and a pair of complex conjugate eigenvalues.

Based on numerical observations, one may assume that (29)
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Fig. 7. Two-directional 6� 6-grid scroll chaotic attractors. (a) x-y-z space.(b) x-y plane projection.

has one positive eigenvalue and a pair of complex conjugate

eigenvalues with negative real parts. Thus, all equilibria in

are saddle points of index 1. For all equilibria in , the corre-

sponding characteristic equations are (22).

According to the assumption in the last subsection, the equi-

libria in are saddle points of index 1. For the equilibria in

, the corresponding characteristic equations are

(30)

Since and

, (30) has one negative

eigenvalue and two positive eigenvalues, or one negative eigen-

value and a pair of complex conjugate eigenvalues with positive

real parts. Numerical observations show that (30) has one neg-

ative eigenvalue and a pair of complex conjugate eigenvalues

with positive real parts. Thus, the equilibria in are saddle

points of index 2. For all equilibria in , the corresponding

characteristic equations are (16). According to the assumption

in Subsection B, all equilibria in are saddle points of index 1.

For the equilibria in , the corresponding characteristic equa-

tions are

(31)

Since and

, (31) has one negative eigen-

value and two positive eigenvalues, or one negative eigenvalue

and a pair of complex conjugate eigenvalues with positive real
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Fig. 8. Three-directional 6� 6� 6-grid scroll chaotic attractors. (a) x-y-z space. (b) x-y plane projection. (c) x-z plane projection. (d) y-z plane projection.

parts. Numerical simulations show that (31) has one negative

eigenvalue and two positive eigenvalues. So the equilibria in

are saddle points of index 1. For all equilibria in , the corre-

sponding characteristic equations are (23). From the assumption

in the last subsection, all equilibria in are saddle points of

index 2. Finally, consider all equilibria in , the corresponding

characteristic equations are

(32)

Since and

, (32) has

three positive eigenvalues, or one positive eigenvalue and two

negative eigenvalues, or one positive eigenvalue and a pair of

complex conjugate eigenvalues. Numerical observations show

that (32) has one positive eigenvalue and a pair of complex con-

jugate eigenvalues with negative real parts. Then, the equilibria

in are saddle points of index 1.

It should be pointed out that the scrolls can be generated only

around saddle points of index 2 [17]–[19]. Therefore, only the

equilibria in , and may create scrolls. However, nu-

merical observations reveal that only the equilibria in can

generate scrolls. In fact, having a saddle point of index 2 is only

a necessary condition, but not a sufficient condition for gener-

ating scrolls. That is, system (24) has the potential to create a

maximum of 3-D

-grid scroll chaotic attractor, called 3-D -

grid scroll chaotic attractor, for some suitable parameters

. In particular, each equilibrium

point in corresponds to a unique 3-D saturated plateau and

also corresponds to a unique scroll in the whole attractor. Fur-

thermore, other equilibria in correspond to the

saturated slopes and are responsible for connecting the

scrolls.

Fig. 8 shows a 6 6 6-grid scroll chaotic attractor, where

. Obviously, there are six scrolls in each direction of

the state space, as shown in Fig. 8(b), (c), and (d), respectively.



LÜ et al.: DESIGN AND ANALYSIS OF MULTISCROLL CHAOTIC ATTRACTORS 2485

The Lyapunov exponent spectrum of this 6 6 6-grid scroll

attractor includes .

Note that these 3-D -grid scroll chaotic attractors are

generated in exactly the same way as the 1-D and 2-D cases

discussed before, except that the directions of the system trajec-

tories are three here.

Remark 3: There are seven basic design strategies to obtain

suitable circuit parameters for specified 3-D -grid scroll

attractors: 1) parameters satisfy condition (10); 2) parame-

ters satisfy condition (13) where, for simplification,

assume that and ; 3) parameters

satisfy condition (20) where, for simplification, assume that

and ; 4) parameters satisfy condition

(27) where, for simplification, assume that and ;

5) parameters control the numbers of scrolls in negative

and positive -directions, respectively; 6) parameters con-

trol the number of scrolls in negative and positive -directions,

respectively; 7) parameters control the number of scrolls

in negative and positive -directions, respectively.

IV. THEORETICAL ANALYSIS FOR MULTISCROLL

CHAOTIC ATTRACTORS

A. Dynamical Analysis of Double-Scroll System (11)

Here, the dynamical behaviors of the double-scroll systems

(11) are further investigated. In particular, a 2-D Poincaré return

map [18], [26] is rigorously derived for verifying the chaotic

behaviors of the double-scroll system (11).

Obviously, systems (12), (17), and (24) become system (11)

in every corresponding subspace. Therefore, system (11) is the

basic generator of the multiscroll chaotic systems (12), (17), and

(24) and plays a very important role in chaos generation. When

, system (11) has a double-scroll

chaotic attractor as shown in Fig. 4. Obviously, (11) has three

different subspaces

where . System (11) has a natural symmetry

under the coordinates transform ,

which persists for all parameter values. The variation of the

volume of a small element, , in the state

space is determined by the divergence of the flow

That is, system (11) is dissipative in each subspace.

For subspaces and , the dynamical equations are de-

scribed by

where

for

for

Thus, the exact solution of the above equation is

(33)

where coefficients are given at the bottom of the page, and

are defined by (8) and (9). Denote solution (33) as

For subspace , the dynamical equation is described by

Clearly, the exact solution is

(34)

where coefficients are given at the bottom of the next page, in

which is the positive eigenvalue of (16), and are the

real and imaginary parts of the pair of complex conjugate eigen-

values of (16). Denote solution (34) as
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Fig. 9. Trajectory switchings of the double-scroll system (11).

Obviously, system (11) has two symmetrical switching

planes: and . Denote

and the corresponding switching rules are

if

if

if

if

where .

Fig. 9 shows the trajectory switchings of system (11). Con-

sider switching plane . If , the trajectories

of system (11) will go through switching plane from to

; if , the trajectories of system (11) will

go through switching plane from to . For switching

plane , if , the trajectories of system

(11) will go through switching plane from to ; if

, the trajectories of system (11) will go through

switching plane from to . Without loss of generality,

assume that the initial point . Then, after a long enough

time, it will definitely arrive at the switching plane . From

the switching rules, this trajectory will go through from

to . After a long enough time, it will definitely reach

or ; if it arrives at , it will go through switching plane

from to and begin a new cycle; if it reaches , ac-

cording to the switching rules, it will go through switching plane

from to . After a long enough time, this trajectory

will definitely arrive at switching plane ; from the switching

rules, this trajectory will go through switching plane from

to . After some time, it will reach switching plane or

; if it arrives at , it will repeat the former process; if it

reaches , according to the switching rules, it will go through

the switching plane from to and begin a new cycle.

Therefore, the running routes of this trajectory can be classified

into three different cases

In the following, a 2D Poincarée return map is rigorously con-

structed for verifying the chaotic behaviors of the double-scroll

attractor.

Without loss of generality, consider a trajectory started from

an initial point at . If

, according to the exact solution (33), it must reach at

the positive time . Let be the hitting point.

One can get the arriving time and the positions and by

using the solution (33). If , according to the

solution (34), it must reach and at the positive time

and , respectively, without switchings. Here, and are the

first arriving time. Let be the hitting point. One

can get the arriving time and positions and by using the

solution (34). Similarly, for the hitting point ,

one can get the arriving time and positions and . Now,

one can define a region by

Thus, if , this trajectory will arrive at

at the positive time ; if , this tra-

jectory will reach at the positive time .

According to the switching rules, this trajectory will go through

switching plane at time from to . Due to the

symmetry of the vector fields in both and , a trajectory

started from in is symmetric to that started

from on in . Here, one can define a 2 D

Poincaré return map by

for

for

for

(35)
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Note that one can write a rigorously mathematical formulation

for this map by using the exact solutions (33) and (34), as follows:

and

Moreover, the Jacobian of this map is described by

for

for

for

(36)

Therefore, one can get the exact mathematical formulations

for the Lyapunov exponents of the mapping from

(36). However, the formulations are rather complex. In real cal-

culations, one can use the numerical methods described in [29]

to calculate the maximum Lyapunov exponent . If

, system (11) has a double-scroll chaotic attractor.

Fig. 10(a) shows the Poincaré mapping of double-scroll attractor

at section ; Fig. 10(b) displays the Poincaré mapping of the

double-scroll attractor at section . It is clear that these two

mappings are symmetric from a theoretical view, but there are

some small differences due to calculating errors. Moreover, one

can also rigorously prove the chaotic behavior of the double-

scroll attractor by using the Homoclinic S̆ilnikov Theorem in

[19]. The detailed proof is similar to the proof of Chua’s double-

scroll attractor [18] and thus is omitted here.

B. Dynamical Analysis of Multi-Scroll Systems

Here, the dynamical behaviors of multiscroll systems (12),

(17), and (24) are briefly discussed.

Note that the multiscroll systems (12), (17), and (24) can be

represented by a unified hybrid system, which can be regarded

as a linear system with a saturated function series PWL feedback

controller. It is described by

(37)

where is the state vector, and

Clearly, it can be classified into three different cases as follows:

a) 1-D -scroll chaotic attractor: With

system (37) becomes system (12).

b) 2-D -grid scroll chaotic attractor: With

system (37) becomes system (17).

c) 3-D -grid scroll chaotic attractor: With

system (37) becomes system (24).

Suykens et al. discussed the similar link between the multi-

scroll chaotic attractors and the recurrent neural networks in [4].

It should be pointed out that system (37) has some very good an-

alytical properties. This is because system (37) is continuous in

. However, the corresponding hysteresis multiscroll system

in [16] and stair multiscroll systems in [10] are discontinuous in

all switching points.

Assume that

. Consider system (12). When

, let

. Then, from

(5). Therefore, system (12) becomes

where .

It is noticed that this system is the double-scroll system (11)

with . When (or

), let (or

). Then, system (17) is equivalent to the

double-scroll system (11) with (or ).

Similarly, for the multiscroll system (17), let

. Then, system (17) becomes the double-scroll

system (11) in the corresponding subspaces. For the multiscroll

system (24), let . Then

system (24) is equivalent to the double-scroll system (11) in the

corresponding subspaces. That is, in each subspace, system (37)

has the same dynamical behaviors as the double-scroll system

(11). In essence, system (37) assembles the dynamical behaviors

of system (11) with different initial values in different subspaces

by its displacements in -directions. It is easy to understand

why the saturated plateaus of system (37) play an important role

in the process of multiscroll generation.

According to (5), parameters determine the

number of the saturated plateaus in the -directions. More-

over, each saturated plateau corresponds to a unique scroll and

also determines the position of the scroll. In fact, one can arbi-

trarily design the number and also the position of the scrolls of

the multiscroll system (37). One can also rotate the multiscroll

chaotic attractors to any desired orientation in the state space.
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Fig. 10. Poincaré mapping of the double-scroll attractor. (a) SectionM . (b) SectionM .

Every PWL part has one and only one equilibrium point; how-

ever, only the equilibrium points in the saturated plateaus can

generate scrolls. The trajectories of system (37) are repeatedly

stretched and folded in the state space for infinitely many times

via saturated function series switchings, leading to the appear-

ance of complex dynamical behaviors. Note that system (37)

is PWL and has an exact analytic solution in every subspace.

However, the dynamical behaviors of the entire system become

rather complex due to the saturated function series switchings.

Consider the 1-D -scroll system (12). Obviously, system (12)

hasa1-D -scroll chaoticattractor,whichhas

equilibria, located in the -axis.Note that system(12)has

saturatedplateaus, andeach saturatedplateaucorre-

sponds toauniqueequilibriumpointof index2.Other

equilibria of index 1 correspond to saturated slopes

between these saturated plateaus, respectively. Denote

for

When , for each interval of variable

, system (12) has the same dynamical behaviors as the double-
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scroll system (11), which can be verified by using a displacement

transformation with .

Thus, one can get the exact solution of system (12) in each sub-

space. When , system (12) has a natural symmetry under

the coordinates transform , which

persists for all values of the system parameters.

Consider the 2-D -grid scroll system (17). Clearly,

system (17) has a 2-D -grid scroll

chaotic attractor, which has

equilibria, located in the - plane. It is noticed that system (17)

has 2-D saturated plateaus, and each

saturated plateau corresponds to a unique equilibrium point of

index 2. Other equilibria correspond to the saturated slopes be-

tween these saturated plateaus, respectively.

Denote

for

When , for each region

, system (17) has

the same dynamical behaviors as the double-scroll system (11),

which can be verified by using a displacement transformation

for

and . Thus, one can get the exact solution of

system (17) in each subspace. When , system

(17) has a natural symmetry under the coordinates transform

, which persists for all values of the

system parameters.

Consider the 3-D -grid scroll system (24). Obviously,

system (24) has a 3-D

-grid scroll chaotic attractor, which has

equilibria. Notice that system

(24) has 3-D saturated

plateaus, and each saturated plateau corresponds to a unique

equilibrium point of index 2. Other equilibria correspond to the

saturated slopes between these saturated plateaus, respectively.

Denote

for

When , for each subspace

, system (24) has the same

dynamical behaviors as the double-scroll system (11), which

can be verified by using a displacement transformation

for

, and . Then, one can get the exact solution of

system (24) in each subspace. When ,

system (24) has a natural symmetry under the coordinates trans-

form , which persists for all values of

the system parameters.

Similarly, the 2D Poincaré return maps can be constructed

and used to prove the chaotic behaviors of the multiscroll sys-

tems (12), (17), and (24). However, their constructing processes

are similar but rather complex, and hence are omitted here.

V. CONCLUSION

This paper has initiated a saturated function series approach

for generating multiscroll chaotic attractors, including 1-D

-scroll, 2-D -grid scroll, and 3-D -grid scroll

attractors, from a given 3D linear autonomous system with

a saturated function series as the controller. The dynamical

behaviors and chaos generation mechanism of multiscroll

systems have been further investigated by analyzing the system

trajectories. In particular, a 2D Poincaré return map has been

rigorously constructed for verifying the chaotic behaviors of

the double-scroll attractor.

It should be pointed out that one can arbitrarily design a de-

sired number of scrolls and their spatial positions and orienta-

tions by using this developed systematic methodology. Further-

more, it is relatively easy to design physical electronic circuits to

experimentally verify these multiscroll chaotic attractors since

the saturated circuit is a basic electrical circuit.

Finally, it can be foreseen that various related bifurcation phe-

nomena in the generated multiscroll chaotic systems deserve

further investigation in the near future.
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